ALSA: seq: Fix missing NULL check at remove_events ioctl
[linux/fpc-iii.git] / fs / xfs / xfs_file.c
blob9f457fedbcfcc996b5b84bd9e08d084e9f8cd9bd
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_log.h"
21 #include "xfs_sb.h"
22 #include "xfs_ag.h"
23 #include "xfs_trans.h"
24 #include "xfs_mount.h"
25 #include "xfs_bmap_btree.h"
26 #include "xfs_alloc.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_error.h"
32 #include "xfs_vnodeops.h"
33 #include "xfs_da_btree.h"
34 #include "xfs_dir2_format.h"
35 #include "xfs_dir2_priv.h"
36 #include "xfs_ioctl.h"
37 #include "xfs_trace.h"
39 #include <linux/aio.h>
40 #include <linux/dcache.h>
41 #include <linux/falloc.h>
42 #include <linux/pagevec.h>
44 static const struct vm_operations_struct xfs_file_vm_ops;
47 * Locking primitives for read and write IO paths to ensure we consistently use
48 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
50 static inline void
51 xfs_rw_ilock(
52 struct xfs_inode *ip,
53 int type)
55 if (type & XFS_IOLOCK_EXCL)
56 mutex_lock(&VFS_I(ip)->i_mutex);
57 xfs_ilock(ip, type);
60 static inline void
61 xfs_rw_iunlock(
62 struct xfs_inode *ip,
63 int type)
65 xfs_iunlock(ip, type);
66 if (type & XFS_IOLOCK_EXCL)
67 mutex_unlock(&VFS_I(ip)->i_mutex);
70 static inline void
71 xfs_rw_ilock_demote(
72 struct xfs_inode *ip,
73 int type)
75 xfs_ilock_demote(ip, type);
76 if (type & XFS_IOLOCK_EXCL)
77 mutex_unlock(&VFS_I(ip)->i_mutex);
81 * xfs_iozero
83 * xfs_iozero clears the specified range of buffer supplied,
84 * and marks all the affected blocks as valid and modified. If
85 * an affected block is not allocated, it will be allocated. If
86 * an affected block is not completely overwritten, and is not
87 * valid before the operation, it will be read from disk before
88 * being partially zeroed.
90 int
91 xfs_iozero(
92 struct xfs_inode *ip, /* inode */
93 loff_t pos, /* offset in file */
94 size_t count) /* size of data to zero */
96 struct page *page;
97 struct address_space *mapping;
98 int status;
100 mapping = VFS_I(ip)->i_mapping;
101 do {
102 unsigned offset, bytes;
103 void *fsdata;
105 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
106 bytes = PAGE_CACHE_SIZE - offset;
107 if (bytes > count)
108 bytes = count;
110 status = pagecache_write_begin(NULL, mapping, pos, bytes,
111 AOP_FLAG_UNINTERRUPTIBLE,
112 &page, &fsdata);
113 if (status)
114 break;
116 zero_user(page, offset, bytes);
118 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
119 page, fsdata);
120 WARN_ON(status <= 0); /* can't return less than zero! */
121 pos += bytes;
122 count -= bytes;
123 status = 0;
124 } while (count);
126 return (-status);
130 * Fsync operations on directories are much simpler than on regular files,
131 * as there is no file data to flush, and thus also no need for explicit
132 * cache flush operations, and there are no non-transaction metadata updates
133 * on directories either.
135 STATIC int
136 xfs_dir_fsync(
137 struct file *file,
138 loff_t start,
139 loff_t end,
140 int datasync)
142 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
143 struct xfs_mount *mp = ip->i_mount;
144 xfs_lsn_t lsn = 0;
146 trace_xfs_dir_fsync(ip);
148 xfs_ilock(ip, XFS_ILOCK_SHARED);
149 if (xfs_ipincount(ip))
150 lsn = ip->i_itemp->ili_last_lsn;
151 xfs_iunlock(ip, XFS_ILOCK_SHARED);
153 if (!lsn)
154 return 0;
155 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
158 STATIC int
159 xfs_file_fsync(
160 struct file *file,
161 loff_t start,
162 loff_t end,
163 int datasync)
165 struct inode *inode = file->f_mapping->host;
166 struct xfs_inode *ip = XFS_I(inode);
167 struct xfs_mount *mp = ip->i_mount;
168 int error = 0;
169 int log_flushed = 0;
170 xfs_lsn_t lsn = 0;
172 trace_xfs_file_fsync(ip);
174 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
175 if (error)
176 return error;
178 if (XFS_FORCED_SHUTDOWN(mp))
179 return -XFS_ERROR(EIO);
181 xfs_iflags_clear(ip, XFS_ITRUNCATED);
183 if (mp->m_flags & XFS_MOUNT_BARRIER) {
185 * If we have an RT and/or log subvolume we need to make sure
186 * to flush the write cache the device used for file data
187 * first. This is to ensure newly written file data make
188 * it to disk before logging the new inode size in case of
189 * an extending write.
191 if (XFS_IS_REALTIME_INODE(ip))
192 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
193 else if (mp->m_logdev_targp != mp->m_ddev_targp)
194 xfs_blkdev_issue_flush(mp->m_ddev_targp);
198 * All metadata updates are logged, which means that we just have
199 * to flush the log up to the latest LSN that touched the inode.
201 xfs_ilock(ip, XFS_ILOCK_SHARED);
202 if (xfs_ipincount(ip)) {
203 if (!datasync ||
204 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
205 lsn = ip->i_itemp->ili_last_lsn;
207 xfs_iunlock(ip, XFS_ILOCK_SHARED);
209 if (lsn)
210 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
213 * If we only have a single device, and the log force about was
214 * a no-op we might have to flush the data device cache here.
215 * This can only happen for fdatasync/O_DSYNC if we were overwriting
216 * an already allocated file and thus do not have any metadata to
217 * commit.
219 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
220 mp->m_logdev_targp == mp->m_ddev_targp &&
221 !XFS_IS_REALTIME_INODE(ip) &&
222 !log_flushed)
223 xfs_blkdev_issue_flush(mp->m_ddev_targp);
225 return -error;
228 STATIC ssize_t
229 xfs_file_aio_read(
230 struct kiocb *iocb,
231 const struct iovec *iovp,
232 unsigned long nr_segs,
233 loff_t pos)
235 struct file *file = iocb->ki_filp;
236 struct inode *inode = file->f_mapping->host;
237 struct xfs_inode *ip = XFS_I(inode);
238 struct xfs_mount *mp = ip->i_mount;
239 size_t size = 0;
240 ssize_t ret = 0;
241 int ioflags = 0;
242 xfs_fsize_t n;
244 XFS_STATS_INC(xs_read_calls);
246 BUG_ON(iocb->ki_pos != pos);
248 if (unlikely(file->f_flags & O_DIRECT))
249 ioflags |= IO_ISDIRECT;
250 if (file->f_mode & FMODE_NOCMTIME)
251 ioflags |= IO_INVIS;
253 ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
254 if (ret < 0)
255 return ret;
257 if (unlikely(ioflags & IO_ISDIRECT)) {
258 xfs_buftarg_t *target =
259 XFS_IS_REALTIME_INODE(ip) ?
260 mp->m_rtdev_targp : mp->m_ddev_targp;
261 if ((pos & target->bt_smask) || (size & target->bt_smask)) {
262 if (pos == i_size_read(inode))
263 return 0;
264 return -XFS_ERROR(EINVAL);
268 n = mp->m_super->s_maxbytes - pos;
269 if (n <= 0 || size == 0)
270 return 0;
272 if (n < size)
273 size = n;
275 if (XFS_FORCED_SHUTDOWN(mp))
276 return -EIO;
279 * Locking is a bit tricky here. If we take an exclusive lock
280 * for direct IO, we effectively serialise all new concurrent
281 * read IO to this file and block it behind IO that is currently in
282 * progress because IO in progress holds the IO lock shared. We only
283 * need to hold the lock exclusive to blow away the page cache, so
284 * only take lock exclusively if the page cache needs invalidation.
285 * This allows the normal direct IO case of no page cache pages to
286 * proceeed concurrently without serialisation.
288 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
289 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
290 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
291 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
293 if (inode->i_mapping->nrpages) {
294 ret = -filemap_write_and_wait_range(
295 VFS_I(ip)->i_mapping,
296 pos, -1);
297 if (ret) {
298 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
299 return ret;
303 * Invalidate whole pages. This can return an error if
304 * we fail to invalidate a page, but this should never
305 * happen on XFS. Warn if it does fail.
307 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
308 pos >> PAGE_CACHE_SHIFT, -1);
309 WARN_ON_ONCE(ret);
310 ret = 0;
312 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
315 trace_xfs_file_read(ip, size, pos, ioflags);
317 ret = generic_file_aio_read(iocb, iovp, nr_segs, pos);
318 if (ret > 0)
319 XFS_STATS_ADD(xs_read_bytes, ret);
321 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
322 return ret;
325 STATIC ssize_t
326 xfs_file_splice_read(
327 struct file *infilp,
328 loff_t *ppos,
329 struct pipe_inode_info *pipe,
330 size_t count,
331 unsigned int flags)
333 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
334 int ioflags = 0;
335 ssize_t ret;
337 XFS_STATS_INC(xs_read_calls);
339 if (infilp->f_mode & FMODE_NOCMTIME)
340 ioflags |= IO_INVIS;
342 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
343 return -EIO;
345 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
347 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
349 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
350 if (ret > 0)
351 XFS_STATS_ADD(xs_read_bytes, ret);
353 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
354 return ret;
358 * xfs_file_splice_write() does not use xfs_rw_ilock() because
359 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
360 * couuld cause lock inversions between the aio_write path and the splice path
361 * if someone is doing concurrent splice(2) based writes and write(2) based
362 * writes to the same inode. The only real way to fix this is to re-implement
363 * the generic code here with correct locking orders.
365 STATIC ssize_t
366 xfs_file_splice_write(
367 struct pipe_inode_info *pipe,
368 struct file *outfilp,
369 loff_t *ppos,
370 size_t count,
371 unsigned int flags)
373 struct inode *inode = outfilp->f_mapping->host;
374 struct xfs_inode *ip = XFS_I(inode);
375 int ioflags = 0;
376 ssize_t ret;
378 XFS_STATS_INC(xs_write_calls);
380 if (outfilp->f_mode & FMODE_NOCMTIME)
381 ioflags |= IO_INVIS;
383 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
384 return -EIO;
386 xfs_ilock(ip, XFS_IOLOCK_EXCL);
388 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
390 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
391 if (ret > 0)
392 XFS_STATS_ADD(xs_write_bytes, ret);
394 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
395 return ret;
399 * This routine is called to handle zeroing any space in the last block of the
400 * file that is beyond the EOF. We do this since the size is being increased
401 * without writing anything to that block and we don't want to read the
402 * garbage on the disk.
404 STATIC int /* error (positive) */
405 xfs_zero_last_block(
406 struct xfs_inode *ip,
407 xfs_fsize_t offset,
408 xfs_fsize_t isize)
410 struct xfs_mount *mp = ip->i_mount;
411 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
412 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
413 int zero_len;
414 int nimaps = 1;
415 int error = 0;
416 struct xfs_bmbt_irec imap;
418 xfs_ilock(ip, XFS_ILOCK_EXCL);
419 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
420 xfs_iunlock(ip, XFS_ILOCK_EXCL);
421 if (error)
422 return error;
424 ASSERT(nimaps > 0);
427 * If the block underlying isize is just a hole, then there
428 * is nothing to zero.
430 if (imap.br_startblock == HOLESTARTBLOCK)
431 return 0;
433 zero_len = mp->m_sb.sb_blocksize - zero_offset;
434 if (isize + zero_len > offset)
435 zero_len = offset - isize;
436 return xfs_iozero(ip, isize, zero_len);
440 * Zero any on disk space between the current EOF and the new, larger EOF.
442 * This handles the normal case of zeroing the remainder of the last block in
443 * the file and the unusual case of zeroing blocks out beyond the size of the
444 * file. This second case only happens with fixed size extents and when the
445 * system crashes before the inode size was updated but after blocks were
446 * allocated.
448 * Expects the iolock to be held exclusive, and will take the ilock internally.
450 int /* error (positive) */
451 xfs_zero_eof(
452 struct xfs_inode *ip,
453 xfs_off_t offset, /* starting I/O offset */
454 xfs_fsize_t isize) /* current inode size */
456 struct xfs_mount *mp = ip->i_mount;
457 xfs_fileoff_t start_zero_fsb;
458 xfs_fileoff_t end_zero_fsb;
459 xfs_fileoff_t zero_count_fsb;
460 xfs_fileoff_t last_fsb;
461 xfs_fileoff_t zero_off;
462 xfs_fsize_t zero_len;
463 int nimaps;
464 int error = 0;
465 struct xfs_bmbt_irec imap;
467 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
468 ASSERT(offset > isize);
471 * First handle zeroing the block on which isize resides.
473 * We only zero a part of that block so it is handled specially.
475 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
476 error = xfs_zero_last_block(ip, offset, isize);
477 if (error)
478 return error;
482 * Calculate the range between the new size and the old where blocks
483 * needing to be zeroed may exist.
485 * To get the block where the last byte in the file currently resides,
486 * we need to subtract one from the size and truncate back to a block
487 * boundary. We subtract 1 in case the size is exactly on a block
488 * boundary.
490 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
491 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
492 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
493 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
494 if (last_fsb == end_zero_fsb) {
496 * The size was only incremented on its last block.
497 * We took care of that above, so just return.
499 return 0;
502 ASSERT(start_zero_fsb <= end_zero_fsb);
503 while (start_zero_fsb <= end_zero_fsb) {
504 nimaps = 1;
505 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
507 xfs_ilock(ip, XFS_ILOCK_EXCL);
508 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
509 &imap, &nimaps, 0);
510 xfs_iunlock(ip, XFS_ILOCK_EXCL);
511 if (error)
512 return error;
514 ASSERT(nimaps > 0);
516 if (imap.br_state == XFS_EXT_UNWRITTEN ||
517 imap.br_startblock == HOLESTARTBLOCK) {
518 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
519 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
520 continue;
524 * There are blocks we need to zero.
526 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
527 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
529 if ((zero_off + zero_len) > offset)
530 zero_len = offset - zero_off;
532 error = xfs_iozero(ip, zero_off, zero_len);
533 if (error)
534 return error;
536 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
537 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
540 return 0;
544 * Common pre-write limit and setup checks.
546 * Called with the iolocked held either shared and exclusive according to
547 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
548 * if called for a direct write beyond i_size.
550 STATIC ssize_t
551 xfs_file_aio_write_checks(
552 struct file *file,
553 loff_t *pos,
554 size_t *count,
555 int *iolock)
557 struct inode *inode = file->f_mapping->host;
558 struct xfs_inode *ip = XFS_I(inode);
559 int error = 0;
561 restart:
562 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
563 if (error)
564 return error;
567 * If the offset is beyond the size of the file, we need to zero any
568 * blocks that fall between the existing EOF and the start of this
569 * write. If zeroing is needed and we are currently holding the
570 * iolock shared, we need to update it to exclusive which implies
571 * having to redo all checks before.
573 if (*pos > i_size_read(inode)) {
574 if (*iolock == XFS_IOLOCK_SHARED) {
575 xfs_rw_iunlock(ip, *iolock);
576 *iolock = XFS_IOLOCK_EXCL;
577 xfs_rw_ilock(ip, *iolock);
578 goto restart;
580 error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
581 if (error)
582 return error;
586 * Updating the timestamps will grab the ilock again from
587 * xfs_fs_dirty_inode, so we have to call it after dropping the
588 * lock above. Eventually we should look into a way to avoid
589 * the pointless lock roundtrip.
591 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
592 error = file_update_time(file);
593 if (error)
594 return error;
598 * If we're writing the file then make sure to clear the setuid and
599 * setgid bits if the process is not being run by root. This keeps
600 * people from modifying setuid and setgid binaries.
602 return file_remove_suid(file);
606 * xfs_file_dio_aio_write - handle direct IO writes
608 * Lock the inode appropriately to prepare for and issue a direct IO write.
609 * By separating it from the buffered write path we remove all the tricky to
610 * follow locking changes and looping.
612 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
613 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
614 * pages are flushed out.
616 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
617 * allowing them to be done in parallel with reads and other direct IO writes.
618 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
619 * needs to do sub-block zeroing and that requires serialisation against other
620 * direct IOs to the same block. In this case we need to serialise the
621 * submission of the unaligned IOs so that we don't get racing block zeroing in
622 * the dio layer. To avoid the problem with aio, we also need to wait for
623 * outstanding IOs to complete so that unwritten extent conversion is completed
624 * before we try to map the overlapping block. This is currently implemented by
625 * hitting it with a big hammer (i.e. inode_dio_wait()).
627 * Returns with locks held indicated by @iolock and errors indicated by
628 * negative return values.
630 STATIC ssize_t
631 xfs_file_dio_aio_write(
632 struct kiocb *iocb,
633 const struct iovec *iovp,
634 unsigned long nr_segs,
635 loff_t pos,
636 size_t ocount)
638 struct file *file = iocb->ki_filp;
639 struct address_space *mapping = file->f_mapping;
640 struct inode *inode = mapping->host;
641 struct xfs_inode *ip = XFS_I(inode);
642 struct xfs_mount *mp = ip->i_mount;
643 ssize_t ret = 0;
644 size_t count = ocount;
645 int unaligned_io = 0;
646 int iolock;
647 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
648 mp->m_rtdev_targp : mp->m_ddev_targp;
650 if ((pos & target->bt_smask) || (count & target->bt_smask))
651 return -XFS_ERROR(EINVAL);
653 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
654 unaligned_io = 1;
657 * We don't need to take an exclusive lock unless there page cache needs
658 * to be invalidated or unaligned IO is being executed. We don't need to
659 * consider the EOF extension case here because
660 * xfs_file_aio_write_checks() will relock the inode as necessary for
661 * EOF zeroing cases and fill out the new inode size as appropriate.
663 if (unaligned_io || mapping->nrpages)
664 iolock = XFS_IOLOCK_EXCL;
665 else
666 iolock = XFS_IOLOCK_SHARED;
667 xfs_rw_ilock(ip, iolock);
670 * Recheck if there are cached pages that need invalidate after we got
671 * the iolock to protect against other threads adding new pages while
672 * we were waiting for the iolock.
674 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
675 xfs_rw_iunlock(ip, iolock);
676 iolock = XFS_IOLOCK_EXCL;
677 xfs_rw_ilock(ip, iolock);
680 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
681 if (ret)
682 goto out;
684 if (mapping->nrpages) {
685 ret = -filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
686 pos, -1);
687 if (ret)
688 goto out;
690 * Invalidate whole pages. This can return an error if
691 * we fail to invalidate a page, but this should never
692 * happen on XFS. Warn if it does fail.
694 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
695 pos >> PAGE_CACHE_SHIFT, -1);
696 WARN_ON_ONCE(ret);
697 ret = 0;
701 * If we are doing unaligned IO, wait for all other IO to drain,
702 * otherwise demote the lock if we had to flush cached pages
704 if (unaligned_io)
705 inode_dio_wait(inode);
706 else if (iolock == XFS_IOLOCK_EXCL) {
707 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
708 iolock = XFS_IOLOCK_SHARED;
711 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
712 ret = generic_file_direct_write(iocb, iovp,
713 &nr_segs, pos, &iocb->ki_pos, count, ocount);
715 out:
716 xfs_rw_iunlock(ip, iolock);
718 /* No fallback to buffered IO on errors for XFS. */
719 ASSERT(ret < 0 || ret == count);
720 return ret;
723 STATIC ssize_t
724 xfs_file_buffered_aio_write(
725 struct kiocb *iocb,
726 const struct iovec *iovp,
727 unsigned long nr_segs,
728 loff_t pos,
729 size_t ocount)
731 struct file *file = iocb->ki_filp;
732 struct address_space *mapping = file->f_mapping;
733 struct inode *inode = mapping->host;
734 struct xfs_inode *ip = XFS_I(inode);
735 ssize_t ret;
736 int enospc = 0;
737 int iolock = XFS_IOLOCK_EXCL;
738 size_t count = ocount;
740 xfs_rw_ilock(ip, iolock);
742 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
743 if (ret)
744 goto out;
746 /* We can write back this queue in page reclaim */
747 current->backing_dev_info = mapping->backing_dev_info;
749 write_retry:
750 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
751 ret = generic_file_buffered_write(iocb, iovp, nr_segs,
752 pos, &iocb->ki_pos, count, 0);
755 * If we just got an ENOSPC, try to write back all dirty inodes to
756 * convert delalloc space to free up some of the excess reserved
757 * metadata space.
759 if (ret == -ENOSPC && !enospc) {
760 enospc = 1;
761 xfs_flush_inodes(ip->i_mount);
762 goto write_retry;
765 current->backing_dev_info = NULL;
766 out:
767 xfs_rw_iunlock(ip, iolock);
768 return ret;
771 STATIC ssize_t
772 xfs_file_aio_write(
773 struct kiocb *iocb,
774 const struct iovec *iovp,
775 unsigned long nr_segs,
776 loff_t pos)
778 struct file *file = iocb->ki_filp;
779 struct address_space *mapping = file->f_mapping;
780 struct inode *inode = mapping->host;
781 struct xfs_inode *ip = XFS_I(inode);
782 ssize_t ret;
783 size_t ocount = 0;
785 XFS_STATS_INC(xs_write_calls);
787 BUG_ON(iocb->ki_pos != pos);
789 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
790 if (ret)
791 return ret;
793 if (ocount == 0)
794 return 0;
796 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
797 ret = -EIO;
798 goto out;
801 if (unlikely(file->f_flags & O_DIRECT))
802 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
803 else
804 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
805 ocount);
807 if (ret > 0) {
808 ssize_t err;
810 XFS_STATS_ADD(xs_write_bytes, ret);
812 /* Handle various SYNC-type writes */
813 err = generic_write_sync(file, pos, ret);
814 if (err < 0)
815 ret = err;
818 out:
819 return ret;
822 STATIC long
823 xfs_file_fallocate(
824 struct file *file,
825 int mode,
826 loff_t offset,
827 loff_t len)
829 struct inode *inode = file_inode(file);
830 long error;
831 loff_t new_size = 0;
832 xfs_flock64_t bf;
833 xfs_inode_t *ip = XFS_I(inode);
834 int cmd = XFS_IOC_RESVSP;
835 int attr_flags = XFS_ATTR_NOLOCK;
837 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
838 return -EOPNOTSUPP;
840 bf.l_whence = 0;
841 bf.l_start = offset;
842 bf.l_len = len;
844 xfs_ilock(ip, XFS_IOLOCK_EXCL);
846 if (mode & FALLOC_FL_PUNCH_HOLE)
847 cmd = XFS_IOC_UNRESVSP;
849 /* check the new inode size is valid before allocating */
850 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
851 offset + len > i_size_read(inode)) {
852 new_size = offset + len;
853 error = inode_newsize_ok(inode, new_size);
854 if (error)
855 goto out_unlock;
858 if (file->f_flags & O_DSYNC)
859 attr_flags |= XFS_ATTR_SYNC;
861 error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
862 if (error)
863 goto out_unlock;
865 /* Change file size if needed */
866 if (new_size) {
867 struct iattr iattr;
869 iattr.ia_valid = ATTR_SIZE;
870 iattr.ia_size = new_size;
871 error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
874 out_unlock:
875 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
876 return error;
880 STATIC int
881 xfs_file_open(
882 struct inode *inode,
883 struct file *file)
885 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
886 return -EFBIG;
887 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
888 return -EIO;
889 return 0;
892 STATIC int
893 xfs_dir_open(
894 struct inode *inode,
895 struct file *file)
897 struct xfs_inode *ip = XFS_I(inode);
898 int mode;
899 int error;
901 error = xfs_file_open(inode, file);
902 if (error)
903 return error;
906 * If there are any blocks, read-ahead block 0 as we're almost
907 * certain to have the next operation be a read there.
909 mode = xfs_ilock_map_shared(ip);
910 if (ip->i_d.di_nextents > 0)
911 xfs_dir3_data_readahead(NULL, ip, 0, -1);
912 xfs_iunlock(ip, mode);
913 return 0;
916 STATIC int
917 xfs_file_release(
918 struct inode *inode,
919 struct file *filp)
921 return -xfs_release(XFS_I(inode));
924 STATIC int
925 xfs_file_readdir(
926 struct file *filp,
927 void *dirent,
928 filldir_t filldir)
930 struct inode *inode = file_inode(filp);
931 xfs_inode_t *ip = XFS_I(inode);
932 int error;
933 size_t bufsize;
936 * The Linux API doesn't pass down the total size of the buffer
937 * we read into down to the filesystem. With the filldir concept
938 * it's not needed for correct information, but the XFS dir2 leaf
939 * code wants an estimate of the buffer size to calculate it's
940 * readahead window and size the buffers used for mapping to
941 * physical blocks.
943 * Try to give it an estimate that's good enough, maybe at some
944 * point we can change the ->readdir prototype to include the
945 * buffer size. For now we use the current glibc buffer size.
947 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
949 error = xfs_readdir(ip, dirent, bufsize,
950 (xfs_off_t *)&filp->f_pos, filldir);
951 if (error)
952 return -error;
953 return 0;
956 STATIC int
957 xfs_file_mmap(
958 struct file *filp,
959 struct vm_area_struct *vma)
961 vma->vm_ops = &xfs_file_vm_ops;
963 file_accessed(filp);
964 return 0;
968 * mmap()d file has taken write protection fault and is being made
969 * writable. We can set the page state up correctly for a writable
970 * page, which means we can do correct delalloc accounting (ENOSPC
971 * checking!) and unwritten extent mapping.
973 STATIC int
974 xfs_vm_page_mkwrite(
975 struct vm_area_struct *vma,
976 struct vm_fault *vmf)
978 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
982 * This type is designed to indicate the type of offset we would like
983 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
985 enum {
986 HOLE_OFF = 0,
987 DATA_OFF,
991 * Lookup the desired type of offset from the given page.
993 * On success, return true and the offset argument will point to the
994 * start of the region that was found. Otherwise this function will
995 * return false and keep the offset argument unchanged.
997 STATIC bool
998 xfs_lookup_buffer_offset(
999 struct page *page,
1000 loff_t *offset,
1001 unsigned int type)
1003 loff_t lastoff = page_offset(page);
1004 bool found = false;
1005 struct buffer_head *bh, *head;
1007 bh = head = page_buffers(page);
1008 do {
1010 * Unwritten extents that have data in the page
1011 * cache covering them can be identified by the
1012 * BH_Unwritten state flag. Pages with multiple
1013 * buffers might have a mix of holes, data and
1014 * unwritten extents - any buffer with valid
1015 * data in it should have BH_Uptodate flag set
1016 * on it.
1018 if (buffer_unwritten(bh) ||
1019 buffer_uptodate(bh)) {
1020 if (type == DATA_OFF)
1021 found = true;
1022 } else {
1023 if (type == HOLE_OFF)
1024 found = true;
1027 if (found) {
1028 *offset = lastoff;
1029 break;
1031 lastoff += bh->b_size;
1032 } while ((bh = bh->b_this_page) != head);
1034 return found;
1038 * This routine is called to find out and return a data or hole offset
1039 * from the page cache for unwritten extents according to the desired
1040 * type for xfs_seek_data() or xfs_seek_hole().
1042 * The argument offset is used to tell where we start to search from the
1043 * page cache. Map is used to figure out the end points of the range to
1044 * lookup pages.
1046 * Return true if the desired type of offset was found, and the argument
1047 * offset is filled with that address. Otherwise, return false and keep
1048 * offset unchanged.
1050 STATIC bool
1051 xfs_find_get_desired_pgoff(
1052 struct inode *inode,
1053 struct xfs_bmbt_irec *map,
1054 unsigned int type,
1055 loff_t *offset)
1057 struct xfs_inode *ip = XFS_I(inode);
1058 struct xfs_mount *mp = ip->i_mount;
1059 struct pagevec pvec;
1060 pgoff_t index;
1061 pgoff_t end;
1062 loff_t endoff;
1063 loff_t startoff = *offset;
1064 loff_t lastoff = startoff;
1065 bool found = false;
1067 pagevec_init(&pvec, 0);
1069 index = startoff >> PAGE_CACHE_SHIFT;
1070 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1071 end = endoff >> PAGE_CACHE_SHIFT;
1072 do {
1073 int want;
1074 unsigned nr_pages;
1075 unsigned int i;
1077 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1078 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1079 want);
1081 * No page mapped into given range. If we are searching holes
1082 * and if this is the first time we got into the loop, it means
1083 * that the given offset is landed in a hole, return it.
1085 * If we have already stepped through some block buffers to find
1086 * holes but they all contains data. In this case, the last
1087 * offset is already updated and pointed to the end of the last
1088 * mapped page, if it does not reach the endpoint to search,
1089 * that means there should be a hole between them.
1091 if (nr_pages == 0) {
1092 /* Data search found nothing */
1093 if (type == DATA_OFF)
1094 break;
1096 ASSERT(type == HOLE_OFF);
1097 if (lastoff == startoff || lastoff < endoff) {
1098 found = true;
1099 *offset = lastoff;
1101 break;
1105 * At lease we found one page. If this is the first time we
1106 * step into the loop, and if the first page index offset is
1107 * greater than the given search offset, a hole was found.
1109 if (type == HOLE_OFF && lastoff == startoff &&
1110 lastoff < page_offset(pvec.pages[0])) {
1111 found = true;
1112 break;
1115 for (i = 0; i < nr_pages; i++) {
1116 struct page *page = pvec.pages[i];
1117 loff_t b_offset;
1120 * At this point, the page may be truncated or
1121 * invalidated (changing page->mapping to NULL),
1122 * or even swizzled back from swapper_space to tmpfs
1123 * file mapping. However, page->index will not change
1124 * because we have a reference on the page.
1126 * Searching done if the page index is out of range.
1127 * If the current offset is not reaches the end of
1128 * the specified search range, there should be a hole
1129 * between them.
1131 if (page->index > end) {
1132 if (type == HOLE_OFF && lastoff < endoff) {
1133 *offset = lastoff;
1134 found = true;
1136 goto out;
1139 lock_page(page);
1141 * Page truncated or invalidated(page->mapping == NULL).
1142 * We can freely skip it and proceed to check the next
1143 * page.
1145 if (unlikely(page->mapping != inode->i_mapping)) {
1146 unlock_page(page);
1147 continue;
1150 if (!page_has_buffers(page)) {
1151 unlock_page(page);
1152 continue;
1155 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1156 if (found) {
1158 * The found offset may be less than the start
1159 * point to search if this is the first time to
1160 * come here.
1162 *offset = max_t(loff_t, startoff, b_offset);
1163 unlock_page(page);
1164 goto out;
1168 * We either searching data but nothing was found, or
1169 * searching hole but found a data buffer. In either
1170 * case, probably the next page contains the desired
1171 * things, update the last offset to it so.
1173 lastoff = page_offset(page) + PAGE_SIZE;
1174 unlock_page(page);
1178 * The number of returned pages less than our desired, search
1179 * done. In this case, nothing was found for searching data,
1180 * but we found a hole behind the last offset.
1182 if (nr_pages < want) {
1183 if (type == HOLE_OFF) {
1184 *offset = lastoff;
1185 found = true;
1187 break;
1190 index = pvec.pages[i - 1]->index + 1;
1191 pagevec_release(&pvec);
1192 } while (index <= end);
1194 out:
1195 pagevec_release(&pvec);
1196 return found;
1199 STATIC loff_t
1200 xfs_seek_data(
1201 struct file *file,
1202 loff_t start)
1204 struct inode *inode = file->f_mapping->host;
1205 struct xfs_inode *ip = XFS_I(inode);
1206 struct xfs_mount *mp = ip->i_mount;
1207 loff_t uninitialized_var(offset);
1208 xfs_fsize_t isize;
1209 xfs_fileoff_t fsbno;
1210 xfs_filblks_t end;
1211 uint lock;
1212 int error;
1214 lock = xfs_ilock_map_shared(ip);
1216 isize = i_size_read(inode);
1217 if (start >= isize) {
1218 error = ENXIO;
1219 goto out_unlock;
1223 * Try to read extents from the first block indicated
1224 * by fsbno to the end block of the file.
1226 fsbno = XFS_B_TO_FSBT(mp, start);
1227 end = XFS_B_TO_FSB(mp, isize);
1228 for (;;) {
1229 struct xfs_bmbt_irec map[2];
1230 int nmap = 2;
1231 unsigned int i;
1233 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1234 XFS_BMAPI_ENTIRE);
1235 if (error)
1236 goto out_unlock;
1238 /* No extents at given offset, must be beyond EOF */
1239 if (nmap == 0) {
1240 error = ENXIO;
1241 goto out_unlock;
1244 for (i = 0; i < nmap; i++) {
1245 offset = max_t(loff_t, start,
1246 XFS_FSB_TO_B(mp, map[i].br_startoff));
1248 /* Landed in a data extent */
1249 if (map[i].br_startblock == DELAYSTARTBLOCK ||
1250 (map[i].br_state == XFS_EXT_NORM &&
1251 !isnullstartblock(map[i].br_startblock)))
1252 goto out;
1255 * Landed in an unwritten extent, try to search data
1256 * from page cache.
1258 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1259 if (xfs_find_get_desired_pgoff(inode, &map[i],
1260 DATA_OFF, &offset))
1261 goto out;
1266 * map[0] is hole or its an unwritten extent but
1267 * without data in page cache. Probably means that
1268 * we are reading after EOF if nothing in map[1].
1270 if (nmap == 1) {
1271 error = ENXIO;
1272 goto out_unlock;
1275 ASSERT(i > 1);
1278 * Nothing was found, proceed to the next round of search
1279 * if reading offset not beyond or hit EOF.
1281 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1282 start = XFS_FSB_TO_B(mp, fsbno);
1283 if (start >= isize) {
1284 error = ENXIO;
1285 goto out_unlock;
1289 out:
1290 if (offset != file->f_pos)
1291 file->f_pos = offset;
1293 out_unlock:
1294 xfs_iunlock_map_shared(ip, lock);
1296 if (error)
1297 return -error;
1298 return offset;
1301 STATIC loff_t
1302 xfs_seek_hole(
1303 struct file *file,
1304 loff_t start)
1306 struct inode *inode = file->f_mapping->host;
1307 struct xfs_inode *ip = XFS_I(inode);
1308 struct xfs_mount *mp = ip->i_mount;
1309 loff_t uninitialized_var(offset);
1310 xfs_fsize_t isize;
1311 xfs_fileoff_t fsbno;
1312 xfs_filblks_t end;
1313 uint lock;
1314 int error;
1316 if (XFS_FORCED_SHUTDOWN(mp))
1317 return -XFS_ERROR(EIO);
1319 lock = xfs_ilock_map_shared(ip);
1321 isize = i_size_read(inode);
1322 if (start >= isize) {
1323 error = ENXIO;
1324 goto out_unlock;
1327 fsbno = XFS_B_TO_FSBT(mp, start);
1328 end = XFS_B_TO_FSB(mp, isize);
1330 for (;;) {
1331 struct xfs_bmbt_irec map[2];
1332 int nmap = 2;
1333 unsigned int i;
1335 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1336 XFS_BMAPI_ENTIRE);
1337 if (error)
1338 goto out_unlock;
1340 /* No extents at given offset, must be beyond EOF */
1341 if (nmap == 0) {
1342 error = ENXIO;
1343 goto out_unlock;
1346 for (i = 0; i < nmap; i++) {
1347 offset = max_t(loff_t, start,
1348 XFS_FSB_TO_B(mp, map[i].br_startoff));
1350 /* Landed in a hole */
1351 if (map[i].br_startblock == HOLESTARTBLOCK)
1352 goto out;
1355 * Landed in an unwritten extent, try to search hole
1356 * from page cache.
1358 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1359 if (xfs_find_get_desired_pgoff(inode, &map[i],
1360 HOLE_OFF, &offset))
1361 goto out;
1366 * map[0] contains data or its unwritten but contains
1367 * data in page cache, probably means that we are
1368 * reading after EOF. We should fix offset to point
1369 * to the end of the file(i.e., there is an implicit
1370 * hole at the end of any file).
1372 if (nmap == 1) {
1373 offset = isize;
1374 break;
1377 ASSERT(i > 1);
1380 * Both mappings contains data, proceed to the next round of
1381 * search if the current reading offset not beyond or hit EOF.
1383 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1384 start = XFS_FSB_TO_B(mp, fsbno);
1385 if (start >= isize) {
1386 offset = isize;
1387 break;
1391 out:
1393 * At this point, we must have found a hole. However, the returned
1394 * offset may be bigger than the file size as it may be aligned to
1395 * page boundary for unwritten extents, we need to deal with this
1396 * situation in particular.
1398 offset = min_t(loff_t, offset, isize);
1399 if (offset != file->f_pos)
1400 file->f_pos = offset;
1402 out_unlock:
1403 xfs_iunlock_map_shared(ip, lock);
1405 if (error)
1406 return -error;
1407 return offset;
1410 STATIC loff_t
1411 xfs_file_llseek(
1412 struct file *file,
1413 loff_t offset,
1414 int origin)
1416 switch (origin) {
1417 case SEEK_END:
1418 case SEEK_CUR:
1419 case SEEK_SET:
1420 return generic_file_llseek(file, offset, origin);
1421 case SEEK_DATA:
1422 return xfs_seek_data(file, offset);
1423 case SEEK_HOLE:
1424 return xfs_seek_hole(file, offset);
1425 default:
1426 return -EINVAL;
1430 const struct file_operations xfs_file_operations = {
1431 .llseek = xfs_file_llseek,
1432 .read = do_sync_read,
1433 .write = do_sync_write,
1434 .aio_read = xfs_file_aio_read,
1435 .aio_write = xfs_file_aio_write,
1436 .splice_read = xfs_file_splice_read,
1437 .splice_write = xfs_file_splice_write,
1438 .unlocked_ioctl = xfs_file_ioctl,
1439 #ifdef CONFIG_COMPAT
1440 .compat_ioctl = xfs_file_compat_ioctl,
1441 #endif
1442 .mmap = xfs_file_mmap,
1443 .open = xfs_file_open,
1444 .release = xfs_file_release,
1445 .fsync = xfs_file_fsync,
1446 .fallocate = xfs_file_fallocate,
1449 const struct file_operations xfs_dir_file_operations = {
1450 .open = xfs_dir_open,
1451 .read = generic_read_dir,
1452 .readdir = xfs_file_readdir,
1453 .llseek = generic_file_llseek,
1454 .unlocked_ioctl = xfs_file_ioctl,
1455 #ifdef CONFIG_COMPAT
1456 .compat_ioctl = xfs_file_compat_ioctl,
1457 #endif
1458 .fsync = xfs_dir_fsync,
1461 static const struct vm_operations_struct xfs_file_vm_ops = {
1462 .fault = filemap_fault,
1463 .page_mkwrite = xfs_vm_page_mkwrite,
1464 .remap_pages = generic_file_remap_pages,