2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 #include "xfs_trans.h"
24 #include "xfs_mount.h"
25 #include "xfs_bmap_btree.h"
26 #include "xfs_alloc.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_inode_item.h"
31 #include "xfs_error.h"
32 #include "xfs_vnodeops.h"
33 #include "xfs_da_btree.h"
34 #include "xfs_dir2_format.h"
35 #include "xfs_dir2_priv.h"
36 #include "xfs_ioctl.h"
37 #include "xfs_trace.h"
39 #include <linux/aio.h>
40 #include <linux/dcache.h>
41 #include <linux/falloc.h>
42 #include <linux/pagevec.h>
44 static const struct vm_operations_struct xfs_file_vm_ops
;
47 * Locking primitives for read and write IO paths to ensure we consistently use
48 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
55 if (type
& XFS_IOLOCK_EXCL
)
56 mutex_lock(&VFS_I(ip
)->i_mutex
);
65 xfs_iunlock(ip
, type
);
66 if (type
& XFS_IOLOCK_EXCL
)
67 mutex_unlock(&VFS_I(ip
)->i_mutex
);
75 xfs_ilock_demote(ip
, type
);
76 if (type
& XFS_IOLOCK_EXCL
)
77 mutex_unlock(&VFS_I(ip
)->i_mutex
);
83 * xfs_iozero clears the specified range of buffer supplied,
84 * and marks all the affected blocks as valid and modified. If
85 * an affected block is not allocated, it will be allocated. If
86 * an affected block is not completely overwritten, and is not
87 * valid before the operation, it will be read from disk before
88 * being partially zeroed.
92 struct xfs_inode
*ip
, /* inode */
93 loff_t pos
, /* offset in file */
94 size_t count
) /* size of data to zero */
97 struct address_space
*mapping
;
100 mapping
= VFS_I(ip
)->i_mapping
;
102 unsigned offset
, bytes
;
105 offset
= (pos
& (PAGE_CACHE_SIZE
-1)); /* Within page */
106 bytes
= PAGE_CACHE_SIZE
- offset
;
110 status
= pagecache_write_begin(NULL
, mapping
, pos
, bytes
,
111 AOP_FLAG_UNINTERRUPTIBLE
,
116 zero_user(page
, offset
, bytes
);
118 status
= pagecache_write_end(NULL
, mapping
, pos
, bytes
, bytes
,
120 WARN_ON(status
<= 0); /* can't return less than zero! */
130 * Fsync operations on directories are much simpler than on regular files,
131 * as there is no file data to flush, and thus also no need for explicit
132 * cache flush operations, and there are no non-transaction metadata updates
133 * on directories either.
142 struct xfs_inode
*ip
= XFS_I(file
->f_mapping
->host
);
143 struct xfs_mount
*mp
= ip
->i_mount
;
146 trace_xfs_dir_fsync(ip
);
148 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
149 if (xfs_ipincount(ip
))
150 lsn
= ip
->i_itemp
->ili_last_lsn
;
151 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
155 return _xfs_log_force_lsn(mp
, lsn
, XFS_LOG_SYNC
, NULL
);
165 struct inode
*inode
= file
->f_mapping
->host
;
166 struct xfs_inode
*ip
= XFS_I(inode
);
167 struct xfs_mount
*mp
= ip
->i_mount
;
172 trace_xfs_file_fsync(ip
);
174 error
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
178 if (XFS_FORCED_SHUTDOWN(mp
))
179 return -XFS_ERROR(EIO
);
181 xfs_iflags_clear(ip
, XFS_ITRUNCATED
);
183 if (mp
->m_flags
& XFS_MOUNT_BARRIER
) {
185 * If we have an RT and/or log subvolume we need to make sure
186 * to flush the write cache the device used for file data
187 * first. This is to ensure newly written file data make
188 * it to disk before logging the new inode size in case of
189 * an extending write.
191 if (XFS_IS_REALTIME_INODE(ip
))
192 xfs_blkdev_issue_flush(mp
->m_rtdev_targp
);
193 else if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
194 xfs_blkdev_issue_flush(mp
->m_ddev_targp
);
198 * All metadata updates are logged, which means that we just have
199 * to flush the log up to the latest LSN that touched the inode.
201 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
202 if (xfs_ipincount(ip
)) {
204 (ip
->i_itemp
->ili_fields
& ~XFS_ILOG_TIMESTAMP
))
205 lsn
= ip
->i_itemp
->ili_last_lsn
;
207 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
210 error
= _xfs_log_force_lsn(mp
, lsn
, XFS_LOG_SYNC
, &log_flushed
);
213 * If we only have a single device, and the log force about was
214 * a no-op we might have to flush the data device cache here.
215 * This can only happen for fdatasync/O_DSYNC if we were overwriting
216 * an already allocated file and thus do not have any metadata to
219 if ((mp
->m_flags
& XFS_MOUNT_BARRIER
) &&
220 mp
->m_logdev_targp
== mp
->m_ddev_targp
&&
221 !XFS_IS_REALTIME_INODE(ip
) &&
223 xfs_blkdev_issue_flush(mp
->m_ddev_targp
);
231 const struct iovec
*iovp
,
232 unsigned long nr_segs
,
235 struct file
*file
= iocb
->ki_filp
;
236 struct inode
*inode
= file
->f_mapping
->host
;
237 struct xfs_inode
*ip
= XFS_I(inode
);
238 struct xfs_mount
*mp
= ip
->i_mount
;
244 XFS_STATS_INC(xs_read_calls
);
246 BUG_ON(iocb
->ki_pos
!= pos
);
248 if (unlikely(file
->f_flags
& O_DIRECT
))
249 ioflags
|= IO_ISDIRECT
;
250 if (file
->f_mode
& FMODE_NOCMTIME
)
253 ret
= generic_segment_checks(iovp
, &nr_segs
, &size
, VERIFY_WRITE
);
257 if (unlikely(ioflags
& IO_ISDIRECT
)) {
258 xfs_buftarg_t
*target
=
259 XFS_IS_REALTIME_INODE(ip
) ?
260 mp
->m_rtdev_targp
: mp
->m_ddev_targp
;
261 if ((pos
& target
->bt_smask
) || (size
& target
->bt_smask
)) {
262 if (pos
== i_size_read(inode
))
264 return -XFS_ERROR(EINVAL
);
268 n
= mp
->m_super
->s_maxbytes
- pos
;
269 if (n
<= 0 || size
== 0)
275 if (XFS_FORCED_SHUTDOWN(mp
))
279 * Locking is a bit tricky here. If we take an exclusive lock
280 * for direct IO, we effectively serialise all new concurrent
281 * read IO to this file and block it behind IO that is currently in
282 * progress because IO in progress holds the IO lock shared. We only
283 * need to hold the lock exclusive to blow away the page cache, so
284 * only take lock exclusively if the page cache needs invalidation.
285 * This allows the normal direct IO case of no page cache pages to
286 * proceeed concurrently without serialisation.
288 xfs_rw_ilock(ip
, XFS_IOLOCK_SHARED
);
289 if ((ioflags
& IO_ISDIRECT
) && inode
->i_mapping
->nrpages
) {
290 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
291 xfs_rw_ilock(ip
, XFS_IOLOCK_EXCL
);
293 if (inode
->i_mapping
->nrpages
) {
294 ret
= -filemap_write_and_wait_range(
295 VFS_I(ip
)->i_mapping
,
298 xfs_rw_iunlock(ip
, XFS_IOLOCK_EXCL
);
303 * Invalidate whole pages. This can return an error if
304 * we fail to invalidate a page, but this should never
305 * happen on XFS. Warn if it does fail.
307 ret
= invalidate_inode_pages2_range(VFS_I(ip
)->i_mapping
,
308 pos
>> PAGE_CACHE_SHIFT
, -1);
312 xfs_rw_ilock_demote(ip
, XFS_IOLOCK_EXCL
);
315 trace_xfs_file_read(ip
, size
, pos
, ioflags
);
317 ret
= generic_file_aio_read(iocb
, iovp
, nr_segs
, pos
);
319 XFS_STATS_ADD(xs_read_bytes
, ret
);
321 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
326 xfs_file_splice_read(
329 struct pipe_inode_info
*pipe
,
333 struct xfs_inode
*ip
= XFS_I(infilp
->f_mapping
->host
);
337 XFS_STATS_INC(xs_read_calls
);
339 if (infilp
->f_mode
& FMODE_NOCMTIME
)
342 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
345 xfs_rw_ilock(ip
, XFS_IOLOCK_SHARED
);
347 trace_xfs_file_splice_read(ip
, count
, *ppos
, ioflags
);
349 ret
= generic_file_splice_read(infilp
, ppos
, pipe
, count
, flags
);
351 XFS_STATS_ADD(xs_read_bytes
, ret
);
353 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
358 * xfs_file_splice_write() does not use xfs_rw_ilock() because
359 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
360 * couuld cause lock inversions between the aio_write path and the splice path
361 * if someone is doing concurrent splice(2) based writes and write(2) based
362 * writes to the same inode. The only real way to fix this is to re-implement
363 * the generic code here with correct locking orders.
366 xfs_file_splice_write(
367 struct pipe_inode_info
*pipe
,
368 struct file
*outfilp
,
373 struct inode
*inode
= outfilp
->f_mapping
->host
;
374 struct xfs_inode
*ip
= XFS_I(inode
);
378 XFS_STATS_INC(xs_write_calls
);
380 if (outfilp
->f_mode
& FMODE_NOCMTIME
)
383 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
386 xfs_ilock(ip
, XFS_IOLOCK_EXCL
);
388 trace_xfs_file_splice_write(ip
, count
, *ppos
, ioflags
);
390 ret
= generic_file_splice_write(pipe
, outfilp
, ppos
, count
, flags
);
392 XFS_STATS_ADD(xs_write_bytes
, ret
);
394 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
399 * This routine is called to handle zeroing any space in the last block of the
400 * file that is beyond the EOF. We do this since the size is being increased
401 * without writing anything to that block and we don't want to read the
402 * garbage on the disk.
404 STATIC
int /* error (positive) */
406 struct xfs_inode
*ip
,
410 struct xfs_mount
*mp
= ip
->i_mount
;
411 xfs_fileoff_t last_fsb
= XFS_B_TO_FSBT(mp
, isize
);
412 int zero_offset
= XFS_B_FSB_OFFSET(mp
, isize
);
416 struct xfs_bmbt_irec imap
;
418 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
419 error
= xfs_bmapi_read(ip
, last_fsb
, 1, &imap
, &nimaps
, 0);
420 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
427 * If the block underlying isize is just a hole, then there
428 * is nothing to zero.
430 if (imap
.br_startblock
== HOLESTARTBLOCK
)
433 zero_len
= mp
->m_sb
.sb_blocksize
- zero_offset
;
434 if (isize
+ zero_len
> offset
)
435 zero_len
= offset
- isize
;
436 return xfs_iozero(ip
, isize
, zero_len
);
440 * Zero any on disk space between the current EOF and the new, larger EOF.
442 * This handles the normal case of zeroing the remainder of the last block in
443 * the file and the unusual case of zeroing blocks out beyond the size of the
444 * file. This second case only happens with fixed size extents and when the
445 * system crashes before the inode size was updated but after blocks were
448 * Expects the iolock to be held exclusive, and will take the ilock internally.
450 int /* error (positive) */
452 struct xfs_inode
*ip
,
453 xfs_off_t offset
, /* starting I/O offset */
454 xfs_fsize_t isize
) /* current inode size */
456 struct xfs_mount
*mp
= ip
->i_mount
;
457 xfs_fileoff_t start_zero_fsb
;
458 xfs_fileoff_t end_zero_fsb
;
459 xfs_fileoff_t zero_count_fsb
;
460 xfs_fileoff_t last_fsb
;
461 xfs_fileoff_t zero_off
;
462 xfs_fsize_t zero_len
;
465 struct xfs_bmbt_irec imap
;
467 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
468 ASSERT(offset
> isize
);
471 * First handle zeroing the block on which isize resides.
473 * We only zero a part of that block so it is handled specially.
475 if (XFS_B_FSB_OFFSET(mp
, isize
) != 0) {
476 error
= xfs_zero_last_block(ip
, offset
, isize
);
482 * Calculate the range between the new size and the old where blocks
483 * needing to be zeroed may exist.
485 * To get the block where the last byte in the file currently resides,
486 * we need to subtract one from the size and truncate back to a block
487 * boundary. We subtract 1 in case the size is exactly on a block
490 last_fsb
= isize
? XFS_B_TO_FSBT(mp
, isize
- 1) : (xfs_fileoff_t
)-1;
491 start_zero_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
492 end_zero_fsb
= XFS_B_TO_FSBT(mp
, offset
- 1);
493 ASSERT((xfs_sfiloff_t
)last_fsb
< (xfs_sfiloff_t
)start_zero_fsb
);
494 if (last_fsb
== end_zero_fsb
) {
496 * The size was only incremented on its last block.
497 * We took care of that above, so just return.
502 ASSERT(start_zero_fsb
<= end_zero_fsb
);
503 while (start_zero_fsb
<= end_zero_fsb
) {
505 zero_count_fsb
= end_zero_fsb
- start_zero_fsb
+ 1;
507 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
508 error
= xfs_bmapi_read(ip
, start_zero_fsb
, zero_count_fsb
,
510 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
516 if (imap
.br_state
== XFS_EXT_UNWRITTEN
||
517 imap
.br_startblock
== HOLESTARTBLOCK
) {
518 start_zero_fsb
= imap
.br_startoff
+ imap
.br_blockcount
;
519 ASSERT(start_zero_fsb
<= (end_zero_fsb
+ 1));
524 * There are blocks we need to zero.
526 zero_off
= XFS_FSB_TO_B(mp
, start_zero_fsb
);
527 zero_len
= XFS_FSB_TO_B(mp
, imap
.br_blockcount
);
529 if ((zero_off
+ zero_len
) > offset
)
530 zero_len
= offset
- zero_off
;
532 error
= xfs_iozero(ip
, zero_off
, zero_len
);
536 start_zero_fsb
= imap
.br_startoff
+ imap
.br_blockcount
;
537 ASSERT(start_zero_fsb
<= (end_zero_fsb
+ 1));
544 * Common pre-write limit and setup checks.
546 * Called with the iolocked held either shared and exclusive according to
547 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
548 * if called for a direct write beyond i_size.
551 xfs_file_aio_write_checks(
557 struct inode
*inode
= file
->f_mapping
->host
;
558 struct xfs_inode
*ip
= XFS_I(inode
);
562 error
= generic_write_checks(file
, pos
, count
, S_ISBLK(inode
->i_mode
));
567 * If the offset is beyond the size of the file, we need to zero any
568 * blocks that fall between the existing EOF and the start of this
569 * write. If zeroing is needed and we are currently holding the
570 * iolock shared, we need to update it to exclusive which implies
571 * having to redo all checks before.
573 if (*pos
> i_size_read(inode
)) {
574 if (*iolock
== XFS_IOLOCK_SHARED
) {
575 xfs_rw_iunlock(ip
, *iolock
);
576 *iolock
= XFS_IOLOCK_EXCL
;
577 xfs_rw_ilock(ip
, *iolock
);
580 error
= -xfs_zero_eof(ip
, *pos
, i_size_read(inode
));
586 * Updating the timestamps will grab the ilock again from
587 * xfs_fs_dirty_inode, so we have to call it after dropping the
588 * lock above. Eventually we should look into a way to avoid
589 * the pointless lock roundtrip.
591 if (likely(!(file
->f_mode
& FMODE_NOCMTIME
))) {
592 error
= file_update_time(file
);
598 * If we're writing the file then make sure to clear the setuid and
599 * setgid bits if the process is not being run by root. This keeps
600 * people from modifying setuid and setgid binaries.
602 return file_remove_suid(file
);
606 * xfs_file_dio_aio_write - handle direct IO writes
608 * Lock the inode appropriately to prepare for and issue a direct IO write.
609 * By separating it from the buffered write path we remove all the tricky to
610 * follow locking changes and looping.
612 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
613 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
614 * pages are flushed out.
616 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
617 * allowing them to be done in parallel with reads and other direct IO writes.
618 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
619 * needs to do sub-block zeroing and that requires serialisation against other
620 * direct IOs to the same block. In this case we need to serialise the
621 * submission of the unaligned IOs so that we don't get racing block zeroing in
622 * the dio layer. To avoid the problem with aio, we also need to wait for
623 * outstanding IOs to complete so that unwritten extent conversion is completed
624 * before we try to map the overlapping block. This is currently implemented by
625 * hitting it with a big hammer (i.e. inode_dio_wait()).
627 * Returns with locks held indicated by @iolock and errors indicated by
628 * negative return values.
631 xfs_file_dio_aio_write(
633 const struct iovec
*iovp
,
634 unsigned long nr_segs
,
638 struct file
*file
= iocb
->ki_filp
;
639 struct address_space
*mapping
= file
->f_mapping
;
640 struct inode
*inode
= mapping
->host
;
641 struct xfs_inode
*ip
= XFS_I(inode
);
642 struct xfs_mount
*mp
= ip
->i_mount
;
644 size_t count
= ocount
;
645 int unaligned_io
= 0;
647 struct xfs_buftarg
*target
= XFS_IS_REALTIME_INODE(ip
) ?
648 mp
->m_rtdev_targp
: mp
->m_ddev_targp
;
650 if ((pos
& target
->bt_smask
) || (count
& target
->bt_smask
))
651 return -XFS_ERROR(EINVAL
);
653 if ((pos
& mp
->m_blockmask
) || ((pos
+ count
) & mp
->m_blockmask
))
657 * We don't need to take an exclusive lock unless there page cache needs
658 * to be invalidated or unaligned IO is being executed. We don't need to
659 * consider the EOF extension case here because
660 * xfs_file_aio_write_checks() will relock the inode as necessary for
661 * EOF zeroing cases and fill out the new inode size as appropriate.
663 if (unaligned_io
|| mapping
->nrpages
)
664 iolock
= XFS_IOLOCK_EXCL
;
666 iolock
= XFS_IOLOCK_SHARED
;
667 xfs_rw_ilock(ip
, iolock
);
670 * Recheck if there are cached pages that need invalidate after we got
671 * the iolock to protect against other threads adding new pages while
672 * we were waiting for the iolock.
674 if (mapping
->nrpages
&& iolock
== XFS_IOLOCK_SHARED
) {
675 xfs_rw_iunlock(ip
, iolock
);
676 iolock
= XFS_IOLOCK_EXCL
;
677 xfs_rw_ilock(ip
, iolock
);
680 ret
= xfs_file_aio_write_checks(file
, &pos
, &count
, &iolock
);
684 if (mapping
->nrpages
) {
685 ret
= -filemap_write_and_wait_range(VFS_I(ip
)->i_mapping
,
690 * Invalidate whole pages. This can return an error if
691 * we fail to invalidate a page, but this should never
692 * happen on XFS. Warn if it does fail.
694 ret
= invalidate_inode_pages2_range(VFS_I(ip
)->i_mapping
,
695 pos
>> PAGE_CACHE_SHIFT
, -1);
701 * If we are doing unaligned IO, wait for all other IO to drain,
702 * otherwise demote the lock if we had to flush cached pages
705 inode_dio_wait(inode
);
706 else if (iolock
== XFS_IOLOCK_EXCL
) {
707 xfs_rw_ilock_demote(ip
, XFS_IOLOCK_EXCL
);
708 iolock
= XFS_IOLOCK_SHARED
;
711 trace_xfs_file_direct_write(ip
, count
, iocb
->ki_pos
, 0);
712 ret
= generic_file_direct_write(iocb
, iovp
,
713 &nr_segs
, pos
, &iocb
->ki_pos
, count
, ocount
);
716 xfs_rw_iunlock(ip
, iolock
);
718 /* No fallback to buffered IO on errors for XFS. */
719 ASSERT(ret
< 0 || ret
== count
);
724 xfs_file_buffered_aio_write(
726 const struct iovec
*iovp
,
727 unsigned long nr_segs
,
731 struct file
*file
= iocb
->ki_filp
;
732 struct address_space
*mapping
= file
->f_mapping
;
733 struct inode
*inode
= mapping
->host
;
734 struct xfs_inode
*ip
= XFS_I(inode
);
737 int iolock
= XFS_IOLOCK_EXCL
;
738 size_t count
= ocount
;
740 xfs_rw_ilock(ip
, iolock
);
742 ret
= xfs_file_aio_write_checks(file
, &pos
, &count
, &iolock
);
746 /* We can write back this queue in page reclaim */
747 current
->backing_dev_info
= mapping
->backing_dev_info
;
750 trace_xfs_file_buffered_write(ip
, count
, iocb
->ki_pos
, 0);
751 ret
= generic_file_buffered_write(iocb
, iovp
, nr_segs
,
752 pos
, &iocb
->ki_pos
, count
, 0);
755 * If we just got an ENOSPC, try to write back all dirty inodes to
756 * convert delalloc space to free up some of the excess reserved
759 if (ret
== -ENOSPC
&& !enospc
) {
761 xfs_flush_inodes(ip
->i_mount
);
765 current
->backing_dev_info
= NULL
;
767 xfs_rw_iunlock(ip
, iolock
);
774 const struct iovec
*iovp
,
775 unsigned long nr_segs
,
778 struct file
*file
= iocb
->ki_filp
;
779 struct address_space
*mapping
= file
->f_mapping
;
780 struct inode
*inode
= mapping
->host
;
781 struct xfs_inode
*ip
= XFS_I(inode
);
785 XFS_STATS_INC(xs_write_calls
);
787 BUG_ON(iocb
->ki_pos
!= pos
);
789 ret
= generic_segment_checks(iovp
, &nr_segs
, &ocount
, VERIFY_READ
);
796 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
801 if (unlikely(file
->f_flags
& O_DIRECT
))
802 ret
= xfs_file_dio_aio_write(iocb
, iovp
, nr_segs
, pos
, ocount
);
804 ret
= xfs_file_buffered_aio_write(iocb
, iovp
, nr_segs
, pos
,
810 XFS_STATS_ADD(xs_write_bytes
, ret
);
812 /* Handle various SYNC-type writes */
813 err
= generic_write_sync(file
, pos
, ret
);
829 struct inode
*inode
= file_inode(file
);
833 xfs_inode_t
*ip
= XFS_I(inode
);
834 int cmd
= XFS_IOC_RESVSP
;
835 int attr_flags
= XFS_ATTR_NOLOCK
;
837 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
844 xfs_ilock(ip
, XFS_IOLOCK_EXCL
);
846 if (mode
& FALLOC_FL_PUNCH_HOLE
)
847 cmd
= XFS_IOC_UNRESVSP
;
849 /* check the new inode size is valid before allocating */
850 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
851 offset
+ len
> i_size_read(inode
)) {
852 new_size
= offset
+ len
;
853 error
= inode_newsize_ok(inode
, new_size
);
858 if (file
->f_flags
& O_DSYNC
)
859 attr_flags
|= XFS_ATTR_SYNC
;
861 error
= -xfs_change_file_space(ip
, cmd
, &bf
, 0, attr_flags
);
865 /* Change file size if needed */
869 iattr
.ia_valid
= ATTR_SIZE
;
870 iattr
.ia_size
= new_size
;
871 error
= -xfs_setattr_size(ip
, &iattr
, XFS_ATTR_NOLOCK
);
875 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
885 if (!(file
->f_flags
& O_LARGEFILE
) && i_size_read(inode
) > MAX_NON_LFS
)
887 if (XFS_FORCED_SHUTDOWN(XFS_M(inode
->i_sb
)))
897 struct xfs_inode
*ip
= XFS_I(inode
);
901 error
= xfs_file_open(inode
, file
);
906 * If there are any blocks, read-ahead block 0 as we're almost
907 * certain to have the next operation be a read there.
909 mode
= xfs_ilock_map_shared(ip
);
910 if (ip
->i_d
.di_nextents
> 0)
911 xfs_dir3_data_readahead(NULL
, ip
, 0, -1);
912 xfs_iunlock(ip
, mode
);
921 return -xfs_release(XFS_I(inode
));
930 struct inode
*inode
= file_inode(filp
);
931 xfs_inode_t
*ip
= XFS_I(inode
);
936 * The Linux API doesn't pass down the total size of the buffer
937 * we read into down to the filesystem. With the filldir concept
938 * it's not needed for correct information, but the XFS dir2 leaf
939 * code wants an estimate of the buffer size to calculate it's
940 * readahead window and size the buffers used for mapping to
943 * Try to give it an estimate that's good enough, maybe at some
944 * point we can change the ->readdir prototype to include the
945 * buffer size. For now we use the current glibc buffer size.
947 bufsize
= (size_t)min_t(loff_t
, 32768, ip
->i_d
.di_size
);
949 error
= xfs_readdir(ip
, dirent
, bufsize
,
950 (xfs_off_t
*)&filp
->f_pos
, filldir
);
959 struct vm_area_struct
*vma
)
961 vma
->vm_ops
= &xfs_file_vm_ops
;
968 * mmap()d file has taken write protection fault and is being made
969 * writable. We can set the page state up correctly for a writable
970 * page, which means we can do correct delalloc accounting (ENOSPC
971 * checking!) and unwritten extent mapping.
975 struct vm_area_struct
*vma
,
976 struct vm_fault
*vmf
)
978 return block_page_mkwrite(vma
, vmf
, xfs_get_blocks
);
982 * This type is designed to indicate the type of offset we would like
983 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
991 * Lookup the desired type of offset from the given page.
993 * On success, return true and the offset argument will point to the
994 * start of the region that was found. Otherwise this function will
995 * return false and keep the offset argument unchanged.
998 xfs_lookup_buffer_offset(
1003 loff_t lastoff
= page_offset(page
);
1005 struct buffer_head
*bh
, *head
;
1007 bh
= head
= page_buffers(page
);
1010 * Unwritten extents that have data in the page
1011 * cache covering them can be identified by the
1012 * BH_Unwritten state flag. Pages with multiple
1013 * buffers might have a mix of holes, data and
1014 * unwritten extents - any buffer with valid
1015 * data in it should have BH_Uptodate flag set
1018 if (buffer_unwritten(bh
) ||
1019 buffer_uptodate(bh
)) {
1020 if (type
== DATA_OFF
)
1023 if (type
== HOLE_OFF
)
1031 lastoff
+= bh
->b_size
;
1032 } while ((bh
= bh
->b_this_page
) != head
);
1038 * This routine is called to find out and return a data or hole offset
1039 * from the page cache for unwritten extents according to the desired
1040 * type for xfs_seek_data() or xfs_seek_hole().
1042 * The argument offset is used to tell where we start to search from the
1043 * page cache. Map is used to figure out the end points of the range to
1046 * Return true if the desired type of offset was found, and the argument
1047 * offset is filled with that address. Otherwise, return false and keep
1051 xfs_find_get_desired_pgoff(
1052 struct inode
*inode
,
1053 struct xfs_bmbt_irec
*map
,
1057 struct xfs_inode
*ip
= XFS_I(inode
);
1058 struct xfs_mount
*mp
= ip
->i_mount
;
1059 struct pagevec pvec
;
1063 loff_t startoff
= *offset
;
1064 loff_t lastoff
= startoff
;
1067 pagevec_init(&pvec
, 0);
1069 index
= startoff
>> PAGE_CACHE_SHIFT
;
1070 endoff
= XFS_FSB_TO_B(mp
, map
->br_startoff
+ map
->br_blockcount
);
1071 end
= endoff
>> PAGE_CACHE_SHIFT
;
1077 want
= min_t(pgoff_t
, end
- index
, PAGEVEC_SIZE
);
1078 nr_pages
= pagevec_lookup(&pvec
, inode
->i_mapping
, index
,
1081 * No page mapped into given range. If we are searching holes
1082 * and if this is the first time we got into the loop, it means
1083 * that the given offset is landed in a hole, return it.
1085 * If we have already stepped through some block buffers to find
1086 * holes but they all contains data. In this case, the last
1087 * offset is already updated and pointed to the end of the last
1088 * mapped page, if it does not reach the endpoint to search,
1089 * that means there should be a hole between them.
1091 if (nr_pages
== 0) {
1092 /* Data search found nothing */
1093 if (type
== DATA_OFF
)
1096 ASSERT(type
== HOLE_OFF
);
1097 if (lastoff
== startoff
|| lastoff
< endoff
) {
1105 * At lease we found one page. If this is the first time we
1106 * step into the loop, and if the first page index offset is
1107 * greater than the given search offset, a hole was found.
1109 if (type
== HOLE_OFF
&& lastoff
== startoff
&&
1110 lastoff
< page_offset(pvec
.pages
[0])) {
1115 for (i
= 0; i
< nr_pages
; i
++) {
1116 struct page
*page
= pvec
.pages
[i
];
1120 * At this point, the page may be truncated or
1121 * invalidated (changing page->mapping to NULL),
1122 * or even swizzled back from swapper_space to tmpfs
1123 * file mapping. However, page->index will not change
1124 * because we have a reference on the page.
1126 * Searching done if the page index is out of range.
1127 * If the current offset is not reaches the end of
1128 * the specified search range, there should be a hole
1131 if (page
->index
> end
) {
1132 if (type
== HOLE_OFF
&& lastoff
< endoff
) {
1141 * Page truncated or invalidated(page->mapping == NULL).
1142 * We can freely skip it and proceed to check the next
1145 if (unlikely(page
->mapping
!= inode
->i_mapping
)) {
1150 if (!page_has_buffers(page
)) {
1155 found
= xfs_lookup_buffer_offset(page
, &b_offset
, type
);
1158 * The found offset may be less than the start
1159 * point to search if this is the first time to
1162 *offset
= max_t(loff_t
, startoff
, b_offset
);
1168 * We either searching data but nothing was found, or
1169 * searching hole but found a data buffer. In either
1170 * case, probably the next page contains the desired
1171 * things, update the last offset to it so.
1173 lastoff
= page_offset(page
) + PAGE_SIZE
;
1178 * The number of returned pages less than our desired, search
1179 * done. In this case, nothing was found for searching data,
1180 * but we found a hole behind the last offset.
1182 if (nr_pages
< want
) {
1183 if (type
== HOLE_OFF
) {
1190 index
= pvec
.pages
[i
- 1]->index
+ 1;
1191 pagevec_release(&pvec
);
1192 } while (index
<= end
);
1195 pagevec_release(&pvec
);
1204 struct inode
*inode
= file
->f_mapping
->host
;
1205 struct xfs_inode
*ip
= XFS_I(inode
);
1206 struct xfs_mount
*mp
= ip
->i_mount
;
1207 loff_t
uninitialized_var(offset
);
1209 xfs_fileoff_t fsbno
;
1214 lock
= xfs_ilock_map_shared(ip
);
1216 isize
= i_size_read(inode
);
1217 if (start
>= isize
) {
1223 * Try to read extents from the first block indicated
1224 * by fsbno to the end block of the file.
1226 fsbno
= XFS_B_TO_FSBT(mp
, start
);
1227 end
= XFS_B_TO_FSB(mp
, isize
);
1229 struct xfs_bmbt_irec map
[2];
1233 error
= xfs_bmapi_read(ip
, fsbno
, end
- fsbno
, map
, &nmap
,
1238 /* No extents at given offset, must be beyond EOF */
1244 for (i
= 0; i
< nmap
; i
++) {
1245 offset
= max_t(loff_t
, start
,
1246 XFS_FSB_TO_B(mp
, map
[i
].br_startoff
));
1248 /* Landed in a data extent */
1249 if (map
[i
].br_startblock
== DELAYSTARTBLOCK
||
1250 (map
[i
].br_state
== XFS_EXT_NORM
&&
1251 !isnullstartblock(map
[i
].br_startblock
)))
1255 * Landed in an unwritten extent, try to search data
1258 if (map
[i
].br_state
== XFS_EXT_UNWRITTEN
) {
1259 if (xfs_find_get_desired_pgoff(inode
, &map
[i
],
1266 * map[0] is hole or its an unwritten extent but
1267 * without data in page cache. Probably means that
1268 * we are reading after EOF if nothing in map[1].
1278 * Nothing was found, proceed to the next round of search
1279 * if reading offset not beyond or hit EOF.
1281 fsbno
= map
[i
- 1].br_startoff
+ map
[i
- 1].br_blockcount
;
1282 start
= XFS_FSB_TO_B(mp
, fsbno
);
1283 if (start
>= isize
) {
1290 if (offset
!= file
->f_pos
)
1291 file
->f_pos
= offset
;
1294 xfs_iunlock_map_shared(ip
, lock
);
1306 struct inode
*inode
= file
->f_mapping
->host
;
1307 struct xfs_inode
*ip
= XFS_I(inode
);
1308 struct xfs_mount
*mp
= ip
->i_mount
;
1309 loff_t
uninitialized_var(offset
);
1311 xfs_fileoff_t fsbno
;
1316 if (XFS_FORCED_SHUTDOWN(mp
))
1317 return -XFS_ERROR(EIO
);
1319 lock
= xfs_ilock_map_shared(ip
);
1321 isize
= i_size_read(inode
);
1322 if (start
>= isize
) {
1327 fsbno
= XFS_B_TO_FSBT(mp
, start
);
1328 end
= XFS_B_TO_FSB(mp
, isize
);
1331 struct xfs_bmbt_irec map
[2];
1335 error
= xfs_bmapi_read(ip
, fsbno
, end
- fsbno
, map
, &nmap
,
1340 /* No extents at given offset, must be beyond EOF */
1346 for (i
= 0; i
< nmap
; i
++) {
1347 offset
= max_t(loff_t
, start
,
1348 XFS_FSB_TO_B(mp
, map
[i
].br_startoff
));
1350 /* Landed in a hole */
1351 if (map
[i
].br_startblock
== HOLESTARTBLOCK
)
1355 * Landed in an unwritten extent, try to search hole
1358 if (map
[i
].br_state
== XFS_EXT_UNWRITTEN
) {
1359 if (xfs_find_get_desired_pgoff(inode
, &map
[i
],
1366 * map[0] contains data or its unwritten but contains
1367 * data in page cache, probably means that we are
1368 * reading after EOF. We should fix offset to point
1369 * to the end of the file(i.e., there is an implicit
1370 * hole at the end of any file).
1380 * Both mappings contains data, proceed to the next round of
1381 * search if the current reading offset not beyond or hit EOF.
1383 fsbno
= map
[i
- 1].br_startoff
+ map
[i
- 1].br_blockcount
;
1384 start
= XFS_FSB_TO_B(mp
, fsbno
);
1385 if (start
>= isize
) {
1393 * At this point, we must have found a hole. However, the returned
1394 * offset may be bigger than the file size as it may be aligned to
1395 * page boundary for unwritten extents, we need to deal with this
1396 * situation in particular.
1398 offset
= min_t(loff_t
, offset
, isize
);
1399 if (offset
!= file
->f_pos
)
1400 file
->f_pos
= offset
;
1403 xfs_iunlock_map_shared(ip
, lock
);
1420 return generic_file_llseek(file
, offset
, origin
);
1422 return xfs_seek_data(file
, offset
);
1424 return xfs_seek_hole(file
, offset
);
1430 const struct file_operations xfs_file_operations
= {
1431 .llseek
= xfs_file_llseek
,
1432 .read
= do_sync_read
,
1433 .write
= do_sync_write
,
1434 .aio_read
= xfs_file_aio_read
,
1435 .aio_write
= xfs_file_aio_write
,
1436 .splice_read
= xfs_file_splice_read
,
1437 .splice_write
= xfs_file_splice_write
,
1438 .unlocked_ioctl
= xfs_file_ioctl
,
1439 #ifdef CONFIG_COMPAT
1440 .compat_ioctl
= xfs_file_compat_ioctl
,
1442 .mmap
= xfs_file_mmap
,
1443 .open
= xfs_file_open
,
1444 .release
= xfs_file_release
,
1445 .fsync
= xfs_file_fsync
,
1446 .fallocate
= xfs_file_fallocate
,
1449 const struct file_operations xfs_dir_file_operations
= {
1450 .open
= xfs_dir_open
,
1451 .read
= generic_read_dir
,
1452 .readdir
= xfs_file_readdir
,
1453 .llseek
= generic_file_llseek
,
1454 .unlocked_ioctl
= xfs_file_ioctl
,
1455 #ifdef CONFIG_COMPAT
1456 .compat_ioctl
= xfs_file_compat_ioctl
,
1458 .fsync
= xfs_dir_fsync
,
1461 static const struct vm_operations_struct xfs_file_vm_ops
= {
1462 .fault
= filemap_fault
,
1463 .page_mkwrite
= xfs_vm_page_mkwrite
,
1464 .remap_pages
= generic_file_remap_pages
,