2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_btree.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_alloc.h"
38 #include "xfs_rtalloc.h"
40 #include "xfs_error.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
45 #include "xfs_icache.h"
46 #include "xfs_cksum.h"
47 #include "xfs_buf_item.h"
51 STATIC
void xfs_icsb_balance_counter(xfs_mount_t
*, xfs_sb_field_t
,
53 STATIC
void xfs_icsb_balance_counter_locked(xfs_mount_t
*, xfs_sb_field_t
,
55 STATIC
void xfs_icsb_disable_counter(xfs_mount_t
*, xfs_sb_field_t
);
58 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
59 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
64 short type
; /* 0 = integer
65 * 1 = binary / string (no translation)
68 { offsetof(xfs_sb_t
, sb_magicnum
), 0 },
69 { offsetof(xfs_sb_t
, sb_blocksize
), 0 },
70 { offsetof(xfs_sb_t
, sb_dblocks
), 0 },
71 { offsetof(xfs_sb_t
, sb_rblocks
), 0 },
72 { offsetof(xfs_sb_t
, sb_rextents
), 0 },
73 { offsetof(xfs_sb_t
, sb_uuid
), 1 },
74 { offsetof(xfs_sb_t
, sb_logstart
), 0 },
75 { offsetof(xfs_sb_t
, sb_rootino
), 0 },
76 { offsetof(xfs_sb_t
, sb_rbmino
), 0 },
77 { offsetof(xfs_sb_t
, sb_rsumino
), 0 },
78 { offsetof(xfs_sb_t
, sb_rextsize
), 0 },
79 { offsetof(xfs_sb_t
, sb_agblocks
), 0 },
80 { offsetof(xfs_sb_t
, sb_agcount
), 0 },
81 { offsetof(xfs_sb_t
, sb_rbmblocks
), 0 },
82 { offsetof(xfs_sb_t
, sb_logblocks
), 0 },
83 { offsetof(xfs_sb_t
, sb_versionnum
), 0 },
84 { offsetof(xfs_sb_t
, sb_sectsize
), 0 },
85 { offsetof(xfs_sb_t
, sb_inodesize
), 0 },
86 { offsetof(xfs_sb_t
, sb_inopblock
), 0 },
87 { offsetof(xfs_sb_t
, sb_fname
[0]), 1 },
88 { offsetof(xfs_sb_t
, sb_blocklog
), 0 },
89 { offsetof(xfs_sb_t
, sb_sectlog
), 0 },
90 { offsetof(xfs_sb_t
, sb_inodelog
), 0 },
91 { offsetof(xfs_sb_t
, sb_inopblog
), 0 },
92 { offsetof(xfs_sb_t
, sb_agblklog
), 0 },
93 { offsetof(xfs_sb_t
, sb_rextslog
), 0 },
94 { offsetof(xfs_sb_t
, sb_inprogress
), 0 },
95 { offsetof(xfs_sb_t
, sb_imax_pct
), 0 },
96 { offsetof(xfs_sb_t
, sb_icount
), 0 },
97 { offsetof(xfs_sb_t
, sb_ifree
), 0 },
98 { offsetof(xfs_sb_t
, sb_fdblocks
), 0 },
99 { offsetof(xfs_sb_t
, sb_frextents
), 0 },
100 { offsetof(xfs_sb_t
, sb_uquotino
), 0 },
101 { offsetof(xfs_sb_t
, sb_gquotino
), 0 },
102 { offsetof(xfs_sb_t
, sb_qflags
), 0 },
103 { offsetof(xfs_sb_t
, sb_flags
), 0 },
104 { offsetof(xfs_sb_t
, sb_shared_vn
), 0 },
105 { offsetof(xfs_sb_t
, sb_inoalignmt
), 0 },
106 { offsetof(xfs_sb_t
, sb_unit
), 0 },
107 { offsetof(xfs_sb_t
, sb_width
), 0 },
108 { offsetof(xfs_sb_t
, sb_dirblklog
), 0 },
109 { offsetof(xfs_sb_t
, sb_logsectlog
), 0 },
110 { offsetof(xfs_sb_t
, sb_logsectsize
),0 },
111 { offsetof(xfs_sb_t
, sb_logsunit
), 0 },
112 { offsetof(xfs_sb_t
, sb_features2
), 0 },
113 { offsetof(xfs_sb_t
, sb_bad_features2
), 0 },
114 { offsetof(xfs_sb_t
, sb_features_compat
), 0 },
115 { offsetof(xfs_sb_t
, sb_features_ro_compat
), 0 },
116 { offsetof(xfs_sb_t
, sb_features_incompat
), 0 },
117 { offsetof(xfs_sb_t
, sb_features_log_incompat
), 0 },
118 { offsetof(xfs_sb_t
, sb_crc
), 0 },
119 { offsetof(xfs_sb_t
, sb_pad
), 0 },
120 { offsetof(xfs_sb_t
, sb_pquotino
), 0 },
121 { offsetof(xfs_sb_t
, sb_lsn
), 0 },
122 { sizeof(xfs_sb_t
), 0 }
125 static DEFINE_MUTEX(xfs_uuid_table_mutex
);
126 static int xfs_uuid_table_size
;
127 static uuid_t
*xfs_uuid_table
;
130 * See if the UUID is unique among mounted XFS filesystems.
131 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
135 struct xfs_mount
*mp
)
137 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
140 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
143 if (uuid_is_nil(uuid
)) {
144 xfs_warn(mp
, "Filesystem has nil UUID - can't mount");
145 return XFS_ERROR(EINVAL
);
148 mutex_lock(&xfs_uuid_table_mutex
);
149 for (i
= 0, hole
= -1; i
< xfs_uuid_table_size
; i
++) {
150 if (uuid_is_nil(&xfs_uuid_table
[i
])) {
154 if (uuid_equal(uuid
, &xfs_uuid_table
[i
]))
159 xfs_uuid_table
= kmem_realloc(xfs_uuid_table
,
160 (xfs_uuid_table_size
+ 1) * sizeof(*xfs_uuid_table
),
161 xfs_uuid_table_size
* sizeof(*xfs_uuid_table
),
163 hole
= xfs_uuid_table_size
++;
165 xfs_uuid_table
[hole
] = *uuid
;
166 mutex_unlock(&xfs_uuid_table_mutex
);
171 mutex_unlock(&xfs_uuid_table_mutex
);
172 xfs_warn(mp
, "Filesystem has duplicate UUID %pU - can't mount", uuid
);
173 return XFS_ERROR(EINVAL
);
178 struct xfs_mount
*mp
)
180 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
183 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
186 mutex_lock(&xfs_uuid_table_mutex
);
187 for (i
= 0; i
< xfs_uuid_table_size
; i
++) {
188 if (uuid_is_nil(&xfs_uuid_table
[i
]))
190 if (!uuid_equal(uuid
, &xfs_uuid_table
[i
]))
192 memset(&xfs_uuid_table
[i
], 0, sizeof(uuid_t
));
195 ASSERT(i
< xfs_uuid_table_size
);
196 mutex_unlock(&xfs_uuid_table_mutex
);
201 * Reference counting access wrappers to the perag structures.
202 * Because we never free per-ag structures, the only thing we
203 * have to protect against changes is the tree structure itself.
206 xfs_perag_get(struct xfs_mount
*mp
, xfs_agnumber_t agno
)
208 struct xfs_perag
*pag
;
212 pag
= radix_tree_lookup(&mp
->m_perag_tree
, agno
);
214 ASSERT(atomic_read(&pag
->pag_ref
) >= 0);
215 ref
= atomic_inc_return(&pag
->pag_ref
);
218 trace_xfs_perag_get(mp
, agno
, ref
, _RET_IP_
);
223 * search from @first to find the next perag with the given tag set.
227 struct xfs_mount
*mp
,
228 xfs_agnumber_t first
,
231 struct xfs_perag
*pag
;
236 found
= radix_tree_gang_lookup_tag(&mp
->m_perag_tree
,
237 (void **)&pag
, first
, 1, tag
);
242 ref
= atomic_inc_return(&pag
->pag_ref
);
244 trace_xfs_perag_get_tag(mp
, pag
->pag_agno
, ref
, _RET_IP_
);
249 xfs_perag_put(struct xfs_perag
*pag
)
253 ASSERT(atomic_read(&pag
->pag_ref
) > 0);
254 ref
= atomic_dec_return(&pag
->pag_ref
);
255 trace_xfs_perag_put(pag
->pag_mount
, pag
->pag_agno
, ref
, _RET_IP_
);
260 struct rcu_head
*head
)
262 struct xfs_perag
*pag
= container_of(head
, struct xfs_perag
, rcu_head
);
264 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
269 * Free up the per-ag resources associated with the mount structure.
276 struct xfs_perag
*pag
;
278 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
279 spin_lock(&mp
->m_perag_lock
);
280 pag
= radix_tree_delete(&mp
->m_perag_tree
, agno
);
281 spin_unlock(&mp
->m_perag_lock
);
283 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
284 call_rcu(&pag
->rcu_head
, __xfs_free_perag
);
289 * Check size of device based on the (data/realtime) block count.
290 * Note: this check is used by the growfs code as well as mount.
293 xfs_sb_validate_fsb_count(
297 ASSERT(PAGE_SHIFT
>= sbp
->sb_blocklog
);
298 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
300 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
301 if (nblocks
>> (PAGE_CACHE_SHIFT
- sbp
->sb_blocklog
) > ULONG_MAX
)
303 #else /* Limited by UINT_MAX of sectors */
304 if (nblocks
<< (sbp
->sb_blocklog
- BBSHIFT
) > UINT_MAX
)
311 * Check the validity of the SB found.
314 xfs_mount_validate_sb(
317 bool check_inprogress
,
322 * If the log device and data device have the
323 * same device number, the log is internal.
324 * Consequently, the sb_logstart should be non-zero. If
325 * we have a zero sb_logstart in this case, we may be trying to mount
326 * a volume filesystem in a non-volume manner.
328 if (sbp
->sb_magicnum
!= XFS_SB_MAGIC
) {
329 xfs_warn(mp
, "bad magic number");
330 return XFS_ERROR(EWRONGFS
);
334 if (!xfs_sb_good_version(sbp
)) {
335 xfs_warn(mp
, "bad version");
336 return XFS_ERROR(EWRONGFS
);
340 * Version 5 superblock feature mask validation. Reject combinations the
341 * kernel cannot support up front before checking anything else. For
342 * write validation, we don't need to check feature masks.
344 if (check_version
&& XFS_SB_VERSION_NUM(sbp
) == XFS_SB_VERSION_5
) {
346 "Version 5 superblock detected. This kernel has EXPERIMENTAL support enabled!\n"
347 "Use of these features in this kernel is at your own risk!");
349 if (xfs_sb_has_compat_feature(sbp
,
350 XFS_SB_FEAT_COMPAT_UNKNOWN
)) {
352 "Superblock has unknown compatible features (0x%x) enabled.\n"
353 "Using a more recent kernel is recommended.",
354 (sbp
->sb_features_compat
&
355 XFS_SB_FEAT_COMPAT_UNKNOWN
));
358 if (xfs_sb_has_ro_compat_feature(sbp
,
359 XFS_SB_FEAT_RO_COMPAT_UNKNOWN
)) {
361 "Superblock has unknown read-only compatible features (0x%x) enabled.",
362 (sbp
->sb_features_ro_compat
&
363 XFS_SB_FEAT_RO_COMPAT_UNKNOWN
));
364 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
366 "Attempted to mount read-only compatible filesystem read-write.\n"
367 "Filesystem can only be safely mounted read only.");
368 return XFS_ERROR(EINVAL
);
371 if (xfs_sb_has_incompat_feature(sbp
,
372 XFS_SB_FEAT_INCOMPAT_UNKNOWN
)) {
374 "Superblock has unknown incompatible features (0x%x) enabled.\n"
375 "Filesystem can not be safely mounted by this kernel.",
376 (sbp
->sb_features_incompat
&
377 XFS_SB_FEAT_INCOMPAT_UNKNOWN
));
378 return XFS_ERROR(EINVAL
);
383 sbp
->sb_logstart
== 0 && mp
->m_logdev_targp
== mp
->m_ddev_targp
)) {
385 "filesystem is marked as having an external log; "
386 "specify logdev on the mount command line.");
387 return XFS_ERROR(EINVAL
);
391 sbp
->sb_logstart
!= 0 && mp
->m_logdev_targp
!= mp
->m_ddev_targp
)) {
393 "filesystem is marked as having an internal log; "
394 "do not specify logdev on the mount command line.");
395 return XFS_ERROR(EINVAL
);
399 * More sanity checking. Most of these were stolen directly from
403 sbp
->sb_agcount
<= 0 ||
404 sbp
->sb_sectsize
< XFS_MIN_SECTORSIZE
||
405 sbp
->sb_sectsize
> XFS_MAX_SECTORSIZE
||
406 sbp
->sb_sectlog
< XFS_MIN_SECTORSIZE_LOG
||
407 sbp
->sb_sectlog
> XFS_MAX_SECTORSIZE_LOG
||
408 sbp
->sb_sectsize
!= (1 << sbp
->sb_sectlog
) ||
409 sbp
->sb_blocksize
< XFS_MIN_BLOCKSIZE
||
410 sbp
->sb_blocksize
> XFS_MAX_BLOCKSIZE
||
411 sbp
->sb_blocklog
< XFS_MIN_BLOCKSIZE_LOG
||
412 sbp
->sb_blocklog
> XFS_MAX_BLOCKSIZE_LOG
||
413 sbp
->sb_blocksize
!= (1 << sbp
->sb_blocklog
) ||
414 sbp
->sb_inodesize
< XFS_DINODE_MIN_SIZE
||
415 sbp
->sb_inodesize
> XFS_DINODE_MAX_SIZE
||
416 sbp
->sb_inodelog
< XFS_DINODE_MIN_LOG
||
417 sbp
->sb_inodelog
> XFS_DINODE_MAX_LOG
||
418 sbp
->sb_inodesize
!= (1 << sbp
->sb_inodelog
) ||
419 (sbp
->sb_blocklog
- sbp
->sb_inodelog
!= sbp
->sb_inopblog
) ||
420 (sbp
->sb_rextsize
* sbp
->sb_blocksize
> XFS_MAX_RTEXTSIZE
) ||
421 (sbp
->sb_rextsize
* sbp
->sb_blocksize
< XFS_MIN_RTEXTSIZE
) ||
422 (sbp
->sb_imax_pct
> 100 /* zero sb_imax_pct is valid */) ||
423 sbp
->sb_dblocks
== 0 ||
424 sbp
->sb_dblocks
> XFS_MAX_DBLOCKS(sbp
) ||
425 sbp
->sb_dblocks
< XFS_MIN_DBLOCKS(sbp
))) {
426 XFS_CORRUPTION_ERROR("SB sanity check failed",
427 XFS_ERRLEVEL_LOW
, mp
, sbp
);
428 return XFS_ERROR(EFSCORRUPTED
);
432 * Until this is fixed only page-sized or smaller data blocks work.
434 if (unlikely(sbp
->sb_blocksize
> PAGE_SIZE
)) {
436 "File system with blocksize %d bytes. "
437 "Only pagesize (%ld) or less will currently work.",
438 sbp
->sb_blocksize
, PAGE_SIZE
);
439 return XFS_ERROR(ENOSYS
);
443 * Currently only very few inode sizes are supported.
445 switch (sbp
->sb_inodesize
) {
452 xfs_warn(mp
, "inode size of %d bytes not supported",
454 return XFS_ERROR(ENOSYS
);
457 if (xfs_sb_validate_fsb_count(sbp
, sbp
->sb_dblocks
) ||
458 xfs_sb_validate_fsb_count(sbp
, sbp
->sb_rblocks
)) {
460 "file system too large to be mounted on this system.");
461 return XFS_ERROR(EFBIG
);
464 if (check_inprogress
&& sbp
->sb_inprogress
) {
465 xfs_warn(mp
, "Offline file system operation in progress!");
466 return XFS_ERROR(EFSCORRUPTED
);
470 * Version 1 directory format has never worked on Linux.
472 if (unlikely(!xfs_sb_version_hasdirv2(sbp
))) {
473 xfs_warn(mp
, "file system using version 1 directory format");
474 return XFS_ERROR(ENOSYS
);
481 xfs_initialize_perag(
483 xfs_agnumber_t agcount
,
484 xfs_agnumber_t
*maxagi
)
486 xfs_agnumber_t index
;
487 xfs_agnumber_t first_initialised
= 0;
491 xfs_sb_t
*sbp
= &mp
->m_sb
;
495 * Walk the current per-ag tree so we don't try to initialise AGs
496 * that already exist (growfs case). Allocate and insert all the
497 * AGs we don't find ready for initialisation.
499 for (index
= 0; index
< agcount
; index
++) {
500 pag
= xfs_perag_get(mp
, index
);
505 if (!first_initialised
)
506 first_initialised
= index
;
508 pag
= kmem_zalloc(sizeof(*pag
), KM_MAYFAIL
);
511 pag
->pag_agno
= index
;
513 spin_lock_init(&pag
->pag_ici_lock
);
514 mutex_init(&pag
->pag_ici_reclaim_lock
);
515 INIT_RADIX_TREE(&pag
->pag_ici_root
, GFP_ATOMIC
);
516 spin_lock_init(&pag
->pag_buf_lock
);
517 pag
->pag_buf_tree
= RB_ROOT
;
519 if (radix_tree_preload(GFP_NOFS
))
522 spin_lock(&mp
->m_perag_lock
);
523 if (radix_tree_insert(&mp
->m_perag_tree
, index
, pag
)) {
525 spin_unlock(&mp
->m_perag_lock
);
526 radix_tree_preload_end();
530 spin_unlock(&mp
->m_perag_lock
);
531 radix_tree_preload_end();
535 * If we mount with the inode64 option, or no inode overflows
536 * the legacy 32-bit address space clear the inode32 option.
538 agino
= XFS_OFFBNO_TO_AGINO(mp
, sbp
->sb_agblocks
- 1, 0);
539 ino
= XFS_AGINO_TO_INO(mp
, agcount
- 1, agino
);
541 if ((mp
->m_flags
& XFS_MOUNT_SMALL_INUMS
) && ino
> XFS_MAXINUMBER_32
)
542 mp
->m_flags
|= XFS_MOUNT_32BITINODES
;
544 mp
->m_flags
&= ~XFS_MOUNT_32BITINODES
;
546 if (mp
->m_flags
& XFS_MOUNT_32BITINODES
)
547 index
= xfs_set_inode32(mp
);
549 index
= xfs_set_inode64(mp
);
557 for (; index
> first_initialised
; index
--) {
558 pag
= radix_tree_delete(&mp
->m_perag_tree
, index
);
569 to
->sb_magicnum
= be32_to_cpu(from
->sb_magicnum
);
570 to
->sb_blocksize
= be32_to_cpu(from
->sb_blocksize
);
571 to
->sb_dblocks
= be64_to_cpu(from
->sb_dblocks
);
572 to
->sb_rblocks
= be64_to_cpu(from
->sb_rblocks
);
573 to
->sb_rextents
= be64_to_cpu(from
->sb_rextents
);
574 memcpy(&to
->sb_uuid
, &from
->sb_uuid
, sizeof(to
->sb_uuid
));
575 to
->sb_logstart
= be64_to_cpu(from
->sb_logstart
);
576 to
->sb_rootino
= be64_to_cpu(from
->sb_rootino
);
577 to
->sb_rbmino
= be64_to_cpu(from
->sb_rbmino
);
578 to
->sb_rsumino
= be64_to_cpu(from
->sb_rsumino
);
579 to
->sb_rextsize
= be32_to_cpu(from
->sb_rextsize
);
580 to
->sb_agblocks
= be32_to_cpu(from
->sb_agblocks
);
581 to
->sb_agcount
= be32_to_cpu(from
->sb_agcount
);
582 to
->sb_rbmblocks
= be32_to_cpu(from
->sb_rbmblocks
);
583 to
->sb_logblocks
= be32_to_cpu(from
->sb_logblocks
);
584 to
->sb_versionnum
= be16_to_cpu(from
->sb_versionnum
);
585 to
->sb_sectsize
= be16_to_cpu(from
->sb_sectsize
);
586 to
->sb_inodesize
= be16_to_cpu(from
->sb_inodesize
);
587 to
->sb_inopblock
= be16_to_cpu(from
->sb_inopblock
);
588 memcpy(&to
->sb_fname
, &from
->sb_fname
, sizeof(to
->sb_fname
));
589 to
->sb_blocklog
= from
->sb_blocklog
;
590 to
->sb_sectlog
= from
->sb_sectlog
;
591 to
->sb_inodelog
= from
->sb_inodelog
;
592 to
->sb_inopblog
= from
->sb_inopblog
;
593 to
->sb_agblklog
= from
->sb_agblklog
;
594 to
->sb_rextslog
= from
->sb_rextslog
;
595 to
->sb_inprogress
= from
->sb_inprogress
;
596 to
->sb_imax_pct
= from
->sb_imax_pct
;
597 to
->sb_icount
= be64_to_cpu(from
->sb_icount
);
598 to
->sb_ifree
= be64_to_cpu(from
->sb_ifree
);
599 to
->sb_fdblocks
= be64_to_cpu(from
->sb_fdblocks
);
600 to
->sb_frextents
= be64_to_cpu(from
->sb_frextents
);
601 to
->sb_uquotino
= be64_to_cpu(from
->sb_uquotino
);
602 to
->sb_gquotino
= be64_to_cpu(from
->sb_gquotino
);
603 to
->sb_qflags
= be16_to_cpu(from
->sb_qflags
);
604 to
->sb_flags
= from
->sb_flags
;
605 to
->sb_shared_vn
= from
->sb_shared_vn
;
606 to
->sb_inoalignmt
= be32_to_cpu(from
->sb_inoalignmt
);
607 to
->sb_unit
= be32_to_cpu(from
->sb_unit
);
608 to
->sb_width
= be32_to_cpu(from
->sb_width
);
609 to
->sb_dirblklog
= from
->sb_dirblklog
;
610 to
->sb_logsectlog
= from
->sb_logsectlog
;
611 to
->sb_logsectsize
= be16_to_cpu(from
->sb_logsectsize
);
612 to
->sb_logsunit
= be32_to_cpu(from
->sb_logsunit
);
613 to
->sb_features2
= be32_to_cpu(from
->sb_features2
);
614 to
->sb_bad_features2
= be32_to_cpu(from
->sb_bad_features2
);
615 to
->sb_features_compat
= be32_to_cpu(from
->sb_features_compat
);
616 to
->sb_features_ro_compat
= be32_to_cpu(from
->sb_features_ro_compat
);
617 to
->sb_features_incompat
= be32_to_cpu(from
->sb_features_incompat
);
618 to
->sb_features_log_incompat
=
619 be32_to_cpu(from
->sb_features_log_incompat
);
621 to
->sb_pquotino
= be64_to_cpu(from
->sb_pquotino
);
622 to
->sb_lsn
= be64_to_cpu(from
->sb_lsn
);
626 * Copy in core superblock to ondisk one.
628 * The fields argument is mask of superblock fields to copy.
636 xfs_caddr_t to_ptr
= (xfs_caddr_t
)to
;
637 xfs_caddr_t from_ptr
= (xfs_caddr_t
)from
;
647 f
= (xfs_sb_field_t
)xfs_lowbit64((__uint64_t
)fields
);
648 first
= xfs_sb_info
[f
].offset
;
649 size
= xfs_sb_info
[f
+ 1].offset
- first
;
651 ASSERT(xfs_sb_info
[f
].type
== 0 || xfs_sb_info
[f
].type
== 1);
653 if (size
== 1 || xfs_sb_info
[f
].type
== 1) {
654 memcpy(to_ptr
+ first
, from_ptr
+ first
, size
);
658 *(__be16
*)(to_ptr
+ first
) =
659 cpu_to_be16(*(__u16
*)(from_ptr
+ first
));
662 *(__be32
*)(to_ptr
+ first
) =
663 cpu_to_be32(*(__u32
*)(from_ptr
+ first
));
666 *(__be64
*)(to_ptr
+ first
) =
667 cpu_to_be64(*(__u64
*)(from_ptr
+ first
));
674 fields
&= ~(1LL << f
);
683 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
686 xfs_sb_from_disk(&sb
, XFS_BUF_TO_SBP(bp
));
689 * Only check the in progress field for the primary superblock as
690 * mkfs.xfs doesn't clear it from secondary superblocks.
692 return xfs_mount_validate_sb(mp
, &sb
, bp
->b_bn
== XFS_SB_DADDR
,
697 * If the superblock has the CRC feature bit set or the CRC field is non-null,
698 * check that the CRC is valid. We check the CRC field is non-null because a
699 * single bit error could clear the feature bit and unused parts of the
700 * superblock are supposed to be zero. Hence a non-null crc field indicates that
701 * we've potentially lost a feature bit and we should check it anyway.
707 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
708 struct xfs_dsb
*dsb
= XFS_BUF_TO_SBP(bp
);
712 * open code the version check to avoid needing to convert the entire
713 * superblock from disk order just to check the version number
715 if (dsb
->sb_magicnum
== cpu_to_be32(XFS_SB_MAGIC
) &&
716 (((be16_to_cpu(dsb
->sb_versionnum
) & XFS_SB_VERSION_NUMBITS
) ==
720 if (!xfs_verify_cksum(bp
->b_addr
, be16_to_cpu(dsb
->sb_sectsize
),
721 offsetof(struct xfs_sb
, sb_crc
))) {
722 error
= EFSCORRUPTED
;
726 error
= xfs_sb_verify(bp
, true);
730 XFS_CORRUPTION_ERROR(__func__
, XFS_ERRLEVEL_LOW
, mp
, bp
->b_addr
);
731 xfs_buf_ioerror(bp
, error
);
736 * We may be probed for a filesystem match, so we may not want to emit
737 * messages when the superblock buffer is not actually an XFS superblock.
738 * If we find an XFS superblock, the run a normal, noisy mount because we are
739 * really going to mount it and want to know about errors.
742 xfs_sb_quiet_read_verify(
745 struct xfs_dsb
*dsb
= XFS_BUF_TO_SBP(bp
);
748 if (dsb
->sb_magicnum
== cpu_to_be32(XFS_SB_MAGIC
)) {
749 /* XFS filesystem, verify noisily! */
750 xfs_sb_read_verify(bp
);
754 xfs_buf_ioerror(bp
, EWRONGFS
);
761 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
762 struct xfs_buf_log_item
*bip
= bp
->b_fspriv
;
765 error
= xfs_sb_verify(bp
, false);
767 XFS_CORRUPTION_ERROR(__func__
, XFS_ERRLEVEL_LOW
, mp
, bp
->b_addr
);
768 xfs_buf_ioerror(bp
, error
);
772 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
776 XFS_BUF_TO_SBP(bp
)->sb_lsn
= cpu_to_be64(bip
->bli_item
.li_lsn
);
778 xfs_update_cksum(bp
->b_addr
, BBTOB(bp
->b_length
),
779 offsetof(struct xfs_sb
, sb_crc
));
782 const struct xfs_buf_ops xfs_sb_buf_ops
= {
783 .verify_read
= xfs_sb_read_verify
,
784 .verify_write
= xfs_sb_write_verify
,
787 static const struct xfs_buf_ops xfs_sb_quiet_buf_ops
= {
788 .verify_read
= xfs_sb_quiet_read_verify
,
789 .verify_write
= xfs_sb_write_verify
,
795 * Does the initial read of the superblock.
798 xfs_readsb(xfs_mount_t
*mp
, int flags
)
800 unsigned int sector_size
;
802 struct xfs_sb
*sbp
= &mp
->m_sb
;
804 int loud
= !(flags
& XFS_MFSI_QUIET
);
806 ASSERT(mp
->m_sb_bp
== NULL
);
807 ASSERT(mp
->m_ddev_targp
!= NULL
);
810 * Allocate a (locked) buffer to hold the superblock.
811 * This will be kept around at all times to optimize
812 * access to the superblock.
814 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
817 bp
= xfs_buf_read_uncached(mp
->m_ddev_targp
, XFS_SB_DADDR
,
818 BTOBB(sector_size
), 0,
819 loud
? &xfs_sb_buf_ops
820 : &xfs_sb_quiet_buf_ops
);
823 xfs_warn(mp
, "SB buffer read failed");
829 xfs_warn(mp
, "SB validate failed with error %d.", error
);
834 * Initialize the mount structure from the superblock.
836 xfs_sb_from_disk(&mp
->m_sb
, XFS_BUF_TO_SBP(bp
));
839 * We must be able to do sector-sized and sector-aligned IO.
841 if (sector_size
> sbp
->sb_sectsize
) {
843 xfs_warn(mp
, "device supports %u byte sectors (not %u)",
844 sector_size
, sbp
->sb_sectsize
);
850 * If device sector size is smaller than the superblock size,
851 * re-read the superblock so the buffer is correctly sized.
853 if (sector_size
< sbp
->sb_sectsize
) {
855 sector_size
= sbp
->sb_sectsize
;
859 /* Initialize per-cpu counters */
860 xfs_icsb_reinit_counters(mp
);
862 /* no need to be quiet anymore, so reset the buf ops */
863 bp
->b_ops
= &xfs_sb_buf_ops
;
878 * Mount initialization code establishing various mount
879 * fields from the superblock associated with the given
883 xfs_mount_common(xfs_mount_t
*mp
, xfs_sb_t
*sbp
)
885 mp
->m_agfrotor
= mp
->m_agirotor
= 0;
886 spin_lock_init(&mp
->m_agirotor_lock
);
887 mp
->m_maxagi
= mp
->m_sb
.sb_agcount
;
888 mp
->m_blkbit_log
= sbp
->sb_blocklog
+ XFS_NBBYLOG
;
889 mp
->m_blkbb_log
= sbp
->sb_blocklog
- BBSHIFT
;
890 mp
->m_sectbb_log
= sbp
->sb_sectlog
- BBSHIFT
;
891 mp
->m_agno_log
= xfs_highbit32(sbp
->sb_agcount
- 1) + 1;
892 mp
->m_agino_log
= sbp
->sb_inopblog
+ sbp
->sb_agblklog
;
893 mp
->m_blockmask
= sbp
->sb_blocksize
- 1;
894 mp
->m_blockwsize
= sbp
->sb_blocksize
>> XFS_WORDLOG
;
895 mp
->m_blockwmask
= mp
->m_blockwsize
- 1;
897 mp
->m_alloc_mxr
[0] = xfs_allocbt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
898 mp
->m_alloc_mxr
[1] = xfs_allocbt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
899 mp
->m_alloc_mnr
[0] = mp
->m_alloc_mxr
[0] / 2;
900 mp
->m_alloc_mnr
[1] = mp
->m_alloc_mxr
[1] / 2;
902 mp
->m_inobt_mxr
[0] = xfs_inobt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
903 mp
->m_inobt_mxr
[1] = xfs_inobt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
904 mp
->m_inobt_mnr
[0] = mp
->m_inobt_mxr
[0] / 2;
905 mp
->m_inobt_mnr
[1] = mp
->m_inobt_mxr
[1] / 2;
907 mp
->m_bmap_dmxr
[0] = xfs_bmbt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
908 mp
->m_bmap_dmxr
[1] = xfs_bmbt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
909 mp
->m_bmap_dmnr
[0] = mp
->m_bmap_dmxr
[0] / 2;
910 mp
->m_bmap_dmnr
[1] = mp
->m_bmap_dmxr
[1] / 2;
912 mp
->m_bsize
= XFS_FSB_TO_BB(mp
, 1);
913 mp
->m_ialloc_inos
= (int)MAX((__uint16_t
)XFS_INODES_PER_CHUNK
,
915 mp
->m_ialloc_blks
= mp
->m_ialloc_inos
>> sbp
->sb_inopblog
;
919 * xfs_initialize_perag_data
921 * Read in each per-ag structure so we can count up the number of
922 * allocated inodes, free inodes and used filesystem blocks as this
923 * information is no longer persistent in the superblock. Once we have
924 * this information, write it into the in-core superblock structure.
927 xfs_initialize_perag_data(xfs_mount_t
*mp
, xfs_agnumber_t agcount
)
929 xfs_agnumber_t index
;
931 xfs_sb_t
*sbp
= &mp
->m_sb
;
935 uint64_t bfreelst
= 0;
939 for (index
= 0; index
< agcount
; index
++) {
941 * read the agf, then the agi. This gets us
942 * all the information we need and populates the
943 * per-ag structures for us.
945 error
= xfs_alloc_pagf_init(mp
, NULL
, index
, 0);
949 error
= xfs_ialloc_pagi_init(mp
, NULL
, index
);
952 pag
= xfs_perag_get(mp
, index
);
953 ifree
+= pag
->pagi_freecount
;
954 ialloc
+= pag
->pagi_count
;
955 bfree
+= pag
->pagf_freeblks
;
956 bfreelst
+= pag
->pagf_flcount
;
957 btree
+= pag
->pagf_btreeblks
;
961 * Overwrite incore superblock counters with just-read data
963 spin_lock(&mp
->m_sb_lock
);
964 sbp
->sb_ifree
= ifree
;
965 sbp
->sb_icount
= ialloc
;
966 sbp
->sb_fdblocks
= bfree
+ bfreelst
+ btree
;
967 spin_unlock(&mp
->m_sb_lock
);
969 /* Fixup the per-cpu counters as well. */
970 xfs_icsb_reinit_counters(mp
);
976 * Update alignment values based on mount options and sb values
979 xfs_update_alignment(xfs_mount_t
*mp
)
981 xfs_sb_t
*sbp
= &(mp
->m_sb
);
985 * If stripe unit and stripe width are not multiples
986 * of the fs blocksize turn off alignment.
988 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
989 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
990 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
991 xfs_warn(mp
, "alignment check failed: "
992 "(sunit/swidth vs. blocksize)");
993 return XFS_ERROR(EINVAL
);
995 mp
->m_dalign
= mp
->m_swidth
= 0;
998 * Convert the stripe unit and width to FSBs.
1000 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
1001 if (mp
->m_dalign
&& (sbp
->sb_agblocks
% mp
->m_dalign
)) {
1002 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
1003 xfs_warn(mp
, "alignment check failed: "
1004 "(sunit/swidth vs. ag size)");
1005 return XFS_ERROR(EINVAL
);
1008 "stripe alignment turned off: sunit(%d)/swidth(%d) "
1009 "incompatible with agsize(%d)",
1010 mp
->m_dalign
, mp
->m_swidth
,
1015 } else if (mp
->m_dalign
) {
1016 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
1018 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
1019 xfs_warn(mp
, "alignment check failed: "
1020 "sunit(%d) less than bsize(%d)",
1022 mp
->m_blockmask
+1);
1023 return XFS_ERROR(EINVAL
);
1030 * Update superblock with new values
1033 if (xfs_sb_version_hasdalign(sbp
)) {
1034 if (sbp
->sb_unit
!= mp
->m_dalign
) {
1035 sbp
->sb_unit
= mp
->m_dalign
;
1036 mp
->m_update_flags
|= XFS_SB_UNIT
;
1038 if (sbp
->sb_width
!= mp
->m_swidth
) {
1039 sbp
->sb_width
= mp
->m_swidth
;
1040 mp
->m_update_flags
|= XFS_SB_WIDTH
;
1043 } else if ((mp
->m_flags
& XFS_MOUNT_NOALIGN
) != XFS_MOUNT_NOALIGN
&&
1044 xfs_sb_version_hasdalign(&mp
->m_sb
)) {
1045 mp
->m_dalign
= sbp
->sb_unit
;
1046 mp
->m_swidth
= sbp
->sb_width
;
1053 * Set the maximum inode count for this filesystem
1056 xfs_set_maxicount(xfs_mount_t
*mp
)
1058 xfs_sb_t
*sbp
= &(mp
->m_sb
);
1061 if (sbp
->sb_imax_pct
) {
1063 * Make sure the maximum inode count is a multiple
1064 * of the units we allocate inodes in.
1066 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
1067 do_div(icount
, 100);
1068 do_div(icount
, mp
->m_ialloc_blks
);
1069 mp
->m_maxicount
= (icount
* mp
->m_ialloc_blks
) <<
1072 mp
->m_maxicount
= 0;
1077 * Set the default minimum read and write sizes unless
1078 * already specified in a mount option.
1079 * We use smaller I/O sizes when the file system
1080 * is being used for NFS service (wsync mount option).
1083 xfs_set_rw_sizes(xfs_mount_t
*mp
)
1085 xfs_sb_t
*sbp
= &(mp
->m_sb
);
1086 int readio_log
, writeio_log
;
1088 if (!(mp
->m_flags
& XFS_MOUNT_DFLT_IOSIZE
)) {
1089 if (mp
->m_flags
& XFS_MOUNT_WSYNC
) {
1090 readio_log
= XFS_WSYNC_READIO_LOG
;
1091 writeio_log
= XFS_WSYNC_WRITEIO_LOG
;
1093 readio_log
= XFS_READIO_LOG_LARGE
;
1094 writeio_log
= XFS_WRITEIO_LOG_LARGE
;
1097 readio_log
= mp
->m_readio_log
;
1098 writeio_log
= mp
->m_writeio_log
;
1101 if (sbp
->sb_blocklog
> readio_log
) {
1102 mp
->m_readio_log
= sbp
->sb_blocklog
;
1104 mp
->m_readio_log
= readio_log
;
1106 mp
->m_readio_blocks
= 1 << (mp
->m_readio_log
- sbp
->sb_blocklog
);
1107 if (sbp
->sb_blocklog
> writeio_log
) {
1108 mp
->m_writeio_log
= sbp
->sb_blocklog
;
1110 mp
->m_writeio_log
= writeio_log
;
1112 mp
->m_writeio_blocks
= 1 << (mp
->m_writeio_log
- sbp
->sb_blocklog
);
1116 * precalculate the low space thresholds for dynamic speculative preallocation.
1119 xfs_set_low_space_thresholds(
1120 struct xfs_mount
*mp
)
1124 for (i
= 0; i
< XFS_LOWSP_MAX
; i
++) {
1125 __uint64_t space
= mp
->m_sb
.sb_dblocks
;
1128 mp
->m_low_space
[i
] = space
* (i
+ 1);
1134 * Set whether we're using inode alignment.
1137 xfs_set_inoalignment(xfs_mount_t
*mp
)
1139 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
1140 mp
->m_sb
.sb_inoalignmt
>=
1141 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
))
1142 mp
->m_inoalign_mask
= mp
->m_sb
.sb_inoalignmt
- 1;
1144 mp
->m_inoalign_mask
= 0;
1146 * If we are using stripe alignment, check whether
1147 * the stripe unit is a multiple of the inode alignment
1149 if (mp
->m_dalign
&& mp
->m_inoalign_mask
&&
1150 !(mp
->m_dalign
& mp
->m_inoalign_mask
))
1151 mp
->m_sinoalign
= mp
->m_dalign
;
1153 mp
->m_sinoalign
= 0;
1157 * Check that the data (and log if separate) are an ok size.
1160 xfs_check_sizes(xfs_mount_t
*mp
)
1165 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
1166 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
1167 xfs_warn(mp
, "filesystem size mismatch detected");
1168 return XFS_ERROR(EFBIG
);
1170 bp
= xfs_buf_read_uncached(mp
->m_ddev_targp
,
1171 d
- XFS_FSS_TO_BB(mp
, 1),
1172 XFS_FSS_TO_BB(mp
, 1), 0, NULL
);
1174 xfs_warn(mp
, "last sector read failed");
1179 if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
) {
1180 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
1181 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
1182 xfs_warn(mp
, "log size mismatch detected");
1183 return XFS_ERROR(EFBIG
);
1185 bp
= xfs_buf_read_uncached(mp
->m_logdev_targp
,
1186 d
- XFS_FSB_TO_BB(mp
, 1),
1187 XFS_FSB_TO_BB(mp
, 1), 0, NULL
);
1189 xfs_warn(mp
, "log device read failed");
1198 * Clear the quotaflags in memory and in the superblock.
1201 xfs_mount_reset_sbqflags(
1202 struct xfs_mount
*mp
)
1205 struct xfs_trans
*tp
;
1210 * It is OK to look at sb_qflags here in mount path,
1211 * without m_sb_lock.
1213 if (mp
->m_sb
.sb_qflags
== 0)
1215 spin_lock(&mp
->m_sb_lock
);
1216 mp
->m_sb
.sb_qflags
= 0;
1217 spin_unlock(&mp
->m_sb_lock
);
1220 * If the fs is readonly, let the incore superblock run
1221 * with quotas off but don't flush the update out to disk
1223 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1226 tp
= xfs_trans_alloc(mp
, XFS_TRANS_QM_SBCHANGE
);
1227 error
= xfs_trans_reserve(tp
, 0, XFS_QM_SBCHANGE_LOG_RES(mp
),
1228 0, 0, XFS_DEFAULT_LOG_COUNT
);
1230 xfs_trans_cancel(tp
, 0);
1231 xfs_alert(mp
, "%s: Superblock update failed!", __func__
);
1235 xfs_mod_sb(tp
, XFS_SB_QFLAGS
);
1236 return xfs_trans_commit(tp
, 0);
1240 xfs_default_resblks(xfs_mount_t
*mp
)
1245 * We default to 5% or 8192 fsbs of space reserved, whichever is
1246 * smaller. This is intended to cover concurrent allocation
1247 * transactions when we initially hit enospc. These each require a 4
1248 * block reservation. Hence by default we cover roughly 2000 concurrent
1249 * allocation reservations.
1251 resblks
= mp
->m_sb
.sb_dblocks
;
1252 do_div(resblks
, 20);
1253 resblks
= min_t(__uint64_t
, resblks
, 8192);
1258 * This function does the following on an initial mount of a file system:
1259 * - reads the superblock from disk and init the mount struct
1260 * - if we're a 32-bit kernel, do a size check on the superblock
1261 * so we don't mount terabyte filesystems
1262 * - init mount struct realtime fields
1263 * - allocate inode hash table for fs
1264 * - init directory manager
1265 * - perform recovery and init the log manager
1271 xfs_sb_t
*sbp
= &(mp
->m_sb
);
1274 uint quotamount
= 0;
1275 uint quotaflags
= 0;
1278 xfs_mount_common(mp
, sbp
);
1281 * Check for a mismatched features2 values. Older kernels
1282 * read & wrote into the wrong sb offset for sb_features2
1283 * on some platforms due to xfs_sb_t not being 64bit size aligned
1284 * when sb_features2 was added, which made older superblock
1285 * reading/writing routines swap it as a 64-bit value.
1287 * For backwards compatibility, we make both slots equal.
1289 * If we detect a mismatched field, we OR the set bits into the
1290 * existing features2 field in case it has already been modified; we
1291 * don't want to lose any features. We then update the bad location
1292 * with the ORed value so that older kernels will see any features2
1293 * flags, and mark the two fields as needing updates once the
1294 * transaction subsystem is online.
1296 if (xfs_sb_has_mismatched_features2(sbp
)) {
1297 xfs_warn(mp
, "correcting sb_features alignment problem");
1298 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
1299 sbp
->sb_bad_features2
= sbp
->sb_features2
;
1300 mp
->m_update_flags
|= XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
;
1303 * Re-check for ATTR2 in case it was found in bad_features2
1306 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
1307 !(mp
->m_flags
& XFS_MOUNT_NOATTR2
))
1308 mp
->m_flags
|= XFS_MOUNT_ATTR2
;
1311 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
1312 (mp
->m_flags
& XFS_MOUNT_NOATTR2
)) {
1313 xfs_sb_version_removeattr2(&mp
->m_sb
);
1314 mp
->m_update_flags
|= XFS_SB_FEATURES2
;
1316 /* update sb_versionnum for the clearing of the morebits */
1317 if (!sbp
->sb_features2
)
1318 mp
->m_update_flags
|= XFS_SB_VERSIONNUM
;
1322 * Check if sb_agblocks is aligned at stripe boundary
1323 * If sb_agblocks is NOT aligned turn off m_dalign since
1324 * allocator alignment is within an ag, therefore ag has
1325 * to be aligned at stripe boundary.
1327 error
= xfs_update_alignment(mp
);
1331 xfs_alloc_compute_maxlevels(mp
);
1332 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
1333 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
1334 xfs_ialloc_compute_maxlevels(mp
);
1336 xfs_set_maxicount(mp
);
1338 error
= xfs_uuid_mount(mp
);
1343 * Set the minimum read and write sizes
1345 xfs_set_rw_sizes(mp
);
1347 /* set the low space thresholds for dynamic preallocation */
1348 xfs_set_low_space_thresholds(mp
);
1351 * Set the inode cluster size.
1352 * This may still be overridden by the file system
1353 * block size if it is larger than the chosen cluster size.
1355 mp
->m_inode_cluster_size
= XFS_INODE_BIG_CLUSTER_SIZE
;
1358 * Set inode alignment fields
1360 xfs_set_inoalignment(mp
);
1363 * Check that the data (and log if separate) are an ok size.
1365 error
= xfs_check_sizes(mp
);
1367 goto out_remove_uuid
;
1370 * Initialize realtime fields in the mount structure
1372 error
= xfs_rtmount_init(mp
);
1374 xfs_warn(mp
, "RT mount failed");
1375 goto out_remove_uuid
;
1379 * Copies the low order bits of the timestamp and the randomly
1380 * set "sequence" number out of a UUID.
1382 uuid_getnodeuniq(&sbp
->sb_uuid
, mp
->m_fixedfsid
);
1384 mp
->m_dmevmask
= 0; /* not persistent; set after each mount */
1389 * Initialize the attribute manager's entries.
1391 mp
->m_attr_magicpct
= (mp
->m_sb
.sb_blocksize
* 37) / 100;
1394 * Initialize the precomputed transaction reservations values.
1399 * Allocate and initialize the per-ag data.
1401 spin_lock_init(&mp
->m_perag_lock
);
1402 INIT_RADIX_TREE(&mp
->m_perag_tree
, GFP_ATOMIC
);
1403 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
1405 xfs_warn(mp
, "Failed per-ag init: %d", error
);
1406 goto out_remove_uuid
;
1409 if (!sbp
->sb_logblocks
) {
1410 xfs_warn(mp
, "no log defined");
1411 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW
, mp
);
1412 error
= XFS_ERROR(EFSCORRUPTED
);
1413 goto out_free_perag
;
1417 * log's mount-time initialization. Perform 1st part recovery if needed
1419 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
1420 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
1421 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
1423 xfs_warn(mp
, "log mount failed");
1428 * Now the log is mounted, we know if it was an unclean shutdown or
1429 * not. If it was, with the first phase of recovery has completed, we
1430 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1431 * but they are recovered transactionally in the second recovery phase
1434 * Hence we can safely re-initialise incore superblock counters from
1435 * the per-ag data. These may not be correct if the filesystem was not
1436 * cleanly unmounted, so we need to wait for recovery to finish before
1439 * If the filesystem was cleanly unmounted, then we can trust the
1440 * values in the superblock to be correct and we don't need to do
1443 * If we are currently making the filesystem, the initialisation will
1444 * fail as the perag data is in an undefined state.
1446 if (xfs_sb_version_haslazysbcount(&mp
->m_sb
) &&
1447 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp
) &&
1448 !mp
->m_sb
.sb_inprogress
) {
1449 error
= xfs_initialize_perag_data(mp
, sbp
->sb_agcount
);
1455 * Get and sanity-check the root inode.
1456 * Save the pointer to it in the mount structure.
1458 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, 0, XFS_ILOCK_EXCL
, &rip
);
1460 xfs_warn(mp
, "failed to read root inode");
1461 goto out_log_dealloc
;
1464 ASSERT(rip
!= NULL
);
1466 if (unlikely(!S_ISDIR(rip
->i_d
.di_mode
))) {
1467 xfs_warn(mp
, "corrupted root inode %llu: not a directory",
1468 (unsigned long long)rip
->i_ino
);
1469 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
1470 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW
,
1472 error
= XFS_ERROR(EFSCORRUPTED
);
1475 mp
->m_rootip
= rip
; /* save it */
1477 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
1480 * Initialize realtime inode pointers in the mount structure
1482 error
= xfs_rtmount_inodes(mp
);
1485 * Free up the root inode.
1487 xfs_warn(mp
, "failed to read RT inodes");
1492 * If this is a read-only mount defer the superblock updates until
1493 * the next remount into writeable mode. Otherwise we would never
1494 * perform the update e.g. for the root filesystem.
1496 if (mp
->m_update_flags
&& !(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
1497 error
= xfs_mount_log_sb(mp
, mp
->m_update_flags
);
1499 xfs_warn(mp
, "failed to write sb changes");
1505 * Initialise the XFS quota management subsystem for this mount
1507 if (XFS_IS_QUOTA_RUNNING(mp
)) {
1508 error
= xfs_qm_newmount(mp
, "amount
, "aflags
);
1512 ASSERT(!XFS_IS_QUOTA_ON(mp
));
1515 * If a file system had quotas running earlier, but decided to
1516 * mount without -o uquota/pquota/gquota options, revoke the
1517 * quotachecked license.
1519 if (mp
->m_sb
.sb_qflags
& XFS_ALL_QUOTA_ACCT
) {
1520 xfs_notice(mp
, "resetting quota flags");
1521 error
= xfs_mount_reset_sbqflags(mp
);
1528 * Finish recovering the file system. This part needed to be
1529 * delayed until after the root and real-time bitmap inodes
1530 * were consistently read in.
1532 error
= xfs_log_mount_finish(mp
);
1534 xfs_warn(mp
, "log mount finish failed");
1539 * Complete the quota initialisation, post-log-replay component.
1542 ASSERT(mp
->m_qflags
== 0);
1543 mp
->m_qflags
= quotaflags
;
1545 xfs_qm_mount_quotas(mp
);
1549 * Now we are mounted, reserve a small amount of unused space for
1550 * privileged transactions. This is needed so that transaction
1551 * space required for critical operations can dip into this pool
1552 * when at ENOSPC. This is needed for operations like create with
1553 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1554 * are not allowed to use this reserved space.
1556 * This may drive us straight to ENOSPC on mount, but that implies
1557 * we were already there on the last unmount. Warn if this occurs.
1559 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
1560 resblks
= xfs_default_resblks(mp
);
1561 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1564 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1570 xfs_rtunmount_inodes(mp
);
1574 xfs_log_unmount(mp
);
1576 if (mp
->m_logdev_targp
&& mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
1577 xfs_wait_buftarg(mp
->m_logdev_targp
);
1578 xfs_wait_buftarg(mp
->m_ddev_targp
);
1582 xfs_uuid_unmount(mp
);
1588 * This flushes out the inodes,dquots and the superblock, unmounts the
1589 * log and makes sure that incore structures are freed.
1593 struct xfs_mount
*mp
)
1598 cancel_delayed_work_sync(&mp
->m_eofblocks_work
);
1600 xfs_qm_unmount_quotas(mp
);
1601 xfs_rtunmount_inodes(mp
);
1602 IRELE(mp
->m_rootip
);
1605 * We can potentially deadlock here if we have an inode cluster
1606 * that has been freed has its buffer still pinned in memory because
1607 * the transaction is still sitting in a iclog. The stale inodes
1608 * on that buffer will have their flush locks held until the
1609 * transaction hits the disk and the callbacks run. the inode
1610 * flush takes the flush lock unconditionally and with nothing to
1611 * push out the iclog we will never get that unlocked. hence we
1612 * need to force the log first.
1614 xfs_log_force(mp
, XFS_LOG_SYNC
);
1617 * Flush all pending changes from the AIL.
1619 xfs_ail_push_all_sync(mp
->m_ail
);
1622 * And reclaim all inodes. At this point there should be no dirty
1623 * inodes and none should be pinned or locked, but use synchronous
1624 * reclaim just to be sure. We can stop background inode reclaim
1625 * here as well if it is still running.
1627 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
1628 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1633 * Unreserve any blocks we have so that when we unmount we don't account
1634 * the reserved free space as used. This is really only necessary for
1635 * lazy superblock counting because it trusts the incore superblock
1636 * counters to be absolutely correct on clean unmount.
1638 * We don't bother correcting this elsewhere for lazy superblock
1639 * counting because on mount of an unclean filesystem we reconstruct the
1640 * correct counter value and this is irrelevant.
1642 * For non-lazy counter filesystems, this doesn't matter at all because
1643 * we only every apply deltas to the superblock and hence the incore
1644 * value does not matter....
1647 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1649 xfs_warn(mp
, "Unable to free reserved block pool. "
1650 "Freespace may not be correct on next mount.");
1652 error
= xfs_log_sbcount(mp
);
1654 xfs_warn(mp
, "Unable to update superblock counters. "
1655 "Freespace may not be correct on next mount.");
1657 xfs_log_unmount(mp
);
1658 xfs_uuid_unmount(mp
);
1661 xfs_errortag_clearall(mp
, 0);
1667 xfs_fs_writable(xfs_mount_t
*mp
)
1669 return !(mp
->m_super
->s_writers
.frozen
|| XFS_FORCED_SHUTDOWN(mp
) ||
1670 (mp
->m_flags
& XFS_MOUNT_RDONLY
));
1676 * Sync the superblock counters to disk.
1678 * Note this code can be called during the process of freezing, so
1679 * we may need to use the transaction allocator which does not
1680 * block when the transaction subsystem is in its frozen state.
1683 xfs_log_sbcount(xfs_mount_t
*mp
)
1688 if (!xfs_fs_writable(mp
))
1691 xfs_icsb_sync_counters(mp
, 0);
1694 * we don't need to do this if we are updating the superblock
1695 * counters on every modification.
1697 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1700 tp
= _xfs_trans_alloc(mp
, XFS_TRANS_SB_COUNT
, KM_SLEEP
);
1701 error
= xfs_trans_reserve(tp
, 0, XFS_SB_LOG_RES(mp
), 0, 0,
1702 XFS_DEFAULT_LOG_COUNT
);
1704 xfs_trans_cancel(tp
, 0);
1708 xfs_mod_sb(tp
, XFS_SB_IFREE
| XFS_SB_ICOUNT
| XFS_SB_FDBLOCKS
);
1709 xfs_trans_set_sync(tp
);
1710 error
= xfs_trans_commit(tp
, 0);
1715 * xfs_mod_sb() can be used to copy arbitrary changes to the
1716 * in-core superblock into the superblock buffer to be logged.
1717 * It does not provide the higher level of locking that is
1718 * needed to protect the in-core superblock from concurrent
1722 xfs_mod_sb(xfs_trans_t
*tp
, __int64_t fields
)
1734 bp
= xfs_trans_getsb(tp
, mp
, 0);
1735 first
= sizeof(xfs_sb_t
);
1738 /* translate/copy */
1740 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp
), &mp
->m_sb
, fields
);
1742 /* find modified range */
1743 f
= (xfs_sb_field_t
)xfs_highbit64((__uint64_t
)fields
);
1744 ASSERT((1LL << f
) & XFS_SB_MOD_BITS
);
1745 last
= xfs_sb_info
[f
+ 1].offset
- 1;
1747 f
= (xfs_sb_field_t
)xfs_lowbit64((__uint64_t
)fields
);
1748 ASSERT((1LL << f
) & XFS_SB_MOD_BITS
);
1749 first
= xfs_sb_info
[f
].offset
;
1751 xfs_trans_buf_set_type(tp
, bp
, XFS_BLFT_SB_BUF
);
1752 xfs_trans_log_buf(tp
, bp
, first
, last
);
1757 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1758 * a delta to a specified field in the in-core superblock. Simply
1759 * switch on the field indicated and apply the delta to that field.
1760 * Fields are not allowed to dip below zero, so if the delta would
1761 * do this do not apply it and return EINVAL.
1763 * The m_sb_lock must be held when this routine is called.
1766 xfs_mod_incore_sb_unlocked(
1768 xfs_sb_field_t field
,
1772 int scounter
; /* short counter for 32 bit fields */
1773 long long lcounter
; /* long counter for 64 bit fields */
1774 long long res_used
, rem
;
1777 * With the in-core superblock spin lock held, switch
1778 * on the indicated field. Apply the delta to the
1779 * proper field. If the fields value would dip below
1780 * 0, then do not apply the delta and return EINVAL.
1783 case XFS_SBS_ICOUNT
:
1784 lcounter
= (long long)mp
->m_sb
.sb_icount
;
1788 return XFS_ERROR(EINVAL
);
1790 mp
->m_sb
.sb_icount
= lcounter
;
1793 lcounter
= (long long)mp
->m_sb
.sb_ifree
;
1797 return XFS_ERROR(EINVAL
);
1799 mp
->m_sb
.sb_ifree
= lcounter
;
1801 case XFS_SBS_FDBLOCKS
:
1802 lcounter
= (long long)
1803 mp
->m_sb
.sb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
1804 res_used
= (long long)(mp
->m_resblks
- mp
->m_resblks_avail
);
1806 if (delta
> 0) { /* Putting blocks back */
1807 if (res_used
> delta
) {
1808 mp
->m_resblks_avail
+= delta
;
1810 rem
= delta
- res_used
;
1811 mp
->m_resblks_avail
= mp
->m_resblks
;
1814 } else { /* Taking blocks away */
1816 if (lcounter
>= 0) {
1817 mp
->m_sb
.sb_fdblocks
= lcounter
+
1818 XFS_ALLOC_SET_ASIDE(mp
);
1823 * We are out of blocks, use any available reserved
1824 * blocks if were allowed to.
1827 return XFS_ERROR(ENOSPC
);
1829 lcounter
= (long long)mp
->m_resblks_avail
+ delta
;
1830 if (lcounter
>= 0) {
1831 mp
->m_resblks_avail
= lcounter
;
1834 printk_once(KERN_WARNING
1835 "Filesystem \"%s\": reserve blocks depleted! "
1836 "Consider increasing reserve pool size.",
1838 return XFS_ERROR(ENOSPC
);
1841 mp
->m_sb
.sb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
1843 case XFS_SBS_FREXTENTS
:
1844 lcounter
= (long long)mp
->m_sb
.sb_frextents
;
1847 return XFS_ERROR(ENOSPC
);
1849 mp
->m_sb
.sb_frextents
= lcounter
;
1851 case XFS_SBS_DBLOCKS
:
1852 lcounter
= (long long)mp
->m_sb
.sb_dblocks
;
1856 return XFS_ERROR(EINVAL
);
1858 mp
->m_sb
.sb_dblocks
= lcounter
;
1860 case XFS_SBS_AGCOUNT
:
1861 scounter
= mp
->m_sb
.sb_agcount
;
1865 return XFS_ERROR(EINVAL
);
1867 mp
->m_sb
.sb_agcount
= scounter
;
1869 case XFS_SBS_IMAX_PCT
:
1870 scounter
= mp
->m_sb
.sb_imax_pct
;
1874 return XFS_ERROR(EINVAL
);
1876 mp
->m_sb
.sb_imax_pct
= scounter
;
1878 case XFS_SBS_REXTSIZE
:
1879 scounter
= mp
->m_sb
.sb_rextsize
;
1883 return XFS_ERROR(EINVAL
);
1885 mp
->m_sb
.sb_rextsize
= scounter
;
1887 case XFS_SBS_RBMBLOCKS
:
1888 scounter
= mp
->m_sb
.sb_rbmblocks
;
1892 return XFS_ERROR(EINVAL
);
1894 mp
->m_sb
.sb_rbmblocks
= scounter
;
1896 case XFS_SBS_RBLOCKS
:
1897 lcounter
= (long long)mp
->m_sb
.sb_rblocks
;
1901 return XFS_ERROR(EINVAL
);
1903 mp
->m_sb
.sb_rblocks
= lcounter
;
1905 case XFS_SBS_REXTENTS
:
1906 lcounter
= (long long)mp
->m_sb
.sb_rextents
;
1910 return XFS_ERROR(EINVAL
);
1912 mp
->m_sb
.sb_rextents
= lcounter
;
1914 case XFS_SBS_REXTSLOG
:
1915 scounter
= mp
->m_sb
.sb_rextslog
;
1919 return XFS_ERROR(EINVAL
);
1921 mp
->m_sb
.sb_rextslog
= scounter
;
1925 return XFS_ERROR(EINVAL
);
1930 * xfs_mod_incore_sb() is used to change a field in the in-core
1931 * superblock structure by the specified delta. This modification
1932 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1933 * routine to do the work.
1937 struct xfs_mount
*mp
,
1938 xfs_sb_field_t field
,
1944 #ifdef HAVE_PERCPU_SB
1945 ASSERT(field
< XFS_SBS_ICOUNT
|| field
> XFS_SBS_FDBLOCKS
);
1947 spin_lock(&mp
->m_sb_lock
);
1948 status
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
1949 spin_unlock(&mp
->m_sb_lock
);
1955 * Change more than one field in the in-core superblock structure at a time.
1957 * The fields and changes to those fields are specified in the array of
1958 * xfs_mod_sb structures passed in. Either all of the specified deltas
1959 * will be applied or none of them will. If any modified field dips below 0,
1960 * then all modifications will be backed out and EINVAL will be returned.
1962 * Note that this function may not be used for the superblock values that
1963 * are tracked with the in-memory per-cpu counters - a direct call to
1964 * xfs_icsb_modify_counters is required for these.
1967 xfs_mod_incore_sb_batch(
1968 struct xfs_mount
*mp
,
1977 * Loop through the array of mod structures and apply each individually.
1978 * If any fail, then back out all those which have already been applied.
1979 * Do all of this within the scope of the m_sb_lock so that all of the
1980 * changes will be atomic.
1982 spin_lock(&mp
->m_sb_lock
);
1983 for (msbp
= msb
; msbp
< (msb
+ nmsb
); msbp
++) {
1984 ASSERT(msbp
->msb_field
< XFS_SBS_ICOUNT
||
1985 msbp
->msb_field
> XFS_SBS_FDBLOCKS
);
1987 error
= xfs_mod_incore_sb_unlocked(mp
, msbp
->msb_field
,
1988 msbp
->msb_delta
, rsvd
);
1992 spin_unlock(&mp
->m_sb_lock
);
1996 while (--msbp
>= msb
) {
1997 error
= xfs_mod_incore_sb_unlocked(mp
, msbp
->msb_field
,
1998 -msbp
->msb_delta
, rsvd
);
2001 spin_unlock(&mp
->m_sb_lock
);
2006 * xfs_getsb() is called to obtain the buffer for the superblock.
2007 * The buffer is returned locked and read in from disk.
2008 * The buffer should be released with a call to xfs_brelse().
2010 * If the flags parameter is BUF_TRYLOCK, then we'll only return
2011 * the superblock buffer if it can be locked without sleeping.
2012 * If it can't then we'll return NULL.
2016 struct xfs_mount
*mp
,
2019 struct xfs_buf
*bp
= mp
->m_sb_bp
;
2021 if (!xfs_buf_trylock(bp
)) {
2022 if (flags
& XBF_TRYLOCK
)
2028 ASSERT(XFS_BUF_ISDONE(bp
));
2033 * Used to free the superblock along various error paths.
2037 struct xfs_mount
*mp
)
2039 struct xfs_buf
*bp
= mp
->m_sb_bp
;
2047 * Used to log changes to the superblock unit and width fields which could
2048 * be altered by the mount options, as well as any potential sb_features2
2049 * fixup. Only the first superblock is updated.
2059 ASSERT(fields
& (XFS_SB_UNIT
| XFS_SB_WIDTH
| XFS_SB_UUID
|
2060 XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
|
2061 XFS_SB_VERSIONNUM
));
2063 tp
= xfs_trans_alloc(mp
, XFS_TRANS_SB_UNIT
);
2064 error
= xfs_trans_reserve(tp
, 0, XFS_SB_LOG_RES(mp
), 0, 0,
2065 XFS_DEFAULT_LOG_COUNT
);
2067 xfs_trans_cancel(tp
, 0);
2070 xfs_mod_sb(tp
, fields
);
2071 error
= xfs_trans_commit(tp
, 0);
2076 * If the underlying (data/log/rt) device is readonly, there are some
2077 * operations that cannot proceed.
2080 xfs_dev_is_read_only(
2081 struct xfs_mount
*mp
,
2084 if (xfs_readonly_buftarg(mp
->m_ddev_targp
) ||
2085 xfs_readonly_buftarg(mp
->m_logdev_targp
) ||
2086 (mp
->m_rtdev_targp
&& xfs_readonly_buftarg(mp
->m_rtdev_targp
))) {
2087 xfs_notice(mp
, "%s required on read-only device.", message
);
2088 xfs_notice(mp
, "write access unavailable, cannot proceed.");
2094 #ifdef HAVE_PERCPU_SB
2096 * Per-cpu incore superblock counters
2098 * Simple concept, difficult implementation
2100 * Basically, replace the incore superblock counters with a distributed per cpu
2101 * counter for contended fields (e.g. free block count).
2103 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2104 * hence needs to be accurately read when we are running low on space. Hence
2105 * there is a method to enable and disable the per-cpu counters based on how
2106 * much "stuff" is available in them.
2108 * Basically, a counter is enabled if there is enough free resource to justify
2109 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2110 * ENOSPC), then we disable the counters to synchronise all callers and
2111 * re-distribute the available resources.
2113 * If, once we redistributed the available resources, we still get a failure,
2114 * we disable the per-cpu counter and go through the slow path.
2116 * The slow path is the current xfs_mod_incore_sb() function. This means that
2117 * when we disable a per-cpu counter, we need to drain its resources back to
2118 * the global superblock. We do this after disabling the counter to prevent
2119 * more threads from queueing up on the counter.
2121 * Essentially, this means that we still need a lock in the fast path to enable
2122 * synchronisation between the global counters and the per-cpu counters. This
2123 * is not a problem because the lock will be local to a CPU almost all the time
2124 * and have little contention except when we get to ENOSPC conditions.
2126 * Basically, this lock becomes a barrier that enables us to lock out the fast
2127 * path while we do things like enabling and disabling counters and
2128 * synchronising the counters.
2132 * 1. m_sb_lock before picking up per-cpu locks
2133 * 2. per-cpu locks always picked up via for_each_online_cpu() order
2134 * 3. accurate counter sync requires m_sb_lock + per cpu locks
2135 * 4. modifying per-cpu counters requires holding per-cpu lock
2136 * 5. modifying global counters requires holding m_sb_lock
2137 * 6. enabling or disabling a counter requires holding the m_sb_lock
2138 * and _none_ of the per-cpu locks.
2140 * Disabled counters are only ever re-enabled by a balance operation
2141 * that results in more free resources per CPU than a given threshold.
2142 * To ensure counters don't remain disabled, they are rebalanced when
2143 * the global resource goes above a higher threshold (i.e. some hysteresis
2144 * is present to prevent thrashing).
2147 #ifdef CONFIG_HOTPLUG_CPU
2149 * hot-plug CPU notifier support.
2151 * We need a notifier per filesystem as we need to be able to identify
2152 * the filesystem to balance the counters out. This is achieved by
2153 * having a notifier block embedded in the xfs_mount_t and doing pointer
2154 * magic to get the mount pointer from the notifier block address.
2157 xfs_icsb_cpu_notify(
2158 struct notifier_block
*nfb
,
2159 unsigned long action
,
2162 xfs_icsb_cnts_t
*cntp
;
2165 mp
= (xfs_mount_t
*)container_of(nfb
, xfs_mount_t
, m_icsb_notifier
);
2166 cntp
= (xfs_icsb_cnts_t
*)
2167 per_cpu_ptr(mp
->m_sb_cnts
, (unsigned long)hcpu
);
2169 case CPU_UP_PREPARE
:
2170 case CPU_UP_PREPARE_FROZEN
:
2171 /* Easy Case - initialize the area and locks, and
2172 * then rebalance when online does everything else for us. */
2173 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2176 case CPU_ONLINE_FROZEN
:
2178 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
2179 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
2180 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
2181 xfs_icsb_unlock(mp
);
2184 case CPU_DEAD_FROZEN
:
2185 /* Disable all the counters, then fold the dead cpu's
2186 * count into the total on the global superblock and
2187 * re-enable the counters. */
2189 spin_lock(&mp
->m_sb_lock
);
2190 xfs_icsb_disable_counter(mp
, XFS_SBS_ICOUNT
);
2191 xfs_icsb_disable_counter(mp
, XFS_SBS_IFREE
);
2192 xfs_icsb_disable_counter(mp
, XFS_SBS_FDBLOCKS
);
2194 mp
->m_sb
.sb_icount
+= cntp
->icsb_icount
;
2195 mp
->m_sb
.sb_ifree
+= cntp
->icsb_ifree
;
2196 mp
->m_sb
.sb_fdblocks
+= cntp
->icsb_fdblocks
;
2198 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2200 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_ICOUNT
, 0);
2201 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_IFREE
, 0);
2202 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_FDBLOCKS
, 0);
2203 spin_unlock(&mp
->m_sb_lock
);
2204 xfs_icsb_unlock(mp
);
2210 #endif /* CONFIG_HOTPLUG_CPU */
2213 xfs_icsb_init_counters(
2216 xfs_icsb_cnts_t
*cntp
;
2219 mp
->m_sb_cnts
= alloc_percpu(xfs_icsb_cnts_t
);
2220 if (mp
->m_sb_cnts
== NULL
)
2223 #ifdef CONFIG_HOTPLUG_CPU
2224 mp
->m_icsb_notifier
.notifier_call
= xfs_icsb_cpu_notify
;
2225 mp
->m_icsb_notifier
.priority
= 0;
2226 register_hotcpu_notifier(&mp
->m_icsb_notifier
);
2227 #endif /* CONFIG_HOTPLUG_CPU */
2229 for_each_online_cpu(i
) {
2230 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2231 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2234 mutex_init(&mp
->m_icsb_mutex
);
2237 * start with all counters disabled so that the
2238 * initial balance kicks us off correctly
2240 mp
->m_icsb_counters
= -1;
2245 xfs_icsb_reinit_counters(
2250 * start with all counters disabled so that the
2251 * initial balance kicks us off correctly
2253 mp
->m_icsb_counters
= -1;
2254 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
2255 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
2256 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
2257 xfs_icsb_unlock(mp
);
2261 xfs_icsb_destroy_counters(
2264 if (mp
->m_sb_cnts
) {
2265 unregister_hotcpu_notifier(&mp
->m_icsb_notifier
);
2266 free_percpu(mp
->m_sb_cnts
);
2268 mutex_destroy(&mp
->m_icsb_mutex
);
2273 xfs_icsb_cnts_t
*icsbp
)
2275 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
)) {
2281 xfs_icsb_unlock_cntr(
2282 xfs_icsb_cnts_t
*icsbp
)
2284 clear_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
);
2289 xfs_icsb_lock_all_counters(
2292 xfs_icsb_cnts_t
*cntp
;
2295 for_each_online_cpu(i
) {
2296 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2297 xfs_icsb_lock_cntr(cntp
);
2302 xfs_icsb_unlock_all_counters(
2305 xfs_icsb_cnts_t
*cntp
;
2308 for_each_online_cpu(i
) {
2309 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2310 xfs_icsb_unlock_cntr(cntp
);
2317 xfs_icsb_cnts_t
*cnt
,
2320 xfs_icsb_cnts_t
*cntp
;
2323 memset(cnt
, 0, sizeof(xfs_icsb_cnts_t
));
2325 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
2326 xfs_icsb_lock_all_counters(mp
);
2328 for_each_online_cpu(i
) {
2329 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2330 cnt
->icsb_icount
+= cntp
->icsb_icount
;
2331 cnt
->icsb_ifree
+= cntp
->icsb_ifree
;
2332 cnt
->icsb_fdblocks
+= cntp
->icsb_fdblocks
;
2335 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
2336 xfs_icsb_unlock_all_counters(mp
);
2340 xfs_icsb_counter_disabled(
2342 xfs_sb_field_t field
)
2344 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2345 return test_bit(field
, &mp
->m_icsb_counters
);
2349 xfs_icsb_disable_counter(
2351 xfs_sb_field_t field
)
2353 xfs_icsb_cnts_t cnt
;
2355 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2358 * If we are already disabled, then there is nothing to do
2359 * here. We check before locking all the counters to avoid
2360 * the expensive lock operation when being called in the
2361 * slow path and the counter is already disabled. This is
2362 * safe because the only time we set or clear this state is under
2365 if (xfs_icsb_counter_disabled(mp
, field
))
2368 xfs_icsb_lock_all_counters(mp
);
2369 if (!test_and_set_bit(field
, &mp
->m_icsb_counters
)) {
2370 /* drain back to superblock */
2372 xfs_icsb_count(mp
, &cnt
, XFS_ICSB_LAZY_COUNT
);
2374 case XFS_SBS_ICOUNT
:
2375 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
2378 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
2380 case XFS_SBS_FDBLOCKS
:
2381 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
2388 xfs_icsb_unlock_all_counters(mp
);
2392 xfs_icsb_enable_counter(
2394 xfs_sb_field_t field
,
2398 xfs_icsb_cnts_t
*cntp
;
2401 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2403 xfs_icsb_lock_all_counters(mp
);
2404 for_each_online_cpu(i
) {
2405 cntp
= per_cpu_ptr(mp
->m_sb_cnts
, i
);
2407 case XFS_SBS_ICOUNT
:
2408 cntp
->icsb_icount
= count
+ resid
;
2411 cntp
->icsb_ifree
= count
+ resid
;
2413 case XFS_SBS_FDBLOCKS
:
2414 cntp
->icsb_fdblocks
= count
+ resid
;
2422 clear_bit(field
, &mp
->m_icsb_counters
);
2423 xfs_icsb_unlock_all_counters(mp
);
2427 xfs_icsb_sync_counters_locked(
2431 xfs_icsb_cnts_t cnt
;
2433 xfs_icsb_count(mp
, &cnt
, flags
);
2435 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_ICOUNT
))
2436 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
2437 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_IFREE
))
2438 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
2439 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_FDBLOCKS
))
2440 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
2444 * Accurate update of per-cpu counters to incore superblock
2447 xfs_icsb_sync_counters(
2451 spin_lock(&mp
->m_sb_lock
);
2452 xfs_icsb_sync_counters_locked(mp
, flags
);
2453 spin_unlock(&mp
->m_sb_lock
);
2457 * Balance and enable/disable counters as necessary.
2459 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2460 * chosen to be the same number as single on disk allocation chunk per CPU, and
2461 * free blocks is something far enough zero that we aren't going thrash when we
2462 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2463 * prevent looping endlessly when xfs_alloc_space asks for more than will
2464 * be distributed to a single CPU but each CPU has enough blocks to be
2467 * Note that we can be called when counters are already disabled.
2468 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2469 * prevent locking every per-cpu counter needlessly.
2472 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2473 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2474 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2476 xfs_icsb_balance_counter_locked(
2478 xfs_sb_field_t field
,
2481 uint64_t count
, resid
;
2482 int weight
= num_online_cpus();
2483 uint64_t min
= (uint64_t)min_per_cpu
;
2485 /* disable counter and sync counter */
2486 xfs_icsb_disable_counter(mp
, field
);
2488 /* update counters - first CPU gets residual*/
2490 case XFS_SBS_ICOUNT
:
2491 count
= mp
->m_sb
.sb_icount
;
2492 resid
= do_div(count
, weight
);
2493 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
2497 count
= mp
->m_sb
.sb_ifree
;
2498 resid
= do_div(count
, weight
);
2499 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
2502 case XFS_SBS_FDBLOCKS
:
2503 count
= mp
->m_sb
.sb_fdblocks
;
2504 resid
= do_div(count
, weight
);
2505 if (count
< max(min
, XFS_ICSB_FDBLK_CNTR_REENABLE(mp
)))
2510 count
= resid
= 0; /* quiet, gcc */
2514 xfs_icsb_enable_counter(mp
, field
, count
, resid
);
2518 xfs_icsb_balance_counter(
2520 xfs_sb_field_t fields
,
2523 spin_lock(&mp
->m_sb_lock
);
2524 xfs_icsb_balance_counter_locked(mp
, fields
, min_per_cpu
);
2525 spin_unlock(&mp
->m_sb_lock
);
2529 xfs_icsb_modify_counters(
2531 xfs_sb_field_t field
,
2535 xfs_icsb_cnts_t
*icsbp
;
2536 long long lcounter
; /* long counter for 64 bit fields */
2542 icsbp
= this_cpu_ptr(mp
->m_sb_cnts
);
2545 * if the counter is disabled, go to slow path
2547 if (unlikely(xfs_icsb_counter_disabled(mp
, field
)))
2549 xfs_icsb_lock_cntr(icsbp
);
2550 if (unlikely(xfs_icsb_counter_disabled(mp
, field
))) {
2551 xfs_icsb_unlock_cntr(icsbp
);
2556 case XFS_SBS_ICOUNT
:
2557 lcounter
= icsbp
->icsb_icount
;
2559 if (unlikely(lcounter
< 0))
2560 goto balance_counter
;
2561 icsbp
->icsb_icount
= lcounter
;
2565 lcounter
= icsbp
->icsb_ifree
;
2567 if (unlikely(lcounter
< 0))
2568 goto balance_counter
;
2569 icsbp
->icsb_ifree
= lcounter
;
2572 case XFS_SBS_FDBLOCKS
:
2573 BUG_ON((mp
->m_resblks
- mp
->m_resblks_avail
) != 0);
2575 lcounter
= icsbp
->icsb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
2577 if (unlikely(lcounter
< 0))
2578 goto balance_counter
;
2579 icsbp
->icsb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
2585 xfs_icsb_unlock_cntr(icsbp
);
2593 * serialise with a mutex so we don't burn lots of cpu on
2594 * the superblock lock. We still need to hold the superblock
2595 * lock, however, when we modify the global structures.
2600 * Now running atomically.
2602 * If the counter is enabled, someone has beaten us to rebalancing.
2603 * Drop the lock and try again in the fast path....
2605 if (!(xfs_icsb_counter_disabled(mp
, field
))) {
2606 xfs_icsb_unlock(mp
);
2611 * The counter is currently disabled. Because we are
2612 * running atomically here, we know a rebalance cannot
2613 * be in progress. Hence we can go straight to operating
2614 * on the global superblock. We do not call xfs_mod_incore_sb()
2615 * here even though we need to get the m_sb_lock. Doing so
2616 * will cause us to re-enter this function and deadlock.
2617 * Hence we get the m_sb_lock ourselves and then call
2618 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2619 * directly on the global counters.
2621 spin_lock(&mp
->m_sb_lock
);
2622 ret
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
2623 spin_unlock(&mp
->m_sb_lock
);
2626 * Now that we've modified the global superblock, we
2627 * may be able to re-enable the distributed counters
2628 * (e.g. lots of space just got freed). After that
2632 xfs_icsb_balance_counter(mp
, field
, 0);
2633 xfs_icsb_unlock(mp
);
2637 xfs_icsb_unlock_cntr(icsbp
);
2641 * We may have multiple threads here if multiple per-cpu
2642 * counters run dry at the same time. This will mean we can
2643 * do more balances than strictly necessary but it is not
2644 * the common slowpath case.
2649 * running atomically.
2651 * This will leave the counter in the correct state for future
2652 * accesses. After the rebalance, we simply try again and our retry
2653 * will either succeed through the fast path or slow path without
2654 * another balance operation being required.
2656 xfs_icsb_balance_counter(mp
, field
, delta
);
2657 xfs_icsb_unlock(mp
);