ALSA: seq: Fix missing NULL check at remove_events ioctl
[linux/fpc-iii.git] / fs / xfs / xfs_log_recover.c
blob7cf5e4eafe28b1a05890d63e5c1d706d964eef19
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_alloc.h"
37 #include "xfs_ialloc.h"
38 #include "xfs_log_priv.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_log_recover.h"
41 #include "xfs_extfree_item.h"
42 #include "xfs_trans_priv.h"
43 #include "xfs_quota.h"
44 #include "xfs_utils.h"
45 #include "xfs_cksum.h"
46 #include "xfs_trace.h"
47 #include "xfs_icache.h"
49 /* Need all the magic numbers and buffer ops structures from these headers */
50 #include "xfs_symlink.h"
51 #include "xfs_da_btree.h"
52 #include "xfs_dir2_format.h"
53 #include "xfs_dir2_priv.h"
54 #include "xfs_attr_leaf.h"
55 #include "xfs_attr_remote.h"
57 STATIC int
58 xlog_find_zeroed(
59 struct xlog *,
60 xfs_daddr_t *);
61 STATIC int
62 xlog_clear_stale_blocks(
63 struct xlog *,
64 xfs_lsn_t);
65 #if defined(DEBUG)
66 STATIC void
67 xlog_recover_check_summary(
68 struct xlog *);
69 #else
70 #define xlog_recover_check_summary(log)
71 #endif
74 * This structure is used during recovery to record the buf log items which
75 * have been canceled and should not be replayed.
77 struct xfs_buf_cancel {
78 xfs_daddr_t bc_blkno;
79 uint bc_len;
80 int bc_refcount;
81 struct list_head bc_list;
85 * Sector aligned buffer routines for buffer create/read/write/access
89 * Verify the given count of basic blocks is valid number of blocks
90 * to specify for an operation involving the given XFS log buffer.
91 * Returns nonzero if the count is valid, 0 otherwise.
94 static inline int
95 xlog_buf_bbcount_valid(
96 struct xlog *log,
97 int bbcount)
99 return bbcount > 0 && bbcount <= log->l_logBBsize;
103 * Allocate a buffer to hold log data. The buffer needs to be able
104 * to map to a range of nbblks basic blocks at any valid (basic
105 * block) offset within the log.
107 STATIC xfs_buf_t *
108 xlog_get_bp(
109 struct xlog *log,
110 int nbblks)
112 struct xfs_buf *bp;
114 if (!xlog_buf_bbcount_valid(log, nbblks)) {
115 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
116 nbblks);
117 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
118 return NULL;
122 * We do log I/O in units of log sectors (a power-of-2
123 * multiple of the basic block size), so we round up the
124 * requested size to accommodate the basic blocks required
125 * for complete log sectors.
127 * In addition, the buffer may be used for a non-sector-
128 * aligned block offset, in which case an I/O of the
129 * requested size could extend beyond the end of the
130 * buffer. If the requested size is only 1 basic block it
131 * will never straddle a sector boundary, so this won't be
132 * an issue. Nor will this be a problem if the log I/O is
133 * done in basic blocks (sector size 1). But otherwise we
134 * extend the buffer by one extra log sector to ensure
135 * there's space to accommodate this possibility.
137 if (nbblks > 1 && log->l_sectBBsize > 1)
138 nbblks += log->l_sectBBsize;
139 nbblks = round_up(nbblks, log->l_sectBBsize);
141 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
142 if (bp)
143 xfs_buf_unlock(bp);
144 return bp;
147 STATIC void
148 xlog_put_bp(
149 xfs_buf_t *bp)
151 xfs_buf_free(bp);
155 * Return the address of the start of the given block number's data
156 * in a log buffer. The buffer covers a log sector-aligned region.
158 STATIC xfs_caddr_t
159 xlog_align(
160 struct xlog *log,
161 xfs_daddr_t blk_no,
162 int nbblks,
163 struct xfs_buf *bp)
165 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
167 ASSERT(offset + nbblks <= bp->b_length);
168 return bp->b_addr + BBTOB(offset);
173 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
175 STATIC int
176 xlog_bread_noalign(
177 struct xlog *log,
178 xfs_daddr_t blk_no,
179 int nbblks,
180 struct xfs_buf *bp)
182 int error;
184 if (!xlog_buf_bbcount_valid(log, nbblks)) {
185 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
186 nbblks);
187 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
188 return EFSCORRUPTED;
191 blk_no = round_down(blk_no, log->l_sectBBsize);
192 nbblks = round_up(nbblks, log->l_sectBBsize);
194 ASSERT(nbblks > 0);
195 ASSERT(nbblks <= bp->b_length);
197 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
198 XFS_BUF_READ(bp);
199 bp->b_io_length = nbblks;
200 bp->b_error = 0;
202 xfsbdstrat(log->l_mp, bp);
203 error = xfs_buf_iowait(bp);
204 if (error)
205 xfs_buf_ioerror_alert(bp, __func__);
206 return error;
209 STATIC int
210 xlog_bread(
211 struct xlog *log,
212 xfs_daddr_t blk_no,
213 int nbblks,
214 struct xfs_buf *bp,
215 xfs_caddr_t *offset)
217 int error;
219 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
220 if (error)
221 return error;
223 *offset = xlog_align(log, blk_no, nbblks, bp);
224 return 0;
228 * Read at an offset into the buffer. Returns with the buffer in it's original
229 * state regardless of the result of the read.
231 STATIC int
232 xlog_bread_offset(
233 struct xlog *log,
234 xfs_daddr_t blk_no, /* block to read from */
235 int nbblks, /* blocks to read */
236 struct xfs_buf *bp,
237 xfs_caddr_t offset)
239 xfs_caddr_t orig_offset = bp->b_addr;
240 int orig_len = BBTOB(bp->b_length);
241 int error, error2;
243 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
244 if (error)
245 return error;
247 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
249 /* must reset buffer pointer even on error */
250 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
251 if (error)
252 return error;
253 return error2;
257 * Write out the buffer at the given block for the given number of blocks.
258 * The buffer is kept locked across the write and is returned locked.
259 * This can only be used for synchronous log writes.
261 STATIC int
262 xlog_bwrite(
263 struct xlog *log,
264 xfs_daddr_t blk_no,
265 int nbblks,
266 struct xfs_buf *bp)
268 int error;
270 if (!xlog_buf_bbcount_valid(log, nbblks)) {
271 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
272 nbblks);
273 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
274 return EFSCORRUPTED;
277 blk_no = round_down(blk_no, log->l_sectBBsize);
278 nbblks = round_up(nbblks, log->l_sectBBsize);
280 ASSERT(nbblks > 0);
281 ASSERT(nbblks <= bp->b_length);
283 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
284 XFS_BUF_ZEROFLAGS(bp);
285 xfs_buf_hold(bp);
286 xfs_buf_lock(bp);
287 bp->b_io_length = nbblks;
288 bp->b_error = 0;
290 error = xfs_bwrite(bp);
291 if (error)
292 xfs_buf_ioerror_alert(bp, __func__);
293 xfs_buf_relse(bp);
294 return error;
297 #ifdef DEBUG
299 * dump debug superblock and log record information
301 STATIC void
302 xlog_header_check_dump(
303 xfs_mount_t *mp,
304 xlog_rec_header_t *head)
306 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
307 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
308 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
309 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
311 #else
312 #define xlog_header_check_dump(mp, head)
313 #endif
316 * check log record header for recovery
318 STATIC int
319 xlog_header_check_recover(
320 xfs_mount_t *mp,
321 xlog_rec_header_t *head)
323 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
326 * IRIX doesn't write the h_fmt field and leaves it zeroed
327 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
328 * a dirty log created in IRIX.
330 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
331 xfs_warn(mp,
332 "dirty log written in incompatible format - can't recover");
333 xlog_header_check_dump(mp, head);
334 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
335 XFS_ERRLEVEL_HIGH, mp);
336 return XFS_ERROR(EFSCORRUPTED);
337 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
338 xfs_warn(mp,
339 "dirty log entry has mismatched uuid - can't recover");
340 xlog_header_check_dump(mp, head);
341 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
342 XFS_ERRLEVEL_HIGH, mp);
343 return XFS_ERROR(EFSCORRUPTED);
345 return 0;
349 * read the head block of the log and check the header
351 STATIC int
352 xlog_header_check_mount(
353 xfs_mount_t *mp,
354 xlog_rec_header_t *head)
356 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
358 if (uuid_is_nil(&head->h_fs_uuid)) {
360 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
361 * h_fs_uuid is nil, we assume this log was last mounted
362 * by IRIX and continue.
364 xfs_warn(mp, "nil uuid in log - IRIX style log");
365 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
366 xfs_warn(mp, "log has mismatched uuid - can't recover");
367 xlog_header_check_dump(mp, head);
368 XFS_ERROR_REPORT("xlog_header_check_mount",
369 XFS_ERRLEVEL_HIGH, mp);
370 return XFS_ERROR(EFSCORRUPTED);
372 return 0;
375 STATIC void
376 xlog_recover_iodone(
377 struct xfs_buf *bp)
379 if (bp->b_error) {
381 * We're not going to bother about retrying
382 * this during recovery. One strike!
384 xfs_buf_ioerror_alert(bp, __func__);
385 xfs_force_shutdown(bp->b_target->bt_mount,
386 SHUTDOWN_META_IO_ERROR);
388 bp->b_iodone = NULL;
389 xfs_buf_ioend(bp, 0);
393 * This routine finds (to an approximation) the first block in the physical
394 * log which contains the given cycle. It uses a binary search algorithm.
395 * Note that the algorithm can not be perfect because the disk will not
396 * necessarily be perfect.
398 STATIC int
399 xlog_find_cycle_start(
400 struct xlog *log,
401 struct xfs_buf *bp,
402 xfs_daddr_t first_blk,
403 xfs_daddr_t *last_blk,
404 uint cycle)
406 xfs_caddr_t offset;
407 xfs_daddr_t mid_blk;
408 xfs_daddr_t end_blk;
409 uint mid_cycle;
410 int error;
412 end_blk = *last_blk;
413 mid_blk = BLK_AVG(first_blk, end_blk);
414 while (mid_blk != first_blk && mid_blk != end_blk) {
415 error = xlog_bread(log, mid_blk, 1, bp, &offset);
416 if (error)
417 return error;
418 mid_cycle = xlog_get_cycle(offset);
419 if (mid_cycle == cycle)
420 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
421 else
422 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
423 mid_blk = BLK_AVG(first_blk, end_blk);
425 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
426 (mid_blk == end_blk && mid_blk-1 == first_blk));
428 *last_blk = end_blk;
430 return 0;
434 * Check that a range of blocks does not contain stop_on_cycle_no.
435 * Fill in *new_blk with the block offset where such a block is
436 * found, or with -1 (an invalid block number) if there is no such
437 * block in the range. The scan needs to occur from front to back
438 * and the pointer into the region must be updated since a later
439 * routine will need to perform another test.
441 STATIC int
442 xlog_find_verify_cycle(
443 struct xlog *log,
444 xfs_daddr_t start_blk,
445 int nbblks,
446 uint stop_on_cycle_no,
447 xfs_daddr_t *new_blk)
449 xfs_daddr_t i, j;
450 uint cycle;
451 xfs_buf_t *bp;
452 xfs_daddr_t bufblks;
453 xfs_caddr_t buf = NULL;
454 int error = 0;
457 * Greedily allocate a buffer big enough to handle the full
458 * range of basic blocks we'll be examining. If that fails,
459 * try a smaller size. We need to be able to read at least
460 * a log sector, or we're out of luck.
462 bufblks = 1 << ffs(nbblks);
463 while (bufblks > log->l_logBBsize)
464 bufblks >>= 1;
465 while (!(bp = xlog_get_bp(log, bufblks))) {
466 bufblks >>= 1;
467 if (bufblks < log->l_sectBBsize)
468 return ENOMEM;
471 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
472 int bcount;
474 bcount = min(bufblks, (start_blk + nbblks - i));
476 error = xlog_bread(log, i, bcount, bp, &buf);
477 if (error)
478 goto out;
480 for (j = 0; j < bcount; j++) {
481 cycle = xlog_get_cycle(buf);
482 if (cycle == stop_on_cycle_no) {
483 *new_blk = i+j;
484 goto out;
487 buf += BBSIZE;
491 *new_blk = -1;
493 out:
494 xlog_put_bp(bp);
495 return error;
499 * Potentially backup over partial log record write.
501 * In the typical case, last_blk is the number of the block directly after
502 * a good log record. Therefore, we subtract one to get the block number
503 * of the last block in the given buffer. extra_bblks contains the number
504 * of blocks we would have read on a previous read. This happens when the
505 * last log record is split over the end of the physical log.
507 * extra_bblks is the number of blocks potentially verified on a previous
508 * call to this routine.
510 STATIC int
511 xlog_find_verify_log_record(
512 struct xlog *log,
513 xfs_daddr_t start_blk,
514 xfs_daddr_t *last_blk,
515 int extra_bblks)
517 xfs_daddr_t i;
518 xfs_buf_t *bp;
519 xfs_caddr_t offset = NULL;
520 xlog_rec_header_t *head = NULL;
521 int error = 0;
522 int smallmem = 0;
523 int num_blks = *last_blk - start_blk;
524 int xhdrs;
526 ASSERT(start_blk != 0 || *last_blk != start_blk);
528 if (!(bp = xlog_get_bp(log, num_blks))) {
529 if (!(bp = xlog_get_bp(log, 1)))
530 return ENOMEM;
531 smallmem = 1;
532 } else {
533 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
534 if (error)
535 goto out;
536 offset += ((num_blks - 1) << BBSHIFT);
539 for (i = (*last_blk) - 1; i >= 0; i--) {
540 if (i < start_blk) {
541 /* valid log record not found */
542 xfs_warn(log->l_mp,
543 "Log inconsistent (didn't find previous header)");
544 ASSERT(0);
545 error = XFS_ERROR(EIO);
546 goto out;
549 if (smallmem) {
550 error = xlog_bread(log, i, 1, bp, &offset);
551 if (error)
552 goto out;
555 head = (xlog_rec_header_t *)offset;
557 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
558 break;
560 if (!smallmem)
561 offset -= BBSIZE;
565 * We hit the beginning of the physical log & still no header. Return
566 * to caller. If caller can handle a return of -1, then this routine
567 * will be called again for the end of the physical log.
569 if (i == -1) {
570 error = -1;
571 goto out;
575 * We have the final block of the good log (the first block
576 * of the log record _before_ the head. So we check the uuid.
578 if ((error = xlog_header_check_mount(log->l_mp, head)))
579 goto out;
582 * We may have found a log record header before we expected one.
583 * last_blk will be the 1st block # with a given cycle #. We may end
584 * up reading an entire log record. In this case, we don't want to
585 * reset last_blk. Only when last_blk points in the middle of a log
586 * record do we update last_blk.
588 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
589 uint h_size = be32_to_cpu(head->h_size);
591 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
592 if (h_size % XLOG_HEADER_CYCLE_SIZE)
593 xhdrs++;
594 } else {
595 xhdrs = 1;
598 if (*last_blk - i + extra_bblks !=
599 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
600 *last_blk = i;
602 out:
603 xlog_put_bp(bp);
604 return error;
608 * Head is defined to be the point of the log where the next log write
609 * write could go. This means that incomplete LR writes at the end are
610 * eliminated when calculating the head. We aren't guaranteed that previous
611 * LR have complete transactions. We only know that a cycle number of
612 * current cycle number -1 won't be present in the log if we start writing
613 * from our current block number.
615 * last_blk contains the block number of the first block with a given
616 * cycle number.
618 * Return: zero if normal, non-zero if error.
620 STATIC int
621 xlog_find_head(
622 struct xlog *log,
623 xfs_daddr_t *return_head_blk)
625 xfs_buf_t *bp;
626 xfs_caddr_t offset;
627 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
628 int num_scan_bblks;
629 uint first_half_cycle, last_half_cycle;
630 uint stop_on_cycle;
631 int error, log_bbnum = log->l_logBBsize;
633 /* Is the end of the log device zeroed? */
634 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
635 *return_head_blk = first_blk;
637 /* Is the whole lot zeroed? */
638 if (!first_blk) {
639 /* Linux XFS shouldn't generate totally zeroed logs -
640 * mkfs etc write a dummy unmount record to a fresh
641 * log so we can store the uuid in there
643 xfs_warn(log->l_mp, "totally zeroed log");
646 return 0;
647 } else if (error) {
648 xfs_warn(log->l_mp, "empty log check failed");
649 return error;
652 first_blk = 0; /* get cycle # of 1st block */
653 bp = xlog_get_bp(log, 1);
654 if (!bp)
655 return ENOMEM;
657 error = xlog_bread(log, 0, 1, bp, &offset);
658 if (error)
659 goto bp_err;
661 first_half_cycle = xlog_get_cycle(offset);
663 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
664 error = xlog_bread(log, last_blk, 1, bp, &offset);
665 if (error)
666 goto bp_err;
668 last_half_cycle = xlog_get_cycle(offset);
669 ASSERT(last_half_cycle != 0);
672 * If the 1st half cycle number is equal to the last half cycle number,
673 * then the entire log is stamped with the same cycle number. In this
674 * case, head_blk can't be set to zero (which makes sense). The below
675 * math doesn't work out properly with head_blk equal to zero. Instead,
676 * we set it to log_bbnum which is an invalid block number, but this
677 * value makes the math correct. If head_blk doesn't changed through
678 * all the tests below, *head_blk is set to zero at the very end rather
679 * than log_bbnum. In a sense, log_bbnum and zero are the same block
680 * in a circular file.
682 if (first_half_cycle == last_half_cycle) {
684 * In this case we believe that the entire log should have
685 * cycle number last_half_cycle. We need to scan backwards
686 * from the end verifying that there are no holes still
687 * containing last_half_cycle - 1. If we find such a hole,
688 * then the start of that hole will be the new head. The
689 * simple case looks like
690 * x | x ... | x - 1 | x
691 * Another case that fits this picture would be
692 * x | x + 1 | x ... | x
693 * In this case the head really is somewhere at the end of the
694 * log, as one of the latest writes at the beginning was
695 * incomplete.
696 * One more case is
697 * x | x + 1 | x ... | x - 1 | x
698 * This is really the combination of the above two cases, and
699 * the head has to end up at the start of the x-1 hole at the
700 * end of the log.
702 * In the 256k log case, we will read from the beginning to the
703 * end of the log and search for cycle numbers equal to x-1.
704 * We don't worry about the x+1 blocks that we encounter,
705 * because we know that they cannot be the head since the log
706 * started with x.
708 head_blk = log_bbnum;
709 stop_on_cycle = last_half_cycle - 1;
710 } else {
712 * In this case we want to find the first block with cycle
713 * number matching last_half_cycle. We expect the log to be
714 * some variation on
715 * x + 1 ... | x ... | x
716 * The first block with cycle number x (last_half_cycle) will
717 * be where the new head belongs. First we do a binary search
718 * for the first occurrence of last_half_cycle. The binary
719 * search may not be totally accurate, so then we scan back
720 * from there looking for occurrences of last_half_cycle before
721 * us. If that backwards scan wraps around the beginning of
722 * the log, then we look for occurrences of last_half_cycle - 1
723 * at the end of the log. The cases we're looking for look
724 * like
725 * v binary search stopped here
726 * x + 1 ... | x | x + 1 | x ... | x
727 * ^ but we want to locate this spot
728 * or
729 * <---------> less than scan distance
730 * x + 1 ... | x ... | x - 1 | x
731 * ^ we want to locate this spot
733 stop_on_cycle = last_half_cycle;
734 if ((error = xlog_find_cycle_start(log, bp, first_blk,
735 &head_blk, last_half_cycle)))
736 goto bp_err;
740 * Now validate the answer. Scan back some number of maximum possible
741 * blocks and make sure each one has the expected cycle number. The
742 * maximum is determined by the total possible amount of buffering
743 * in the in-core log. The following number can be made tighter if
744 * we actually look at the block size of the filesystem.
746 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
747 if (head_blk >= num_scan_bblks) {
749 * We are guaranteed that the entire check can be performed
750 * in one buffer.
752 start_blk = head_blk - num_scan_bblks;
753 if ((error = xlog_find_verify_cycle(log,
754 start_blk, num_scan_bblks,
755 stop_on_cycle, &new_blk)))
756 goto bp_err;
757 if (new_blk != -1)
758 head_blk = new_blk;
759 } else { /* need to read 2 parts of log */
761 * We are going to scan backwards in the log in two parts.
762 * First we scan the physical end of the log. In this part
763 * of the log, we are looking for blocks with cycle number
764 * last_half_cycle - 1.
765 * If we find one, then we know that the log starts there, as
766 * we've found a hole that didn't get written in going around
767 * the end of the physical log. The simple case for this is
768 * x + 1 ... | x ... | x - 1 | x
769 * <---------> less than scan distance
770 * If all of the blocks at the end of the log have cycle number
771 * last_half_cycle, then we check the blocks at the start of
772 * the log looking for occurrences of last_half_cycle. If we
773 * find one, then our current estimate for the location of the
774 * first occurrence of last_half_cycle is wrong and we move
775 * back to the hole we've found. This case looks like
776 * x + 1 ... | x | x + 1 | x ...
777 * ^ binary search stopped here
778 * Another case we need to handle that only occurs in 256k
779 * logs is
780 * x + 1 ... | x ... | x+1 | x ...
781 * ^ binary search stops here
782 * In a 256k log, the scan at the end of the log will see the
783 * x + 1 blocks. We need to skip past those since that is
784 * certainly not the head of the log. By searching for
785 * last_half_cycle-1 we accomplish that.
787 ASSERT(head_blk <= INT_MAX &&
788 (xfs_daddr_t) num_scan_bblks >= head_blk);
789 start_blk = log_bbnum - (num_scan_bblks - head_blk);
790 if ((error = xlog_find_verify_cycle(log, start_blk,
791 num_scan_bblks - (int)head_blk,
792 (stop_on_cycle - 1), &new_blk)))
793 goto bp_err;
794 if (new_blk != -1) {
795 head_blk = new_blk;
796 goto validate_head;
800 * Scan beginning of log now. The last part of the physical
801 * log is good. This scan needs to verify that it doesn't find
802 * the last_half_cycle.
804 start_blk = 0;
805 ASSERT(head_blk <= INT_MAX);
806 if ((error = xlog_find_verify_cycle(log,
807 start_blk, (int)head_blk,
808 stop_on_cycle, &new_blk)))
809 goto bp_err;
810 if (new_blk != -1)
811 head_blk = new_blk;
814 validate_head:
816 * Now we need to make sure head_blk is not pointing to a block in
817 * the middle of a log record.
819 num_scan_bblks = XLOG_REC_SHIFT(log);
820 if (head_blk >= num_scan_bblks) {
821 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
823 /* start ptr at last block ptr before head_blk */
824 if ((error = xlog_find_verify_log_record(log, start_blk,
825 &head_blk, 0)) == -1) {
826 error = XFS_ERROR(EIO);
827 goto bp_err;
828 } else if (error)
829 goto bp_err;
830 } else {
831 start_blk = 0;
832 ASSERT(head_blk <= INT_MAX);
833 if ((error = xlog_find_verify_log_record(log, start_blk,
834 &head_blk, 0)) == -1) {
835 /* We hit the beginning of the log during our search */
836 start_blk = log_bbnum - (num_scan_bblks - head_blk);
837 new_blk = log_bbnum;
838 ASSERT(start_blk <= INT_MAX &&
839 (xfs_daddr_t) log_bbnum-start_blk >= 0);
840 ASSERT(head_blk <= INT_MAX);
841 if ((error = xlog_find_verify_log_record(log,
842 start_blk, &new_blk,
843 (int)head_blk)) == -1) {
844 error = XFS_ERROR(EIO);
845 goto bp_err;
846 } else if (error)
847 goto bp_err;
848 if (new_blk != log_bbnum)
849 head_blk = new_blk;
850 } else if (error)
851 goto bp_err;
854 xlog_put_bp(bp);
855 if (head_blk == log_bbnum)
856 *return_head_blk = 0;
857 else
858 *return_head_blk = head_blk;
860 * When returning here, we have a good block number. Bad block
861 * means that during a previous crash, we didn't have a clean break
862 * from cycle number N to cycle number N-1. In this case, we need
863 * to find the first block with cycle number N-1.
865 return 0;
867 bp_err:
868 xlog_put_bp(bp);
870 if (error)
871 xfs_warn(log->l_mp, "failed to find log head");
872 return error;
876 * Find the sync block number or the tail of the log.
878 * This will be the block number of the last record to have its
879 * associated buffers synced to disk. Every log record header has
880 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
881 * to get a sync block number. The only concern is to figure out which
882 * log record header to believe.
884 * The following algorithm uses the log record header with the largest
885 * lsn. The entire log record does not need to be valid. We only care
886 * that the header is valid.
888 * We could speed up search by using current head_blk buffer, but it is not
889 * available.
891 STATIC int
892 xlog_find_tail(
893 struct xlog *log,
894 xfs_daddr_t *head_blk,
895 xfs_daddr_t *tail_blk)
897 xlog_rec_header_t *rhead;
898 xlog_op_header_t *op_head;
899 xfs_caddr_t offset = NULL;
900 xfs_buf_t *bp;
901 int error, i, found;
902 xfs_daddr_t umount_data_blk;
903 xfs_daddr_t after_umount_blk;
904 xfs_lsn_t tail_lsn;
905 int hblks;
907 found = 0;
910 * Find previous log record
912 if ((error = xlog_find_head(log, head_blk)))
913 return error;
915 bp = xlog_get_bp(log, 1);
916 if (!bp)
917 return ENOMEM;
918 if (*head_blk == 0) { /* special case */
919 error = xlog_bread(log, 0, 1, bp, &offset);
920 if (error)
921 goto done;
923 if (xlog_get_cycle(offset) == 0) {
924 *tail_blk = 0;
925 /* leave all other log inited values alone */
926 goto done;
931 * Search backwards looking for log record header block
933 ASSERT(*head_blk < INT_MAX);
934 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
935 error = xlog_bread(log, i, 1, bp, &offset);
936 if (error)
937 goto done;
939 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
940 found = 1;
941 break;
945 * If we haven't found the log record header block, start looking
946 * again from the end of the physical log. XXXmiken: There should be
947 * a check here to make sure we didn't search more than N blocks in
948 * the previous code.
950 if (!found) {
951 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
952 error = xlog_bread(log, i, 1, bp, &offset);
953 if (error)
954 goto done;
956 if (*(__be32 *)offset ==
957 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
958 found = 2;
959 break;
963 if (!found) {
964 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
965 ASSERT(0);
966 return XFS_ERROR(EIO);
969 /* find blk_no of tail of log */
970 rhead = (xlog_rec_header_t *)offset;
971 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
974 * Reset log values according to the state of the log when we
975 * crashed. In the case where head_blk == 0, we bump curr_cycle
976 * one because the next write starts a new cycle rather than
977 * continuing the cycle of the last good log record. At this
978 * point we have guaranteed that all partial log records have been
979 * accounted for. Therefore, we know that the last good log record
980 * written was complete and ended exactly on the end boundary
981 * of the physical log.
983 log->l_prev_block = i;
984 log->l_curr_block = (int)*head_blk;
985 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
986 if (found == 2)
987 log->l_curr_cycle++;
988 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
989 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
990 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
991 BBTOB(log->l_curr_block));
992 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
993 BBTOB(log->l_curr_block));
996 * Look for unmount record. If we find it, then we know there
997 * was a clean unmount. Since 'i' could be the last block in
998 * the physical log, we convert to a log block before comparing
999 * to the head_blk.
1001 * Save the current tail lsn to use to pass to
1002 * xlog_clear_stale_blocks() below. We won't want to clear the
1003 * unmount record if there is one, so we pass the lsn of the
1004 * unmount record rather than the block after it.
1006 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1007 int h_size = be32_to_cpu(rhead->h_size);
1008 int h_version = be32_to_cpu(rhead->h_version);
1010 if ((h_version & XLOG_VERSION_2) &&
1011 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1012 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1013 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1014 hblks++;
1015 } else {
1016 hblks = 1;
1018 } else {
1019 hblks = 1;
1021 after_umount_blk = (i + hblks + (int)
1022 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1023 tail_lsn = atomic64_read(&log->l_tail_lsn);
1024 if (*head_blk == after_umount_blk &&
1025 be32_to_cpu(rhead->h_num_logops) == 1) {
1026 umount_data_blk = (i + hblks) % log->l_logBBsize;
1027 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1028 if (error)
1029 goto done;
1031 op_head = (xlog_op_header_t *)offset;
1032 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1034 * Set tail and last sync so that newly written
1035 * log records will point recovery to after the
1036 * current unmount record.
1038 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1039 log->l_curr_cycle, after_umount_blk);
1040 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1041 log->l_curr_cycle, after_umount_blk);
1042 *tail_blk = after_umount_blk;
1045 * Note that the unmount was clean. If the unmount
1046 * was not clean, we need to know this to rebuild the
1047 * superblock counters from the perag headers if we
1048 * have a filesystem using non-persistent counters.
1050 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1055 * Make sure that there are no blocks in front of the head
1056 * with the same cycle number as the head. This can happen
1057 * because we allow multiple outstanding log writes concurrently,
1058 * and the later writes might make it out before earlier ones.
1060 * We use the lsn from before modifying it so that we'll never
1061 * overwrite the unmount record after a clean unmount.
1063 * Do this only if we are going to recover the filesystem
1065 * NOTE: This used to say "if (!readonly)"
1066 * However on Linux, we can & do recover a read-only filesystem.
1067 * We only skip recovery if NORECOVERY is specified on mount,
1068 * in which case we would not be here.
1070 * But... if the -device- itself is readonly, just skip this.
1071 * We can't recover this device anyway, so it won't matter.
1073 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1074 error = xlog_clear_stale_blocks(log, tail_lsn);
1076 done:
1077 xlog_put_bp(bp);
1079 if (error)
1080 xfs_warn(log->l_mp, "failed to locate log tail");
1081 return error;
1085 * Is the log zeroed at all?
1087 * The last binary search should be changed to perform an X block read
1088 * once X becomes small enough. You can then search linearly through
1089 * the X blocks. This will cut down on the number of reads we need to do.
1091 * If the log is partially zeroed, this routine will pass back the blkno
1092 * of the first block with cycle number 0. It won't have a complete LR
1093 * preceding it.
1095 * Return:
1096 * 0 => the log is completely written to
1097 * -1 => use *blk_no as the first block of the log
1098 * >0 => error has occurred
1100 STATIC int
1101 xlog_find_zeroed(
1102 struct xlog *log,
1103 xfs_daddr_t *blk_no)
1105 xfs_buf_t *bp;
1106 xfs_caddr_t offset;
1107 uint first_cycle, last_cycle;
1108 xfs_daddr_t new_blk, last_blk, start_blk;
1109 xfs_daddr_t num_scan_bblks;
1110 int error, log_bbnum = log->l_logBBsize;
1112 *blk_no = 0;
1114 /* check totally zeroed log */
1115 bp = xlog_get_bp(log, 1);
1116 if (!bp)
1117 return ENOMEM;
1118 error = xlog_bread(log, 0, 1, bp, &offset);
1119 if (error)
1120 goto bp_err;
1122 first_cycle = xlog_get_cycle(offset);
1123 if (first_cycle == 0) { /* completely zeroed log */
1124 *blk_no = 0;
1125 xlog_put_bp(bp);
1126 return -1;
1129 /* check partially zeroed log */
1130 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1131 if (error)
1132 goto bp_err;
1134 last_cycle = xlog_get_cycle(offset);
1135 if (last_cycle != 0) { /* log completely written to */
1136 xlog_put_bp(bp);
1137 return 0;
1138 } else if (first_cycle != 1) {
1140 * If the cycle of the last block is zero, the cycle of
1141 * the first block must be 1. If it's not, maybe we're
1142 * not looking at a log... Bail out.
1144 xfs_warn(log->l_mp,
1145 "Log inconsistent or not a log (last==0, first!=1)");
1146 return XFS_ERROR(EINVAL);
1149 /* we have a partially zeroed log */
1150 last_blk = log_bbnum-1;
1151 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1152 goto bp_err;
1155 * Validate the answer. Because there is no way to guarantee that
1156 * the entire log is made up of log records which are the same size,
1157 * we scan over the defined maximum blocks. At this point, the maximum
1158 * is not chosen to mean anything special. XXXmiken
1160 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1161 ASSERT(num_scan_bblks <= INT_MAX);
1163 if (last_blk < num_scan_bblks)
1164 num_scan_bblks = last_blk;
1165 start_blk = last_blk - num_scan_bblks;
1168 * We search for any instances of cycle number 0 that occur before
1169 * our current estimate of the head. What we're trying to detect is
1170 * 1 ... | 0 | 1 | 0...
1171 * ^ binary search ends here
1173 if ((error = xlog_find_verify_cycle(log, start_blk,
1174 (int)num_scan_bblks, 0, &new_blk)))
1175 goto bp_err;
1176 if (new_blk != -1)
1177 last_blk = new_blk;
1180 * Potentially backup over partial log record write. We don't need
1181 * to search the end of the log because we know it is zero.
1183 if ((error = xlog_find_verify_log_record(log, start_blk,
1184 &last_blk, 0)) == -1) {
1185 error = XFS_ERROR(EIO);
1186 goto bp_err;
1187 } else if (error)
1188 goto bp_err;
1190 *blk_no = last_blk;
1191 bp_err:
1192 xlog_put_bp(bp);
1193 if (error)
1194 return error;
1195 return -1;
1199 * These are simple subroutines used by xlog_clear_stale_blocks() below
1200 * to initialize a buffer full of empty log record headers and write
1201 * them into the log.
1203 STATIC void
1204 xlog_add_record(
1205 struct xlog *log,
1206 xfs_caddr_t buf,
1207 int cycle,
1208 int block,
1209 int tail_cycle,
1210 int tail_block)
1212 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1214 memset(buf, 0, BBSIZE);
1215 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1216 recp->h_cycle = cpu_to_be32(cycle);
1217 recp->h_version = cpu_to_be32(
1218 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1219 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1220 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1221 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1222 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1225 STATIC int
1226 xlog_write_log_records(
1227 struct xlog *log,
1228 int cycle,
1229 int start_block,
1230 int blocks,
1231 int tail_cycle,
1232 int tail_block)
1234 xfs_caddr_t offset;
1235 xfs_buf_t *bp;
1236 int balign, ealign;
1237 int sectbb = log->l_sectBBsize;
1238 int end_block = start_block + blocks;
1239 int bufblks;
1240 int error = 0;
1241 int i, j = 0;
1244 * Greedily allocate a buffer big enough to handle the full
1245 * range of basic blocks to be written. If that fails, try
1246 * a smaller size. We need to be able to write at least a
1247 * log sector, or we're out of luck.
1249 bufblks = 1 << ffs(blocks);
1250 while (bufblks > log->l_logBBsize)
1251 bufblks >>= 1;
1252 while (!(bp = xlog_get_bp(log, bufblks))) {
1253 bufblks >>= 1;
1254 if (bufblks < sectbb)
1255 return ENOMEM;
1258 /* We may need to do a read at the start to fill in part of
1259 * the buffer in the starting sector not covered by the first
1260 * write below.
1262 balign = round_down(start_block, sectbb);
1263 if (balign != start_block) {
1264 error = xlog_bread_noalign(log, start_block, 1, bp);
1265 if (error)
1266 goto out_put_bp;
1268 j = start_block - balign;
1271 for (i = start_block; i < end_block; i += bufblks) {
1272 int bcount, endcount;
1274 bcount = min(bufblks, end_block - start_block);
1275 endcount = bcount - j;
1277 /* We may need to do a read at the end to fill in part of
1278 * the buffer in the final sector not covered by the write.
1279 * If this is the same sector as the above read, skip it.
1281 ealign = round_down(end_block, sectbb);
1282 if (j == 0 && (start_block + endcount > ealign)) {
1283 offset = bp->b_addr + BBTOB(ealign - start_block);
1284 error = xlog_bread_offset(log, ealign, sectbb,
1285 bp, offset);
1286 if (error)
1287 break;
1291 offset = xlog_align(log, start_block, endcount, bp);
1292 for (; j < endcount; j++) {
1293 xlog_add_record(log, offset, cycle, i+j,
1294 tail_cycle, tail_block);
1295 offset += BBSIZE;
1297 error = xlog_bwrite(log, start_block, endcount, bp);
1298 if (error)
1299 break;
1300 start_block += endcount;
1301 j = 0;
1304 out_put_bp:
1305 xlog_put_bp(bp);
1306 return error;
1310 * This routine is called to blow away any incomplete log writes out
1311 * in front of the log head. We do this so that we won't become confused
1312 * if we come up, write only a little bit more, and then crash again.
1313 * If we leave the partial log records out there, this situation could
1314 * cause us to think those partial writes are valid blocks since they
1315 * have the current cycle number. We get rid of them by overwriting them
1316 * with empty log records with the old cycle number rather than the
1317 * current one.
1319 * The tail lsn is passed in rather than taken from
1320 * the log so that we will not write over the unmount record after a
1321 * clean unmount in a 512 block log. Doing so would leave the log without
1322 * any valid log records in it until a new one was written. If we crashed
1323 * during that time we would not be able to recover.
1325 STATIC int
1326 xlog_clear_stale_blocks(
1327 struct xlog *log,
1328 xfs_lsn_t tail_lsn)
1330 int tail_cycle, head_cycle;
1331 int tail_block, head_block;
1332 int tail_distance, max_distance;
1333 int distance;
1334 int error;
1336 tail_cycle = CYCLE_LSN(tail_lsn);
1337 tail_block = BLOCK_LSN(tail_lsn);
1338 head_cycle = log->l_curr_cycle;
1339 head_block = log->l_curr_block;
1342 * Figure out the distance between the new head of the log
1343 * and the tail. We want to write over any blocks beyond the
1344 * head that we may have written just before the crash, but
1345 * we don't want to overwrite the tail of the log.
1347 if (head_cycle == tail_cycle) {
1349 * The tail is behind the head in the physical log,
1350 * so the distance from the head to the tail is the
1351 * distance from the head to the end of the log plus
1352 * the distance from the beginning of the log to the
1353 * tail.
1355 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1356 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1357 XFS_ERRLEVEL_LOW, log->l_mp);
1358 return XFS_ERROR(EFSCORRUPTED);
1360 tail_distance = tail_block + (log->l_logBBsize - head_block);
1361 } else {
1363 * The head is behind the tail in the physical log,
1364 * so the distance from the head to the tail is just
1365 * the tail block minus the head block.
1367 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1368 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1369 XFS_ERRLEVEL_LOW, log->l_mp);
1370 return XFS_ERROR(EFSCORRUPTED);
1372 tail_distance = tail_block - head_block;
1376 * If the head is right up against the tail, we can't clear
1377 * anything.
1379 if (tail_distance <= 0) {
1380 ASSERT(tail_distance == 0);
1381 return 0;
1384 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1386 * Take the smaller of the maximum amount of outstanding I/O
1387 * we could have and the distance to the tail to clear out.
1388 * We take the smaller so that we don't overwrite the tail and
1389 * we don't waste all day writing from the head to the tail
1390 * for no reason.
1392 max_distance = MIN(max_distance, tail_distance);
1394 if ((head_block + max_distance) <= log->l_logBBsize) {
1396 * We can stomp all the blocks we need to without
1397 * wrapping around the end of the log. Just do it
1398 * in a single write. Use the cycle number of the
1399 * current cycle minus one so that the log will look like:
1400 * n ... | n - 1 ...
1402 error = xlog_write_log_records(log, (head_cycle - 1),
1403 head_block, max_distance, tail_cycle,
1404 tail_block);
1405 if (error)
1406 return error;
1407 } else {
1409 * We need to wrap around the end of the physical log in
1410 * order to clear all the blocks. Do it in two separate
1411 * I/Os. The first write should be from the head to the
1412 * end of the physical log, and it should use the current
1413 * cycle number minus one just like above.
1415 distance = log->l_logBBsize - head_block;
1416 error = xlog_write_log_records(log, (head_cycle - 1),
1417 head_block, distance, tail_cycle,
1418 tail_block);
1420 if (error)
1421 return error;
1424 * Now write the blocks at the start of the physical log.
1425 * This writes the remainder of the blocks we want to clear.
1426 * It uses the current cycle number since we're now on the
1427 * same cycle as the head so that we get:
1428 * n ... n ... | n - 1 ...
1429 * ^^^^^ blocks we're writing
1431 distance = max_distance - (log->l_logBBsize - head_block);
1432 error = xlog_write_log_records(log, head_cycle, 0, distance,
1433 tail_cycle, tail_block);
1434 if (error)
1435 return error;
1438 return 0;
1441 /******************************************************************************
1443 * Log recover routines
1445 ******************************************************************************
1448 STATIC xlog_recover_t *
1449 xlog_recover_find_tid(
1450 struct hlist_head *head,
1451 xlog_tid_t tid)
1453 xlog_recover_t *trans;
1455 hlist_for_each_entry(trans, head, r_list) {
1456 if (trans->r_log_tid == tid)
1457 return trans;
1459 return NULL;
1462 STATIC void
1463 xlog_recover_new_tid(
1464 struct hlist_head *head,
1465 xlog_tid_t tid,
1466 xfs_lsn_t lsn)
1468 xlog_recover_t *trans;
1470 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1471 trans->r_log_tid = tid;
1472 trans->r_lsn = lsn;
1473 INIT_LIST_HEAD(&trans->r_itemq);
1475 INIT_HLIST_NODE(&trans->r_list);
1476 hlist_add_head(&trans->r_list, head);
1479 STATIC void
1480 xlog_recover_add_item(
1481 struct list_head *head)
1483 xlog_recover_item_t *item;
1485 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1486 INIT_LIST_HEAD(&item->ri_list);
1487 list_add_tail(&item->ri_list, head);
1490 STATIC int
1491 xlog_recover_add_to_cont_trans(
1492 struct xlog *log,
1493 struct xlog_recover *trans,
1494 xfs_caddr_t dp,
1495 int len)
1497 xlog_recover_item_t *item;
1498 xfs_caddr_t ptr, old_ptr;
1499 int old_len;
1501 if (list_empty(&trans->r_itemq)) {
1502 /* finish copying rest of trans header */
1503 xlog_recover_add_item(&trans->r_itemq);
1504 ptr = (xfs_caddr_t) &trans->r_theader +
1505 sizeof(xfs_trans_header_t) - len;
1506 memcpy(ptr, dp, len); /* d, s, l */
1507 return 0;
1509 /* take the tail entry */
1510 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1512 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1513 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1515 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1516 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1517 item->ri_buf[item->ri_cnt-1].i_len += len;
1518 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1519 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1520 return 0;
1524 * The next region to add is the start of a new region. It could be
1525 * a whole region or it could be the first part of a new region. Because
1526 * of this, the assumption here is that the type and size fields of all
1527 * format structures fit into the first 32 bits of the structure.
1529 * This works because all regions must be 32 bit aligned. Therefore, we
1530 * either have both fields or we have neither field. In the case we have
1531 * neither field, the data part of the region is zero length. We only have
1532 * a log_op_header and can throw away the header since a new one will appear
1533 * later. If we have at least 4 bytes, then we can determine how many regions
1534 * will appear in the current log item.
1536 STATIC int
1537 xlog_recover_add_to_trans(
1538 struct xlog *log,
1539 struct xlog_recover *trans,
1540 xfs_caddr_t dp,
1541 int len)
1543 xfs_inode_log_format_t *in_f; /* any will do */
1544 xlog_recover_item_t *item;
1545 xfs_caddr_t ptr;
1547 if (!len)
1548 return 0;
1549 if (list_empty(&trans->r_itemq)) {
1550 /* we need to catch log corruptions here */
1551 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1552 xfs_warn(log->l_mp, "%s: bad header magic number",
1553 __func__);
1554 ASSERT(0);
1555 return XFS_ERROR(EIO);
1557 if (len == sizeof(xfs_trans_header_t))
1558 xlog_recover_add_item(&trans->r_itemq);
1559 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1560 return 0;
1563 ptr = kmem_alloc(len, KM_SLEEP);
1564 memcpy(ptr, dp, len);
1565 in_f = (xfs_inode_log_format_t *)ptr;
1567 /* take the tail entry */
1568 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1569 if (item->ri_total != 0 &&
1570 item->ri_total == item->ri_cnt) {
1571 /* tail item is in use, get a new one */
1572 xlog_recover_add_item(&trans->r_itemq);
1573 item = list_entry(trans->r_itemq.prev,
1574 xlog_recover_item_t, ri_list);
1577 if (item->ri_total == 0) { /* first region to be added */
1578 if (in_f->ilf_size == 0 ||
1579 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1580 xfs_warn(log->l_mp,
1581 "bad number of regions (%d) in inode log format",
1582 in_f->ilf_size);
1583 ASSERT(0);
1584 return XFS_ERROR(EIO);
1587 item->ri_total = in_f->ilf_size;
1588 item->ri_buf =
1589 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1590 KM_SLEEP);
1592 ASSERT(item->ri_total > item->ri_cnt);
1593 /* Description region is ri_buf[0] */
1594 item->ri_buf[item->ri_cnt].i_addr = ptr;
1595 item->ri_buf[item->ri_cnt].i_len = len;
1596 item->ri_cnt++;
1597 trace_xfs_log_recover_item_add(log, trans, item, 0);
1598 return 0;
1602 * Sort the log items in the transaction.
1604 * The ordering constraints are defined by the inode allocation and unlink
1605 * behaviour. The rules are:
1607 * 1. Every item is only logged once in a given transaction. Hence it
1608 * represents the last logged state of the item. Hence ordering is
1609 * dependent on the order in which operations need to be performed so
1610 * required initial conditions are always met.
1612 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1613 * there's nothing to replay from them so we can simply cull them
1614 * from the transaction. However, we can't do that until after we've
1615 * replayed all the other items because they may be dependent on the
1616 * cancelled buffer and replaying the cancelled buffer can remove it
1617 * form the cancelled buffer table. Hence they have tobe done last.
1619 * 3. Inode allocation buffers must be replayed before inode items that
1620 * read the buffer and replay changes into it.
1622 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1623 * This ensures that inodes are completely flushed to the inode buffer
1624 * in a "free" state before we remove the unlinked inode list pointer.
1626 * Hence the ordering needs to be inode allocation buffers first, inode items
1627 * second, inode unlink buffers third and cancelled buffers last.
1629 * But there's a problem with that - we can't tell an inode allocation buffer
1630 * apart from a regular buffer, so we can't separate them. We can, however,
1631 * tell an inode unlink buffer from the others, and so we can separate them out
1632 * from all the other buffers and move them to last.
1634 * Hence, 4 lists, in order from head to tail:
1635 * - buffer_list for all buffers except cancelled/inode unlink buffers
1636 * - item_list for all non-buffer items
1637 * - inode_buffer_list for inode unlink buffers
1638 * - cancel_list for the cancelled buffers
1640 STATIC int
1641 xlog_recover_reorder_trans(
1642 struct xlog *log,
1643 struct xlog_recover *trans,
1644 int pass)
1646 xlog_recover_item_t *item, *n;
1647 LIST_HEAD(sort_list);
1648 LIST_HEAD(cancel_list);
1649 LIST_HEAD(buffer_list);
1650 LIST_HEAD(inode_buffer_list);
1651 LIST_HEAD(inode_list);
1653 list_splice_init(&trans->r_itemq, &sort_list);
1654 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1655 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1657 switch (ITEM_TYPE(item)) {
1658 case XFS_LI_BUF:
1659 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1660 trace_xfs_log_recover_item_reorder_head(log,
1661 trans, item, pass);
1662 list_move(&item->ri_list, &cancel_list);
1663 break;
1665 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1666 list_move(&item->ri_list, &inode_buffer_list);
1667 break;
1669 list_move_tail(&item->ri_list, &buffer_list);
1670 break;
1671 case XFS_LI_INODE:
1672 case XFS_LI_DQUOT:
1673 case XFS_LI_QUOTAOFF:
1674 case XFS_LI_EFD:
1675 case XFS_LI_EFI:
1676 trace_xfs_log_recover_item_reorder_tail(log,
1677 trans, item, pass);
1678 list_move_tail(&item->ri_list, &inode_list);
1679 break;
1680 default:
1681 xfs_warn(log->l_mp,
1682 "%s: unrecognized type of log operation",
1683 __func__);
1684 ASSERT(0);
1685 return XFS_ERROR(EIO);
1688 ASSERT(list_empty(&sort_list));
1689 if (!list_empty(&buffer_list))
1690 list_splice(&buffer_list, &trans->r_itemq);
1691 if (!list_empty(&inode_list))
1692 list_splice_tail(&inode_list, &trans->r_itemq);
1693 if (!list_empty(&inode_buffer_list))
1694 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1695 if (!list_empty(&cancel_list))
1696 list_splice_tail(&cancel_list, &trans->r_itemq);
1697 return 0;
1701 * Build up the table of buf cancel records so that we don't replay
1702 * cancelled data in the second pass. For buffer records that are
1703 * not cancel records, there is nothing to do here so we just return.
1705 * If we get a cancel record which is already in the table, this indicates
1706 * that the buffer was cancelled multiple times. In order to ensure
1707 * that during pass 2 we keep the record in the table until we reach its
1708 * last occurrence in the log, we keep a reference count in the cancel
1709 * record in the table to tell us how many times we expect to see this
1710 * record during the second pass.
1712 STATIC int
1713 xlog_recover_buffer_pass1(
1714 struct xlog *log,
1715 struct xlog_recover_item *item)
1717 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1718 struct list_head *bucket;
1719 struct xfs_buf_cancel *bcp;
1722 * If this isn't a cancel buffer item, then just return.
1724 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1725 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1726 return 0;
1730 * Insert an xfs_buf_cancel record into the hash table of them.
1731 * If there is already an identical record, bump its reference count.
1733 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1734 list_for_each_entry(bcp, bucket, bc_list) {
1735 if (bcp->bc_blkno == buf_f->blf_blkno &&
1736 bcp->bc_len == buf_f->blf_len) {
1737 bcp->bc_refcount++;
1738 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1739 return 0;
1743 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1744 bcp->bc_blkno = buf_f->blf_blkno;
1745 bcp->bc_len = buf_f->blf_len;
1746 bcp->bc_refcount = 1;
1747 list_add_tail(&bcp->bc_list, bucket);
1749 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1750 return 0;
1754 * Check to see whether the buffer being recovered has a corresponding
1755 * entry in the buffer cancel record table. If it does then return 1
1756 * so that it will be cancelled, otherwise return 0. If the buffer is
1757 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1758 * the refcount on the entry in the table and remove it from the table
1759 * if this is the last reference.
1761 * We remove the cancel record from the table when we encounter its
1762 * last occurrence in the log so that if the same buffer is re-used
1763 * again after its last cancellation we actually replay the changes
1764 * made at that point.
1766 STATIC int
1767 xlog_check_buffer_cancelled(
1768 struct xlog *log,
1769 xfs_daddr_t blkno,
1770 uint len,
1771 ushort flags)
1773 struct list_head *bucket;
1774 struct xfs_buf_cancel *bcp;
1776 if (log->l_buf_cancel_table == NULL) {
1778 * There is nothing in the table built in pass one,
1779 * so this buffer must not be cancelled.
1781 ASSERT(!(flags & XFS_BLF_CANCEL));
1782 return 0;
1786 * Search for an entry in the cancel table that matches our buffer.
1788 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1789 list_for_each_entry(bcp, bucket, bc_list) {
1790 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1791 goto found;
1795 * We didn't find a corresponding entry in the table, so return 0 so
1796 * that the buffer is NOT cancelled.
1798 ASSERT(!(flags & XFS_BLF_CANCEL));
1799 return 0;
1801 found:
1803 * We've go a match, so return 1 so that the recovery of this buffer
1804 * is cancelled. If this buffer is actually a buffer cancel log
1805 * item, then decrement the refcount on the one in the table and
1806 * remove it if this is the last reference.
1808 if (flags & XFS_BLF_CANCEL) {
1809 if (--bcp->bc_refcount == 0) {
1810 list_del(&bcp->bc_list);
1811 kmem_free(bcp);
1814 return 1;
1818 * Perform recovery for a buffer full of inodes. In these buffers, the only
1819 * data which should be recovered is that which corresponds to the
1820 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1821 * data for the inodes is always logged through the inodes themselves rather
1822 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1824 * The only time when buffers full of inodes are fully recovered is when the
1825 * buffer is full of newly allocated inodes. In this case the buffer will
1826 * not be marked as an inode buffer and so will be sent to
1827 * xlog_recover_do_reg_buffer() below during recovery.
1829 STATIC int
1830 xlog_recover_do_inode_buffer(
1831 struct xfs_mount *mp,
1832 xlog_recover_item_t *item,
1833 struct xfs_buf *bp,
1834 xfs_buf_log_format_t *buf_f)
1836 int i;
1837 int item_index = 0;
1838 int bit = 0;
1839 int nbits = 0;
1840 int reg_buf_offset = 0;
1841 int reg_buf_bytes = 0;
1842 int next_unlinked_offset;
1843 int inodes_per_buf;
1844 xfs_agino_t *logged_nextp;
1845 xfs_agino_t *buffer_nextp;
1847 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1850 * Post recovery validation only works properly on CRC enabled
1851 * filesystems.
1853 if (xfs_sb_version_hascrc(&mp->m_sb))
1854 bp->b_ops = &xfs_inode_buf_ops;
1856 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1857 for (i = 0; i < inodes_per_buf; i++) {
1858 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1859 offsetof(xfs_dinode_t, di_next_unlinked);
1861 while (next_unlinked_offset >=
1862 (reg_buf_offset + reg_buf_bytes)) {
1864 * The next di_next_unlinked field is beyond
1865 * the current logged region. Find the next
1866 * logged region that contains or is beyond
1867 * the current di_next_unlinked field.
1869 bit += nbits;
1870 bit = xfs_next_bit(buf_f->blf_data_map,
1871 buf_f->blf_map_size, bit);
1874 * If there are no more logged regions in the
1875 * buffer, then we're done.
1877 if (bit == -1)
1878 return 0;
1880 nbits = xfs_contig_bits(buf_f->blf_data_map,
1881 buf_f->blf_map_size, bit);
1882 ASSERT(nbits > 0);
1883 reg_buf_offset = bit << XFS_BLF_SHIFT;
1884 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1885 item_index++;
1889 * If the current logged region starts after the current
1890 * di_next_unlinked field, then move on to the next
1891 * di_next_unlinked field.
1893 if (next_unlinked_offset < reg_buf_offset)
1894 continue;
1896 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1897 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1898 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1899 BBTOB(bp->b_io_length));
1902 * The current logged region contains a copy of the
1903 * current di_next_unlinked field. Extract its value
1904 * and copy it to the buffer copy.
1906 logged_nextp = item->ri_buf[item_index].i_addr +
1907 next_unlinked_offset - reg_buf_offset;
1908 if (unlikely(*logged_nextp == 0)) {
1909 xfs_alert(mp,
1910 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1911 "Trying to replay bad (0) inode di_next_unlinked field.",
1912 item, bp);
1913 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1914 XFS_ERRLEVEL_LOW, mp);
1915 return XFS_ERROR(EFSCORRUPTED);
1918 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1919 next_unlinked_offset);
1920 *buffer_nextp = *logged_nextp;
1923 * If necessary, recalculate the CRC in the on-disk inode. We
1924 * have to leave the inode in a consistent state for whoever
1925 * reads it next....
1927 xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1928 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1932 return 0;
1936 * Validate the recovered buffer is of the correct type and attach the
1937 * appropriate buffer operations to them for writeback. Magic numbers are in a
1938 * few places:
1939 * the first 16 bits of the buffer (inode buffer, dquot buffer),
1940 * the first 32 bits of the buffer (most blocks),
1941 * inside a struct xfs_da_blkinfo at the start of the buffer.
1943 static void
1944 xlog_recovery_validate_buf_type(
1945 struct xfs_mount *mp,
1946 struct xfs_buf *bp,
1947 xfs_buf_log_format_t *buf_f)
1949 struct xfs_da_blkinfo *info = bp->b_addr;
1950 __uint32_t magic32;
1951 __uint16_t magic16;
1952 __uint16_t magicda;
1954 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
1955 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
1956 magicda = be16_to_cpu(info->magic);
1957 switch (xfs_blft_from_flags(buf_f)) {
1958 case XFS_BLFT_BTREE_BUF:
1959 switch (magic32) {
1960 case XFS_ABTB_CRC_MAGIC:
1961 case XFS_ABTC_CRC_MAGIC:
1962 case XFS_ABTB_MAGIC:
1963 case XFS_ABTC_MAGIC:
1964 bp->b_ops = &xfs_allocbt_buf_ops;
1965 break;
1966 case XFS_IBT_CRC_MAGIC:
1967 case XFS_IBT_MAGIC:
1968 bp->b_ops = &xfs_inobt_buf_ops;
1969 break;
1970 case XFS_BMAP_CRC_MAGIC:
1971 case XFS_BMAP_MAGIC:
1972 bp->b_ops = &xfs_bmbt_buf_ops;
1973 break;
1974 default:
1975 xfs_warn(mp, "Bad btree block magic!");
1976 ASSERT(0);
1977 break;
1979 break;
1980 case XFS_BLFT_AGF_BUF:
1981 if (magic32 != XFS_AGF_MAGIC) {
1982 xfs_warn(mp, "Bad AGF block magic!");
1983 ASSERT(0);
1984 break;
1986 bp->b_ops = &xfs_agf_buf_ops;
1987 break;
1988 case XFS_BLFT_AGFL_BUF:
1989 if (!xfs_sb_version_hascrc(&mp->m_sb))
1990 break;
1991 if (magic32 != XFS_AGFL_MAGIC) {
1992 xfs_warn(mp, "Bad AGFL block magic!");
1993 ASSERT(0);
1994 break;
1996 bp->b_ops = &xfs_agfl_buf_ops;
1997 break;
1998 case XFS_BLFT_AGI_BUF:
1999 if (magic32 != XFS_AGI_MAGIC) {
2000 xfs_warn(mp, "Bad AGI block magic!");
2001 ASSERT(0);
2002 break;
2004 bp->b_ops = &xfs_agi_buf_ops;
2005 break;
2006 case XFS_BLFT_UDQUOT_BUF:
2007 case XFS_BLFT_PDQUOT_BUF:
2008 case XFS_BLFT_GDQUOT_BUF:
2009 #ifdef CONFIG_XFS_QUOTA
2010 if (magic16 != XFS_DQUOT_MAGIC) {
2011 xfs_warn(mp, "Bad DQUOT block magic!");
2012 ASSERT(0);
2013 break;
2015 bp->b_ops = &xfs_dquot_buf_ops;
2016 #else
2017 xfs_alert(mp,
2018 "Trying to recover dquots without QUOTA support built in!");
2019 ASSERT(0);
2020 #endif
2021 break;
2022 case XFS_BLFT_DINO_BUF:
2024 * we get here with inode allocation buffers, not buffers that
2025 * track unlinked list changes.
2027 if (magic16 != XFS_DINODE_MAGIC) {
2028 xfs_warn(mp, "Bad INODE block magic!");
2029 ASSERT(0);
2030 break;
2032 bp->b_ops = &xfs_inode_buf_ops;
2033 break;
2034 case XFS_BLFT_SYMLINK_BUF:
2035 if (magic32 != XFS_SYMLINK_MAGIC) {
2036 xfs_warn(mp, "Bad symlink block magic!");
2037 ASSERT(0);
2038 break;
2040 bp->b_ops = &xfs_symlink_buf_ops;
2041 break;
2042 case XFS_BLFT_DIR_BLOCK_BUF:
2043 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2044 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2045 xfs_warn(mp, "Bad dir block magic!");
2046 ASSERT(0);
2047 break;
2049 bp->b_ops = &xfs_dir3_block_buf_ops;
2050 break;
2051 case XFS_BLFT_DIR_DATA_BUF:
2052 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2053 magic32 != XFS_DIR3_DATA_MAGIC) {
2054 xfs_warn(mp, "Bad dir data magic!");
2055 ASSERT(0);
2056 break;
2058 bp->b_ops = &xfs_dir3_data_buf_ops;
2059 break;
2060 case XFS_BLFT_DIR_FREE_BUF:
2061 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2062 magic32 != XFS_DIR3_FREE_MAGIC) {
2063 xfs_warn(mp, "Bad dir3 free magic!");
2064 ASSERT(0);
2065 break;
2067 bp->b_ops = &xfs_dir3_free_buf_ops;
2068 break;
2069 case XFS_BLFT_DIR_LEAF1_BUF:
2070 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2071 magicda != XFS_DIR3_LEAF1_MAGIC) {
2072 xfs_warn(mp, "Bad dir leaf1 magic!");
2073 ASSERT(0);
2074 break;
2076 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2077 break;
2078 case XFS_BLFT_DIR_LEAFN_BUF:
2079 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2080 magicda != XFS_DIR3_LEAFN_MAGIC) {
2081 xfs_warn(mp, "Bad dir leafn magic!");
2082 ASSERT(0);
2083 break;
2085 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2086 break;
2087 case XFS_BLFT_DA_NODE_BUF:
2088 if (magicda != XFS_DA_NODE_MAGIC &&
2089 magicda != XFS_DA3_NODE_MAGIC) {
2090 xfs_warn(mp, "Bad da node magic!");
2091 ASSERT(0);
2092 break;
2094 bp->b_ops = &xfs_da3_node_buf_ops;
2095 break;
2096 case XFS_BLFT_ATTR_LEAF_BUF:
2097 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2098 magicda != XFS_ATTR3_LEAF_MAGIC) {
2099 xfs_warn(mp, "Bad attr leaf magic!");
2100 ASSERT(0);
2101 break;
2103 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2104 break;
2105 case XFS_BLFT_ATTR_RMT_BUF:
2106 if (!xfs_sb_version_hascrc(&mp->m_sb))
2107 break;
2108 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2109 xfs_warn(mp, "Bad attr remote magic!");
2110 ASSERT(0);
2111 break;
2113 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2114 break;
2115 case XFS_BLFT_SB_BUF:
2116 if (magic32 != XFS_SB_MAGIC) {
2117 xfs_warn(mp, "Bad SB block magic!");
2118 ASSERT(0);
2119 break;
2121 bp->b_ops = &xfs_sb_buf_ops;
2122 break;
2123 default:
2124 xfs_warn(mp, "Unknown buffer type %d!",
2125 xfs_blft_from_flags(buf_f));
2126 break;
2131 * Perform a 'normal' buffer recovery. Each logged region of the
2132 * buffer should be copied over the corresponding region in the
2133 * given buffer. The bitmap in the buf log format structure indicates
2134 * where to place the logged data.
2136 STATIC void
2137 xlog_recover_do_reg_buffer(
2138 struct xfs_mount *mp,
2139 xlog_recover_item_t *item,
2140 struct xfs_buf *bp,
2141 xfs_buf_log_format_t *buf_f)
2143 int i;
2144 int bit;
2145 int nbits;
2146 int error;
2148 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2150 bit = 0;
2151 i = 1; /* 0 is the buf format structure */
2152 while (1) {
2153 bit = xfs_next_bit(buf_f->blf_data_map,
2154 buf_f->blf_map_size, bit);
2155 if (bit == -1)
2156 break;
2157 nbits = xfs_contig_bits(buf_f->blf_data_map,
2158 buf_f->blf_map_size, bit);
2159 ASSERT(nbits > 0);
2160 ASSERT(item->ri_buf[i].i_addr != NULL);
2161 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2162 ASSERT(BBTOB(bp->b_io_length) >=
2163 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2166 * The dirty regions logged in the buffer, even though
2167 * contiguous, may span multiple chunks. This is because the
2168 * dirty region may span a physical page boundary in a buffer
2169 * and hence be split into two separate vectors for writing into
2170 * the log. Hence we need to trim nbits back to the length of
2171 * the current region being copied out of the log.
2173 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2174 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2177 * Do a sanity check if this is a dquot buffer. Just checking
2178 * the first dquot in the buffer should do. XXXThis is
2179 * probably a good thing to do for other buf types also.
2181 error = 0;
2182 if (buf_f->blf_flags &
2183 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2184 if (item->ri_buf[i].i_addr == NULL) {
2185 xfs_alert(mp,
2186 "XFS: NULL dquot in %s.", __func__);
2187 goto next;
2189 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2190 xfs_alert(mp,
2191 "XFS: dquot too small (%d) in %s.",
2192 item->ri_buf[i].i_len, __func__);
2193 goto next;
2195 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
2196 -1, 0, XFS_QMOPT_DOWARN,
2197 "dquot_buf_recover");
2198 if (error)
2199 goto next;
2202 memcpy(xfs_buf_offset(bp,
2203 (uint)bit << XFS_BLF_SHIFT), /* dest */
2204 item->ri_buf[i].i_addr, /* source */
2205 nbits<<XFS_BLF_SHIFT); /* length */
2206 next:
2207 i++;
2208 bit += nbits;
2211 /* Shouldn't be any more regions */
2212 ASSERT(i == item->ri_total);
2215 * We can only do post recovery validation on items on CRC enabled
2216 * fielsystems as we need to know when the buffer was written to be able
2217 * to determine if we should have replayed the item. If we replay old
2218 * metadata over a newer buffer, then it will enter a temporarily
2219 * inconsistent state resulting in verification failures. Hence for now
2220 * just avoid the verification stage for non-crc filesystems
2222 if (xfs_sb_version_hascrc(&mp->m_sb))
2223 xlog_recovery_validate_buf_type(mp, bp, buf_f);
2227 * Do some primitive error checking on ondisk dquot data structures.
2230 xfs_qm_dqcheck(
2231 struct xfs_mount *mp,
2232 xfs_disk_dquot_t *ddq,
2233 xfs_dqid_t id,
2234 uint type, /* used only when IO_dorepair is true */
2235 uint flags,
2236 char *str)
2238 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
2239 int errs = 0;
2242 * We can encounter an uninitialized dquot buffer for 2 reasons:
2243 * 1. If we crash while deleting the quotainode(s), and those blks got
2244 * used for user data. This is because we take the path of regular
2245 * file deletion; however, the size field of quotainodes is never
2246 * updated, so all the tricks that we play in itruncate_finish
2247 * don't quite matter.
2249 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2250 * But the allocation will be replayed so we'll end up with an
2251 * uninitialized quota block.
2253 * This is all fine; things are still consistent, and we haven't lost
2254 * any quota information. Just don't complain about bad dquot blks.
2256 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
2257 if (flags & XFS_QMOPT_DOWARN)
2258 xfs_alert(mp,
2259 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2260 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2261 errs++;
2263 if (ddq->d_version != XFS_DQUOT_VERSION) {
2264 if (flags & XFS_QMOPT_DOWARN)
2265 xfs_alert(mp,
2266 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2267 str, id, ddq->d_version, XFS_DQUOT_VERSION);
2268 errs++;
2271 if (ddq->d_flags != XFS_DQ_USER &&
2272 ddq->d_flags != XFS_DQ_PROJ &&
2273 ddq->d_flags != XFS_DQ_GROUP) {
2274 if (flags & XFS_QMOPT_DOWARN)
2275 xfs_alert(mp,
2276 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2277 str, id, ddq->d_flags);
2278 errs++;
2281 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2282 if (flags & XFS_QMOPT_DOWARN)
2283 xfs_alert(mp,
2284 "%s : ondisk-dquot 0x%p, ID mismatch: "
2285 "0x%x expected, found id 0x%x",
2286 str, ddq, id, be32_to_cpu(ddq->d_id));
2287 errs++;
2290 if (!errs && ddq->d_id) {
2291 if (ddq->d_blk_softlimit &&
2292 be64_to_cpu(ddq->d_bcount) >
2293 be64_to_cpu(ddq->d_blk_softlimit)) {
2294 if (!ddq->d_btimer) {
2295 if (flags & XFS_QMOPT_DOWARN)
2296 xfs_alert(mp,
2297 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
2298 str, (int)be32_to_cpu(ddq->d_id), ddq);
2299 errs++;
2302 if (ddq->d_ino_softlimit &&
2303 be64_to_cpu(ddq->d_icount) >
2304 be64_to_cpu(ddq->d_ino_softlimit)) {
2305 if (!ddq->d_itimer) {
2306 if (flags & XFS_QMOPT_DOWARN)
2307 xfs_alert(mp,
2308 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2309 str, (int)be32_to_cpu(ddq->d_id), ddq);
2310 errs++;
2313 if (ddq->d_rtb_softlimit &&
2314 be64_to_cpu(ddq->d_rtbcount) >
2315 be64_to_cpu(ddq->d_rtb_softlimit)) {
2316 if (!ddq->d_rtbtimer) {
2317 if (flags & XFS_QMOPT_DOWARN)
2318 xfs_alert(mp,
2319 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2320 str, (int)be32_to_cpu(ddq->d_id), ddq);
2321 errs++;
2326 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2327 return errs;
2329 if (flags & XFS_QMOPT_DOWARN)
2330 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2333 * Typically, a repair is only requested by quotacheck.
2335 ASSERT(id != -1);
2336 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2337 memset(d, 0, sizeof(xfs_dqblk_t));
2339 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2340 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2341 d->dd_diskdq.d_flags = type;
2342 d->dd_diskdq.d_id = cpu_to_be32(id);
2344 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2345 uuid_copy(&d->dd_uuid, &mp->m_sb.sb_uuid);
2346 xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk),
2347 XFS_DQUOT_CRC_OFF);
2350 return errs;
2354 * Perform a dquot buffer recovery.
2355 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2356 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2357 * Else, treat it as a regular buffer and do recovery.
2359 STATIC void
2360 xlog_recover_do_dquot_buffer(
2361 struct xfs_mount *mp,
2362 struct xlog *log,
2363 struct xlog_recover_item *item,
2364 struct xfs_buf *bp,
2365 struct xfs_buf_log_format *buf_f)
2367 uint type;
2369 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2372 * Filesystems are required to send in quota flags at mount time.
2374 if (mp->m_qflags == 0) {
2375 return;
2378 type = 0;
2379 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2380 type |= XFS_DQ_USER;
2381 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2382 type |= XFS_DQ_PROJ;
2383 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2384 type |= XFS_DQ_GROUP;
2386 * This type of quotas was turned off, so ignore this buffer
2388 if (log->l_quotaoffs_flag & type)
2389 return;
2391 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2395 * This routine replays a modification made to a buffer at runtime.
2396 * There are actually two types of buffer, regular and inode, which
2397 * are handled differently. Inode buffers are handled differently
2398 * in that we only recover a specific set of data from them, namely
2399 * the inode di_next_unlinked fields. This is because all other inode
2400 * data is actually logged via inode records and any data we replay
2401 * here which overlaps that may be stale.
2403 * When meta-data buffers are freed at run time we log a buffer item
2404 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2405 * of the buffer in the log should not be replayed at recovery time.
2406 * This is so that if the blocks covered by the buffer are reused for
2407 * file data before we crash we don't end up replaying old, freed
2408 * meta-data into a user's file.
2410 * To handle the cancellation of buffer log items, we make two passes
2411 * over the log during recovery. During the first we build a table of
2412 * those buffers which have been cancelled, and during the second we
2413 * only replay those buffers which do not have corresponding cancel
2414 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2415 * for more details on the implementation of the table of cancel records.
2417 STATIC int
2418 xlog_recover_buffer_pass2(
2419 struct xlog *log,
2420 struct list_head *buffer_list,
2421 struct xlog_recover_item *item)
2423 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2424 xfs_mount_t *mp = log->l_mp;
2425 xfs_buf_t *bp;
2426 int error;
2427 uint buf_flags;
2430 * In this pass we only want to recover all the buffers which have
2431 * not been cancelled and are not cancellation buffers themselves.
2433 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2434 buf_f->blf_len, buf_f->blf_flags)) {
2435 trace_xfs_log_recover_buf_cancel(log, buf_f);
2436 return 0;
2439 trace_xfs_log_recover_buf_recover(log, buf_f);
2441 buf_flags = 0;
2442 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2443 buf_flags |= XBF_UNMAPPED;
2445 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2446 buf_flags, NULL);
2447 if (!bp)
2448 return XFS_ERROR(ENOMEM);
2449 error = bp->b_error;
2450 if (error) {
2451 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2452 xfs_buf_relse(bp);
2453 return error;
2456 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2457 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2458 } else if (buf_f->blf_flags &
2459 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2460 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2461 } else {
2462 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2464 if (error)
2465 return XFS_ERROR(error);
2468 * Perform delayed write on the buffer. Asynchronous writes will be
2469 * slower when taking into account all the buffers to be flushed.
2471 * Also make sure that only inode buffers with good sizes stay in
2472 * the buffer cache. The kernel moves inodes in buffers of 1 block
2473 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2474 * buffers in the log can be a different size if the log was generated
2475 * by an older kernel using unclustered inode buffers or a newer kernel
2476 * running with a different inode cluster size. Regardless, if the
2477 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2478 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2479 * the buffer out of the buffer cache so that the buffer won't
2480 * overlap with future reads of those inodes.
2482 if (XFS_DINODE_MAGIC ==
2483 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2484 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2485 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2486 xfs_buf_stale(bp);
2487 error = xfs_bwrite(bp);
2488 } else {
2489 ASSERT(bp->b_target->bt_mount == mp);
2490 bp->b_iodone = xlog_recover_iodone;
2491 xfs_buf_delwri_queue(bp, buffer_list);
2494 xfs_buf_relse(bp);
2495 return error;
2498 STATIC int
2499 xlog_recover_inode_pass2(
2500 struct xlog *log,
2501 struct list_head *buffer_list,
2502 struct xlog_recover_item *item)
2504 xfs_inode_log_format_t *in_f;
2505 xfs_mount_t *mp = log->l_mp;
2506 xfs_buf_t *bp;
2507 xfs_dinode_t *dip;
2508 int len;
2509 xfs_caddr_t src;
2510 xfs_caddr_t dest;
2511 int error;
2512 int attr_index;
2513 uint fields;
2514 xfs_icdinode_t *dicp;
2515 uint isize;
2516 int need_free = 0;
2518 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2519 in_f = item->ri_buf[0].i_addr;
2520 } else {
2521 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2522 need_free = 1;
2523 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2524 if (error)
2525 goto error;
2529 * Inode buffers can be freed, look out for it,
2530 * and do not replay the inode.
2532 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2533 in_f->ilf_len, 0)) {
2534 error = 0;
2535 trace_xfs_log_recover_inode_cancel(log, in_f);
2536 goto error;
2538 trace_xfs_log_recover_inode_recover(log, in_f);
2540 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2541 &xfs_inode_buf_ops);
2542 if (!bp) {
2543 error = ENOMEM;
2544 goto error;
2546 error = bp->b_error;
2547 if (error) {
2548 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2549 xfs_buf_relse(bp);
2550 goto error;
2552 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2553 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2556 * Make sure the place we're flushing out to really looks
2557 * like an inode!
2559 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2560 xfs_buf_relse(bp);
2561 xfs_alert(mp,
2562 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2563 __func__, dip, bp, in_f->ilf_ino);
2564 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2565 XFS_ERRLEVEL_LOW, mp);
2566 error = EFSCORRUPTED;
2567 goto error;
2569 dicp = item->ri_buf[1].i_addr;
2570 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2571 xfs_buf_relse(bp);
2572 xfs_alert(mp,
2573 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2574 __func__, item, in_f->ilf_ino);
2575 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2576 XFS_ERRLEVEL_LOW, mp);
2577 error = EFSCORRUPTED;
2578 goto error;
2581 /* Skip replay when the on disk inode is newer than the log one */
2582 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2584 * Deal with the wrap case, DI_MAX_FLUSH is less
2585 * than smaller numbers
2587 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2588 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2589 /* do nothing */
2590 } else {
2591 xfs_buf_relse(bp);
2592 trace_xfs_log_recover_inode_skip(log, in_f);
2593 error = 0;
2594 goto error;
2597 /* Take the opportunity to reset the flush iteration count */
2598 dicp->di_flushiter = 0;
2600 if (unlikely(S_ISREG(dicp->di_mode))) {
2601 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2602 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2603 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2604 XFS_ERRLEVEL_LOW, mp, dicp);
2605 xfs_buf_relse(bp);
2606 xfs_alert(mp,
2607 "%s: Bad regular inode log record, rec ptr 0x%p, "
2608 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2609 __func__, item, dip, bp, in_f->ilf_ino);
2610 error = EFSCORRUPTED;
2611 goto error;
2613 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
2614 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2615 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2616 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2617 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2618 XFS_ERRLEVEL_LOW, mp, dicp);
2619 xfs_buf_relse(bp);
2620 xfs_alert(mp,
2621 "%s: Bad dir inode log record, rec ptr 0x%p, "
2622 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2623 __func__, item, dip, bp, in_f->ilf_ino);
2624 error = EFSCORRUPTED;
2625 goto error;
2628 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2629 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2630 XFS_ERRLEVEL_LOW, mp, dicp);
2631 xfs_buf_relse(bp);
2632 xfs_alert(mp,
2633 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2634 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2635 __func__, item, dip, bp, in_f->ilf_ino,
2636 dicp->di_nextents + dicp->di_anextents,
2637 dicp->di_nblocks);
2638 error = EFSCORRUPTED;
2639 goto error;
2641 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2642 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2643 XFS_ERRLEVEL_LOW, mp, dicp);
2644 xfs_buf_relse(bp);
2645 xfs_alert(mp,
2646 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2647 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2648 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2649 error = EFSCORRUPTED;
2650 goto error;
2652 isize = xfs_icdinode_size(dicp->di_version);
2653 if (unlikely(item->ri_buf[1].i_len > isize)) {
2654 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2655 XFS_ERRLEVEL_LOW, mp, dicp);
2656 xfs_buf_relse(bp);
2657 xfs_alert(mp,
2658 "%s: Bad inode log record length %d, rec ptr 0x%p",
2659 __func__, item->ri_buf[1].i_len, item);
2660 error = EFSCORRUPTED;
2661 goto error;
2664 /* The core is in in-core format */
2665 xfs_dinode_to_disk(dip, dicp);
2667 /* the rest is in on-disk format */
2668 if (item->ri_buf[1].i_len > isize) {
2669 memcpy((char *)dip + isize,
2670 item->ri_buf[1].i_addr + isize,
2671 item->ri_buf[1].i_len - isize);
2674 fields = in_f->ilf_fields;
2675 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2676 case XFS_ILOG_DEV:
2677 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2678 break;
2679 case XFS_ILOG_UUID:
2680 memcpy(XFS_DFORK_DPTR(dip),
2681 &in_f->ilf_u.ilfu_uuid,
2682 sizeof(uuid_t));
2683 break;
2686 if (in_f->ilf_size == 2)
2687 goto write_inode_buffer;
2688 len = item->ri_buf[2].i_len;
2689 src = item->ri_buf[2].i_addr;
2690 ASSERT(in_f->ilf_size <= 4);
2691 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2692 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2693 (len == in_f->ilf_dsize));
2695 switch (fields & XFS_ILOG_DFORK) {
2696 case XFS_ILOG_DDATA:
2697 case XFS_ILOG_DEXT:
2698 memcpy(XFS_DFORK_DPTR(dip), src, len);
2699 break;
2701 case XFS_ILOG_DBROOT:
2702 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2703 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2704 XFS_DFORK_DSIZE(dip, mp));
2705 break;
2707 default:
2709 * There are no data fork flags set.
2711 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2712 break;
2716 * If we logged any attribute data, recover it. There may or
2717 * may not have been any other non-core data logged in this
2718 * transaction.
2720 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2721 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2722 attr_index = 3;
2723 } else {
2724 attr_index = 2;
2726 len = item->ri_buf[attr_index].i_len;
2727 src = item->ri_buf[attr_index].i_addr;
2728 ASSERT(len == in_f->ilf_asize);
2730 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2731 case XFS_ILOG_ADATA:
2732 case XFS_ILOG_AEXT:
2733 dest = XFS_DFORK_APTR(dip);
2734 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2735 memcpy(dest, src, len);
2736 break;
2738 case XFS_ILOG_ABROOT:
2739 dest = XFS_DFORK_APTR(dip);
2740 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2741 len, (xfs_bmdr_block_t*)dest,
2742 XFS_DFORK_ASIZE(dip, mp));
2743 break;
2745 default:
2746 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2747 ASSERT(0);
2748 xfs_buf_relse(bp);
2749 error = EIO;
2750 goto error;
2754 write_inode_buffer:
2755 /* re-generate the checksum. */
2756 xfs_dinode_calc_crc(log->l_mp, dip);
2758 ASSERT(bp->b_target->bt_mount == mp);
2759 bp->b_iodone = xlog_recover_iodone;
2760 xfs_buf_delwri_queue(bp, buffer_list);
2761 xfs_buf_relse(bp);
2762 error:
2763 if (need_free)
2764 kmem_free(in_f);
2765 return XFS_ERROR(error);
2769 * Recover QUOTAOFF records. We simply make a note of it in the xlog
2770 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2771 * of that type.
2773 STATIC int
2774 xlog_recover_quotaoff_pass1(
2775 struct xlog *log,
2776 struct xlog_recover_item *item)
2778 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
2779 ASSERT(qoff_f);
2782 * The logitem format's flag tells us if this was user quotaoff,
2783 * group/project quotaoff or both.
2785 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2786 log->l_quotaoffs_flag |= XFS_DQ_USER;
2787 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2788 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2789 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2790 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2792 return (0);
2796 * Recover a dquot record
2798 STATIC int
2799 xlog_recover_dquot_pass2(
2800 struct xlog *log,
2801 struct list_head *buffer_list,
2802 struct xlog_recover_item *item)
2804 xfs_mount_t *mp = log->l_mp;
2805 xfs_buf_t *bp;
2806 struct xfs_disk_dquot *ddq, *recddq;
2807 int error;
2808 xfs_dq_logformat_t *dq_f;
2809 uint type;
2813 * Filesystems are required to send in quota flags at mount time.
2815 if (mp->m_qflags == 0)
2816 return (0);
2818 recddq = item->ri_buf[1].i_addr;
2819 if (recddq == NULL) {
2820 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2821 return XFS_ERROR(EIO);
2823 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2824 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2825 item->ri_buf[1].i_len, __func__);
2826 return XFS_ERROR(EIO);
2830 * This type of quotas was turned off, so ignore this record.
2832 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2833 ASSERT(type);
2834 if (log->l_quotaoffs_flag & type)
2835 return (0);
2838 * At this point we know that quota was _not_ turned off.
2839 * Since the mount flags are not indicating to us otherwise, this
2840 * must mean that quota is on, and the dquot needs to be replayed.
2841 * Remember that we may not have fully recovered the superblock yet,
2842 * so we can't do the usual trick of looking at the SB quota bits.
2844 * The other possibility, of course, is that the quota subsystem was
2845 * removed since the last mount - ENOSYS.
2847 dq_f = item->ri_buf[0].i_addr;
2848 ASSERT(dq_f);
2849 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2850 "xlog_recover_dquot_pass2 (log copy)");
2851 if (error)
2852 return XFS_ERROR(EIO);
2853 ASSERT(dq_f->qlf_len == 1);
2855 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
2856 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
2857 NULL);
2858 if (error)
2859 return error;
2861 ASSERT(bp);
2862 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2865 * At least the magic num portion should be on disk because this
2866 * was among a chunk of dquots created earlier, and we did some
2867 * minimal initialization then.
2869 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2870 "xlog_recover_dquot_pass2");
2871 if (error) {
2872 xfs_buf_relse(bp);
2873 return XFS_ERROR(EIO);
2876 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2877 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2878 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
2879 XFS_DQUOT_CRC_OFF);
2882 ASSERT(dq_f->qlf_size == 2);
2883 ASSERT(bp->b_target->bt_mount == mp);
2884 bp->b_iodone = xlog_recover_iodone;
2885 xfs_buf_delwri_queue(bp, buffer_list);
2886 xfs_buf_relse(bp);
2888 return (0);
2892 * This routine is called to create an in-core extent free intent
2893 * item from the efi format structure which was logged on disk.
2894 * It allocates an in-core efi, copies the extents from the format
2895 * structure into it, and adds the efi to the AIL with the given
2896 * LSN.
2898 STATIC int
2899 xlog_recover_efi_pass2(
2900 struct xlog *log,
2901 struct xlog_recover_item *item,
2902 xfs_lsn_t lsn)
2904 int error;
2905 xfs_mount_t *mp = log->l_mp;
2906 xfs_efi_log_item_t *efip;
2907 xfs_efi_log_format_t *efi_formatp;
2909 efi_formatp = item->ri_buf[0].i_addr;
2911 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2912 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2913 &(efip->efi_format)))) {
2914 xfs_efi_item_free(efip);
2915 return error;
2917 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2919 spin_lock(&log->l_ailp->xa_lock);
2921 * xfs_trans_ail_update() drops the AIL lock.
2923 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2924 return 0;
2929 * This routine is called when an efd format structure is found in
2930 * a committed transaction in the log. It's purpose is to cancel
2931 * the corresponding efi if it was still in the log. To do this
2932 * it searches the AIL for the efi with an id equal to that in the
2933 * efd format structure. If we find it, we remove the efi from the
2934 * AIL and free it.
2936 STATIC int
2937 xlog_recover_efd_pass2(
2938 struct xlog *log,
2939 struct xlog_recover_item *item)
2941 xfs_efd_log_format_t *efd_formatp;
2942 xfs_efi_log_item_t *efip = NULL;
2943 xfs_log_item_t *lip;
2944 __uint64_t efi_id;
2945 struct xfs_ail_cursor cur;
2946 struct xfs_ail *ailp = log->l_ailp;
2948 efd_formatp = item->ri_buf[0].i_addr;
2949 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2950 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2951 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2952 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2953 efi_id = efd_formatp->efd_efi_id;
2956 * Search for the efi with the id in the efd format structure
2957 * in the AIL.
2959 spin_lock(&ailp->xa_lock);
2960 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2961 while (lip != NULL) {
2962 if (lip->li_type == XFS_LI_EFI) {
2963 efip = (xfs_efi_log_item_t *)lip;
2964 if (efip->efi_format.efi_id == efi_id) {
2966 * xfs_trans_ail_delete() drops the
2967 * AIL lock.
2969 xfs_trans_ail_delete(ailp, lip,
2970 SHUTDOWN_CORRUPT_INCORE);
2971 xfs_efi_item_free(efip);
2972 spin_lock(&ailp->xa_lock);
2973 break;
2976 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2978 xfs_trans_ail_cursor_done(ailp, &cur);
2979 spin_unlock(&ailp->xa_lock);
2981 return 0;
2985 * Free up any resources allocated by the transaction
2987 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2989 STATIC void
2990 xlog_recover_free_trans(
2991 struct xlog_recover *trans)
2993 xlog_recover_item_t *item, *n;
2994 int i;
2996 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2997 /* Free the regions in the item. */
2998 list_del(&item->ri_list);
2999 for (i = 0; i < item->ri_cnt; i++)
3000 kmem_free(item->ri_buf[i].i_addr);
3001 /* Free the item itself */
3002 kmem_free(item->ri_buf);
3003 kmem_free(item);
3005 /* Free the transaction recover structure */
3006 kmem_free(trans);
3009 STATIC int
3010 xlog_recover_commit_pass1(
3011 struct xlog *log,
3012 struct xlog_recover *trans,
3013 struct xlog_recover_item *item)
3015 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3017 switch (ITEM_TYPE(item)) {
3018 case XFS_LI_BUF:
3019 return xlog_recover_buffer_pass1(log, item);
3020 case XFS_LI_QUOTAOFF:
3021 return xlog_recover_quotaoff_pass1(log, item);
3022 case XFS_LI_INODE:
3023 case XFS_LI_EFI:
3024 case XFS_LI_EFD:
3025 case XFS_LI_DQUOT:
3026 /* nothing to do in pass 1 */
3027 return 0;
3028 default:
3029 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3030 __func__, ITEM_TYPE(item));
3031 ASSERT(0);
3032 return XFS_ERROR(EIO);
3036 STATIC int
3037 xlog_recover_commit_pass2(
3038 struct xlog *log,
3039 struct xlog_recover *trans,
3040 struct list_head *buffer_list,
3041 struct xlog_recover_item *item)
3043 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3045 switch (ITEM_TYPE(item)) {
3046 case XFS_LI_BUF:
3047 return xlog_recover_buffer_pass2(log, buffer_list, item);
3048 case XFS_LI_INODE:
3049 return xlog_recover_inode_pass2(log, buffer_list, item);
3050 case XFS_LI_EFI:
3051 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3052 case XFS_LI_EFD:
3053 return xlog_recover_efd_pass2(log, item);
3054 case XFS_LI_DQUOT:
3055 return xlog_recover_dquot_pass2(log, buffer_list, item);
3056 case XFS_LI_QUOTAOFF:
3057 /* nothing to do in pass2 */
3058 return 0;
3059 default:
3060 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3061 __func__, ITEM_TYPE(item));
3062 ASSERT(0);
3063 return XFS_ERROR(EIO);
3068 * Perform the transaction.
3070 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3071 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3073 STATIC int
3074 xlog_recover_commit_trans(
3075 struct xlog *log,
3076 struct xlog_recover *trans,
3077 int pass)
3079 int error = 0, error2;
3080 xlog_recover_item_t *item;
3081 LIST_HEAD (buffer_list);
3083 hlist_del(&trans->r_list);
3085 error = xlog_recover_reorder_trans(log, trans, pass);
3086 if (error)
3087 return error;
3089 list_for_each_entry(item, &trans->r_itemq, ri_list) {
3090 switch (pass) {
3091 case XLOG_RECOVER_PASS1:
3092 error = xlog_recover_commit_pass1(log, trans, item);
3093 break;
3094 case XLOG_RECOVER_PASS2:
3095 error = xlog_recover_commit_pass2(log, trans,
3096 &buffer_list, item);
3097 break;
3098 default:
3099 ASSERT(0);
3102 if (error)
3103 goto out;
3106 xlog_recover_free_trans(trans);
3108 out:
3109 error2 = xfs_buf_delwri_submit(&buffer_list);
3110 return error ? error : error2;
3113 STATIC int
3114 xlog_recover_unmount_trans(
3115 struct xlog *log,
3116 struct xlog_recover *trans)
3118 /* Do nothing now */
3119 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
3120 return 0;
3124 * There are two valid states of the r_state field. 0 indicates that the
3125 * transaction structure is in a normal state. We have either seen the
3126 * start of the transaction or the last operation we added was not a partial
3127 * operation. If the last operation we added to the transaction was a
3128 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3130 * NOTE: skip LRs with 0 data length.
3132 STATIC int
3133 xlog_recover_process_data(
3134 struct xlog *log,
3135 struct hlist_head rhash[],
3136 struct xlog_rec_header *rhead,
3137 xfs_caddr_t dp,
3138 int pass)
3140 xfs_caddr_t lp;
3141 int num_logops;
3142 xlog_op_header_t *ohead;
3143 xlog_recover_t *trans;
3144 xlog_tid_t tid;
3145 int error;
3146 unsigned long hash;
3147 uint flags;
3149 lp = dp + be32_to_cpu(rhead->h_len);
3150 num_logops = be32_to_cpu(rhead->h_num_logops);
3152 /* check the log format matches our own - else we can't recover */
3153 if (xlog_header_check_recover(log->l_mp, rhead))
3154 return (XFS_ERROR(EIO));
3156 while ((dp < lp) && num_logops) {
3157 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3158 ohead = (xlog_op_header_t *)dp;
3159 dp += sizeof(xlog_op_header_t);
3160 if (ohead->oh_clientid != XFS_TRANSACTION &&
3161 ohead->oh_clientid != XFS_LOG) {
3162 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3163 __func__, ohead->oh_clientid);
3164 ASSERT(0);
3165 return (XFS_ERROR(EIO));
3167 tid = be32_to_cpu(ohead->oh_tid);
3168 hash = XLOG_RHASH(tid);
3169 trans = xlog_recover_find_tid(&rhash[hash], tid);
3170 if (trans == NULL) { /* not found; add new tid */
3171 if (ohead->oh_flags & XLOG_START_TRANS)
3172 xlog_recover_new_tid(&rhash[hash], tid,
3173 be64_to_cpu(rhead->h_lsn));
3174 } else {
3175 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
3176 xfs_warn(log->l_mp, "%s: bad length 0x%x",
3177 __func__, be32_to_cpu(ohead->oh_len));
3178 WARN_ON(1);
3179 return (XFS_ERROR(EIO));
3181 flags = ohead->oh_flags & ~XLOG_END_TRANS;
3182 if (flags & XLOG_WAS_CONT_TRANS)
3183 flags &= ~XLOG_CONTINUE_TRANS;
3184 switch (flags) {
3185 case XLOG_COMMIT_TRANS:
3186 error = xlog_recover_commit_trans(log,
3187 trans, pass);
3188 break;
3189 case XLOG_UNMOUNT_TRANS:
3190 error = xlog_recover_unmount_trans(log, trans);
3191 break;
3192 case XLOG_WAS_CONT_TRANS:
3193 error = xlog_recover_add_to_cont_trans(log,
3194 trans, dp,
3195 be32_to_cpu(ohead->oh_len));
3196 break;
3197 case XLOG_START_TRANS:
3198 xfs_warn(log->l_mp, "%s: bad transaction",
3199 __func__);
3200 ASSERT(0);
3201 error = XFS_ERROR(EIO);
3202 break;
3203 case 0:
3204 case XLOG_CONTINUE_TRANS:
3205 error = xlog_recover_add_to_trans(log, trans,
3206 dp, be32_to_cpu(ohead->oh_len));
3207 break;
3208 default:
3209 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3210 __func__, flags);
3211 ASSERT(0);
3212 error = XFS_ERROR(EIO);
3213 break;
3215 if (error)
3216 return error;
3218 dp += be32_to_cpu(ohead->oh_len);
3219 num_logops--;
3221 return 0;
3225 * Process an extent free intent item that was recovered from
3226 * the log. We need to free the extents that it describes.
3228 STATIC int
3229 xlog_recover_process_efi(
3230 xfs_mount_t *mp,
3231 xfs_efi_log_item_t *efip)
3233 xfs_efd_log_item_t *efdp;
3234 xfs_trans_t *tp;
3235 int i;
3236 int error = 0;
3237 xfs_extent_t *extp;
3238 xfs_fsblock_t startblock_fsb;
3240 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
3243 * First check the validity of the extents described by the
3244 * EFI. If any are bad, then assume that all are bad and
3245 * just toss the EFI.
3247 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3248 extp = &(efip->efi_format.efi_extents[i]);
3249 startblock_fsb = XFS_BB_TO_FSB(mp,
3250 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3251 if ((startblock_fsb == 0) ||
3252 (extp->ext_len == 0) ||
3253 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3254 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3256 * This will pull the EFI from the AIL and
3257 * free the memory associated with it.
3259 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3260 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3261 return XFS_ERROR(EIO);
3265 tp = xfs_trans_alloc(mp, 0);
3266 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3267 if (error)
3268 goto abort_error;
3269 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3271 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3272 extp = &(efip->efi_format.efi_extents[i]);
3273 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3274 if (error)
3275 goto abort_error;
3276 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3277 extp->ext_len);
3280 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3281 error = xfs_trans_commit(tp, 0);
3282 return error;
3284 abort_error:
3285 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3286 return error;
3290 * When this is called, all of the EFIs which did not have
3291 * corresponding EFDs should be in the AIL. What we do now
3292 * is free the extents associated with each one.
3294 * Since we process the EFIs in normal transactions, they
3295 * will be removed at some point after the commit. This prevents
3296 * us from just walking down the list processing each one.
3297 * We'll use a flag in the EFI to skip those that we've already
3298 * processed and use the AIL iteration mechanism's generation
3299 * count to try to speed this up at least a bit.
3301 * When we start, we know that the EFIs are the only things in
3302 * the AIL. As we process them, however, other items are added
3303 * to the AIL. Since everything added to the AIL must come after
3304 * everything already in the AIL, we stop processing as soon as
3305 * we see something other than an EFI in the AIL.
3307 STATIC int
3308 xlog_recover_process_efis(
3309 struct xlog *log)
3311 xfs_log_item_t *lip;
3312 xfs_efi_log_item_t *efip;
3313 int error = 0;
3314 struct xfs_ail_cursor cur;
3315 struct xfs_ail *ailp;
3317 ailp = log->l_ailp;
3318 spin_lock(&ailp->xa_lock);
3319 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3320 while (lip != NULL) {
3322 * We're done when we see something other than an EFI.
3323 * There should be no EFIs left in the AIL now.
3325 if (lip->li_type != XFS_LI_EFI) {
3326 #ifdef DEBUG
3327 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3328 ASSERT(lip->li_type != XFS_LI_EFI);
3329 #endif
3330 break;
3334 * Skip EFIs that we've already processed.
3336 efip = (xfs_efi_log_item_t *)lip;
3337 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3338 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3339 continue;
3342 spin_unlock(&ailp->xa_lock);
3343 error = xlog_recover_process_efi(log->l_mp, efip);
3344 spin_lock(&ailp->xa_lock);
3345 if (error)
3346 goto out;
3347 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3349 out:
3350 xfs_trans_ail_cursor_done(ailp, &cur);
3351 spin_unlock(&ailp->xa_lock);
3352 return error;
3356 * This routine performs a transaction to null out a bad inode pointer
3357 * in an agi unlinked inode hash bucket.
3359 STATIC void
3360 xlog_recover_clear_agi_bucket(
3361 xfs_mount_t *mp,
3362 xfs_agnumber_t agno,
3363 int bucket)
3365 xfs_trans_t *tp;
3366 xfs_agi_t *agi;
3367 xfs_buf_t *agibp;
3368 int offset;
3369 int error;
3371 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3372 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3373 0, 0, 0);
3374 if (error)
3375 goto out_abort;
3377 error = xfs_read_agi(mp, tp, agno, &agibp);
3378 if (error)
3379 goto out_abort;
3381 agi = XFS_BUF_TO_AGI(agibp);
3382 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3383 offset = offsetof(xfs_agi_t, agi_unlinked) +
3384 (sizeof(xfs_agino_t) * bucket);
3385 xfs_trans_log_buf(tp, agibp, offset,
3386 (offset + sizeof(xfs_agino_t) - 1));
3388 error = xfs_trans_commit(tp, 0);
3389 if (error)
3390 goto out_error;
3391 return;
3393 out_abort:
3394 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3395 out_error:
3396 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3397 return;
3400 STATIC xfs_agino_t
3401 xlog_recover_process_one_iunlink(
3402 struct xfs_mount *mp,
3403 xfs_agnumber_t agno,
3404 xfs_agino_t agino,
3405 int bucket)
3407 struct xfs_buf *ibp;
3408 struct xfs_dinode *dip;
3409 struct xfs_inode *ip;
3410 xfs_ino_t ino;
3411 int error;
3413 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3414 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3415 if (error)
3416 goto fail;
3419 * Get the on disk inode to find the next inode in the bucket.
3421 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3422 if (error)
3423 goto fail_iput;
3425 ASSERT(ip->i_d.di_nlink == 0);
3426 ASSERT(ip->i_d.di_mode != 0);
3428 /* setup for the next pass */
3429 agino = be32_to_cpu(dip->di_next_unlinked);
3430 xfs_buf_relse(ibp);
3433 * Prevent any DMAPI event from being sent when the reference on
3434 * the inode is dropped.
3436 ip->i_d.di_dmevmask = 0;
3438 IRELE(ip);
3439 return agino;
3441 fail_iput:
3442 IRELE(ip);
3443 fail:
3445 * We can't read in the inode this bucket points to, or this inode
3446 * is messed up. Just ditch this bucket of inodes. We will lose
3447 * some inodes and space, but at least we won't hang.
3449 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3450 * clear the inode pointer in the bucket.
3452 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3453 return NULLAGINO;
3457 * xlog_iunlink_recover
3459 * This is called during recovery to process any inodes which
3460 * we unlinked but not freed when the system crashed. These
3461 * inodes will be on the lists in the AGI blocks. What we do
3462 * here is scan all the AGIs and fully truncate and free any
3463 * inodes found on the lists. Each inode is removed from the
3464 * lists when it has been fully truncated and is freed. The
3465 * freeing of the inode and its removal from the list must be
3466 * atomic.
3468 STATIC void
3469 xlog_recover_process_iunlinks(
3470 struct xlog *log)
3472 xfs_mount_t *mp;
3473 xfs_agnumber_t agno;
3474 xfs_agi_t *agi;
3475 xfs_buf_t *agibp;
3476 xfs_agino_t agino;
3477 int bucket;
3478 int error;
3479 uint mp_dmevmask;
3481 mp = log->l_mp;
3484 * Prevent any DMAPI event from being sent while in this function.
3486 mp_dmevmask = mp->m_dmevmask;
3487 mp->m_dmevmask = 0;
3489 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3491 * Find the agi for this ag.
3493 error = xfs_read_agi(mp, NULL, agno, &agibp);
3494 if (error) {
3496 * AGI is b0rked. Don't process it.
3498 * We should probably mark the filesystem as corrupt
3499 * after we've recovered all the ag's we can....
3501 continue;
3504 * Unlock the buffer so that it can be acquired in the normal
3505 * course of the transaction to truncate and free each inode.
3506 * Because we are not racing with anyone else here for the AGI
3507 * buffer, we don't even need to hold it locked to read the
3508 * initial unlinked bucket entries out of the buffer. We keep
3509 * buffer reference though, so that it stays pinned in memory
3510 * while we need the buffer.
3512 agi = XFS_BUF_TO_AGI(agibp);
3513 xfs_buf_unlock(agibp);
3515 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3516 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3517 while (agino != NULLAGINO) {
3518 agino = xlog_recover_process_one_iunlink(mp,
3519 agno, agino, bucket);
3522 xfs_buf_rele(agibp);
3525 mp->m_dmevmask = mp_dmevmask;
3529 * Upack the log buffer data and crc check it. If the check fails, issue a
3530 * warning if and only if the CRC in the header is non-zero. This makes the
3531 * check an advisory warning, and the zero CRC check will prevent failure
3532 * warnings from being emitted when upgrading the kernel from one that does not
3533 * add CRCs by default.
3535 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3536 * corruption failure
3538 STATIC int
3539 xlog_unpack_data_crc(
3540 struct xlog_rec_header *rhead,
3541 xfs_caddr_t dp,
3542 struct xlog *log)
3544 __le32 crc;
3546 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3547 if (crc != rhead->h_crc) {
3548 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3549 xfs_alert(log->l_mp,
3550 "log record CRC mismatch: found 0x%x, expected 0x%x.\n",
3551 le32_to_cpu(rhead->h_crc),
3552 le32_to_cpu(crc));
3553 xfs_hex_dump(dp, 32);
3557 * If we've detected a log record corruption, then we can't
3558 * recover past this point. Abort recovery if we are enforcing
3559 * CRC protection by punting an error back up the stack.
3561 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3562 return EFSCORRUPTED;
3565 return 0;
3568 STATIC int
3569 xlog_unpack_data(
3570 struct xlog_rec_header *rhead,
3571 xfs_caddr_t dp,
3572 struct xlog *log)
3574 int i, j, k;
3575 int error;
3577 error = xlog_unpack_data_crc(rhead, dp, log);
3578 if (error)
3579 return error;
3581 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3582 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3583 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3584 dp += BBSIZE;
3587 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3588 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3589 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3590 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3591 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3592 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3593 dp += BBSIZE;
3597 return 0;
3600 STATIC int
3601 xlog_valid_rec_header(
3602 struct xlog *log,
3603 struct xlog_rec_header *rhead,
3604 xfs_daddr_t blkno)
3606 int hlen;
3608 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
3609 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3610 XFS_ERRLEVEL_LOW, log->l_mp);
3611 return XFS_ERROR(EFSCORRUPTED);
3613 if (unlikely(
3614 (!rhead->h_version ||
3615 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3616 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3617 __func__, be32_to_cpu(rhead->h_version));
3618 return XFS_ERROR(EIO);
3621 /* LR body must have data or it wouldn't have been written */
3622 hlen = be32_to_cpu(rhead->h_len);
3623 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3624 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3625 XFS_ERRLEVEL_LOW, log->l_mp);
3626 return XFS_ERROR(EFSCORRUPTED);
3628 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3629 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3630 XFS_ERRLEVEL_LOW, log->l_mp);
3631 return XFS_ERROR(EFSCORRUPTED);
3633 return 0;
3637 * Read the log from tail to head and process the log records found.
3638 * Handle the two cases where the tail and head are in the same cycle
3639 * and where the active portion of the log wraps around the end of
3640 * the physical log separately. The pass parameter is passed through
3641 * to the routines called to process the data and is not looked at
3642 * here.
3644 STATIC int
3645 xlog_do_recovery_pass(
3646 struct xlog *log,
3647 xfs_daddr_t head_blk,
3648 xfs_daddr_t tail_blk,
3649 int pass)
3651 xlog_rec_header_t *rhead;
3652 xfs_daddr_t blk_no;
3653 xfs_caddr_t offset;
3654 xfs_buf_t *hbp, *dbp;
3655 int error = 0, h_size;
3656 int bblks, split_bblks;
3657 int hblks, split_hblks, wrapped_hblks;
3658 struct hlist_head rhash[XLOG_RHASH_SIZE];
3660 ASSERT(head_blk != tail_blk);
3663 * Read the header of the tail block and get the iclog buffer size from
3664 * h_size. Use this to tell how many sectors make up the log header.
3666 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3668 * When using variable length iclogs, read first sector of
3669 * iclog header and extract the header size from it. Get a
3670 * new hbp that is the correct size.
3672 hbp = xlog_get_bp(log, 1);
3673 if (!hbp)
3674 return ENOMEM;
3676 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3677 if (error)
3678 goto bread_err1;
3680 rhead = (xlog_rec_header_t *)offset;
3681 error = xlog_valid_rec_header(log, rhead, tail_blk);
3682 if (error)
3683 goto bread_err1;
3684 h_size = be32_to_cpu(rhead->h_size);
3685 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3686 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3687 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3688 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3689 hblks++;
3690 xlog_put_bp(hbp);
3691 hbp = xlog_get_bp(log, hblks);
3692 } else {
3693 hblks = 1;
3695 } else {
3696 ASSERT(log->l_sectBBsize == 1);
3697 hblks = 1;
3698 hbp = xlog_get_bp(log, 1);
3699 h_size = XLOG_BIG_RECORD_BSIZE;
3702 if (!hbp)
3703 return ENOMEM;
3704 dbp = xlog_get_bp(log, BTOBB(h_size));
3705 if (!dbp) {
3706 xlog_put_bp(hbp);
3707 return ENOMEM;
3710 memset(rhash, 0, sizeof(rhash));
3711 if (tail_blk <= head_blk) {
3712 for (blk_no = tail_blk; blk_no < head_blk; ) {
3713 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3714 if (error)
3715 goto bread_err2;
3717 rhead = (xlog_rec_header_t *)offset;
3718 error = xlog_valid_rec_header(log, rhead, blk_no);
3719 if (error)
3720 goto bread_err2;
3722 /* blocks in data section */
3723 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3724 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3725 &offset);
3726 if (error)
3727 goto bread_err2;
3729 error = xlog_unpack_data(rhead, offset, log);
3730 if (error)
3731 goto bread_err2;
3733 error = xlog_recover_process_data(log,
3734 rhash, rhead, offset, pass);
3735 if (error)
3736 goto bread_err2;
3737 blk_no += bblks + hblks;
3739 } else {
3741 * Perform recovery around the end of the physical log.
3742 * When the head is not on the same cycle number as the tail,
3743 * we can't do a sequential recovery as above.
3745 blk_no = tail_blk;
3746 while (blk_no < log->l_logBBsize) {
3748 * Check for header wrapping around physical end-of-log
3750 offset = hbp->b_addr;
3751 split_hblks = 0;
3752 wrapped_hblks = 0;
3753 if (blk_no + hblks <= log->l_logBBsize) {
3754 /* Read header in one read */
3755 error = xlog_bread(log, blk_no, hblks, hbp,
3756 &offset);
3757 if (error)
3758 goto bread_err2;
3759 } else {
3760 /* This LR is split across physical log end */
3761 if (blk_no != log->l_logBBsize) {
3762 /* some data before physical log end */
3763 ASSERT(blk_no <= INT_MAX);
3764 split_hblks = log->l_logBBsize - (int)blk_no;
3765 ASSERT(split_hblks > 0);
3766 error = xlog_bread(log, blk_no,
3767 split_hblks, hbp,
3768 &offset);
3769 if (error)
3770 goto bread_err2;
3774 * Note: this black magic still works with
3775 * large sector sizes (non-512) only because:
3776 * - we increased the buffer size originally
3777 * by 1 sector giving us enough extra space
3778 * for the second read;
3779 * - the log start is guaranteed to be sector
3780 * aligned;
3781 * - we read the log end (LR header start)
3782 * _first_, then the log start (LR header end)
3783 * - order is important.
3785 wrapped_hblks = hblks - split_hblks;
3786 error = xlog_bread_offset(log, 0,
3787 wrapped_hblks, hbp,
3788 offset + BBTOB(split_hblks));
3789 if (error)
3790 goto bread_err2;
3792 rhead = (xlog_rec_header_t *)offset;
3793 error = xlog_valid_rec_header(log, rhead,
3794 split_hblks ? blk_no : 0);
3795 if (error)
3796 goto bread_err2;
3798 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3799 blk_no += hblks;
3801 /* Read in data for log record */
3802 if (blk_no + bblks <= log->l_logBBsize) {
3803 error = xlog_bread(log, blk_no, bblks, dbp,
3804 &offset);
3805 if (error)
3806 goto bread_err2;
3807 } else {
3808 /* This log record is split across the
3809 * physical end of log */
3810 offset = dbp->b_addr;
3811 split_bblks = 0;
3812 if (blk_no != log->l_logBBsize) {
3813 /* some data is before the physical
3814 * end of log */
3815 ASSERT(!wrapped_hblks);
3816 ASSERT(blk_no <= INT_MAX);
3817 split_bblks =
3818 log->l_logBBsize - (int)blk_no;
3819 ASSERT(split_bblks > 0);
3820 error = xlog_bread(log, blk_no,
3821 split_bblks, dbp,
3822 &offset);
3823 if (error)
3824 goto bread_err2;
3828 * Note: this black magic still works with
3829 * large sector sizes (non-512) only because:
3830 * - we increased the buffer size originally
3831 * by 1 sector giving us enough extra space
3832 * for the second read;
3833 * - the log start is guaranteed to be sector
3834 * aligned;
3835 * - we read the log end (LR header start)
3836 * _first_, then the log start (LR header end)
3837 * - order is important.
3839 error = xlog_bread_offset(log, 0,
3840 bblks - split_bblks, dbp,
3841 offset + BBTOB(split_bblks));
3842 if (error)
3843 goto bread_err2;
3846 error = xlog_unpack_data(rhead, offset, log);
3847 if (error)
3848 goto bread_err2;
3850 error = xlog_recover_process_data(log, rhash,
3851 rhead, offset, pass);
3852 if (error)
3853 goto bread_err2;
3854 blk_no += bblks;
3857 ASSERT(blk_no >= log->l_logBBsize);
3858 blk_no -= log->l_logBBsize;
3860 /* read first part of physical log */
3861 while (blk_no < head_blk) {
3862 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3863 if (error)
3864 goto bread_err2;
3866 rhead = (xlog_rec_header_t *)offset;
3867 error = xlog_valid_rec_header(log, rhead, blk_no);
3868 if (error)
3869 goto bread_err2;
3871 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3872 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3873 &offset);
3874 if (error)
3875 goto bread_err2;
3877 error = xlog_unpack_data(rhead, offset, log);
3878 if (error)
3879 goto bread_err2;
3881 error = xlog_recover_process_data(log, rhash,
3882 rhead, offset, pass);
3883 if (error)
3884 goto bread_err2;
3885 blk_no += bblks + hblks;
3889 bread_err2:
3890 xlog_put_bp(dbp);
3891 bread_err1:
3892 xlog_put_bp(hbp);
3893 return error;
3897 * Do the recovery of the log. We actually do this in two phases.
3898 * The two passes are necessary in order to implement the function
3899 * of cancelling a record written into the log. The first pass
3900 * determines those things which have been cancelled, and the
3901 * second pass replays log items normally except for those which
3902 * have been cancelled. The handling of the replay and cancellations
3903 * takes place in the log item type specific routines.
3905 * The table of items which have cancel records in the log is allocated
3906 * and freed at this level, since only here do we know when all of
3907 * the log recovery has been completed.
3909 STATIC int
3910 xlog_do_log_recovery(
3911 struct xlog *log,
3912 xfs_daddr_t head_blk,
3913 xfs_daddr_t tail_blk)
3915 int error, i;
3917 ASSERT(head_blk != tail_blk);
3920 * First do a pass to find all of the cancelled buf log items.
3921 * Store them in the buf_cancel_table for use in the second pass.
3923 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3924 sizeof(struct list_head),
3925 KM_SLEEP);
3926 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3927 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3929 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3930 XLOG_RECOVER_PASS1);
3931 if (error != 0) {
3932 kmem_free(log->l_buf_cancel_table);
3933 log->l_buf_cancel_table = NULL;
3934 return error;
3937 * Then do a second pass to actually recover the items in the log.
3938 * When it is complete free the table of buf cancel items.
3940 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3941 XLOG_RECOVER_PASS2);
3942 #ifdef DEBUG
3943 if (!error) {
3944 int i;
3946 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3947 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3949 #endif /* DEBUG */
3951 kmem_free(log->l_buf_cancel_table);
3952 log->l_buf_cancel_table = NULL;
3954 return error;
3958 * Do the actual recovery
3960 STATIC int
3961 xlog_do_recover(
3962 struct xlog *log,
3963 xfs_daddr_t head_blk,
3964 xfs_daddr_t tail_blk)
3966 int error;
3967 xfs_buf_t *bp;
3968 xfs_sb_t *sbp;
3971 * First replay the images in the log.
3973 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3974 if (error)
3975 return error;
3978 * If IO errors happened during recovery, bail out.
3980 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3981 return (EIO);
3985 * We now update the tail_lsn since much of the recovery has completed
3986 * and there may be space available to use. If there were no extent
3987 * or iunlinks, we can free up the entire log and set the tail_lsn to
3988 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3989 * lsn of the last known good LR on disk. If there are extent frees
3990 * or iunlinks they will have some entries in the AIL; so we look at
3991 * the AIL to determine how to set the tail_lsn.
3993 xlog_assign_tail_lsn(log->l_mp);
3996 * Now that we've finished replaying all buffer and inode
3997 * updates, re-read in the superblock and reverify it.
3999 bp = xfs_getsb(log->l_mp, 0);
4000 XFS_BUF_UNDONE(bp);
4001 ASSERT(!(XFS_BUF_ISWRITE(bp)));
4002 XFS_BUF_READ(bp);
4003 XFS_BUF_UNASYNC(bp);
4004 bp->b_ops = &xfs_sb_buf_ops;
4005 xfsbdstrat(log->l_mp, bp);
4006 error = xfs_buf_iowait(bp);
4007 if (error) {
4008 xfs_buf_ioerror_alert(bp, __func__);
4009 ASSERT(0);
4010 xfs_buf_relse(bp);
4011 return error;
4014 /* Convert superblock from on-disk format */
4015 sbp = &log->l_mp->m_sb;
4016 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
4017 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
4018 ASSERT(xfs_sb_good_version(sbp));
4019 xfs_buf_relse(bp);
4021 /* We've re-read the superblock so re-initialize per-cpu counters */
4022 xfs_icsb_reinit_counters(log->l_mp);
4024 xlog_recover_check_summary(log);
4026 /* Normal transactions can now occur */
4027 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4028 return 0;
4032 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4034 * Return error or zero.
4037 xlog_recover(
4038 struct xlog *log)
4040 xfs_daddr_t head_blk, tail_blk;
4041 int error;
4043 /* find the tail of the log */
4044 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
4045 return error;
4047 if (tail_blk != head_blk) {
4048 /* There used to be a comment here:
4050 * disallow recovery on read-only mounts. note -- mount
4051 * checks for ENOSPC and turns it into an intelligent
4052 * error message.
4053 * ...but this is no longer true. Now, unless you specify
4054 * NORECOVERY (in which case this function would never be
4055 * called), we just go ahead and recover. We do this all
4056 * under the vfs layer, so we can get away with it unless
4057 * the device itself is read-only, in which case we fail.
4059 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
4060 return error;
4064 * Version 5 superblock log feature mask validation. We know the
4065 * log is dirty so check if there are any unknown log features
4066 * in what we need to recover. If there are unknown features
4067 * (e.g. unsupported transactions, then simply reject the
4068 * attempt at recovery before touching anything.
4070 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4071 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4072 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4073 xfs_warn(log->l_mp,
4074 "Superblock has unknown incompatible log features (0x%x) enabled.\n"
4075 "The log can not be fully and/or safely recovered by this kernel.\n"
4076 "Please recover the log on a kernel that supports the unknown features.",
4077 (log->l_mp->m_sb.sb_features_log_incompat &
4078 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4079 return EINVAL;
4082 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4083 log->l_mp->m_logname ? log->l_mp->m_logname
4084 : "internal");
4086 error = xlog_do_recover(log, head_blk, tail_blk);
4087 log->l_flags |= XLOG_RECOVERY_NEEDED;
4089 return error;
4093 * In the first part of recovery we replay inodes and buffers and build
4094 * up the list of extent free items which need to be processed. Here
4095 * we process the extent free items and clean up the on disk unlinked
4096 * inode lists. This is separated from the first part of recovery so
4097 * that the root and real-time bitmap inodes can be read in from disk in
4098 * between the two stages. This is necessary so that we can free space
4099 * in the real-time portion of the file system.
4102 xlog_recover_finish(
4103 struct xlog *log)
4106 * Now we're ready to do the transactions needed for the
4107 * rest of recovery. Start with completing all the extent
4108 * free intent records and then process the unlinked inode
4109 * lists. At this point, we essentially run in normal mode
4110 * except that we're still performing recovery actions
4111 * rather than accepting new requests.
4113 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
4114 int error;
4115 error = xlog_recover_process_efis(log);
4116 if (error) {
4117 xfs_alert(log->l_mp, "Failed to recover EFIs");
4118 return error;
4121 * Sync the log to get all the EFIs out of the AIL.
4122 * This isn't absolutely necessary, but it helps in
4123 * case the unlink transactions would have problems
4124 * pushing the EFIs out of the way.
4126 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
4128 xlog_recover_process_iunlinks(log);
4130 xlog_recover_check_summary(log);
4132 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4133 log->l_mp->m_logname ? log->l_mp->m_logname
4134 : "internal");
4135 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4136 } else {
4137 xfs_info(log->l_mp, "Ending clean mount");
4139 return 0;
4143 #if defined(DEBUG)
4145 * Read all of the agf and agi counters and check that they
4146 * are consistent with the superblock counters.
4148 void
4149 xlog_recover_check_summary(
4150 struct xlog *log)
4152 xfs_mount_t *mp;
4153 xfs_agf_t *agfp;
4154 xfs_buf_t *agfbp;
4155 xfs_buf_t *agibp;
4156 xfs_agnumber_t agno;
4157 __uint64_t freeblks;
4158 __uint64_t itotal;
4159 __uint64_t ifree;
4160 int error;
4162 mp = log->l_mp;
4164 freeblks = 0LL;
4165 itotal = 0LL;
4166 ifree = 0LL;
4167 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4168 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4169 if (error) {
4170 xfs_alert(mp, "%s agf read failed agno %d error %d",
4171 __func__, agno, error);
4172 } else {
4173 agfp = XFS_BUF_TO_AGF(agfbp);
4174 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4175 be32_to_cpu(agfp->agf_flcount);
4176 xfs_buf_relse(agfbp);
4179 error = xfs_read_agi(mp, NULL, agno, &agibp);
4180 if (error) {
4181 xfs_alert(mp, "%s agi read failed agno %d error %d",
4182 __func__, agno, error);
4183 } else {
4184 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
4186 itotal += be32_to_cpu(agi->agi_count);
4187 ifree += be32_to_cpu(agi->agi_freecount);
4188 xfs_buf_relse(agibp);
4192 #endif /* DEBUG */