2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_types.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_attr_sf.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_btree.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
42 #include "xfs_error.h"
43 #include "xfs_utils.h"
44 #include "xfs_quota.h"
45 #include "xfs_filestream.h"
46 #include "xfs_vnodeops.h"
47 #include "xfs_cksum.h"
48 #include "xfs_trace.h"
49 #include "xfs_icache.h"
51 kmem_zone_t
*xfs_ifork_zone
;
52 kmem_zone_t
*xfs_inode_zone
;
55 * Used in xfs_itruncate_extents(). This is the maximum number of extents
56 * freed from a file in a single transaction.
58 #define XFS_ITRUNC_MAX_EXTENTS 2
60 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
61 STATIC
int xfs_iformat_local(xfs_inode_t
*, xfs_dinode_t
*, int, int);
62 STATIC
int xfs_iformat_extents(xfs_inode_t
*, xfs_dinode_t
*, int);
63 STATIC
int xfs_iformat_btree(xfs_inode_t
*, xfs_dinode_t
*, int);
66 * helper function to extract extent size hint from inode
72 if ((ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
) && ip
->i_d
.di_extsize
)
73 return ip
->i_d
.di_extsize
;
74 if (XFS_IS_REALTIME_INODE(ip
))
75 return ip
->i_mount
->m_sb
.sb_rextsize
;
80 * This is a wrapper routine around the xfs_ilock() routine used to centralize
81 * some grungy code. It is used in places that wish to lock the inode solely
82 * for reading the extents. The reason these places can't just call
83 * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the
84 * extents from disk for a file in b-tree format. If the inode is in b-tree
85 * format, then we need to lock the inode exclusively until the extents are read
86 * in. Locking it exclusively all the time would limit our parallelism
87 * unnecessarily, though. What we do instead is check to see if the extents
88 * have been read in yet, and only lock the inode exclusively if they have not.
90 * The function returns a value which should be given to the corresponding
91 * xfs_iunlock_map_shared(). This value is the mode in which the lock was
100 if ((ip
->i_d
.di_format
== XFS_DINODE_FMT_BTREE
) &&
101 ((ip
->i_df
.if_flags
& XFS_IFEXTENTS
) == 0)) {
102 lock_mode
= XFS_ILOCK_EXCL
;
104 lock_mode
= XFS_ILOCK_SHARED
;
107 xfs_ilock(ip
, lock_mode
);
113 * This is simply the unlock routine to go with xfs_ilock_map_shared().
114 * All it does is call xfs_iunlock() with the given lock_mode.
117 xfs_iunlock_map_shared(
119 unsigned int lock_mode
)
121 xfs_iunlock(ip
, lock_mode
);
125 * The xfs inode contains 2 locks: a multi-reader lock called the
126 * i_iolock and a multi-reader lock called the i_lock. This routine
127 * allows either or both of the locks to be obtained.
129 * The 2 locks should always be ordered so that the IO lock is
130 * obtained first in order to prevent deadlock.
132 * ip -- the inode being locked
133 * lock_flags -- this parameter indicates the inode's locks
134 * to be locked. It can be:
139 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
140 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
141 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
142 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
149 trace_xfs_ilock(ip
, lock_flags
, _RET_IP_
);
152 * You can't set both SHARED and EXCL for the same lock,
153 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
154 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
156 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
157 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
158 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
159 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
160 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_DEP_MASK
)) == 0);
162 if (lock_flags
& XFS_IOLOCK_EXCL
)
163 mrupdate_nested(&ip
->i_iolock
, XFS_IOLOCK_DEP(lock_flags
));
164 else if (lock_flags
& XFS_IOLOCK_SHARED
)
165 mraccess_nested(&ip
->i_iolock
, XFS_IOLOCK_DEP(lock_flags
));
167 if (lock_flags
& XFS_ILOCK_EXCL
)
168 mrupdate_nested(&ip
->i_lock
, XFS_ILOCK_DEP(lock_flags
));
169 else if (lock_flags
& XFS_ILOCK_SHARED
)
170 mraccess_nested(&ip
->i_lock
, XFS_ILOCK_DEP(lock_flags
));
174 * This is just like xfs_ilock(), except that the caller
175 * is guaranteed not to sleep. It returns 1 if it gets
176 * the requested locks and 0 otherwise. If the IO lock is
177 * obtained but the inode lock cannot be, then the IO lock
178 * is dropped before returning.
180 * ip -- the inode being locked
181 * lock_flags -- this parameter indicates the inode's locks to be
182 * to be locked. See the comment for xfs_ilock() for a list
190 trace_xfs_ilock_nowait(ip
, lock_flags
, _RET_IP_
);
193 * You can't set both SHARED and EXCL for the same lock,
194 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
195 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
197 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
198 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
199 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
200 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
201 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_DEP_MASK
)) == 0);
203 if (lock_flags
& XFS_IOLOCK_EXCL
) {
204 if (!mrtryupdate(&ip
->i_iolock
))
206 } else if (lock_flags
& XFS_IOLOCK_SHARED
) {
207 if (!mrtryaccess(&ip
->i_iolock
))
210 if (lock_flags
& XFS_ILOCK_EXCL
) {
211 if (!mrtryupdate(&ip
->i_lock
))
212 goto out_undo_iolock
;
213 } else if (lock_flags
& XFS_ILOCK_SHARED
) {
214 if (!mrtryaccess(&ip
->i_lock
))
215 goto out_undo_iolock
;
220 if (lock_flags
& XFS_IOLOCK_EXCL
)
221 mrunlock_excl(&ip
->i_iolock
);
222 else if (lock_flags
& XFS_IOLOCK_SHARED
)
223 mrunlock_shared(&ip
->i_iolock
);
229 * xfs_iunlock() is used to drop the inode locks acquired with
230 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
231 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
232 * that we know which locks to drop.
234 * ip -- the inode being unlocked
235 * lock_flags -- this parameter indicates the inode's locks to be
236 * to be unlocked. See the comment for xfs_ilock() for a list
237 * of valid values for this parameter.
246 * You can't set both SHARED and EXCL for the same lock,
247 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
248 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
250 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
251 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
252 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
253 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
254 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_DEP_MASK
)) == 0);
255 ASSERT(lock_flags
!= 0);
257 if (lock_flags
& XFS_IOLOCK_EXCL
)
258 mrunlock_excl(&ip
->i_iolock
);
259 else if (lock_flags
& XFS_IOLOCK_SHARED
)
260 mrunlock_shared(&ip
->i_iolock
);
262 if (lock_flags
& XFS_ILOCK_EXCL
)
263 mrunlock_excl(&ip
->i_lock
);
264 else if (lock_flags
& XFS_ILOCK_SHARED
)
265 mrunlock_shared(&ip
->i_lock
);
267 trace_xfs_iunlock(ip
, lock_flags
, _RET_IP_
);
271 * give up write locks. the i/o lock cannot be held nested
272 * if it is being demoted.
279 ASSERT(lock_flags
& (XFS_IOLOCK_EXCL
|XFS_ILOCK_EXCL
));
280 ASSERT((lock_flags
& ~(XFS_IOLOCK_EXCL
|XFS_ILOCK_EXCL
)) == 0);
282 if (lock_flags
& XFS_ILOCK_EXCL
)
283 mrdemote(&ip
->i_lock
);
284 if (lock_flags
& XFS_IOLOCK_EXCL
)
285 mrdemote(&ip
->i_iolock
);
287 trace_xfs_ilock_demote(ip
, lock_flags
, _RET_IP_
);
290 #if defined(DEBUG) || defined(XFS_WARN)
296 if (lock_flags
& (XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
)) {
297 if (!(lock_flags
& XFS_ILOCK_SHARED
))
298 return !!ip
->i_lock
.mr_writer
;
299 return rwsem_is_locked(&ip
->i_lock
.mr_lock
);
302 if (lock_flags
& (XFS_IOLOCK_EXCL
|XFS_IOLOCK_SHARED
)) {
303 if (!(lock_flags
& XFS_IOLOCK_SHARED
))
304 return !!ip
->i_iolock
.mr_writer
;
305 return rwsem_is_locked(&ip
->i_iolock
.mr_lock
);
315 struct xfs_inode
*ip
)
317 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_IFLOCK_BIT
);
318 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_IFLOCK_BIT
);
321 prepare_to_wait_exclusive(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
322 if (xfs_isiflocked(ip
))
324 } while (!xfs_iflock_nowait(ip
));
326 finish_wait(wq
, &wait
.wait
);
331 * Make sure that the extents in the given memory buffer
335 xfs_validate_extents(
340 xfs_bmbt_irec_t irec
;
341 xfs_bmbt_rec_host_t rec
;
344 for (i
= 0; i
< nrecs
; i
++) {
345 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
346 rec
.l0
= get_unaligned(&ep
->l0
);
347 rec
.l1
= get_unaligned(&ep
->l1
);
348 xfs_bmbt_get_all(&rec
, &irec
);
349 if (fmt
== XFS_EXTFMT_NOSTATE
)
350 ASSERT(irec
.br_state
== XFS_EXT_NORM
);
354 #define xfs_validate_extents(ifp, nrecs, fmt)
358 * Check that none of the inode's in the buffer have a next
359 * unlinked field of 0.
371 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
373 for (i
= 0; i
< j
; i
++) {
374 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
375 i
* mp
->m_sb
.sb_inodesize
);
376 if (!dip
->di_next_unlinked
) {
378 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
380 ASSERT(dip
->di_next_unlinked
);
387 xfs_inode_buf_verify(
390 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
395 * Validate the magic number and version of every inode in the buffer
397 ni
= XFS_BB_TO_FSB(mp
, bp
->b_length
) * mp
->m_sb
.sb_inopblock
;
398 for (i
= 0; i
< ni
; i
++) {
402 dip
= (struct xfs_dinode
*)xfs_buf_offset(bp
,
403 (i
<< mp
->m_sb
.sb_inodelog
));
404 di_ok
= dip
->di_magic
== cpu_to_be16(XFS_DINODE_MAGIC
) &&
405 XFS_DINODE_GOOD_VERSION(dip
->di_version
);
406 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
,
407 XFS_ERRTAG_ITOBP_INOTOBP
,
408 XFS_RANDOM_ITOBP_INOTOBP
))) {
409 xfs_buf_ioerror(bp
, EFSCORRUPTED
);
410 XFS_CORRUPTION_ERROR(__func__
, XFS_ERRLEVEL_HIGH
,
414 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
415 (unsigned long long)bp
->b_bn
, i
,
416 be16_to_cpu(dip
->di_magic
));
421 xfs_inobp_check(mp
, bp
);
426 xfs_inode_buf_read_verify(
429 xfs_inode_buf_verify(bp
);
433 xfs_inode_buf_write_verify(
436 xfs_inode_buf_verify(bp
);
439 const struct xfs_buf_ops xfs_inode_buf_ops
= {
440 .verify_read
= xfs_inode_buf_read_verify
,
441 .verify_write
= xfs_inode_buf_write_verify
,
446 * This routine is called to map an inode to the buffer containing the on-disk
447 * version of the inode. It returns a pointer to the buffer containing the
448 * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
449 * pointer to the on-disk inode within that buffer.
451 * If a non-zero error is returned, then the contents of bpp and dipp are
456 struct xfs_mount
*mp
,
457 struct xfs_trans
*tp
,
458 struct xfs_imap
*imap
,
459 struct xfs_dinode
**dipp
,
460 struct xfs_buf
**bpp
,
467 buf_flags
|= XBF_UNMAPPED
;
468 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
->im_blkno
,
469 (int)imap
->im_len
, buf_flags
, &bp
,
472 if (error
== EAGAIN
) {
473 ASSERT(buf_flags
& XBF_TRYLOCK
);
477 if (error
== EFSCORRUPTED
&&
478 (iget_flags
& XFS_IGET_UNTRUSTED
))
479 return XFS_ERROR(EINVAL
);
481 xfs_warn(mp
, "%s: xfs_trans_read_buf() returned error %d.",
487 *dipp
= (struct xfs_dinode
*)xfs_buf_offset(bp
, imap
->im_boffset
);
492 * Move inode type and inode format specific information from the
493 * on-disk inode to the in-core inode. For fifos, devs, and sockets
494 * this means set if_rdev to the proper value. For files, directories,
495 * and symlinks this means to bring in the in-line data or extent
496 * pointers. For a file in B-tree format, only the root is immediately
497 * brought in-core. The rest will be in-lined in if_extents when it
498 * is first referenced (see xfs_iread_extents()).
505 xfs_attr_shortform_t
*atp
;
510 if (unlikely(be32_to_cpu(dip
->di_nextents
) +
511 be16_to_cpu(dip
->di_anextents
) >
512 be64_to_cpu(dip
->di_nblocks
))) {
513 xfs_warn(ip
->i_mount
,
514 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
515 (unsigned long long)ip
->i_ino
,
516 (int)(be32_to_cpu(dip
->di_nextents
) +
517 be16_to_cpu(dip
->di_anextents
)),
519 be64_to_cpu(dip
->di_nblocks
));
520 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW
,
522 return XFS_ERROR(EFSCORRUPTED
);
525 if (unlikely(dip
->di_forkoff
> ip
->i_mount
->m_sb
.sb_inodesize
)) {
526 xfs_warn(ip
->i_mount
, "corrupt dinode %Lu, forkoff = 0x%x.",
527 (unsigned long long)ip
->i_ino
,
529 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW
,
531 return XFS_ERROR(EFSCORRUPTED
);
534 if (unlikely((ip
->i_d
.di_flags
& XFS_DIFLAG_REALTIME
) &&
535 !ip
->i_mount
->m_rtdev_targp
)) {
536 xfs_warn(ip
->i_mount
,
537 "corrupt dinode %Lu, has realtime flag set.",
539 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
540 XFS_ERRLEVEL_LOW
, ip
->i_mount
, dip
);
541 return XFS_ERROR(EFSCORRUPTED
);
544 switch (ip
->i_d
.di_mode
& S_IFMT
) {
549 if (unlikely(dip
->di_format
!= XFS_DINODE_FMT_DEV
)) {
550 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW
,
552 return XFS_ERROR(EFSCORRUPTED
);
555 ip
->i_df
.if_u2
.if_rdev
= xfs_dinode_get_rdev(dip
);
561 switch (dip
->di_format
) {
562 case XFS_DINODE_FMT_LOCAL
:
564 * no local regular files yet
566 if (unlikely(S_ISREG(be16_to_cpu(dip
->di_mode
)))) {
567 xfs_warn(ip
->i_mount
,
568 "corrupt inode %Lu (local format for regular file).",
569 (unsigned long long) ip
->i_ino
);
570 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
573 return XFS_ERROR(EFSCORRUPTED
);
576 di_size
= be64_to_cpu(dip
->di_size
);
577 if (unlikely(di_size
> XFS_DFORK_DSIZE(dip
, ip
->i_mount
))) {
578 xfs_warn(ip
->i_mount
,
579 "corrupt inode %Lu (bad size %Ld for local inode).",
580 (unsigned long long) ip
->i_ino
,
581 (long long) di_size
);
582 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
585 return XFS_ERROR(EFSCORRUPTED
);
589 error
= xfs_iformat_local(ip
, dip
, XFS_DATA_FORK
, size
);
591 case XFS_DINODE_FMT_EXTENTS
:
592 error
= xfs_iformat_extents(ip
, dip
, XFS_DATA_FORK
);
594 case XFS_DINODE_FMT_BTREE
:
595 error
= xfs_iformat_btree(ip
, dip
, XFS_DATA_FORK
);
598 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW
,
600 return XFS_ERROR(EFSCORRUPTED
);
605 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW
, ip
->i_mount
);
606 return XFS_ERROR(EFSCORRUPTED
);
611 if (!XFS_DFORK_Q(dip
))
614 ASSERT(ip
->i_afp
== NULL
);
615 ip
->i_afp
= kmem_zone_zalloc(xfs_ifork_zone
, KM_SLEEP
| KM_NOFS
);
617 switch (dip
->di_aformat
) {
618 case XFS_DINODE_FMT_LOCAL
:
619 atp
= (xfs_attr_shortform_t
*)XFS_DFORK_APTR(dip
);
620 size
= be16_to_cpu(atp
->hdr
.totsize
);
622 if (unlikely(size
< sizeof(struct xfs_attr_sf_hdr
))) {
623 xfs_warn(ip
->i_mount
,
624 "corrupt inode %Lu (bad attr fork size %Ld).",
625 (unsigned long long) ip
->i_ino
,
627 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
630 return XFS_ERROR(EFSCORRUPTED
);
633 error
= xfs_iformat_local(ip
, dip
, XFS_ATTR_FORK
, size
);
635 case XFS_DINODE_FMT_EXTENTS
:
636 error
= xfs_iformat_extents(ip
, dip
, XFS_ATTR_FORK
);
638 case XFS_DINODE_FMT_BTREE
:
639 error
= xfs_iformat_btree(ip
, dip
, XFS_ATTR_FORK
);
642 error
= XFS_ERROR(EFSCORRUPTED
);
646 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
648 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
654 * The file is in-lined in the on-disk inode.
655 * If it fits into if_inline_data, then copy
656 * it there, otherwise allocate a buffer for it
657 * and copy the data there. Either way, set
658 * if_data to point at the data.
659 * If we allocate a buffer for the data, make
660 * sure that its size is a multiple of 4 and
661 * record the real size in i_real_bytes.
674 * If the size is unreasonable, then something
675 * is wrong and we just bail out rather than crash in
676 * kmem_alloc() or memcpy() below.
678 if (unlikely(size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
679 xfs_warn(ip
->i_mount
,
680 "corrupt inode %Lu (bad size %d for local fork, size = %d).",
681 (unsigned long long) ip
->i_ino
, size
,
682 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
));
683 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW
,
685 return XFS_ERROR(EFSCORRUPTED
);
687 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
690 ifp
->if_u1
.if_data
= NULL
;
691 else if (size
<= sizeof(ifp
->if_u2
.if_inline_data
))
692 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
694 real_size
= roundup(size
, 4);
695 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
| KM_NOFS
);
697 ifp
->if_bytes
= size
;
698 ifp
->if_real_bytes
= real_size
;
700 memcpy(ifp
->if_u1
.if_data
, XFS_DFORK_PTR(dip
, whichfork
), size
);
701 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
702 ifp
->if_flags
|= XFS_IFINLINE
;
707 * The file consists of a set of extents all
708 * of which fit into the on-disk inode.
709 * If there are few enough extents to fit into
710 * the if_inline_ext, then copy them there.
711 * Otherwise allocate a buffer for them and copy
712 * them into it. Either way, set if_extents
713 * to point at the extents.
727 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
728 nex
= XFS_DFORK_NEXTENTS(dip
, whichfork
);
729 size
= nex
* (uint
)sizeof(xfs_bmbt_rec_t
);
732 * If the number of extents is unreasonable, then something
733 * is wrong and we just bail out rather than crash in
734 * kmem_alloc() or memcpy() below.
736 if (unlikely(size
< 0 || size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
737 xfs_warn(ip
->i_mount
, "corrupt inode %Lu ((a)extents = %d).",
738 (unsigned long long) ip
->i_ino
, nex
);
739 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW
,
741 return XFS_ERROR(EFSCORRUPTED
);
744 ifp
->if_real_bytes
= 0;
746 ifp
->if_u1
.if_extents
= NULL
;
747 else if (nex
<= XFS_INLINE_EXTS
)
748 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
750 xfs_iext_add(ifp
, 0, nex
);
752 ifp
->if_bytes
= size
;
754 dp
= (xfs_bmbt_rec_t
*) XFS_DFORK_PTR(dip
, whichfork
);
755 xfs_validate_extents(ifp
, nex
, XFS_EXTFMT_INODE(ip
));
756 for (i
= 0; i
< nex
; i
++, dp
++) {
757 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
758 ep
->l0
= get_unaligned_be64(&dp
->l0
);
759 ep
->l1
= get_unaligned_be64(&dp
->l1
);
761 XFS_BMAP_TRACE_EXLIST(ip
, nex
, whichfork
);
762 if (whichfork
!= XFS_DATA_FORK
||
763 XFS_EXTFMT_INODE(ip
) == XFS_EXTFMT_NOSTATE
)
764 if (unlikely(xfs_check_nostate_extents(
766 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
769 return XFS_ERROR(EFSCORRUPTED
);
772 ifp
->if_flags
|= XFS_IFEXTENTS
;
777 * The file has too many extents to fit into
778 * the inode, so they are in B-tree format.
779 * Allocate a buffer for the root of the B-tree
780 * and copy the root into it. The i_extents
781 * field will remain NULL until all of the
782 * extents are read in (when they are needed).
790 struct xfs_mount
*mp
= ip
->i_mount
;
791 xfs_bmdr_block_t
*dfp
;
797 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
798 dfp
= (xfs_bmdr_block_t
*)XFS_DFORK_PTR(dip
, whichfork
);
799 size
= XFS_BMAP_BROOT_SPACE(mp
, dfp
);
800 nrecs
= be16_to_cpu(dfp
->bb_numrecs
);
803 * blow out if -- fork has less extents than can fit in
804 * fork (fork shouldn't be a btree format), root btree
805 * block has more records than can fit into the fork,
806 * or the number of extents is greater than the number of
809 if (unlikely(XFS_IFORK_NEXTENTS(ip
, whichfork
) <=
810 XFS_IFORK_MAXEXT(ip
, whichfork
) ||
811 XFS_BMDR_SPACE_CALC(nrecs
) >
812 XFS_DFORK_SIZE(dip
, mp
, whichfork
) ||
813 XFS_IFORK_NEXTENTS(ip
, whichfork
) > ip
->i_d
.di_nblocks
)) {
814 xfs_warn(mp
, "corrupt inode %Lu (btree).",
815 (unsigned long long) ip
->i_ino
);
816 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW
,
818 return XFS_ERROR(EFSCORRUPTED
);
821 ifp
->if_broot_bytes
= size
;
822 ifp
->if_broot
= kmem_alloc(size
, KM_SLEEP
| KM_NOFS
);
823 ASSERT(ifp
->if_broot
!= NULL
);
825 * Copy and convert from the on-disk structure
826 * to the in-memory structure.
828 xfs_bmdr_to_bmbt(ip
, dfp
, XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
),
829 ifp
->if_broot
, size
);
830 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
831 ifp
->if_flags
|= XFS_IFBROOT
;
837 xfs_dinode_from_disk(
841 to
->di_magic
= be16_to_cpu(from
->di_magic
);
842 to
->di_mode
= be16_to_cpu(from
->di_mode
);
843 to
->di_version
= from
->di_version
;
844 to
->di_format
= from
->di_format
;
845 to
->di_onlink
= be16_to_cpu(from
->di_onlink
);
846 to
->di_uid
= be32_to_cpu(from
->di_uid
);
847 to
->di_gid
= be32_to_cpu(from
->di_gid
);
848 to
->di_nlink
= be32_to_cpu(from
->di_nlink
);
849 to
->di_projid_lo
= be16_to_cpu(from
->di_projid_lo
);
850 to
->di_projid_hi
= be16_to_cpu(from
->di_projid_hi
);
851 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
852 to
->di_flushiter
= be16_to_cpu(from
->di_flushiter
);
853 to
->di_atime
.t_sec
= be32_to_cpu(from
->di_atime
.t_sec
);
854 to
->di_atime
.t_nsec
= be32_to_cpu(from
->di_atime
.t_nsec
);
855 to
->di_mtime
.t_sec
= be32_to_cpu(from
->di_mtime
.t_sec
);
856 to
->di_mtime
.t_nsec
= be32_to_cpu(from
->di_mtime
.t_nsec
);
857 to
->di_ctime
.t_sec
= be32_to_cpu(from
->di_ctime
.t_sec
);
858 to
->di_ctime
.t_nsec
= be32_to_cpu(from
->di_ctime
.t_nsec
);
859 to
->di_size
= be64_to_cpu(from
->di_size
);
860 to
->di_nblocks
= be64_to_cpu(from
->di_nblocks
);
861 to
->di_extsize
= be32_to_cpu(from
->di_extsize
);
862 to
->di_nextents
= be32_to_cpu(from
->di_nextents
);
863 to
->di_anextents
= be16_to_cpu(from
->di_anextents
);
864 to
->di_forkoff
= from
->di_forkoff
;
865 to
->di_aformat
= from
->di_aformat
;
866 to
->di_dmevmask
= be32_to_cpu(from
->di_dmevmask
);
867 to
->di_dmstate
= be16_to_cpu(from
->di_dmstate
);
868 to
->di_flags
= be16_to_cpu(from
->di_flags
);
869 to
->di_gen
= be32_to_cpu(from
->di_gen
);
871 if (to
->di_version
== 3) {
872 to
->di_changecount
= be64_to_cpu(from
->di_changecount
);
873 to
->di_crtime
.t_sec
= be32_to_cpu(from
->di_crtime
.t_sec
);
874 to
->di_crtime
.t_nsec
= be32_to_cpu(from
->di_crtime
.t_nsec
);
875 to
->di_flags2
= be64_to_cpu(from
->di_flags2
);
876 to
->di_ino
= be64_to_cpu(from
->di_ino
);
877 to
->di_lsn
= be64_to_cpu(from
->di_lsn
);
878 memcpy(to
->di_pad2
, from
->di_pad2
, sizeof(to
->di_pad2
));
879 uuid_copy(&to
->di_uuid
, &from
->di_uuid
);
886 xfs_icdinode_t
*from
)
888 to
->di_magic
= cpu_to_be16(from
->di_magic
);
889 to
->di_mode
= cpu_to_be16(from
->di_mode
);
890 to
->di_version
= from
->di_version
;
891 to
->di_format
= from
->di_format
;
892 to
->di_onlink
= cpu_to_be16(from
->di_onlink
);
893 to
->di_uid
= cpu_to_be32(from
->di_uid
);
894 to
->di_gid
= cpu_to_be32(from
->di_gid
);
895 to
->di_nlink
= cpu_to_be32(from
->di_nlink
);
896 to
->di_projid_lo
= cpu_to_be16(from
->di_projid_lo
);
897 to
->di_projid_hi
= cpu_to_be16(from
->di_projid_hi
);
898 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
899 to
->di_flushiter
= cpu_to_be16(from
->di_flushiter
);
900 to
->di_atime
.t_sec
= cpu_to_be32(from
->di_atime
.t_sec
);
901 to
->di_atime
.t_nsec
= cpu_to_be32(from
->di_atime
.t_nsec
);
902 to
->di_mtime
.t_sec
= cpu_to_be32(from
->di_mtime
.t_sec
);
903 to
->di_mtime
.t_nsec
= cpu_to_be32(from
->di_mtime
.t_nsec
);
904 to
->di_ctime
.t_sec
= cpu_to_be32(from
->di_ctime
.t_sec
);
905 to
->di_ctime
.t_nsec
= cpu_to_be32(from
->di_ctime
.t_nsec
);
906 to
->di_size
= cpu_to_be64(from
->di_size
);
907 to
->di_nblocks
= cpu_to_be64(from
->di_nblocks
);
908 to
->di_extsize
= cpu_to_be32(from
->di_extsize
);
909 to
->di_nextents
= cpu_to_be32(from
->di_nextents
);
910 to
->di_anextents
= cpu_to_be16(from
->di_anextents
);
911 to
->di_forkoff
= from
->di_forkoff
;
912 to
->di_aformat
= from
->di_aformat
;
913 to
->di_dmevmask
= cpu_to_be32(from
->di_dmevmask
);
914 to
->di_dmstate
= cpu_to_be16(from
->di_dmstate
);
915 to
->di_flags
= cpu_to_be16(from
->di_flags
);
916 to
->di_gen
= cpu_to_be32(from
->di_gen
);
918 if (from
->di_version
== 3) {
919 to
->di_changecount
= cpu_to_be64(from
->di_changecount
);
920 to
->di_crtime
.t_sec
= cpu_to_be32(from
->di_crtime
.t_sec
);
921 to
->di_crtime
.t_nsec
= cpu_to_be32(from
->di_crtime
.t_nsec
);
922 to
->di_flags2
= cpu_to_be64(from
->di_flags2
);
923 to
->di_ino
= cpu_to_be64(from
->di_ino
);
924 to
->di_lsn
= cpu_to_be64(from
->di_lsn
);
925 memcpy(to
->di_pad2
, from
->di_pad2
, sizeof(to
->di_pad2
));
926 uuid_copy(&to
->di_uuid
, &from
->di_uuid
);
936 if (di_flags
& XFS_DIFLAG_ANY
) {
937 if (di_flags
& XFS_DIFLAG_REALTIME
)
938 flags
|= XFS_XFLAG_REALTIME
;
939 if (di_flags
& XFS_DIFLAG_PREALLOC
)
940 flags
|= XFS_XFLAG_PREALLOC
;
941 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
942 flags
|= XFS_XFLAG_IMMUTABLE
;
943 if (di_flags
& XFS_DIFLAG_APPEND
)
944 flags
|= XFS_XFLAG_APPEND
;
945 if (di_flags
& XFS_DIFLAG_SYNC
)
946 flags
|= XFS_XFLAG_SYNC
;
947 if (di_flags
& XFS_DIFLAG_NOATIME
)
948 flags
|= XFS_XFLAG_NOATIME
;
949 if (di_flags
& XFS_DIFLAG_NODUMP
)
950 flags
|= XFS_XFLAG_NODUMP
;
951 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
952 flags
|= XFS_XFLAG_RTINHERIT
;
953 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
954 flags
|= XFS_XFLAG_PROJINHERIT
;
955 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
956 flags
|= XFS_XFLAG_NOSYMLINKS
;
957 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
958 flags
|= XFS_XFLAG_EXTSIZE
;
959 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
960 flags
|= XFS_XFLAG_EXTSZINHERIT
;
961 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
962 flags
|= XFS_XFLAG_NODEFRAG
;
963 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
964 flags
|= XFS_XFLAG_FILESTREAM
;
974 xfs_icdinode_t
*dic
= &ip
->i_d
;
976 return _xfs_dic2xflags(dic
->di_flags
) |
977 (XFS_IFORK_Q(ip
) ? XFS_XFLAG_HASATTR
: 0);
984 return _xfs_dic2xflags(be16_to_cpu(dip
->di_flags
)) |
985 (XFS_DFORK_Q(dip
) ? XFS_XFLAG_HASATTR
: 0);
990 struct xfs_mount
*mp
,
991 struct xfs_inode
*ip
,
992 struct xfs_dinode
*dip
)
994 if (dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
))
997 /* only version 3 or greater inodes are extensively verified here */
998 if (dip
->di_version
< 3)
1001 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
1003 if (!xfs_verify_cksum((char *)dip
, mp
->m_sb
.sb_inodesize
,
1004 offsetof(struct xfs_dinode
, di_crc
)))
1006 if (be64_to_cpu(dip
->di_ino
) != ip
->i_ino
)
1008 if (!uuid_equal(&dip
->di_uuid
, &mp
->m_sb
.sb_uuid
))
1014 xfs_dinode_calc_crc(
1015 struct xfs_mount
*mp
,
1016 struct xfs_dinode
*dip
)
1020 if (dip
->di_version
< 3)
1023 ASSERT(xfs_sb_version_hascrc(&mp
->m_sb
));
1024 crc
= xfs_start_cksum((char *)dip
, mp
->m_sb
.sb_inodesize
,
1025 offsetof(struct xfs_dinode
, di_crc
));
1026 dip
->di_crc
= xfs_end_cksum(crc
);
1030 * Read the disk inode attributes into the in-core inode structure.
1044 * Fill in the location information in the in-core inode.
1046 error
= xfs_imap(mp
, tp
, ip
->i_ino
, &ip
->i_imap
, iget_flags
);
1051 * Get pointers to the on-disk inode and the buffer containing it.
1053 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &bp
, 0, iget_flags
);
1057 /* even unallocated inodes are verified */
1058 if (!xfs_dinode_verify(mp
, ip
, dip
)) {
1059 xfs_alert(mp
, "%s: validation failed for inode %lld failed",
1060 __func__
, ip
->i_ino
);
1062 XFS_CORRUPTION_ERROR(__func__
, XFS_ERRLEVEL_LOW
, mp
, dip
);
1063 error
= XFS_ERROR(EFSCORRUPTED
);
1068 * If the on-disk inode is already linked to a directory
1069 * entry, copy all of the inode into the in-core inode.
1070 * xfs_iformat() handles copying in the inode format
1071 * specific information.
1072 * Otherwise, just get the truly permanent information.
1075 xfs_dinode_from_disk(&ip
->i_d
, dip
);
1076 error
= xfs_iformat(ip
, dip
);
1079 xfs_alert(mp
, "%s: xfs_iformat() returned error %d",
1086 * Partial initialisation of the in-core inode. Just the bits
1087 * that xfs_ialloc won't overwrite or relies on being correct.
1089 ip
->i_d
.di_magic
= be16_to_cpu(dip
->di_magic
);
1090 ip
->i_d
.di_version
= dip
->di_version
;
1091 ip
->i_d
.di_gen
= be32_to_cpu(dip
->di_gen
);
1092 ip
->i_d
.di_flushiter
= be16_to_cpu(dip
->di_flushiter
);
1094 if (dip
->di_version
== 3) {
1095 ip
->i_d
.di_ino
= be64_to_cpu(dip
->di_ino
);
1096 uuid_copy(&ip
->i_d
.di_uuid
, &dip
->di_uuid
);
1100 * Make sure to pull in the mode here as well in
1101 * case the inode is released without being used.
1102 * This ensures that xfs_inactive() will see that
1103 * the inode is already free and not try to mess
1104 * with the uninitialized part of it.
1106 ip
->i_d
.di_mode
= 0;
1110 * The inode format changed when we moved the link count and
1111 * made it 32 bits long. If this is an old format inode,
1112 * convert it in memory to look like a new one. If it gets
1113 * flushed to disk we will convert back before flushing or
1114 * logging it. We zero out the new projid field and the old link
1115 * count field. We'll handle clearing the pad field (the remains
1116 * of the old uuid field) when we actually convert the inode to
1117 * the new format. We don't change the version number so that we
1118 * can distinguish this from a real new format inode.
1120 if (ip
->i_d
.di_version
== 1) {
1121 ip
->i_d
.di_nlink
= ip
->i_d
.di_onlink
;
1122 ip
->i_d
.di_onlink
= 0;
1123 xfs_set_projid(ip
, 0);
1126 ip
->i_delayed_blks
= 0;
1129 * Mark the buffer containing the inode as something to keep
1130 * around for a while. This helps to keep recently accessed
1131 * meta-data in-core longer.
1133 xfs_buf_set_ref(bp
, XFS_INO_REF
);
1136 * Use xfs_trans_brelse() to release the buffer containing the
1137 * on-disk inode, because it was acquired with xfs_trans_read_buf()
1138 * in xfs_imap_to_bp() above. If tp is NULL, this is just a normal
1139 * brelse(). If we're within a transaction, then xfs_trans_brelse()
1140 * will only release the buffer if it is not dirty within the
1141 * transaction. It will be OK to release the buffer in this case,
1142 * because inodes on disk are never destroyed and we will be
1143 * locking the new in-core inode before putting it in the hash
1144 * table where other processes can find it. Thus we don't have
1145 * to worry about the inode being changed just because we released
1149 xfs_trans_brelse(tp
, bp
);
1154 * Read in extents from a btree-format inode.
1155 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1165 xfs_extnum_t nextents
;
1167 if (unlikely(XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_BTREE
)) {
1168 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW
,
1170 return XFS_ERROR(EFSCORRUPTED
);
1172 nextents
= XFS_IFORK_NEXTENTS(ip
, whichfork
);
1173 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
1176 * We know that the size is valid (it's checked in iformat_btree)
1178 ifp
->if_bytes
= ifp
->if_real_bytes
= 0;
1179 ifp
->if_flags
|= XFS_IFEXTENTS
;
1180 xfs_iext_add(ifp
, 0, nextents
);
1181 error
= xfs_bmap_read_extents(tp
, ip
, whichfork
);
1183 xfs_iext_destroy(ifp
);
1184 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
1187 xfs_validate_extents(ifp
, nextents
, XFS_EXTFMT_INODE(ip
));
1192 * Allocate an inode on disk and return a copy of its in-core version.
1193 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1194 * appropriately within the inode. The uid and gid for the inode are
1195 * set according to the contents of the given cred structure.
1197 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1198 * has a free inode available, call xfs_iget() to obtain the in-core
1199 * version of the allocated inode. Finally, fill in the inode and
1200 * log its initial contents. In this case, ialloc_context would be
1203 * If xfs_dialloc() does not have an available inode, it will replenish
1204 * its supply by doing an allocation. Since we can only do one
1205 * allocation within a transaction without deadlocks, we must commit
1206 * the current transaction before returning the inode itself.
1207 * In this case, therefore, we will set ialloc_context and return.
1208 * The caller should then commit the current transaction, start a new
1209 * transaction, and call xfs_ialloc() again to actually get the inode.
1211 * To ensure that some other process does not grab the inode that
1212 * was allocated during the first call to xfs_ialloc(), this routine
1213 * also returns the [locked] bp pointing to the head of the freelist
1214 * as ialloc_context. The caller should hold this buffer across
1215 * the commit and pass it back into this routine on the second call.
1217 * If we are allocating quota inodes, we do not have a parent inode
1218 * to attach to or associate with (i.e. pip == NULL) because they
1219 * are not linked into the directory structure - they are attached
1220 * directly to the superblock - and so have no parent.
1231 xfs_buf_t
**ialloc_context
,
1234 struct xfs_mount
*mp
= tp
->t_mountp
;
1240 int filestreams
= 0;
1243 * Call the space management code to pick
1244 * the on-disk inode to be allocated.
1246 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
1247 ialloc_context
, &ino
);
1250 if (*ialloc_context
|| ino
== NULLFSINO
) {
1254 ASSERT(*ialloc_context
== NULL
);
1257 * Get the in-core inode with the lock held exclusively.
1258 * This is because we're setting fields here we need
1259 * to prevent others from looking at until we're done.
1261 error
= xfs_iget(mp
, tp
, ino
, XFS_IGET_CREATE
,
1262 XFS_ILOCK_EXCL
, &ip
);
1267 ip
->i_d
.di_mode
= mode
;
1268 ip
->i_d
.di_onlink
= 0;
1269 ip
->i_d
.di_nlink
= nlink
;
1270 ASSERT(ip
->i_d
.di_nlink
== nlink
);
1271 ip
->i_d
.di_uid
= current_fsuid();
1272 ip
->i_d
.di_gid
= current_fsgid();
1273 xfs_set_projid(ip
, prid
);
1274 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
1277 * If the superblock version is up to where we support new format
1278 * inodes and this is currently an old format inode, then change
1279 * the inode version number now. This way we only do the conversion
1280 * here rather than here and in the flush/logging code.
1282 if (xfs_sb_version_hasnlink(&mp
->m_sb
) &&
1283 ip
->i_d
.di_version
== 1) {
1284 ip
->i_d
.di_version
= 2;
1286 * We've already zeroed the old link count, the projid field,
1287 * and the pad field.
1292 * Project ids won't be stored on disk if we are using a version 1 inode.
1294 if ((prid
!= 0) && (ip
->i_d
.di_version
== 1))
1295 xfs_bump_ino_vers2(tp
, ip
);
1297 if (pip
&& XFS_INHERIT_GID(pip
)) {
1298 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
1299 if ((pip
->i_d
.di_mode
& S_ISGID
) && S_ISDIR(mode
)) {
1300 ip
->i_d
.di_mode
|= S_ISGID
;
1305 * If the group ID of the new file does not match the effective group
1306 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1307 * (and only if the irix_sgid_inherit compatibility variable is set).
1309 if ((irix_sgid_inherit
) &&
1310 (ip
->i_d
.di_mode
& S_ISGID
) &&
1311 (!in_group_p((gid_t
)ip
->i_d
.di_gid
))) {
1312 ip
->i_d
.di_mode
&= ~S_ISGID
;
1315 ip
->i_d
.di_size
= 0;
1316 ip
->i_d
.di_nextents
= 0;
1317 ASSERT(ip
->i_d
.di_nblocks
== 0);
1320 ip
->i_d
.di_mtime
.t_sec
= (__int32_t
)tv
.tv_sec
;
1321 ip
->i_d
.di_mtime
.t_nsec
= (__int32_t
)tv
.tv_nsec
;
1322 ip
->i_d
.di_atime
= ip
->i_d
.di_mtime
;
1323 ip
->i_d
.di_ctime
= ip
->i_d
.di_mtime
;
1326 * di_gen will have been taken care of in xfs_iread.
1328 ip
->i_d
.di_extsize
= 0;
1329 ip
->i_d
.di_dmevmask
= 0;
1330 ip
->i_d
.di_dmstate
= 0;
1331 ip
->i_d
.di_flags
= 0;
1333 if (ip
->i_d
.di_version
== 3) {
1334 ASSERT(ip
->i_d
.di_ino
== ino
);
1335 ASSERT(uuid_equal(&ip
->i_d
.di_uuid
, &mp
->m_sb
.sb_uuid
));
1337 ip
->i_d
.di_changecount
= 1;
1339 ip
->i_d
.di_flags2
= 0;
1340 memset(&(ip
->i_d
.di_pad2
[0]), 0, sizeof(ip
->i_d
.di_pad2
));
1341 ip
->i_d
.di_crtime
= ip
->i_d
.di_mtime
;
1345 flags
= XFS_ILOG_CORE
;
1346 switch (mode
& S_IFMT
) {
1351 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
1352 ip
->i_df
.if_u2
.if_rdev
= rdev
;
1353 ip
->i_df
.if_flags
= 0;
1354 flags
|= XFS_ILOG_DEV
;
1358 * we can't set up filestreams until after the VFS inode
1359 * is set up properly.
1361 if (pip
&& xfs_inode_is_filestream(pip
))
1365 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
1368 if (S_ISDIR(mode
)) {
1369 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1370 di_flags
|= XFS_DIFLAG_RTINHERIT
;
1371 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1372 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
1373 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1375 } else if (S_ISREG(mode
)) {
1376 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1377 di_flags
|= XFS_DIFLAG_REALTIME
;
1378 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1379 di_flags
|= XFS_DIFLAG_EXTSIZE
;
1380 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1383 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
1384 xfs_inherit_noatime
)
1385 di_flags
|= XFS_DIFLAG_NOATIME
;
1386 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
1388 di_flags
|= XFS_DIFLAG_NODUMP
;
1389 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
1391 di_flags
|= XFS_DIFLAG_SYNC
;
1392 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
1393 xfs_inherit_nosymlinks
)
1394 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
1395 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
1396 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
1397 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
1398 xfs_inherit_nodefrag
)
1399 di_flags
|= XFS_DIFLAG_NODEFRAG
;
1400 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
1401 di_flags
|= XFS_DIFLAG_FILESTREAM
;
1402 ip
->i_d
.di_flags
|= di_flags
;
1406 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1407 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
1408 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
1409 ip
->i_df
.if_u1
.if_extents
= NULL
;
1415 * Attribute fork settings for new inode.
1417 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1418 ip
->i_d
.di_anextents
= 0;
1421 * Log the new values stuffed into the inode.
1423 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
1424 xfs_trans_log_inode(tp
, ip
, flags
);
1426 /* now that we have an i_mode we can setup inode ops and unlock */
1427 xfs_setup_inode(ip
);
1429 /* now we have set up the vfs inode we can associate the filestream */
1431 error
= xfs_filestream_associate(pip
, ip
);
1435 xfs_iflags_set(ip
, XFS_IFILESTREAM
);
1443 * Free up the underlying blocks past new_size. The new size must be smaller
1444 * than the current size. This routine can be used both for the attribute and
1445 * data fork, and does not modify the inode size, which is left to the caller.
1447 * The transaction passed to this routine must have made a permanent log
1448 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1449 * given transaction and start new ones, so make sure everything involved in
1450 * the transaction is tidy before calling here. Some transaction will be
1451 * returned to the caller to be committed. The incoming transaction must
1452 * already include the inode, and both inode locks must be held exclusively.
1453 * The inode must also be "held" within the transaction. On return the inode
1454 * will be "held" within the returned transaction. This routine does NOT
1455 * require any disk space to be reserved for it within the transaction.
1457 * If we get an error, we must return with the inode locked and linked into the
1458 * current transaction. This keeps things simple for the higher level code,
1459 * because it always knows that the inode is locked and held in the transaction
1460 * that returns to it whether errors occur or not. We don't mark the inode
1461 * dirty on error so that transactions can be easily aborted if possible.
1464 xfs_itruncate_extents(
1465 struct xfs_trans
**tpp
,
1466 struct xfs_inode
*ip
,
1468 xfs_fsize_t new_size
)
1470 struct xfs_mount
*mp
= ip
->i_mount
;
1471 struct xfs_trans
*tp
= *tpp
;
1472 struct xfs_trans
*ntp
;
1473 xfs_bmap_free_t free_list
;
1474 xfs_fsblock_t first_block
;
1475 xfs_fileoff_t first_unmap_block
;
1476 xfs_fileoff_t last_block
;
1477 xfs_filblks_t unmap_len
;
1482 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
1483 ASSERT(!atomic_read(&VFS_I(ip
)->i_count
) ||
1484 xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1485 ASSERT(new_size
<= XFS_ISIZE(ip
));
1486 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1487 ASSERT(ip
->i_itemp
!= NULL
);
1488 ASSERT(ip
->i_itemp
->ili_lock_flags
== 0);
1489 ASSERT(!XFS_NOT_DQATTACHED(mp
, ip
));
1491 trace_xfs_itruncate_extents_start(ip
, new_size
);
1494 * Since it is possible for space to become allocated beyond
1495 * the end of the file (in a crash where the space is allocated
1496 * but the inode size is not yet updated), simply remove any
1497 * blocks which show up between the new EOF and the maximum
1498 * possible file size. If the first block to be removed is
1499 * beyond the maximum file size (ie it is the same as last_block),
1500 * then there is nothing to do.
1502 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1503 last_block
= XFS_B_TO_FSB(mp
, mp
->m_super
->s_maxbytes
);
1504 if (first_unmap_block
== last_block
)
1507 ASSERT(first_unmap_block
< last_block
);
1508 unmap_len
= last_block
- first_unmap_block
+ 1;
1510 xfs_bmap_init(&free_list
, &first_block
);
1511 error
= xfs_bunmapi(tp
, ip
,
1512 first_unmap_block
, unmap_len
,
1513 xfs_bmapi_aflag(whichfork
),
1514 XFS_ITRUNC_MAX_EXTENTS
,
1515 &first_block
, &free_list
,
1518 goto out_bmap_cancel
;
1521 * Duplicate the transaction that has the permanent
1522 * reservation and commit the old transaction.
1524 error
= xfs_bmap_finish(&tp
, &free_list
, &committed
);
1526 xfs_trans_ijoin(tp
, ip
, 0);
1528 goto out_bmap_cancel
;
1532 * Mark the inode dirty so it will be logged and
1533 * moved forward in the log as part of every commit.
1535 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1538 ntp
= xfs_trans_dup(tp
);
1539 error
= xfs_trans_commit(tp
, 0);
1542 xfs_trans_ijoin(tp
, ip
, 0);
1548 * Transaction commit worked ok so we can drop the extra ticket
1549 * reference that we gained in xfs_trans_dup()
1551 xfs_log_ticket_put(tp
->t_ticket
);
1552 error
= xfs_trans_reserve(tp
, 0,
1553 XFS_ITRUNCATE_LOG_RES(mp
), 0,
1554 XFS_TRANS_PERM_LOG_RES
,
1555 XFS_ITRUNCATE_LOG_COUNT
);
1561 * Always re-log the inode so that our permanent transaction can keep
1562 * on rolling it forward in the log.
1564 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1566 trace_xfs_itruncate_extents_end(ip
, new_size
);
1573 * If the bunmapi call encounters an error, return to the caller where
1574 * the transaction can be properly aborted. We just need to make sure
1575 * we're not holding any resources that we were not when we came in.
1577 xfs_bmap_cancel(&free_list
);
1582 * This is called when the inode's link count goes to 0.
1583 * We place the on-disk inode on a list in the AGI. It
1584 * will be pulled from this list when the inode is freed.
1601 ASSERT(ip
->i_d
.di_nlink
== 0);
1602 ASSERT(ip
->i_d
.di_mode
!= 0);
1607 * Get the agi buffer first. It ensures lock ordering
1610 error
= xfs_read_agi(mp
, tp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
), &agibp
);
1613 agi
= XFS_BUF_TO_AGI(agibp
);
1616 * Get the index into the agi hash table for the
1617 * list this inode will go on.
1619 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1621 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1622 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1623 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1625 if (agi
->agi_unlinked
[bucket_index
] != cpu_to_be32(NULLAGINO
)) {
1627 * There is already another inode in the bucket we need
1628 * to add ourselves to. Add us at the front of the list.
1629 * Here we put the head pointer into our next pointer,
1630 * and then we fall through to point the head at us.
1632 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
1637 ASSERT(dip
->di_next_unlinked
== cpu_to_be32(NULLAGINO
));
1638 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1639 offset
= ip
->i_imap
.im_boffset
+
1640 offsetof(xfs_dinode_t
, di_next_unlinked
);
1642 /* need to recalc the inode CRC if appropriate */
1643 xfs_dinode_calc_crc(mp
, dip
);
1645 xfs_trans_inode_buf(tp
, ibp
);
1646 xfs_trans_log_buf(tp
, ibp
, offset
,
1647 (offset
+ sizeof(xfs_agino_t
) - 1));
1648 xfs_inobp_check(mp
, ibp
);
1652 * Point the bucket head pointer at the inode being inserted.
1655 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1656 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1657 (sizeof(xfs_agino_t
) * bucket_index
);
1658 xfs_trans_buf_set_type(tp
, agibp
, XFS_BLFT_AGI_BUF
);
1659 xfs_trans_log_buf(tp
, agibp
, offset
,
1660 (offset
+ sizeof(xfs_agino_t
) - 1));
1665 * Pull the on-disk inode from the AGI unlinked list.
1678 xfs_agnumber_t agno
;
1680 xfs_agino_t next_agino
;
1681 xfs_buf_t
*last_ibp
;
1682 xfs_dinode_t
*last_dip
= NULL
;
1684 int offset
, last_offset
= 0;
1688 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1691 * Get the agi buffer first. It ensures lock ordering
1694 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
1698 agi
= XFS_BUF_TO_AGI(agibp
);
1701 * Get the index into the agi hash table for the
1702 * list this inode will go on.
1704 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1706 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1707 ASSERT(agi
->agi_unlinked
[bucket_index
] != cpu_to_be32(NULLAGINO
));
1708 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1710 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
1712 * We're at the head of the list. Get the inode's on-disk
1713 * buffer to see if there is anyone after us on the list.
1714 * Only modify our next pointer if it is not already NULLAGINO.
1715 * This saves us the overhead of dealing with the buffer when
1716 * there is no need to change it.
1718 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
1721 xfs_warn(mp
, "%s: xfs_imap_to_bp returned error %d.",
1725 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1726 ASSERT(next_agino
!= 0);
1727 if (next_agino
!= NULLAGINO
) {
1728 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1729 offset
= ip
->i_imap
.im_boffset
+
1730 offsetof(xfs_dinode_t
, di_next_unlinked
);
1732 /* need to recalc the inode CRC if appropriate */
1733 xfs_dinode_calc_crc(mp
, dip
);
1735 xfs_trans_inode_buf(tp
, ibp
);
1736 xfs_trans_log_buf(tp
, ibp
, offset
,
1737 (offset
+ sizeof(xfs_agino_t
) - 1));
1738 xfs_inobp_check(mp
, ibp
);
1740 xfs_trans_brelse(tp
, ibp
);
1743 * Point the bucket head pointer at the next inode.
1745 ASSERT(next_agino
!= 0);
1746 ASSERT(next_agino
!= agino
);
1747 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
1748 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1749 (sizeof(xfs_agino_t
) * bucket_index
);
1750 xfs_trans_buf_set_type(tp
, agibp
, XFS_BLFT_AGI_BUF
);
1751 xfs_trans_log_buf(tp
, agibp
, offset
,
1752 (offset
+ sizeof(xfs_agino_t
) - 1));
1755 * We need to search the list for the inode being freed.
1757 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
1759 while (next_agino
!= agino
) {
1760 struct xfs_imap imap
;
1763 xfs_trans_brelse(tp
, last_ibp
);
1766 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
1768 error
= xfs_imap(mp
, tp
, next_ino
, &imap
, 0);
1771 "%s: xfs_imap returned error %d.",
1776 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &last_dip
,
1780 "%s: xfs_imap_to_bp returned error %d.",
1785 last_offset
= imap
.im_boffset
;
1786 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
1787 ASSERT(next_agino
!= NULLAGINO
);
1788 ASSERT(next_agino
!= 0);
1792 * Now last_ibp points to the buffer previous to us on the
1793 * unlinked list. Pull us from the list.
1795 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
1798 xfs_warn(mp
, "%s: xfs_imap_to_bp(2) returned error %d.",
1802 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1803 ASSERT(next_agino
!= 0);
1804 ASSERT(next_agino
!= agino
);
1805 if (next_agino
!= NULLAGINO
) {
1806 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1807 offset
= ip
->i_imap
.im_boffset
+
1808 offsetof(xfs_dinode_t
, di_next_unlinked
);
1810 /* need to recalc the inode CRC if appropriate */
1811 xfs_dinode_calc_crc(mp
, dip
);
1813 xfs_trans_inode_buf(tp
, ibp
);
1814 xfs_trans_log_buf(tp
, ibp
, offset
,
1815 (offset
+ sizeof(xfs_agino_t
) - 1));
1816 xfs_inobp_check(mp
, ibp
);
1818 xfs_trans_brelse(tp
, ibp
);
1821 * Point the previous inode on the list to the next inode.
1823 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
1824 ASSERT(next_agino
!= 0);
1825 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
1827 /* need to recalc the inode CRC if appropriate */
1828 xfs_dinode_calc_crc(mp
, last_dip
);
1830 xfs_trans_inode_buf(tp
, last_ibp
);
1831 xfs_trans_log_buf(tp
, last_ibp
, offset
,
1832 (offset
+ sizeof(xfs_agino_t
) - 1));
1833 xfs_inobp_check(mp
, last_ibp
);
1839 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1840 * inodes that are in memory - they all must be marked stale and attached to
1841 * the cluster buffer.
1845 xfs_inode_t
*free_ip
,
1849 xfs_mount_t
*mp
= free_ip
->i_mount
;
1850 int blks_per_cluster
;
1857 xfs_inode_log_item_t
*iip
;
1858 xfs_log_item_t
*lip
;
1859 struct xfs_perag
*pag
;
1861 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, inum
));
1862 if (mp
->m_sb
.sb_blocksize
>= XFS_INODE_CLUSTER_SIZE(mp
)) {
1863 blks_per_cluster
= 1;
1864 ninodes
= mp
->m_sb
.sb_inopblock
;
1865 nbufs
= XFS_IALLOC_BLOCKS(mp
);
1867 blks_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) /
1868 mp
->m_sb
.sb_blocksize
;
1869 ninodes
= blks_per_cluster
* mp
->m_sb
.sb_inopblock
;
1870 nbufs
= XFS_IALLOC_BLOCKS(mp
) / blks_per_cluster
;
1873 for (j
= 0; j
< nbufs
; j
++, inum
+= ninodes
) {
1874 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
1875 XFS_INO_TO_AGBNO(mp
, inum
));
1878 * We obtain and lock the backing buffer first in the process
1879 * here, as we have to ensure that any dirty inode that we
1880 * can't get the flush lock on is attached to the buffer.
1881 * If we scan the in-memory inodes first, then buffer IO can
1882 * complete before we get a lock on it, and hence we may fail
1883 * to mark all the active inodes on the buffer stale.
1885 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
1886 mp
->m_bsize
* blks_per_cluster
,
1893 * This buffer may not have been correctly initialised as we
1894 * didn't read it from disk. That's not important because we are
1895 * only using to mark the buffer as stale in the log, and to
1896 * attach stale cached inodes on it. That means it will never be
1897 * dispatched for IO. If it is, we want to know about it, and we
1898 * want it to fail. We can acheive this by adding a write
1899 * verifier to the buffer.
1901 bp
->b_ops
= &xfs_inode_buf_ops
;
1904 * Walk the inodes already attached to the buffer and mark them
1905 * stale. These will all have the flush locks held, so an
1906 * in-memory inode walk can't lock them. By marking them all
1907 * stale first, we will not attempt to lock them in the loop
1908 * below as the XFS_ISTALE flag will be set.
1912 if (lip
->li_type
== XFS_LI_INODE
) {
1913 iip
= (xfs_inode_log_item_t
*)lip
;
1914 ASSERT(iip
->ili_logged
== 1);
1915 lip
->li_cb
= xfs_istale_done
;
1916 xfs_trans_ail_copy_lsn(mp
->m_ail
,
1917 &iip
->ili_flush_lsn
,
1918 &iip
->ili_item
.li_lsn
);
1919 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
1921 lip
= lip
->li_bio_list
;
1926 * For each inode in memory attempt to add it to the inode
1927 * buffer and set it up for being staled on buffer IO
1928 * completion. This is safe as we've locked out tail pushing
1929 * and flushing by locking the buffer.
1931 * We have already marked every inode that was part of a
1932 * transaction stale above, which means there is no point in
1933 * even trying to lock them.
1935 for (i
= 0; i
< ninodes
; i
++) {
1938 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
1939 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
1941 /* Inode not in memory, nothing to do */
1948 * because this is an RCU protected lookup, we could
1949 * find a recently freed or even reallocated inode
1950 * during the lookup. We need to check under the
1951 * i_flags_lock for a valid inode here. Skip it if it
1952 * is not valid, the wrong inode or stale.
1954 spin_lock(&ip
->i_flags_lock
);
1955 if (ip
->i_ino
!= inum
+ i
||
1956 __xfs_iflags_test(ip
, XFS_ISTALE
)) {
1957 spin_unlock(&ip
->i_flags_lock
);
1961 spin_unlock(&ip
->i_flags_lock
);
1964 * Don't try to lock/unlock the current inode, but we
1965 * _cannot_ skip the other inodes that we did not find
1966 * in the list attached to the buffer and are not
1967 * already marked stale. If we can't lock it, back off
1970 if (ip
!= free_ip
&&
1971 !xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
1979 xfs_iflags_set(ip
, XFS_ISTALE
);
1982 * we don't need to attach clean inodes or those only
1983 * with unlogged changes (which we throw away, anyway).
1986 if (!iip
|| xfs_inode_clean(ip
)) {
1987 ASSERT(ip
!= free_ip
);
1989 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1993 iip
->ili_last_fields
= iip
->ili_fields
;
1994 iip
->ili_fields
= 0;
1995 iip
->ili_logged
= 1;
1996 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
1997 &iip
->ili_item
.li_lsn
);
1999 xfs_buf_attach_iodone(bp
, xfs_istale_done
,
2003 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2006 xfs_trans_stale_inode_buf(tp
, bp
);
2007 xfs_trans_binval(tp
, bp
);
2015 * This is called to return an inode to the inode free list.
2016 * The inode should already be truncated to 0 length and have
2017 * no pages associated with it. This routine also assumes that
2018 * the inode is already a part of the transaction.
2020 * The on-disk copy of the inode will have been added to the list
2021 * of unlinked inodes in the AGI. We need to remove the inode from
2022 * that list atomically with respect to freeing it here.
2028 xfs_bmap_free_t
*flist
)
2032 xfs_ino_t first_ino
;
2036 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2037 ASSERT(ip
->i_d
.di_nlink
== 0);
2038 ASSERT(ip
->i_d
.di_nextents
== 0);
2039 ASSERT(ip
->i_d
.di_anextents
== 0);
2040 ASSERT(ip
->i_d
.di_size
== 0 || !S_ISREG(ip
->i_d
.di_mode
));
2041 ASSERT(ip
->i_d
.di_nblocks
== 0);
2044 * Pull the on-disk inode from the AGI unlinked list.
2046 error
= xfs_iunlink_remove(tp
, ip
);
2051 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
2055 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
2056 ip
->i_d
.di_flags
= 0;
2057 ip
->i_d
.di_dmevmask
= 0;
2058 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2059 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2060 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2062 * Bump the generation count so no one will be confused
2063 * by reincarnations of this inode.
2067 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2069 error
= xfs_imap_to_bp(ip
->i_mount
, tp
, &ip
->i_imap
, &dip
, &ibp
,
2075 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2076 * from picking up this inode when it is reclaimed (its incore state
2077 * initialzed but not flushed to disk yet). The in-core di_mode is
2078 * already cleared and a corresponding transaction logged.
2079 * The hack here just synchronizes the in-core to on-disk
2080 * di_mode value in advance before the actual inode sync to disk.
2081 * This is OK because the inode is already unlinked and would never
2082 * change its di_mode again for this inode generation.
2083 * This is a temporary hack that would require a proper fix
2089 error
= xfs_ifree_cluster(ip
, tp
, first_ino
);
2096 * Reallocate the space for if_broot based on the number of records
2097 * being added or deleted as indicated in rec_diff. Move the records
2098 * and pointers in if_broot to fit the new size. When shrinking this
2099 * will eliminate holes between the records and pointers created by
2100 * the caller. When growing this will create holes to be filled in
2103 * The caller must not request to add more records than would fit in
2104 * the on-disk inode root. If the if_broot is currently NULL, then
2105 * if we adding records one will be allocated. The caller must also
2106 * not request that the number of records go below zero, although
2107 * it can go to zero.
2109 * ip -- the inode whose if_broot area is changing
2110 * ext_diff -- the change in the number of records, positive or negative,
2111 * requested for the if_broot array.
2119 struct xfs_mount
*mp
= ip
->i_mount
;
2122 struct xfs_btree_block
*new_broot
;
2129 * Handle the degenerate case quietly.
2131 if (rec_diff
== 0) {
2135 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2138 * If there wasn't any memory allocated before, just
2139 * allocate it now and get out.
2141 if (ifp
->if_broot_bytes
== 0) {
2142 new_size
= XFS_BMAP_BROOT_SPACE_CALC(mp
, rec_diff
);
2143 ifp
->if_broot
= kmem_alloc(new_size
, KM_SLEEP
| KM_NOFS
);
2144 ifp
->if_broot_bytes
= (int)new_size
;
2149 * If there is already an existing if_broot, then we need
2150 * to realloc() it and shift the pointers to their new
2151 * location. The records don't change location because
2152 * they are kept butted up against the btree block header.
2154 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
2155 new_max
= cur_max
+ rec_diff
;
2156 new_size
= XFS_BMAP_BROOT_SPACE_CALC(mp
, new_max
);
2157 ifp
->if_broot
= kmem_realloc(ifp
->if_broot
, new_size
,
2158 XFS_BMAP_BROOT_SPACE_CALC(mp
, cur_max
),
2159 KM_SLEEP
| KM_NOFS
);
2160 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2161 ifp
->if_broot_bytes
);
2162 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2164 ifp
->if_broot_bytes
= (int)new_size
;
2165 ASSERT(ifp
->if_broot_bytes
<=
2166 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ(ip
));
2167 memmove(np
, op
, cur_max
* (uint
)sizeof(xfs_dfsbno_t
));
2172 * rec_diff is less than 0. In this case, we are shrinking the
2173 * if_broot buffer. It must already exist. If we go to zero
2174 * records, just get rid of the root and clear the status bit.
2176 ASSERT((ifp
->if_broot
!= NULL
) && (ifp
->if_broot_bytes
> 0));
2177 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
2178 new_max
= cur_max
+ rec_diff
;
2179 ASSERT(new_max
>= 0);
2181 new_size
= XFS_BMAP_BROOT_SPACE_CALC(mp
, new_max
);
2185 new_broot
= kmem_alloc(new_size
, KM_SLEEP
| KM_NOFS
);
2187 * First copy over the btree block header.
2189 memcpy(new_broot
, ifp
->if_broot
,
2190 XFS_BMBT_BLOCK_LEN(ip
->i_mount
));
2193 ifp
->if_flags
&= ~XFS_IFBROOT
;
2197 * Only copy the records and pointers if there are any.
2201 * First copy the records.
2203 op
= (char *)XFS_BMBT_REC_ADDR(mp
, ifp
->if_broot
, 1);
2204 np
= (char *)XFS_BMBT_REC_ADDR(mp
, new_broot
, 1);
2205 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_bmbt_rec_t
));
2208 * Then copy the pointers.
2210 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2211 ifp
->if_broot_bytes
);
2212 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, new_broot
, 1,
2214 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_dfsbno_t
));
2216 kmem_free(ifp
->if_broot
);
2217 ifp
->if_broot
= new_broot
;
2218 ifp
->if_broot_bytes
= (int)new_size
;
2219 ASSERT(ifp
->if_broot_bytes
<=
2220 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ(ip
));
2226 * This is called when the amount of space needed for if_data
2227 * is increased or decreased. The change in size is indicated by
2228 * the number of bytes that need to be added or deleted in the
2229 * byte_diff parameter.
2231 * If the amount of space needed has decreased below the size of the
2232 * inline buffer, then switch to using the inline buffer. Otherwise,
2233 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2234 * to what is needed.
2236 * ip -- the inode whose if_data area is changing
2237 * byte_diff -- the change in the number of bytes, positive or negative,
2238 * requested for the if_data array.
2250 if (byte_diff
== 0) {
2254 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2255 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
2256 ASSERT(new_size
>= 0);
2258 if (new_size
== 0) {
2259 if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2260 kmem_free(ifp
->if_u1
.if_data
);
2262 ifp
->if_u1
.if_data
= NULL
;
2264 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_data
)) {
2266 * If the valid extents/data can fit in if_inline_ext/data,
2267 * copy them from the malloc'd vector and free it.
2269 if (ifp
->if_u1
.if_data
== NULL
) {
2270 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2271 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2272 ASSERT(ifp
->if_real_bytes
!= 0);
2273 memcpy(ifp
->if_u2
.if_inline_data
, ifp
->if_u1
.if_data
,
2275 kmem_free(ifp
->if_u1
.if_data
);
2276 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2281 * Stuck with malloc/realloc.
2282 * For inline data, the underlying buffer must be
2283 * a multiple of 4 bytes in size so that it can be
2284 * logged and stay on word boundaries. We enforce
2287 real_size
= roundup(new_size
, 4);
2288 if (ifp
->if_u1
.if_data
== NULL
) {
2289 ASSERT(ifp
->if_real_bytes
== 0);
2290 ifp
->if_u1
.if_data
= kmem_alloc(real_size
,
2291 KM_SLEEP
| KM_NOFS
);
2292 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2294 * Only do the realloc if the underlying size
2295 * is really changing.
2297 if (ifp
->if_real_bytes
!= real_size
) {
2298 ifp
->if_u1
.if_data
=
2299 kmem_realloc(ifp
->if_u1
.if_data
,
2302 KM_SLEEP
| KM_NOFS
);
2305 ASSERT(ifp
->if_real_bytes
== 0);
2306 ifp
->if_u1
.if_data
= kmem_alloc(real_size
,
2307 KM_SLEEP
| KM_NOFS
);
2308 memcpy(ifp
->if_u1
.if_data
, ifp
->if_u2
.if_inline_data
,
2312 ifp
->if_real_bytes
= real_size
;
2313 ifp
->if_bytes
= new_size
;
2314 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2324 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2325 if (ifp
->if_broot
!= NULL
) {
2326 kmem_free(ifp
->if_broot
);
2327 ifp
->if_broot
= NULL
;
2331 * If the format is local, then we can't have an extents
2332 * array so just look for an inline data array. If we're
2333 * not local then we may or may not have an extents list,
2334 * so check and free it up if we do.
2336 if (XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_LOCAL
) {
2337 if ((ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) &&
2338 (ifp
->if_u1
.if_data
!= NULL
)) {
2339 ASSERT(ifp
->if_real_bytes
!= 0);
2340 kmem_free(ifp
->if_u1
.if_data
);
2341 ifp
->if_u1
.if_data
= NULL
;
2342 ifp
->if_real_bytes
= 0;
2344 } else if ((ifp
->if_flags
& XFS_IFEXTENTS
) &&
2345 ((ifp
->if_flags
& XFS_IFEXTIREC
) ||
2346 ((ifp
->if_u1
.if_extents
!= NULL
) &&
2347 (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
)))) {
2348 ASSERT(ifp
->if_real_bytes
!= 0);
2349 xfs_iext_destroy(ifp
);
2351 ASSERT(ifp
->if_u1
.if_extents
== NULL
||
2352 ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
);
2353 ASSERT(ifp
->if_real_bytes
== 0);
2354 if (whichfork
== XFS_ATTR_FORK
) {
2355 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
2361 * This is called to unpin an inode. The caller must have the inode locked
2362 * in at least shared mode so that the buffer cannot be subsequently pinned
2363 * once someone is waiting for it to be unpinned.
2367 struct xfs_inode
*ip
)
2369 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2371 trace_xfs_inode_unpin_nowait(ip
, _RET_IP_
);
2373 /* Give the log a push to start the unpinning I/O */
2374 xfs_log_force_lsn(ip
->i_mount
, ip
->i_itemp
->ili_last_lsn
, 0);
2380 struct xfs_inode
*ip
)
2382 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_IPINNED_BIT
);
2383 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_IPINNED_BIT
);
2388 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
2389 if (xfs_ipincount(ip
))
2391 } while (xfs_ipincount(ip
));
2392 finish_wait(wq
, &wait
.wait
);
2397 struct xfs_inode
*ip
)
2399 if (xfs_ipincount(ip
))
2400 __xfs_iunpin_wait(ip
);
2404 * xfs_iextents_copy()
2406 * This is called to copy the REAL extents (as opposed to the delayed
2407 * allocation extents) from the inode into the given buffer. It
2408 * returns the number of bytes copied into the buffer.
2410 * If there are no delayed allocation extents, then we can just
2411 * memcpy() the extents into the buffer. Otherwise, we need to
2412 * examine each extent in turn and skip those which are delayed.
2424 xfs_fsblock_t start_block
;
2426 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2427 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2428 ASSERT(ifp
->if_bytes
> 0);
2430 nrecs
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2431 XFS_BMAP_TRACE_EXLIST(ip
, nrecs
, whichfork
);
2435 * There are some delayed allocation extents in the
2436 * inode, so copy the extents one at a time and skip
2437 * the delayed ones. There must be at least one
2438 * non-delayed extent.
2441 for (i
= 0; i
< nrecs
; i
++) {
2442 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
2443 start_block
= xfs_bmbt_get_startblock(ep
);
2444 if (isnullstartblock(start_block
)) {
2446 * It's a delayed allocation extent, so skip it.
2451 /* Translate to on disk format */
2452 put_unaligned(cpu_to_be64(ep
->l0
), &dp
->l0
);
2453 put_unaligned(cpu_to_be64(ep
->l1
), &dp
->l1
);
2457 ASSERT(copied
!= 0);
2458 xfs_validate_extents(ifp
, copied
, XFS_EXTFMT_INODE(ip
));
2460 return (copied
* (uint
)sizeof(xfs_bmbt_rec_t
));
2464 * Each of the following cases stores data into the same region
2465 * of the on-disk inode, so only one of them can be valid at
2466 * any given time. While it is possible to have conflicting formats
2467 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2468 * in EXTENTS format, this can only happen when the fork has
2469 * changed formats after being modified but before being flushed.
2470 * In these cases, the format always takes precedence, because the
2471 * format indicates the current state of the fork.
2478 xfs_inode_log_item_t
*iip
,
2485 static const short brootflag
[2] =
2486 { XFS_ILOG_DBROOT
, XFS_ILOG_ABROOT
};
2487 static const short dataflag
[2] =
2488 { XFS_ILOG_DDATA
, XFS_ILOG_ADATA
};
2489 static const short extflag
[2] =
2490 { XFS_ILOG_DEXT
, XFS_ILOG_AEXT
};
2494 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2496 * This can happen if we gave up in iformat in an error path,
2497 * for the attribute fork.
2500 ASSERT(whichfork
== XFS_ATTR_FORK
);
2503 cp
= XFS_DFORK_PTR(dip
, whichfork
);
2505 switch (XFS_IFORK_FORMAT(ip
, whichfork
)) {
2506 case XFS_DINODE_FMT_LOCAL
:
2507 if ((iip
->ili_fields
& dataflag
[whichfork
]) &&
2508 (ifp
->if_bytes
> 0)) {
2509 ASSERT(ifp
->if_u1
.if_data
!= NULL
);
2510 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2511 memcpy(cp
, ifp
->if_u1
.if_data
, ifp
->if_bytes
);
2515 case XFS_DINODE_FMT_EXTENTS
:
2516 ASSERT((ifp
->if_flags
& XFS_IFEXTENTS
) ||
2517 !(iip
->ili_fields
& extflag
[whichfork
]));
2518 if ((iip
->ili_fields
& extflag
[whichfork
]) &&
2519 (ifp
->if_bytes
> 0)) {
2520 ASSERT(xfs_iext_get_ext(ifp
, 0));
2521 ASSERT(XFS_IFORK_NEXTENTS(ip
, whichfork
) > 0);
2522 (void)xfs_iextents_copy(ip
, (xfs_bmbt_rec_t
*)cp
,
2527 case XFS_DINODE_FMT_BTREE
:
2528 if ((iip
->ili_fields
& brootflag
[whichfork
]) &&
2529 (ifp
->if_broot_bytes
> 0)) {
2530 ASSERT(ifp
->if_broot
!= NULL
);
2531 ASSERT(ifp
->if_broot_bytes
<=
2532 (XFS_IFORK_SIZE(ip
, whichfork
) +
2533 XFS_BROOT_SIZE_ADJ(ip
)));
2534 xfs_bmbt_to_bmdr(mp
, ifp
->if_broot
, ifp
->if_broot_bytes
,
2535 (xfs_bmdr_block_t
*)cp
,
2536 XFS_DFORK_SIZE(dip
, mp
, whichfork
));
2540 case XFS_DINODE_FMT_DEV
:
2541 if (iip
->ili_fields
& XFS_ILOG_DEV
) {
2542 ASSERT(whichfork
== XFS_DATA_FORK
);
2543 xfs_dinode_put_rdev(dip
, ip
->i_df
.if_u2
.if_rdev
);
2547 case XFS_DINODE_FMT_UUID
:
2548 if (iip
->ili_fields
& XFS_ILOG_UUID
) {
2549 ASSERT(whichfork
== XFS_DATA_FORK
);
2550 memcpy(XFS_DFORK_DPTR(dip
),
2551 &ip
->i_df
.if_u2
.if_uuid
,
2567 xfs_mount_t
*mp
= ip
->i_mount
;
2568 struct xfs_perag
*pag
;
2569 unsigned long first_index
, mask
;
2570 unsigned long inodes_per_cluster
;
2572 xfs_inode_t
**ilist
;
2579 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
2581 inodes_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
;
2582 ilist_size
= inodes_per_cluster
* sizeof(xfs_inode_t
*);
2583 ilist
= kmem_alloc(ilist_size
, KM_MAYFAIL
|KM_NOFS
);
2587 mask
= ~(((XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
)) - 1);
2588 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
2590 /* really need a gang lookup range call here */
2591 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)ilist
,
2592 first_index
, inodes_per_cluster
);
2596 for (i
= 0; i
< nr_found
; i
++) {
2602 * because this is an RCU protected lookup, we could find a
2603 * recently freed or even reallocated inode during the lookup.
2604 * We need to check under the i_flags_lock for a valid inode
2605 * here. Skip it if it is not valid or the wrong inode.
2607 spin_lock(&ip
->i_flags_lock
);
2609 (XFS_INO_TO_AGINO(mp
, iq
->i_ino
) & mask
) != first_index
) {
2610 spin_unlock(&ip
->i_flags_lock
);
2613 spin_unlock(&ip
->i_flags_lock
);
2616 * Do an un-protected check to see if the inode is dirty and
2617 * is a candidate for flushing. These checks will be repeated
2618 * later after the appropriate locks are acquired.
2620 if (xfs_inode_clean(iq
) && xfs_ipincount(iq
) == 0)
2624 * Try to get locks. If any are unavailable or it is pinned,
2625 * then this inode cannot be flushed and is skipped.
2628 if (!xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
))
2630 if (!xfs_iflock_nowait(iq
)) {
2631 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2634 if (xfs_ipincount(iq
)) {
2636 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2641 * arriving here means that this inode can be flushed. First
2642 * re-check that it's dirty before flushing.
2644 if (!xfs_inode_clean(iq
)) {
2646 error
= xfs_iflush_int(iq
, bp
);
2648 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2649 goto cluster_corrupt_out
;
2655 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2659 XFS_STATS_INC(xs_icluster_flushcnt
);
2660 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
2671 cluster_corrupt_out
:
2673 * Corruption detected in the clustering loop. Invalidate the
2674 * inode buffer and shut down the filesystem.
2678 * Clean up the buffer. If it was delwri, just release it --
2679 * brelse can handle it with no problems. If not, shut down the
2680 * filesystem before releasing the buffer.
2682 bufwasdelwri
= (bp
->b_flags
& _XBF_DELWRI_Q
);
2686 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
2688 if (!bufwasdelwri
) {
2690 * Just like incore_relse: if we have b_iodone functions,
2691 * mark the buffer as an error and call them. Otherwise
2692 * mark it as stale and brelse.
2697 xfs_buf_ioerror(bp
, EIO
);
2698 xfs_buf_ioend(bp
, 0);
2706 * Unlocks the flush lock
2708 xfs_iflush_abort(iq
, false);
2711 return XFS_ERROR(EFSCORRUPTED
);
2715 * Flush dirty inode metadata into the backing buffer.
2717 * The caller must have the inode lock and the inode flush lock held. The
2718 * inode lock will still be held upon return to the caller, and the inode
2719 * flush lock will be released after the inode has reached the disk.
2721 * The caller must write out the buffer returned in *bpp and release it.
2725 struct xfs_inode
*ip
,
2726 struct xfs_buf
**bpp
)
2728 struct xfs_mount
*mp
= ip
->i_mount
;
2730 struct xfs_dinode
*dip
;
2733 XFS_STATS_INC(xs_iflush_count
);
2735 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2736 ASSERT(xfs_isiflocked(ip
));
2737 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
2738 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
2742 xfs_iunpin_wait(ip
);
2745 * For stale inodes we cannot rely on the backing buffer remaining
2746 * stale in cache for the remaining life of the stale inode and so
2747 * xfs_imap_to_bp() below may give us a buffer that no longer contains
2748 * inodes below. We have to check this after ensuring the inode is
2749 * unpinned so that it is safe to reclaim the stale inode after the
2752 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
2758 * This may have been unpinned because the filesystem is shutting
2759 * down forcibly. If that's the case we must not write this inode
2760 * to disk, because the log record didn't make it to disk.
2762 * We also have to remove the log item from the AIL in this case,
2763 * as we wait for an empty AIL as part of the unmount process.
2765 if (XFS_FORCED_SHUTDOWN(mp
)) {
2766 error
= XFS_ERROR(EIO
);
2771 * Get the buffer containing the on-disk inode.
2773 error
= xfs_imap_to_bp(mp
, NULL
, &ip
->i_imap
, &dip
, &bp
, XBF_TRYLOCK
,
2781 * First flush out the inode that xfs_iflush was called with.
2783 error
= xfs_iflush_int(ip
, bp
);
2788 * If the buffer is pinned then push on the log now so we won't
2789 * get stuck waiting in the write for too long.
2791 if (xfs_buf_ispinned(bp
))
2792 xfs_log_force(mp
, 0);
2796 * see if other inodes can be gathered into this write
2798 error
= xfs_iflush_cluster(ip
, bp
);
2800 goto cluster_corrupt_out
;
2807 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
2808 cluster_corrupt_out
:
2809 error
= XFS_ERROR(EFSCORRUPTED
);
2812 * Unlocks the flush lock
2814 xfs_iflush_abort(ip
, false);
2821 struct xfs_inode
*ip
,
2824 struct xfs_inode_log_item
*iip
= ip
->i_itemp
;
2825 struct xfs_dinode
*dip
;
2826 struct xfs_mount
*mp
= ip
->i_mount
;
2828 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2829 ASSERT(xfs_isiflocked(ip
));
2830 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
2831 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
2832 ASSERT(iip
!= NULL
&& iip
->ili_fields
!= 0);
2834 /* set *dip = inode's place in the buffer */
2835 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
2837 if (XFS_TEST_ERROR(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
),
2838 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
2839 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2840 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2841 __func__
, ip
->i_ino
, be16_to_cpu(dip
->di_magic
), dip
);
2844 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
2845 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
2846 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2847 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2848 __func__
, ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
2851 if (S_ISREG(ip
->i_d
.di_mode
)) {
2853 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2854 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
2855 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
2856 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2857 "%s: Bad regular inode %Lu, ptr 0x%p",
2858 __func__
, ip
->i_ino
, ip
);
2861 } else if (S_ISDIR(ip
->i_d
.di_mode
)) {
2863 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2864 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
2865 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
2866 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
2867 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2868 "%s: Bad directory inode %Lu, ptr 0x%p",
2869 __func__
, ip
->i_ino
, ip
);
2873 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
2874 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
2875 XFS_RANDOM_IFLUSH_5
)) {
2876 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2877 "%s: detected corrupt incore inode %Lu, "
2878 "total extents = %d, nblocks = %Ld, ptr 0x%p",
2879 __func__
, ip
->i_ino
,
2880 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
2881 ip
->i_d
.di_nblocks
, ip
);
2884 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
2885 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
2886 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2887 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2888 __func__
, ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
2892 * bump the flush iteration count, used to detect flushes which
2893 * postdate a log record during recovery. This is redundant as we now
2894 * log every change and hence this can't happen. Still, it doesn't hurt.
2896 ip
->i_d
.di_flushiter
++;
2899 * Copy the dirty parts of the inode into the on-disk
2900 * inode. We always copy out the core of the inode,
2901 * because if the inode is dirty at all the core must
2904 xfs_dinode_to_disk(dip
, &ip
->i_d
);
2906 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2907 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
2908 ip
->i_d
.di_flushiter
= 0;
2911 * If this is really an old format inode and the superblock version
2912 * has not been updated to support only new format inodes, then
2913 * convert back to the old inode format. If the superblock version
2914 * has been updated, then make the conversion permanent.
2916 ASSERT(ip
->i_d
.di_version
== 1 || xfs_sb_version_hasnlink(&mp
->m_sb
));
2917 if (ip
->i_d
.di_version
== 1) {
2918 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
2922 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
2923 dip
->di_onlink
= cpu_to_be16(ip
->i_d
.di_nlink
);
2926 * The superblock version has already been bumped,
2927 * so just make the conversion to the new inode
2930 ip
->i_d
.di_version
= 2;
2931 dip
->di_version
= 2;
2932 ip
->i_d
.di_onlink
= 0;
2934 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
2935 memset(&(dip
->di_pad
[0]), 0,
2936 sizeof(dip
->di_pad
));
2937 ASSERT(xfs_get_projid(ip
) == 0);
2941 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
, bp
);
2942 if (XFS_IFORK_Q(ip
))
2943 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
, bp
);
2944 xfs_inobp_check(mp
, bp
);
2947 * We've recorded everything logged in the inode, so we'd like to clear
2948 * the ili_fields bits so we don't log and flush things unnecessarily.
2949 * However, we can't stop logging all this information until the data
2950 * we've copied into the disk buffer is written to disk. If we did we
2951 * might overwrite the copy of the inode in the log with all the data
2952 * after re-logging only part of it, and in the face of a crash we
2953 * wouldn't have all the data we need to recover.
2955 * What we do is move the bits to the ili_last_fields field. When
2956 * logging the inode, these bits are moved back to the ili_fields field.
2957 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
2958 * know that the information those bits represent is permanently on
2959 * disk. As long as the flush completes before the inode is logged
2960 * again, then both ili_fields and ili_last_fields will be cleared.
2962 * We can play with the ili_fields bits here, because the inode lock
2963 * must be held exclusively in order to set bits there and the flush
2964 * lock protects the ili_last_fields bits. Set ili_logged so the flush
2965 * done routine can tell whether or not to look in the AIL. Also, store
2966 * the current LSN of the inode so that we can tell whether the item has
2967 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
2968 * need the AIL lock, because it is a 64 bit value that cannot be read
2971 iip
->ili_last_fields
= iip
->ili_fields
;
2972 iip
->ili_fields
= 0;
2973 iip
->ili_logged
= 1;
2975 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
2976 &iip
->ili_item
.li_lsn
);
2979 * Attach the function xfs_iflush_done to the inode's
2980 * buffer. This will remove the inode from the AIL
2981 * and unlock the inode's flush lock when the inode is
2982 * completely written to disk.
2984 xfs_buf_attach_iodone(bp
, xfs_iflush_done
, &iip
->ili_item
);
2986 /* update the lsn in the on disk inode if required */
2987 if (ip
->i_d
.di_version
== 3)
2988 dip
->di_lsn
= cpu_to_be64(iip
->ili_item
.li_lsn
);
2990 /* generate the checksum. */
2991 xfs_dinode_calc_crc(mp
, dip
);
2993 ASSERT(bp
->b_fspriv
!= NULL
);
2994 ASSERT(bp
->b_iodone
!= NULL
);
2998 return XFS_ERROR(EFSCORRUPTED
);
3002 * Return a pointer to the extent record at file index idx.
3004 xfs_bmbt_rec_host_t
*
3006 xfs_ifork_t
*ifp
, /* inode fork pointer */
3007 xfs_extnum_t idx
) /* index of target extent */
3010 ASSERT(idx
< ifp
->if_bytes
/ sizeof(xfs_bmbt_rec_t
));
3012 if ((ifp
->if_flags
& XFS_IFEXTIREC
) && (idx
== 0)) {
3013 return ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3014 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3015 xfs_ext_irec_t
*erp
; /* irec pointer */
3016 int erp_idx
= 0; /* irec index */
3017 xfs_extnum_t page_idx
= idx
; /* ext index in target list */
3019 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3020 return &erp
->er_extbuf
[page_idx
];
3021 } else if (ifp
->if_bytes
) {
3022 return &ifp
->if_u1
.if_extents
[idx
];
3029 * Insert new item(s) into the extent records for incore inode
3030 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3034 xfs_inode_t
*ip
, /* incore inode pointer */
3035 xfs_extnum_t idx
, /* starting index of new items */
3036 xfs_extnum_t count
, /* number of inserted items */
3037 xfs_bmbt_irec_t
*new, /* items to insert */
3038 int state
) /* type of extent conversion */
3040 xfs_ifork_t
*ifp
= (state
& BMAP_ATTRFORK
) ? ip
->i_afp
: &ip
->i_df
;
3041 xfs_extnum_t i
; /* extent record index */
3043 trace_xfs_iext_insert(ip
, idx
, new, state
, _RET_IP_
);
3045 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3046 xfs_iext_add(ifp
, idx
, count
);
3047 for (i
= idx
; i
< idx
+ count
; i
++, new++)
3048 xfs_bmbt_set_all(xfs_iext_get_ext(ifp
, i
), new);
3052 * This is called when the amount of space required for incore file
3053 * extents needs to be increased. The ext_diff parameter stores the
3054 * number of new extents being added and the idx parameter contains
3055 * the extent index where the new extents will be added. If the new
3056 * extents are being appended, then we just need to (re)allocate and
3057 * initialize the space. Otherwise, if the new extents are being
3058 * inserted into the middle of the existing entries, a bit more work
3059 * is required to make room for the new extents to be inserted. The
3060 * caller is responsible for filling in the new extent entries upon
3065 xfs_ifork_t
*ifp
, /* inode fork pointer */
3066 xfs_extnum_t idx
, /* index to begin adding exts */
3067 int ext_diff
) /* number of extents to add */
3069 int byte_diff
; /* new bytes being added */
3070 int new_size
; /* size of extents after adding */
3071 xfs_extnum_t nextents
; /* number of extents in file */
3073 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3074 ASSERT((idx
>= 0) && (idx
<= nextents
));
3075 byte_diff
= ext_diff
* sizeof(xfs_bmbt_rec_t
);
3076 new_size
= ifp
->if_bytes
+ byte_diff
;
3078 * If the new number of extents (nextents + ext_diff)
3079 * fits inside the inode, then continue to use the inline
3082 if (nextents
+ ext_diff
<= XFS_INLINE_EXTS
) {
3083 if (idx
< nextents
) {
3084 memmove(&ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3085 &ifp
->if_u2
.if_inline_ext
[idx
],
3086 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3087 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0, byte_diff
);
3089 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3090 ifp
->if_real_bytes
= 0;
3093 * Otherwise use a linear (direct) extent list.
3094 * If the extents are currently inside the inode,
3095 * xfs_iext_realloc_direct will switch us from
3096 * inline to direct extent allocation mode.
3098 else if (nextents
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3099 xfs_iext_realloc_direct(ifp
, new_size
);
3100 if (idx
< nextents
) {
3101 memmove(&ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3102 &ifp
->if_u1
.if_extents
[idx
],
3103 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3104 memset(&ifp
->if_u1
.if_extents
[idx
], 0, byte_diff
);
3107 /* Indirection array */
3109 xfs_ext_irec_t
*erp
;
3113 ASSERT(nextents
+ ext_diff
> XFS_LINEAR_EXTS
);
3114 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3115 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 1);
3117 xfs_iext_irec_init(ifp
);
3118 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3119 erp
= ifp
->if_u1
.if_ext_irec
;
3121 /* Extents fit in target extent page */
3122 if (erp
&& erp
->er_extcount
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3123 if (page_idx
< erp
->er_extcount
) {
3124 memmove(&erp
->er_extbuf
[page_idx
+ ext_diff
],
3125 &erp
->er_extbuf
[page_idx
],
3126 (erp
->er_extcount
- page_idx
) *
3127 sizeof(xfs_bmbt_rec_t
));
3128 memset(&erp
->er_extbuf
[page_idx
], 0, byte_diff
);
3130 erp
->er_extcount
+= ext_diff
;
3131 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3133 /* Insert a new extent page */
3135 xfs_iext_add_indirect_multi(ifp
,
3136 erp_idx
, page_idx
, ext_diff
);
3139 * If extent(s) are being appended to the last page in
3140 * the indirection array and the new extent(s) don't fit
3141 * in the page, then erp is NULL and erp_idx is set to
3142 * the next index needed in the indirection array.
3145 int count
= ext_diff
;
3148 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3149 erp
->er_extcount
= count
;
3150 count
-= MIN(count
, (int)XFS_LINEAR_EXTS
);
3157 ifp
->if_bytes
= new_size
;
3161 * This is called when incore extents are being added to the indirection
3162 * array and the new extents do not fit in the target extent list. The
3163 * erp_idx parameter contains the irec index for the target extent list
3164 * in the indirection array, and the idx parameter contains the extent
3165 * index within the list. The number of extents being added is stored
3166 * in the count parameter.
3168 * |-------| |-------|
3169 * | | | | idx - number of extents before idx
3171 * | | | | count - number of extents being inserted at idx
3172 * |-------| |-------|
3173 * | count | | nex2 | nex2 - number of extents after idx + count
3174 * |-------| |-------|
3177 xfs_iext_add_indirect_multi(
3178 xfs_ifork_t
*ifp
, /* inode fork pointer */
3179 int erp_idx
, /* target extent irec index */
3180 xfs_extnum_t idx
, /* index within target list */
3181 int count
) /* new extents being added */
3183 int byte_diff
; /* new bytes being added */
3184 xfs_ext_irec_t
*erp
; /* pointer to irec entry */
3185 xfs_extnum_t ext_diff
; /* number of extents to add */
3186 xfs_extnum_t ext_cnt
; /* new extents still needed */
3187 xfs_extnum_t nex2
; /* extents after idx + count */
3188 xfs_bmbt_rec_t
*nex2_ep
= NULL
; /* temp list for nex2 extents */
3189 int nlists
; /* number of irec's (lists) */
3191 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3192 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3193 nex2
= erp
->er_extcount
- idx
;
3194 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3197 * Save second part of target extent list
3198 * (all extents past */
3200 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3201 nex2_ep
= (xfs_bmbt_rec_t
*) kmem_alloc(byte_diff
, KM_NOFS
);
3202 memmove(nex2_ep
, &erp
->er_extbuf
[idx
], byte_diff
);
3203 erp
->er_extcount
-= nex2
;
3204 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -nex2
);
3205 memset(&erp
->er_extbuf
[idx
], 0, byte_diff
);
3209 * Add the new extents to the end of the target
3210 * list, then allocate new irec record(s) and
3211 * extent buffer(s) as needed to store the rest
3212 * of the new extents.
3215 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
- erp
->er_extcount
);
3217 erp
->er_extcount
+= ext_diff
;
3218 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3219 ext_cnt
-= ext_diff
;
3223 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3224 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
);
3225 erp
->er_extcount
= ext_diff
;
3226 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3227 ext_cnt
-= ext_diff
;
3230 /* Add nex2 extents back to indirection array */
3232 xfs_extnum_t ext_avail
;
3235 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3236 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
3239 * If nex2 extents fit in the current page, append
3240 * nex2_ep after the new extents.
3242 if (nex2
<= ext_avail
) {
3243 i
= erp
->er_extcount
;
3246 * Otherwise, check if space is available in the
3249 else if ((erp_idx
< nlists
- 1) &&
3250 (nex2
<= (ext_avail
= XFS_LINEAR_EXTS
-
3251 ifp
->if_u1
.if_ext_irec
[erp_idx
+1].er_extcount
))) {
3254 /* Create a hole for nex2 extents */
3255 memmove(&erp
->er_extbuf
[nex2
], erp
->er_extbuf
,
3256 erp
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
3259 * Final choice, create a new extent page for
3264 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3266 memmove(&erp
->er_extbuf
[i
], nex2_ep
, byte_diff
);
3268 erp
->er_extcount
+= nex2
;
3269 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, nex2
);
3274 * This is called when the amount of space required for incore file
3275 * extents needs to be decreased. The ext_diff parameter stores the
3276 * number of extents to be removed and the idx parameter contains
3277 * the extent index where the extents will be removed from.
3279 * If the amount of space needed has decreased below the linear
3280 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3281 * extent array. Otherwise, use kmem_realloc() to adjust the
3282 * size to what is needed.
3286 xfs_inode_t
*ip
, /* incore inode pointer */
3287 xfs_extnum_t idx
, /* index to begin removing exts */
3288 int ext_diff
, /* number of extents to remove */
3289 int state
) /* type of extent conversion */
3291 xfs_ifork_t
*ifp
= (state
& BMAP_ATTRFORK
) ? ip
->i_afp
: &ip
->i_df
;
3292 xfs_extnum_t nextents
; /* number of extents in file */
3293 int new_size
; /* size of extents after removal */
3295 trace_xfs_iext_remove(ip
, idx
, state
, _RET_IP_
);
3297 ASSERT(ext_diff
> 0);
3298 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3299 new_size
= (nextents
- ext_diff
) * sizeof(xfs_bmbt_rec_t
);
3301 if (new_size
== 0) {
3302 xfs_iext_destroy(ifp
);
3303 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3304 xfs_iext_remove_indirect(ifp
, idx
, ext_diff
);
3305 } else if (ifp
->if_real_bytes
) {
3306 xfs_iext_remove_direct(ifp
, idx
, ext_diff
);
3308 xfs_iext_remove_inline(ifp
, idx
, ext_diff
);
3310 ifp
->if_bytes
= new_size
;
3314 * This removes ext_diff extents from the inline buffer, beginning
3315 * at extent index idx.
3318 xfs_iext_remove_inline(
3319 xfs_ifork_t
*ifp
, /* inode fork pointer */
3320 xfs_extnum_t idx
, /* index to begin removing exts */
3321 int ext_diff
) /* number of extents to remove */
3323 int nextents
; /* number of extents in file */
3325 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3326 ASSERT(idx
< XFS_INLINE_EXTS
);
3327 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3328 ASSERT(((nextents
- ext_diff
) > 0) &&
3329 (nextents
- ext_diff
) < XFS_INLINE_EXTS
);
3331 if (idx
+ ext_diff
< nextents
) {
3332 memmove(&ifp
->if_u2
.if_inline_ext
[idx
],
3333 &ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3334 (nextents
- (idx
+ ext_diff
)) *
3335 sizeof(xfs_bmbt_rec_t
));
3336 memset(&ifp
->if_u2
.if_inline_ext
[nextents
- ext_diff
],
3337 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3339 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0,
3340 ext_diff
* sizeof(xfs_bmbt_rec_t
));
3345 * This removes ext_diff extents from a linear (direct) extent list,
3346 * beginning at extent index idx. If the extents are being removed
3347 * from the end of the list (ie. truncate) then we just need to re-
3348 * allocate the list to remove the extra space. Otherwise, if the
3349 * extents are being removed from the middle of the existing extent
3350 * entries, then we first need to move the extent records beginning
3351 * at idx + ext_diff up in the list to overwrite the records being
3352 * removed, then remove the extra space via kmem_realloc.
3355 xfs_iext_remove_direct(
3356 xfs_ifork_t
*ifp
, /* inode fork pointer */
3357 xfs_extnum_t idx
, /* index to begin removing exts */
3358 int ext_diff
) /* number of extents to remove */
3360 xfs_extnum_t nextents
; /* number of extents in file */
3361 int new_size
; /* size of extents after removal */
3363 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3364 new_size
= ifp
->if_bytes
-
3365 (ext_diff
* sizeof(xfs_bmbt_rec_t
));
3366 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3368 if (new_size
== 0) {
3369 xfs_iext_destroy(ifp
);
3372 /* Move extents up in the list (if needed) */
3373 if (idx
+ ext_diff
< nextents
) {
3374 memmove(&ifp
->if_u1
.if_extents
[idx
],
3375 &ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3376 (nextents
- (idx
+ ext_diff
)) *
3377 sizeof(xfs_bmbt_rec_t
));
3379 memset(&ifp
->if_u1
.if_extents
[nextents
- ext_diff
],
3380 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3382 * Reallocate the direct extent list. If the extents
3383 * will fit inside the inode then xfs_iext_realloc_direct
3384 * will switch from direct to inline extent allocation
3387 xfs_iext_realloc_direct(ifp
, new_size
);
3388 ifp
->if_bytes
= new_size
;
3392 * This is called when incore extents are being removed from the
3393 * indirection array and the extents being removed span multiple extent
3394 * buffers. The idx parameter contains the file extent index where we
3395 * want to begin removing extents, and the count parameter contains
3396 * how many extents need to be removed.
3398 * |-------| |-------|
3399 * | nex1 | | | nex1 - number of extents before idx
3400 * |-------| | count |
3401 * | | | | count - number of extents being removed at idx
3402 * | count | |-------|
3403 * | | | nex2 | nex2 - number of extents after idx + count
3404 * |-------| |-------|
3407 xfs_iext_remove_indirect(
3408 xfs_ifork_t
*ifp
, /* inode fork pointer */
3409 xfs_extnum_t idx
, /* index to begin removing extents */
3410 int count
) /* number of extents to remove */
3412 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3413 int erp_idx
= 0; /* indirection array index */
3414 xfs_extnum_t ext_cnt
; /* extents left to remove */
3415 xfs_extnum_t ext_diff
; /* extents to remove in current list */
3416 xfs_extnum_t nex1
; /* number of extents before idx */
3417 xfs_extnum_t nex2
; /* extents after idx + count */
3418 int page_idx
= idx
; /* index in target extent list */
3420 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3421 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3422 ASSERT(erp
!= NULL
);
3426 nex2
= MAX((erp
->er_extcount
- (nex1
+ ext_cnt
)), 0);
3427 ext_diff
= MIN(ext_cnt
, (erp
->er_extcount
- nex1
));
3429 * Check for deletion of entire list;
3430 * xfs_iext_irec_remove() updates extent offsets.
3432 if (ext_diff
== erp
->er_extcount
) {
3433 xfs_iext_irec_remove(ifp
, erp_idx
);
3434 ext_cnt
-= ext_diff
;
3437 ASSERT(erp_idx
< ifp
->if_real_bytes
/
3439 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3446 /* Move extents up (if needed) */
3448 memmove(&erp
->er_extbuf
[nex1
],
3449 &erp
->er_extbuf
[nex1
+ ext_diff
],
3450 nex2
* sizeof(xfs_bmbt_rec_t
));
3452 /* Zero out rest of page */
3453 memset(&erp
->er_extbuf
[nex1
+ nex2
], 0, (XFS_IEXT_BUFSZ
-
3454 ((nex1
+ nex2
) * sizeof(xfs_bmbt_rec_t
))));
3455 /* Update remaining counters */
3456 erp
->er_extcount
-= ext_diff
;
3457 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -ext_diff
);
3458 ext_cnt
-= ext_diff
;
3463 ifp
->if_bytes
-= count
* sizeof(xfs_bmbt_rec_t
);
3464 xfs_iext_irec_compact(ifp
);
3468 * Create, destroy, or resize a linear (direct) block of extents.
3471 xfs_iext_realloc_direct(
3472 xfs_ifork_t
*ifp
, /* inode fork pointer */
3473 int new_size
) /* new size of extents */
3475 int rnew_size
; /* real new size of extents */
3477 rnew_size
= new_size
;
3479 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
) ||
3480 ((new_size
>= 0) && (new_size
<= XFS_IEXT_BUFSZ
) &&
3481 (new_size
!= ifp
->if_real_bytes
)));
3483 /* Free extent records */
3484 if (new_size
== 0) {
3485 xfs_iext_destroy(ifp
);
3487 /* Resize direct extent list and zero any new bytes */
3488 else if (ifp
->if_real_bytes
) {
3489 /* Check if extents will fit inside the inode */
3490 if (new_size
<= XFS_INLINE_EXTS
* sizeof(xfs_bmbt_rec_t
)) {
3491 xfs_iext_direct_to_inline(ifp
, new_size
/
3492 (uint
)sizeof(xfs_bmbt_rec_t
));
3493 ifp
->if_bytes
= new_size
;
3496 if (!is_power_of_2(new_size
)){
3497 rnew_size
= roundup_pow_of_two(new_size
);
3499 if (rnew_size
!= ifp
->if_real_bytes
) {
3500 ifp
->if_u1
.if_extents
=
3501 kmem_realloc(ifp
->if_u1
.if_extents
,
3503 ifp
->if_real_bytes
, KM_NOFS
);
3505 if (rnew_size
> ifp
->if_real_bytes
) {
3506 memset(&ifp
->if_u1
.if_extents
[ifp
->if_bytes
/
3507 (uint
)sizeof(xfs_bmbt_rec_t
)], 0,
3508 rnew_size
- ifp
->if_real_bytes
);
3512 * Switch from the inline extent buffer to a direct
3513 * extent list. Be sure to include the inline extent
3514 * bytes in new_size.
3517 new_size
+= ifp
->if_bytes
;
3518 if (!is_power_of_2(new_size
)) {
3519 rnew_size
= roundup_pow_of_two(new_size
);
3521 xfs_iext_inline_to_direct(ifp
, rnew_size
);
3523 ifp
->if_real_bytes
= rnew_size
;
3524 ifp
->if_bytes
= new_size
;
3528 * Switch from linear (direct) extent records to inline buffer.
3531 xfs_iext_direct_to_inline(
3532 xfs_ifork_t
*ifp
, /* inode fork pointer */
3533 xfs_extnum_t nextents
) /* number of extents in file */
3535 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3536 ASSERT(nextents
<= XFS_INLINE_EXTS
);
3538 * The inline buffer was zeroed when we switched
3539 * from inline to direct extent allocation mode,
3540 * so we don't need to clear it here.
3542 memcpy(ifp
->if_u2
.if_inline_ext
, ifp
->if_u1
.if_extents
,
3543 nextents
* sizeof(xfs_bmbt_rec_t
));
3544 kmem_free(ifp
->if_u1
.if_extents
);
3545 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3546 ifp
->if_real_bytes
= 0;
3550 * Switch from inline buffer to linear (direct) extent records.
3551 * new_size should already be rounded up to the next power of 2
3552 * by the caller (when appropriate), so use new_size as it is.
3553 * However, since new_size may be rounded up, we can't update
3554 * if_bytes here. It is the caller's responsibility to update
3555 * if_bytes upon return.
3558 xfs_iext_inline_to_direct(
3559 xfs_ifork_t
*ifp
, /* inode fork pointer */
3560 int new_size
) /* number of extents in file */
3562 ifp
->if_u1
.if_extents
= kmem_alloc(new_size
, KM_NOFS
);
3563 memset(ifp
->if_u1
.if_extents
, 0, new_size
);
3564 if (ifp
->if_bytes
) {
3565 memcpy(ifp
->if_u1
.if_extents
, ifp
->if_u2
.if_inline_ext
,
3567 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3568 sizeof(xfs_bmbt_rec_t
));
3570 ifp
->if_real_bytes
= new_size
;
3574 * Resize an extent indirection array to new_size bytes.
3577 xfs_iext_realloc_indirect(
3578 xfs_ifork_t
*ifp
, /* inode fork pointer */
3579 int new_size
) /* new indirection array size */
3581 int nlists
; /* number of irec's (ex lists) */
3582 int size
; /* current indirection array size */
3584 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3585 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3586 size
= nlists
* sizeof(xfs_ext_irec_t
);
3587 ASSERT(ifp
->if_real_bytes
);
3588 ASSERT((new_size
>= 0) && (new_size
!= size
));
3589 if (new_size
== 0) {
3590 xfs_iext_destroy(ifp
);
3592 ifp
->if_u1
.if_ext_irec
= (xfs_ext_irec_t
*)
3593 kmem_realloc(ifp
->if_u1
.if_ext_irec
,
3594 new_size
, size
, KM_NOFS
);
3599 * Switch from indirection array to linear (direct) extent allocations.
3602 xfs_iext_indirect_to_direct(
3603 xfs_ifork_t
*ifp
) /* inode fork pointer */
3605 xfs_bmbt_rec_host_t
*ep
; /* extent record pointer */
3606 xfs_extnum_t nextents
; /* number of extents in file */
3607 int size
; /* size of file extents */
3609 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3610 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3611 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
3612 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
3614 xfs_iext_irec_compact_pages(ifp
);
3615 ASSERT(ifp
->if_real_bytes
== XFS_IEXT_BUFSZ
);
3617 ep
= ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3618 kmem_free(ifp
->if_u1
.if_ext_irec
);
3619 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3620 ifp
->if_u1
.if_extents
= ep
;
3621 ifp
->if_bytes
= size
;
3622 if (nextents
< XFS_LINEAR_EXTS
) {
3623 xfs_iext_realloc_direct(ifp
, size
);
3628 * Free incore file extents.
3632 xfs_ifork_t
*ifp
) /* inode fork pointer */
3634 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3638 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3639 for (erp_idx
= nlists
- 1; erp_idx
>= 0 ; erp_idx
--) {
3640 xfs_iext_irec_remove(ifp
, erp_idx
);
3642 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3643 } else if (ifp
->if_real_bytes
) {
3644 kmem_free(ifp
->if_u1
.if_extents
);
3645 } else if (ifp
->if_bytes
) {
3646 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3647 sizeof(xfs_bmbt_rec_t
));
3649 ifp
->if_u1
.if_extents
= NULL
;
3650 ifp
->if_real_bytes
= 0;
3655 * Return a pointer to the extent record for file system block bno.
3657 xfs_bmbt_rec_host_t
* /* pointer to found extent record */
3658 xfs_iext_bno_to_ext(
3659 xfs_ifork_t
*ifp
, /* inode fork pointer */
3660 xfs_fileoff_t bno
, /* block number to search for */
3661 xfs_extnum_t
*idxp
) /* index of target extent */
3663 xfs_bmbt_rec_host_t
*base
; /* pointer to first extent */
3664 xfs_filblks_t blockcount
= 0; /* number of blocks in extent */
3665 xfs_bmbt_rec_host_t
*ep
= NULL
; /* pointer to target extent */
3666 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3667 int high
; /* upper boundary in search */
3668 xfs_extnum_t idx
= 0; /* index of target extent */
3669 int low
; /* lower boundary in search */
3670 xfs_extnum_t nextents
; /* number of file extents */
3671 xfs_fileoff_t startoff
= 0; /* start offset of extent */
3673 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3674 if (nextents
== 0) {
3679 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3680 /* Find target extent list */
3682 erp
= xfs_iext_bno_to_irec(ifp
, bno
, &erp_idx
);
3683 base
= erp
->er_extbuf
;
3684 high
= erp
->er_extcount
- 1;
3686 base
= ifp
->if_u1
.if_extents
;
3687 high
= nextents
- 1;
3689 /* Binary search extent records */
3690 while (low
<= high
) {
3691 idx
= (low
+ high
) >> 1;
3693 startoff
= xfs_bmbt_get_startoff(ep
);
3694 blockcount
= xfs_bmbt_get_blockcount(ep
);
3695 if (bno
< startoff
) {
3697 } else if (bno
>= startoff
+ blockcount
) {
3700 /* Convert back to file-based extent index */
3701 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3702 idx
+= erp
->er_extoff
;
3708 /* Convert back to file-based extent index */
3709 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3710 idx
+= erp
->er_extoff
;
3712 if (bno
>= startoff
+ blockcount
) {
3713 if (++idx
== nextents
) {
3716 ep
= xfs_iext_get_ext(ifp
, idx
);
3724 * Return a pointer to the indirection array entry containing the
3725 * extent record for filesystem block bno. Store the index of the
3726 * target irec in *erp_idxp.
3728 xfs_ext_irec_t
* /* pointer to found extent record */
3729 xfs_iext_bno_to_irec(
3730 xfs_ifork_t
*ifp
, /* inode fork pointer */
3731 xfs_fileoff_t bno
, /* block number to search for */
3732 int *erp_idxp
) /* irec index of target ext list */
3734 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3735 xfs_ext_irec_t
*erp_next
; /* next indirection array entry */
3736 int erp_idx
; /* indirection array index */
3737 int nlists
; /* number of extent irec's (lists) */
3738 int high
; /* binary search upper limit */
3739 int low
; /* binary search lower limit */
3741 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3742 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3746 while (low
<= high
) {
3747 erp_idx
= (low
+ high
) >> 1;
3748 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3749 erp_next
= erp_idx
< nlists
- 1 ? erp
+ 1 : NULL
;
3750 if (bno
< xfs_bmbt_get_startoff(erp
->er_extbuf
)) {
3752 } else if (erp_next
&& bno
>=
3753 xfs_bmbt_get_startoff(erp_next
->er_extbuf
)) {
3759 *erp_idxp
= erp_idx
;
3764 * Return a pointer to the indirection array entry containing the
3765 * extent record at file extent index *idxp. Store the index of the
3766 * target irec in *erp_idxp and store the page index of the target
3767 * extent record in *idxp.
3770 xfs_iext_idx_to_irec(
3771 xfs_ifork_t
*ifp
, /* inode fork pointer */
3772 xfs_extnum_t
*idxp
, /* extent index (file -> page) */
3773 int *erp_idxp
, /* pointer to target irec */
3774 int realloc
) /* new bytes were just added */
3776 xfs_ext_irec_t
*prev
; /* pointer to previous irec */
3777 xfs_ext_irec_t
*erp
= NULL
; /* pointer to current irec */
3778 int erp_idx
; /* indirection array index */
3779 int nlists
; /* number of irec's (ex lists) */
3780 int high
; /* binary search upper limit */
3781 int low
; /* binary search lower limit */
3782 xfs_extnum_t page_idx
= *idxp
; /* extent index in target list */
3784 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3785 ASSERT(page_idx
>= 0);
3786 ASSERT(page_idx
<= ifp
->if_bytes
/ sizeof(xfs_bmbt_rec_t
));
3787 ASSERT(page_idx
< ifp
->if_bytes
/ sizeof(xfs_bmbt_rec_t
) || realloc
);
3789 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3794 /* Binary search extent irec's */
3795 while (low
<= high
) {
3796 erp_idx
= (low
+ high
) >> 1;
3797 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3798 prev
= erp_idx
> 0 ? erp
- 1 : NULL
;
3799 if (page_idx
< erp
->er_extoff
|| (page_idx
== erp
->er_extoff
&&
3800 realloc
&& prev
&& prev
->er_extcount
< XFS_LINEAR_EXTS
)) {
3802 } else if (page_idx
> erp
->er_extoff
+ erp
->er_extcount
||
3803 (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
3806 } else if (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
3807 erp
->er_extcount
== XFS_LINEAR_EXTS
) {
3811 erp
= erp_idx
< nlists
? erp
+ 1 : NULL
;
3814 page_idx
-= erp
->er_extoff
;
3819 *erp_idxp
= erp_idx
;
3824 * Allocate and initialize an indirection array once the space needed
3825 * for incore extents increases above XFS_IEXT_BUFSZ.
3829 xfs_ifork_t
*ifp
) /* inode fork pointer */
3831 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3832 xfs_extnum_t nextents
; /* number of extents in file */
3834 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3835 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3836 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
3838 erp
= kmem_alloc(sizeof(xfs_ext_irec_t
), KM_NOFS
);
3840 if (nextents
== 0) {
3841 ifp
->if_u1
.if_extents
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
3842 } else if (!ifp
->if_real_bytes
) {
3843 xfs_iext_inline_to_direct(ifp
, XFS_IEXT_BUFSZ
);
3844 } else if (ifp
->if_real_bytes
< XFS_IEXT_BUFSZ
) {
3845 xfs_iext_realloc_direct(ifp
, XFS_IEXT_BUFSZ
);
3847 erp
->er_extbuf
= ifp
->if_u1
.if_extents
;
3848 erp
->er_extcount
= nextents
;
3851 ifp
->if_flags
|= XFS_IFEXTIREC
;
3852 ifp
->if_real_bytes
= XFS_IEXT_BUFSZ
;
3853 ifp
->if_bytes
= nextents
* sizeof(xfs_bmbt_rec_t
);
3854 ifp
->if_u1
.if_ext_irec
= erp
;
3860 * Allocate and initialize a new entry in the indirection array.
3864 xfs_ifork_t
*ifp
, /* inode fork pointer */
3865 int erp_idx
) /* index for new irec */
3867 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3868 int i
; /* loop counter */
3869 int nlists
; /* number of irec's (ex lists) */
3871 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3872 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3874 /* Resize indirection array */
3875 xfs_iext_realloc_indirect(ifp
, ++nlists
*
3876 sizeof(xfs_ext_irec_t
));
3878 * Move records down in the array so the
3879 * new page can use erp_idx.
3881 erp
= ifp
->if_u1
.if_ext_irec
;
3882 for (i
= nlists
- 1; i
> erp_idx
; i
--) {
3883 memmove(&erp
[i
], &erp
[i
-1], sizeof(xfs_ext_irec_t
));
3885 ASSERT(i
== erp_idx
);
3887 /* Initialize new extent record */
3888 erp
= ifp
->if_u1
.if_ext_irec
;
3889 erp
[erp_idx
].er_extbuf
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
3890 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
3891 memset(erp
[erp_idx
].er_extbuf
, 0, XFS_IEXT_BUFSZ
);
3892 erp
[erp_idx
].er_extcount
= 0;
3893 erp
[erp_idx
].er_extoff
= erp_idx
> 0 ?
3894 erp
[erp_idx
-1].er_extoff
+ erp
[erp_idx
-1].er_extcount
: 0;
3895 return (&erp
[erp_idx
]);
3899 * Remove a record from the indirection array.
3902 xfs_iext_irec_remove(
3903 xfs_ifork_t
*ifp
, /* inode fork pointer */
3904 int erp_idx
) /* irec index to remove */
3906 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3907 int i
; /* loop counter */
3908 int nlists
; /* number of irec's (ex lists) */
3910 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3911 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3912 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3913 if (erp
->er_extbuf
) {
3914 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1,
3916 kmem_free(erp
->er_extbuf
);
3918 /* Compact extent records */
3919 erp
= ifp
->if_u1
.if_ext_irec
;
3920 for (i
= erp_idx
; i
< nlists
- 1; i
++) {
3921 memmove(&erp
[i
], &erp
[i
+1], sizeof(xfs_ext_irec_t
));
3924 * Manually free the last extent record from the indirection
3925 * array. A call to xfs_iext_realloc_indirect() with a size
3926 * of zero would result in a call to xfs_iext_destroy() which
3927 * would in turn call this function again, creating a nasty
3931 xfs_iext_realloc_indirect(ifp
,
3932 nlists
* sizeof(xfs_ext_irec_t
));
3934 kmem_free(ifp
->if_u1
.if_ext_irec
);
3936 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
3940 * This is called to clean up large amounts of unused memory allocated
3941 * by the indirection array. Before compacting anything though, verify
3942 * that the indirection array is still needed and switch back to the
3943 * linear extent list (or even the inline buffer) if possible. The
3944 * compaction policy is as follows:
3946 * Full Compaction: Extents fit into a single page (or inline buffer)
3947 * Partial Compaction: Extents occupy less than 50% of allocated space
3948 * No Compaction: Extents occupy at least 50% of allocated space
3951 xfs_iext_irec_compact(
3952 xfs_ifork_t
*ifp
) /* inode fork pointer */
3954 xfs_extnum_t nextents
; /* number of extents in file */
3955 int nlists
; /* number of irec's (ex lists) */
3957 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3958 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3959 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3961 if (nextents
== 0) {
3962 xfs_iext_destroy(ifp
);
3963 } else if (nextents
<= XFS_INLINE_EXTS
) {
3964 xfs_iext_indirect_to_direct(ifp
);
3965 xfs_iext_direct_to_inline(ifp
, nextents
);
3966 } else if (nextents
<= XFS_LINEAR_EXTS
) {
3967 xfs_iext_indirect_to_direct(ifp
);
3968 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 1) {
3969 xfs_iext_irec_compact_pages(ifp
);
3974 * Combine extents from neighboring extent pages.
3977 xfs_iext_irec_compact_pages(
3978 xfs_ifork_t
*ifp
) /* inode fork pointer */
3980 xfs_ext_irec_t
*erp
, *erp_next
;/* pointers to irec entries */
3981 int erp_idx
= 0; /* indirection array index */
3982 int nlists
; /* number of irec's (ex lists) */
3984 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3985 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3986 while (erp_idx
< nlists
- 1) {
3987 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3989 if (erp_next
->er_extcount
<=
3990 (XFS_LINEAR_EXTS
- erp
->er_extcount
)) {
3991 memcpy(&erp
->er_extbuf
[erp
->er_extcount
],
3992 erp_next
->er_extbuf
, erp_next
->er_extcount
*
3993 sizeof(xfs_bmbt_rec_t
));
3994 erp
->er_extcount
+= erp_next
->er_extcount
;
3996 * Free page before removing extent record
3997 * so er_extoffs don't get modified in
3998 * xfs_iext_irec_remove.
4000 kmem_free(erp_next
->er_extbuf
);
4001 erp_next
->er_extbuf
= NULL
;
4002 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4003 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4011 * This is called to update the er_extoff field in the indirection
4012 * array when extents have been added or removed from one of the
4013 * extent lists. erp_idx contains the irec index to begin updating
4014 * at and ext_diff contains the number of extents that were added
4018 xfs_iext_irec_update_extoffs(
4019 xfs_ifork_t
*ifp
, /* inode fork pointer */
4020 int erp_idx
, /* irec index to update */
4021 int ext_diff
) /* number of new extents */
4023 int i
; /* loop counter */
4024 int nlists
; /* number of irec's (ex lists */
4026 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4027 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4028 for (i
= erp_idx
; i
< nlists
; i
++) {
4029 ifp
->if_u1
.if_ext_irec
[i
].er_extoff
+= ext_diff
;
4034 * Test whether it is appropriate to check an inode for and free post EOF
4035 * blocks. The 'force' parameter determines whether we should also consider
4036 * regular files that are marked preallocated or append-only.
4039 xfs_can_free_eofblocks(struct xfs_inode
*ip
, bool force
)
4041 /* prealloc/delalloc exists only on regular files */
4042 if (!S_ISREG(ip
->i_d
.di_mode
))
4046 * Zero sized files with no cached pages and delalloc blocks will not
4047 * have speculative prealloc/delalloc blocks to remove.
4049 if (VFS_I(ip
)->i_size
== 0 &&
4050 VN_CACHED(VFS_I(ip
)) == 0 &&
4051 ip
->i_delayed_blks
== 0)
4054 /* If we haven't read in the extent list, then don't do it now. */
4055 if (!(ip
->i_df
.if_flags
& XFS_IFEXTENTS
))
4059 * Do not free real preallocated or append-only files unless the file
4060 * has delalloc blocks and we are forced to remove them.
4062 if (ip
->i_d
.di_flags
& (XFS_DIFLAG_PREALLOC
| XFS_DIFLAG_APPEND
))
4063 if (!force
|| ip
->i_delayed_blks
== 0)