ALSA: seq: Fix missing NULL check at remove_events ioctl
[linux/fpc-iii.git] / fs / xfs / xfs_buf_item.c
blobe0451f4201cf461775e55e7cd56953dfecf913ca
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
33 kmem_zone_t *xfs_buf_item_zone;
35 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
37 return container_of(lip, struct xfs_buf_log_item, bli_item);
40 STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
43 * This returns the number of log iovecs needed to log the
44 * given buf log item.
46 * It calculates this as 1 iovec for the buf log format structure
47 * and 1 for each stretch of non-contiguous chunks to be logged.
48 * Contiguous chunks are logged in a single iovec.
50 * If the XFS_BLI_STALE flag has been set, then log nothing.
52 STATIC uint
53 xfs_buf_item_size_segment(
54 struct xfs_buf_log_item *bip,
55 struct xfs_buf_log_format *blfp)
57 struct xfs_buf *bp = bip->bli_buf;
58 uint nvecs;
59 int next_bit;
60 int last_bit;
62 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
63 if (last_bit == -1)
64 return 0;
67 * initial count for a dirty buffer is 2 vectors - the format structure
68 * and the first dirty region.
70 nvecs = 2;
72 while (last_bit != -1) {
74 * This takes the bit number to start looking from and
75 * returns the next set bit from there. It returns -1
76 * if there are no more bits set or the start bit is
77 * beyond the end of the bitmap.
79 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
80 last_bit + 1);
82 * If we run out of bits, leave the loop,
83 * else if we find a new set of bits bump the number of vecs,
84 * else keep scanning the current set of bits.
86 if (next_bit == -1) {
87 break;
88 } else if (next_bit != last_bit + 1) {
89 last_bit = next_bit;
90 nvecs++;
91 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
92 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
93 XFS_BLF_CHUNK)) {
94 last_bit = next_bit;
95 nvecs++;
96 } else {
97 last_bit++;
101 return nvecs;
105 * This returns the number of log iovecs needed to log the given buf log item.
107 * It calculates this as 1 iovec for the buf log format structure and 1 for each
108 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
109 * in a single iovec.
111 * Discontiguous buffers need a format structure per region that that is being
112 * logged. This makes the changes in the buffer appear to log recovery as though
113 * they came from separate buffers, just like would occur if multiple buffers
114 * were used instead of a single discontiguous buffer. This enables
115 * discontiguous buffers to be in-memory constructs, completely transparent to
116 * what ends up on disk.
118 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
119 * format structures.
121 STATIC uint
122 xfs_buf_item_size(
123 struct xfs_log_item *lip)
125 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
126 uint nvecs;
127 int i;
129 ASSERT(atomic_read(&bip->bli_refcount) > 0);
130 if (bip->bli_flags & XFS_BLI_STALE) {
132 * The buffer is stale, so all we need to log
133 * is the buf log format structure with the
134 * cancel flag in it.
136 trace_xfs_buf_item_size_stale(bip);
137 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
138 return bip->bli_format_count;
141 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
144 * the vector count is based on the number of buffer vectors we have
145 * dirty bits in. This will only be greater than one when we have a
146 * compound buffer with more than one segment dirty. Hence for compound
147 * buffers we need to track which segment the dirty bits correspond to,
148 * and when we move from one segment to the next increment the vector
149 * count for the extra buf log format structure that will need to be
150 * written.
152 nvecs = 0;
153 for (i = 0; i < bip->bli_format_count; i++) {
154 nvecs += xfs_buf_item_size_segment(bip, &bip->bli_formats[i]);
157 trace_xfs_buf_item_size(bip);
158 return nvecs;
161 static struct xfs_log_iovec *
162 xfs_buf_item_format_segment(
163 struct xfs_buf_log_item *bip,
164 struct xfs_log_iovec *vecp,
165 uint offset,
166 struct xfs_buf_log_format *blfp)
168 struct xfs_buf *bp = bip->bli_buf;
169 uint base_size;
170 uint nvecs;
171 int first_bit;
172 int last_bit;
173 int next_bit;
174 uint nbits;
175 uint buffer_offset;
177 /* copy the flags across from the base format item */
178 blfp->blf_flags = bip->__bli_format.blf_flags;
181 * Base size is the actual size of the ondisk structure - it reflects
182 * the actual size of the dirty bitmap rather than the size of the in
183 * memory structure.
185 base_size = offsetof(struct xfs_buf_log_format, blf_data_map) +
186 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
188 nvecs = 0;
189 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
190 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
192 * If the map is not be dirty in the transaction, mark
193 * the size as zero and do not advance the vector pointer.
195 goto out;
198 vecp->i_addr = blfp;
199 vecp->i_len = base_size;
200 vecp->i_type = XLOG_REG_TYPE_BFORMAT;
201 vecp++;
202 nvecs = 1;
204 if (bip->bli_flags & XFS_BLI_STALE) {
206 * The buffer is stale, so all we need to log
207 * is the buf log format structure with the
208 * cancel flag in it.
210 trace_xfs_buf_item_format_stale(bip);
211 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
212 goto out;
216 * Fill in an iovec for each set of contiguous chunks.
219 last_bit = first_bit;
220 nbits = 1;
221 for (;;) {
223 * This takes the bit number to start looking from and
224 * returns the next set bit from there. It returns -1
225 * if there are no more bits set or the start bit is
226 * beyond the end of the bitmap.
228 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
229 (uint)last_bit + 1);
231 * If we run out of bits fill in the last iovec and get
232 * out of the loop.
233 * Else if we start a new set of bits then fill in the
234 * iovec for the series we were looking at and start
235 * counting the bits in the new one.
236 * Else we're still in the same set of bits so just
237 * keep counting and scanning.
239 if (next_bit == -1) {
240 buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
241 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
242 vecp->i_len = nbits * XFS_BLF_CHUNK;
243 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
244 nvecs++;
245 break;
246 } else if (next_bit != last_bit + 1) {
247 buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
248 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
249 vecp->i_len = nbits * XFS_BLF_CHUNK;
250 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
251 nvecs++;
252 vecp++;
253 first_bit = next_bit;
254 last_bit = next_bit;
255 nbits = 1;
256 } else if (xfs_buf_offset(bp, offset +
257 (next_bit << XFS_BLF_SHIFT)) !=
258 (xfs_buf_offset(bp, offset +
259 (last_bit << XFS_BLF_SHIFT)) +
260 XFS_BLF_CHUNK)) {
261 buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
262 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
263 vecp->i_len = nbits * XFS_BLF_CHUNK;
264 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
265 nvecs++;
266 vecp++;
267 first_bit = next_bit;
268 last_bit = next_bit;
269 nbits = 1;
270 } else {
271 last_bit++;
272 nbits++;
275 out:
276 blfp->blf_size = nvecs;
277 return vecp;
281 * This is called to fill in the vector of log iovecs for the
282 * given log buf item. It fills the first entry with a buf log
283 * format structure, and the rest point to contiguous chunks
284 * within the buffer.
286 STATIC void
287 xfs_buf_item_format(
288 struct xfs_log_item *lip,
289 struct xfs_log_iovec *vecp)
291 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
292 struct xfs_buf *bp = bip->bli_buf;
293 uint offset = 0;
294 int i;
296 ASSERT(atomic_read(&bip->bli_refcount) > 0);
297 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
298 (bip->bli_flags & XFS_BLI_STALE));
299 ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
300 (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
301 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
305 * If it is an inode buffer, transfer the in-memory state to the
306 * format flags and clear the in-memory state. We do not transfer
307 * this state if the inode buffer allocation has not yet been committed
308 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
309 * correct replay of the inode allocation.
311 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
312 if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
313 xfs_log_item_in_current_chkpt(lip)))
314 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
315 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
318 for (i = 0; i < bip->bli_format_count; i++) {
319 vecp = xfs_buf_item_format_segment(bip, vecp, offset,
320 &bip->bli_formats[i]);
321 offset += bp->b_maps[i].bm_len;
325 * Check to make sure everything is consistent.
327 trace_xfs_buf_item_format(bip);
331 * This is called to pin the buffer associated with the buf log item in memory
332 * so it cannot be written out.
334 * We also always take a reference to the buffer log item here so that the bli
335 * is held while the item is pinned in memory. This means that we can
336 * unconditionally drop the reference count a transaction holds when the
337 * transaction is completed.
339 STATIC void
340 xfs_buf_item_pin(
341 struct xfs_log_item *lip)
343 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
345 ASSERT(atomic_read(&bip->bli_refcount) > 0);
346 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
347 (bip->bli_flags & XFS_BLI_STALE));
349 trace_xfs_buf_item_pin(bip);
351 atomic_inc(&bip->bli_refcount);
352 atomic_inc(&bip->bli_buf->b_pin_count);
356 * This is called to unpin the buffer associated with the buf log
357 * item which was previously pinned with a call to xfs_buf_item_pin().
359 * Also drop the reference to the buf item for the current transaction.
360 * If the XFS_BLI_STALE flag is set and we are the last reference,
361 * then free up the buf log item and unlock the buffer.
363 * If the remove flag is set we are called from uncommit in the
364 * forced-shutdown path. If that is true and the reference count on
365 * the log item is going to drop to zero we need to free the item's
366 * descriptor in the transaction.
368 STATIC void
369 xfs_buf_item_unpin(
370 struct xfs_log_item *lip,
371 int remove)
373 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
374 xfs_buf_t *bp = bip->bli_buf;
375 struct xfs_ail *ailp = lip->li_ailp;
376 int stale = bip->bli_flags & XFS_BLI_STALE;
377 int freed;
379 ASSERT(bp->b_fspriv == bip);
380 ASSERT(atomic_read(&bip->bli_refcount) > 0);
382 trace_xfs_buf_item_unpin(bip);
384 freed = atomic_dec_and_test(&bip->bli_refcount);
386 if (atomic_dec_and_test(&bp->b_pin_count))
387 wake_up_all(&bp->b_waiters);
389 if (freed && stale) {
390 ASSERT(bip->bli_flags & XFS_BLI_STALE);
391 ASSERT(xfs_buf_islocked(bp));
392 ASSERT(XFS_BUF_ISSTALE(bp));
393 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
395 trace_xfs_buf_item_unpin_stale(bip);
397 if (remove) {
399 * If we are in a transaction context, we have to
400 * remove the log item from the transaction as we are
401 * about to release our reference to the buffer. If we
402 * don't, the unlock that occurs later in
403 * xfs_trans_uncommit() will try to reference the
404 * buffer which we no longer have a hold on.
406 if (lip->li_desc)
407 xfs_trans_del_item(lip);
410 * Since the transaction no longer refers to the buffer,
411 * the buffer should no longer refer to the transaction.
413 bp->b_transp = NULL;
417 * If we get called here because of an IO error, we may
418 * or may not have the item on the AIL. xfs_trans_ail_delete()
419 * will take care of that situation.
420 * xfs_trans_ail_delete() drops the AIL lock.
422 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
423 xfs_buf_do_callbacks(bp);
424 bp->b_fspriv = NULL;
425 bp->b_iodone = NULL;
426 } else {
427 spin_lock(&ailp->xa_lock);
428 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
429 xfs_buf_item_relse(bp);
430 ASSERT(bp->b_fspriv == NULL);
432 xfs_buf_relse(bp);
433 } else if (freed && remove) {
435 * There are currently two references to the buffer - the active
436 * LRU reference and the buf log item. What we are about to do
437 * here - simulate a failed IO completion - requires 3
438 * references.
440 * The LRU reference is removed by the xfs_buf_stale() call. The
441 * buf item reference is removed by the xfs_buf_iodone()
442 * callback that is run by xfs_buf_do_callbacks() during ioend
443 * processing (via the bp->b_iodone callback), and then finally
444 * the ioend processing will drop the IO reference if the buffer
445 * is marked XBF_ASYNC.
447 * Hence we need to take an additional reference here so that IO
448 * completion processing doesn't free the buffer prematurely.
450 xfs_buf_lock(bp);
451 xfs_buf_hold(bp);
452 bp->b_flags |= XBF_ASYNC;
453 xfs_buf_ioerror(bp, EIO);
454 XFS_BUF_UNDONE(bp);
455 xfs_buf_stale(bp);
456 xfs_buf_ioend(bp, 0);
460 STATIC uint
461 xfs_buf_item_push(
462 struct xfs_log_item *lip,
463 struct list_head *buffer_list)
465 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
466 struct xfs_buf *bp = bip->bli_buf;
467 uint rval = XFS_ITEM_SUCCESS;
469 if (xfs_buf_ispinned(bp))
470 return XFS_ITEM_PINNED;
471 if (!xfs_buf_trylock(bp)) {
473 * If we have just raced with a buffer being pinned and it has
474 * been marked stale, we could end up stalling until someone else
475 * issues a log force to unpin the stale buffer. Check for the
476 * race condition here so xfsaild recognizes the buffer is pinned
477 * and queues a log force to move it along.
479 if (xfs_buf_ispinned(bp))
480 return XFS_ITEM_PINNED;
481 return XFS_ITEM_LOCKED;
484 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
486 trace_xfs_buf_item_push(bip);
488 if (!xfs_buf_delwri_queue(bp, buffer_list))
489 rval = XFS_ITEM_FLUSHING;
490 xfs_buf_unlock(bp);
491 return rval;
495 * Release the buffer associated with the buf log item. If there is no dirty
496 * logged data associated with the buffer recorded in the buf log item, then
497 * free the buf log item and remove the reference to it in the buffer.
499 * This call ignores the recursion count. It is only called when the buffer
500 * should REALLY be unlocked, regardless of the recursion count.
502 * We unconditionally drop the transaction's reference to the log item. If the
503 * item was logged, then another reference was taken when it was pinned, so we
504 * can safely drop the transaction reference now. This also allows us to avoid
505 * potential races with the unpin code freeing the bli by not referencing the
506 * bli after we've dropped the reference count.
508 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
509 * if necessary but do not unlock the buffer. This is for support of
510 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
511 * free the item.
513 STATIC void
514 xfs_buf_item_unlock(
515 struct xfs_log_item *lip)
517 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
518 struct xfs_buf *bp = bip->bli_buf;
519 int aborted, clean, i;
520 uint hold;
522 /* Clear the buffer's association with this transaction. */
523 bp->b_transp = NULL;
526 * If this is a transaction abort, don't return early. Instead, allow
527 * the brelse to happen. Normally it would be done for stale
528 * (cancelled) buffers at unpin time, but we'll never go through the
529 * pin/unpin cycle if we abort inside commit.
531 aborted = (lip->li_flags & XFS_LI_ABORTED) != 0;
534 * Before possibly freeing the buf item, determine if we should
535 * release the buffer at the end of this routine.
537 hold = bip->bli_flags & XFS_BLI_HOLD;
539 /* Clear the per transaction state. */
540 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD);
543 * If the buf item is marked stale, then don't do anything. We'll
544 * unlock the buffer and free the buf item when the buffer is unpinned
545 * for the last time.
547 if (bip->bli_flags & XFS_BLI_STALE) {
548 trace_xfs_buf_item_unlock_stale(bip);
549 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
550 if (!aborted) {
551 atomic_dec(&bip->bli_refcount);
552 return;
556 trace_xfs_buf_item_unlock(bip);
559 * If the buf item isn't tracking any data, free it, otherwise drop the
560 * reference we hold to it. If we are aborting the transaction, this may
561 * be the only reference to the buf item, so we free it anyway
562 * regardless of whether it is dirty or not. A dirty abort implies a
563 * shutdown, anyway.
565 clean = 1;
566 for (i = 0; i < bip->bli_format_count; i++) {
567 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
568 bip->bli_formats[i].blf_map_size)) {
569 clean = 0;
570 break;
573 if (clean)
574 xfs_buf_item_relse(bp);
575 else if (aborted) {
576 if (atomic_dec_and_test(&bip->bli_refcount)) {
577 ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
578 xfs_buf_item_relse(bp);
580 } else
581 atomic_dec(&bip->bli_refcount);
583 if (!hold)
584 xfs_buf_relse(bp);
588 * This is called to find out where the oldest active copy of the
589 * buf log item in the on disk log resides now that the last log
590 * write of it completed at the given lsn.
591 * We always re-log all the dirty data in a buffer, so usually the
592 * latest copy in the on disk log is the only one that matters. For
593 * those cases we simply return the given lsn.
595 * The one exception to this is for buffers full of newly allocated
596 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
597 * flag set, indicating that only the di_next_unlinked fields from the
598 * inodes in the buffers will be replayed during recovery. If the
599 * original newly allocated inode images have not yet been flushed
600 * when the buffer is so relogged, then we need to make sure that we
601 * keep the old images in the 'active' portion of the log. We do this
602 * by returning the original lsn of that transaction here rather than
603 * the current one.
605 STATIC xfs_lsn_t
606 xfs_buf_item_committed(
607 struct xfs_log_item *lip,
608 xfs_lsn_t lsn)
610 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
612 trace_xfs_buf_item_committed(bip);
614 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
615 return lip->li_lsn;
616 return lsn;
619 STATIC void
620 xfs_buf_item_committing(
621 struct xfs_log_item *lip,
622 xfs_lsn_t commit_lsn)
627 * This is the ops vector shared by all buf log items.
629 static const struct xfs_item_ops xfs_buf_item_ops = {
630 .iop_size = xfs_buf_item_size,
631 .iop_format = xfs_buf_item_format,
632 .iop_pin = xfs_buf_item_pin,
633 .iop_unpin = xfs_buf_item_unpin,
634 .iop_unlock = xfs_buf_item_unlock,
635 .iop_committed = xfs_buf_item_committed,
636 .iop_push = xfs_buf_item_push,
637 .iop_committing = xfs_buf_item_committing
640 STATIC int
641 xfs_buf_item_get_format(
642 struct xfs_buf_log_item *bip,
643 int count)
645 ASSERT(bip->bli_formats == NULL);
646 bip->bli_format_count = count;
648 if (count == 1) {
649 bip->bli_formats = &bip->__bli_format;
650 return 0;
653 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
654 KM_SLEEP);
655 if (!bip->bli_formats)
656 return ENOMEM;
657 return 0;
660 STATIC void
661 xfs_buf_item_free_format(
662 struct xfs_buf_log_item *bip)
664 if (bip->bli_formats != &bip->__bli_format) {
665 kmem_free(bip->bli_formats);
666 bip->bli_formats = NULL;
671 * Allocate a new buf log item to go with the given buffer.
672 * Set the buffer's b_fsprivate field to point to the new
673 * buf log item. If there are other item's attached to the
674 * buffer (see xfs_buf_attach_iodone() below), then put the
675 * buf log item at the front.
677 void
678 xfs_buf_item_init(
679 xfs_buf_t *bp,
680 xfs_mount_t *mp)
682 xfs_log_item_t *lip = bp->b_fspriv;
683 xfs_buf_log_item_t *bip;
684 int chunks;
685 int map_size;
686 int error;
687 int i;
690 * Check to see if there is already a buf log item for
691 * this buffer. If there is, it is guaranteed to be
692 * the first. If we do already have one, there is
693 * nothing to do here so return.
695 ASSERT(bp->b_target->bt_mount == mp);
696 if (lip != NULL && lip->li_type == XFS_LI_BUF)
697 return;
699 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
700 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
701 bip->bli_buf = bp;
702 xfs_buf_hold(bp);
705 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
706 * can be divided into. Make sure not to truncate any pieces.
707 * map_size is the size of the bitmap needed to describe the
708 * chunks of the buffer.
710 * Discontiguous buffer support follows the layout of the underlying
711 * buffer. This makes the implementation as simple as possible.
713 error = xfs_buf_item_get_format(bip, bp->b_map_count);
714 ASSERT(error == 0);
716 for (i = 0; i < bip->bli_format_count; i++) {
717 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
718 XFS_BLF_CHUNK);
719 map_size = DIV_ROUND_UP(chunks, NBWORD);
721 bip->bli_formats[i].blf_type = XFS_LI_BUF;
722 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
723 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
724 bip->bli_formats[i].blf_map_size = map_size;
727 #ifdef XFS_TRANS_DEBUG
729 * Allocate the arrays for tracking what needs to be logged
730 * and what our callers request to be logged. bli_orig
731 * holds a copy of the original, clean buffer for comparison
732 * against, and bli_logged keeps a 1 bit flag per byte in
733 * the buffer to indicate which bytes the callers have asked
734 * to have logged.
736 bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP);
737 memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length));
738 bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP);
739 #endif
742 * Put the buf item into the list of items attached to the
743 * buffer at the front.
745 if (bp->b_fspriv)
746 bip->bli_item.li_bio_list = bp->b_fspriv;
747 bp->b_fspriv = bip;
752 * Mark bytes first through last inclusive as dirty in the buf
753 * item's bitmap.
755 void
756 xfs_buf_item_log_segment(
757 struct xfs_buf_log_item *bip,
758 uint first,
759 uint last,
760 uint *map)
762 uint first_bit;
763 uint last_bit;
764 uint bits_to_set;
765 uint bits_set;
766 uint word_num;
767 uint *wordp;
768 uint bit;
769 uint end_bit;
770 uint mask;
773 * Convert byte offsets to bit numbers.
775 first_bit = first >> XFS_BLF_SHIFT;
776 last_bit = last >> XFS_BLF_SHIFT;
779 * Calculate the total number of bits to be set.
781 bits_to_set = last_bit - first_bit + 1;
784 * Get a pointer to the first word in the bitmap
785 * to set a bit in.
787 word_num = first_bit >> BIT_TO_WORD_SHIFT;
788 wordp = &map[word_num];
791 * Calculate the starting bit in the first word.
793 bit = first_bit & (uint)(NBWORD - 1);
796 * First set any bits in the first word of our range.
797 * If it starts at bit 0 of the word, it will be
798 * set below rather than here. That is what the variable
799 * bit tells us. The variable bits_set tracks the number
800 * of bits that have been set so far. End_bit is the number
801 * of the last bit to be set in this word plus one.
803 if (bit) {
804 end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
805 mask = ((1 << (end_bit - bit)) - 1) << bit;
806 *wordp |= mask;
807 wordp++;
808 bits_set = end_bit - bit;
809 } else {
810 bits_set = 0;
814 * Now set bits a whole word at a time that are between
815 * first_bit and last_bit.
817 while ((bits_to_set - bits_set) >= NBWORD) {
818 *wordp |= 0xffffffff;
819 bits_set += NBWORD;
820 wordp++;
824 * Finally, set any bits left to be set in one last partial word.
826 end_bit = bits_to_set - bits_set;
827 if (end_bit) {
828 mask = (1 << end_bit) - 1;
829 *wordp |= mask;
834 * Mark bytes first through last inclusive as dirty in the buf
835 * item's bitmap.
837 void
838 xfs_buf_item_log(
839 xfs_buf_log_item_t *bip,
840 uint first,
841 uint last)
843 int i;
844 uint start;
845 uint end;
846 struct xfs_buf *bp = bip->bli_buf;
849 * Mark the item as having some dirty data for
850 * quick reference in xfs_buf_item_dirty.
852 bip->bli_flags |= XFS_BLI_DIRTY;
855 * walk each buffer segment and mark them dirty appropriately.
857 start = 0;
858 for (i = 0; i < bip->bli_format_count; i++) {
859 if (start > last)
860 break;
861 end = start + BBTOB(bp->b_maps[i].bm_len);
862 if (first > end) {
863 start += BBTOB(bp->b_maps[i].bm_len);
864 continue;
866 if (first < start)
867 first = start;
868 if (end > last)
869 end = last;
871 xfs_buf_item_log_segment(bip, first, end,
872 &bip->bli_formats[i].blf_data_map[0]);
874 start += bp->b_maps[i].bm_len;
880 * Return 1 if the buffer has some data that has been logged (at any
881 * point, not just the current transaction) and 0 if not.
883 uint
884 xfs_buf_item_dirty(
885 xfs_buf_log_item_t *bip)
887 return (bip->bli_flags & XFS_BLI_DIRTY);
890 STATIC void
891 xfs_buf_item_free(
892 xfs_buf_log_item_t *bip)
894 #ifdef XFS_TRANS_DEBUG
895 kmem_free(bip->bli_orig);
896 kmem_free(bip->bli_logged);
897 #endif /* XFS_TRANS_DEBUG */
899 xfs_buf_item_free_format(bip);
900 kmem_zone_free(xfs_buf_item_zone, bip);
904 * This is called when the buf log item is no longer needed. It should
905 * free the buf log item associated with the given buffer and clear
906 * the buffer's pointer to the buf log item. If there are no more
907 * items in the list, clear the b_iodone field of the buffer (see
908 * xfs_buf_attach_iodone() below).
910 void
911 xfs_buf_item_relse(
912 xfs_buf_t *bp)
914 xfs_buf_log_item_t *bip;
916 trace_xfs_buf_item_relse(bp, _RET_IP_);
918 bip = bp->b_fspriv;
919 bp->b_fspriv = bip->bli_item.li_bio_list;
920 if (bp->b_fspriv == NULL)
921 bp->b_iodone = NULL;
923 xfs_buf_rele(bp);
924 xfs_buf_item_free(bip);
929 * Add the given log item with its callback to the list of callbacks
930 * to be called when the buffer's I/O completes. If it is not set
931 * already, set the buffer's b_iodone() routine to be
932 * xfs_buf_iodone_callbacks() and link the log item into the list of
933 * items rooted at b_fsprivate. Items are always added as the second
934 * entry in the list if there is a first, because the buf item code
935 * assumes that the buf log item is first.
937 void
938 xfs_buf_attach_iodone(
939 xfs_buf_t *bp,
940 void (*cb)(xfs_buf_t *, xfs_log_item_t *),
941 xfs_log_item_t *lip)
943 xfs_log_item_t *head_lip;
945 ASSERT(xfs_buf_islocked(bp));
947 lip->li_cb = cb;
948 head_lip = bp->b_fspriv;
949 if (head_lip) {
950 lip->li_bio_list = head_lip->li_bio_list;
951 head_lip->li_bio_list = lip;
952 } else {
953 bp->b_fspriv = lip;
956 ASSERT(bp->b_iodone == NULL ||
957 bp->b_iodone == xfs_buf_iodone_callbacks);
958 bp->b_iodone = xfs_buf_iodone_callbacks;
962 * We can have many callbacks on a buffer. Running the callbacks individually
963 * can cause a lot of contention on the AIL lock, so we allow for a single
964 * callback to be able to scan the remaining lip->li_bio_list for other items
965 * of the same type and callback to be processed in the first call.
967 * As a result, the loop walking the callback list below will also modify the
968 * list. it removes the first item from the list and then runs the callback.
969 * The loop then restarts from the new head of the list. This allows the
970 * callback to scan and modify the list attached to the buffer and we don't
971 * have to care about maintaining a next item pointer.
973 STATIC void
974 xfs_buf_do_callbacks(
975 struct xfs_buf *bp)
977 struct xfs_log_item *lip;
979 while ((lip = bp->b_fspriv) != NULL) {
980 bp->b_fspriv = lip->li_bio_list;
981 ASSERT(lip->li_cb != NULL);
983 * Clear the next pointer so we don't have any
984 * confusion if the item is added to another buf.
985 * Don't touch the log item after calling its
986 * callback, because it could have freed itself.
988 lip->li_bio_list = NULL;
989 lip->li_cb(bp, lip);
994 * This is the iodone() function for buffers which have had callbacks
995 * attached to them by xfs_buf_attach_iodone(). It should remove each
996 * log item from the buffer's list and call the callback of each in turn.
997 * When done, the buffer's fsprivate field is set to NULL and the buffer
998 * is unlocked with a call to iodone().
1000 void
1001 xfs_buf_iodone_callbacks(
1002 struct xfs_buf *bp)
1004 struct xfs_log_item *lip = bp->b_fspriv;
1005 struct xfs_mount *mp = lip->li_mountp;
1006 static ulong lasttime;
1007 static xfs_buftarg_t *lasttarg;
1009 if (likely(!xfs_buf_geterror(bp)))
1010 goto do_callbacks;
1013 * If we've already decided to shutdown the filesystem because of
1014 * I/O errors, there's no point in giving this a retry.
1016 if (XFS_FORCED_SHUTDOWN(mp)) {
1017 xfs_buf_stale(bp);
1018 XFS_BUF_DONE(bp);
1019 trace_xfs_buf_item_iodone(bp, _RET_IP_);
1020 goto do_callbacks;
1023 if (bp->b_target != lasttarg ||
1024 time_after(jiffies, (lasttime + 5*HZ))) {
1025 lasttime = jiffies;
1026 xfs_buf_ioerror_alert(bp, __func__);
1028 lasttarg = bp->b_target;
1031 * If the write was asynchronous then no one will be looking for the
1032 * error. Clear the error state and write the buffer out again.
1034 * XXX: This helps against transient write errors, but we need to find
1035 * a way to shut the filesystem down if the writes keep failing.
1037 * In practice we'll shut the filesystem down soon as non-transient
1038 * erorrs tend to affect the whole device and a failing log write
1039 * will make us give up. But we really ought to do better here.
1041 if (XFS_BUF_ISASYNC(bp)) {
1042 ASSERT(bp->b_iodone != NULL);
1044 trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1046 xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
1048 if (!XFS_BUF_ISSTALE(bp)) {
1049 bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE;
1050 xfs_buf_iorequest(bp);
1051 } else {
1052 xfs_buf_relse(bp);
1055 return;
1059 * If the write of the buffer was synchronous, we want to make
1060 * sure to return the error to the caller of xfs_bwrite().
1062 xfs_buf_stale(bp);
1063 XFS_BUF_DONE(bp);
1065 trace_xfs_buf_error_relse(bp, _RET_IP_);
1067 do_callbacks:
1068 xfs_buf_do_callbacks(bp);
1069 bp->b_fspriv = NULL;
1070 bp->b_iodone = NULL;
1071 xfs_buf_ioend(bp, 0);
1075 * This is the iodone() function for buffers which have been
1076 * logged. It is called when they are eventually flushed out.
1077 * It should remove the buf item from the AIL, and free the buf item.
1078 * It is called by xfs_buf_iodone_callbacks() above which will take
1079 * care of cleaning up the buffer itself.
1081 void
1082 xfs_buf_iodone(
1083 struct xfs_buf *bp,
1084 struct xfs_log_item *lip)
1086 struct xfs_ail *ailp = lip->li_ailp;
1088 ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1090 xfs_buf_rele(bp);
1093 * If we are forcibly shutting down, this may well be
1094 * off the AIL already. That's because we simulate the
1095 * log-committed callbacks to unpin these buffers. Or we may never
1096 * have put this item on AIL because of the transaction was
1097 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1099 * Either way, AIL is useless if we're forcing a shutdown.
1101 spin_lock(&ailp->xa_lock);
1102 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1103 xfs_buf_item_free(BUF_ITEM(lip));