ALSA: seq: Fix missing NULL check at remove_events ioctl
[linux/fpc-iii.git] / fs / xfs / xfs_trans_buf.c
blob73a5fa457e16ddd72c4a45631cda8a5ae05fdbf6
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_bmap_btree.h"
27 #include "xfs_alloc_btree.h"
28 #include "xfs_ialloc_btree.h"
29 #include "xfs_dinode.h"
30 #include "xfs_inode.h"
31 #include "xfs_buf_item.h"
32 #include "xfs_trans_priv.h"
33 #include "xfs_error.h"
34 #include "xfs_trace.h"
37 * Check to see if a buffer matching the given parameters is already
38 * a part of the given transaction.
40 STATIC struct xfs_buf *
41 xfs_trans_buf_item_match(
42 struct xfs_trans *tp,
43 struct xfs_buftarg *target,
44 struct xfs_buf_map *map,
45 int nmaps)
47 struct xfs_log_item_desc *lidp;
48 struct xfs_buf_log_item *blip;
49 int len = 0;
50 int i;
52 for (i = 0; i < nmaps; i++)
53 len += map[i].bm_len;
55 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
56 blip = (struct xfs_buf_log_item *)lidp->lid_item;
57 if (blip->bli_item.li_type == XFS_LI_BUF &&
58 blip->bli_buf->b_target == target &&
59 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
60 blip->bli_buf->b_length == len) {
61 ASSERT(blip->bli_buf->b_map_count == nmaps);
62 return blip->bli_buf;
66 return NULL;
70 * Add the locked buffer to the transaction.
72 * The buffer must be locked, and it cannot be associated with any
73 * transaction.
75 * If the buffer does not yet have a buf log item associated with it,
76 * then allocate one for it. Then add the buf item to the transaction.
78 STATIC void
79 _xfs_trans_bjoin(
80 struct xfs_trans *tp,
81 struct xfs_buf *bp,
82 int reset_recur)
84 struct xfs_buf_log_item *bip;
86 ASSERT(bp->b_transp == NULL);
89 * The xfs_buf_log_item pointer is stored in b_fsprivate. If
90 * it doesn't have one yet, then allocate one and initialize it.
91 * The checks to see if one is there are in xfs_buf_item_init().
93 xfs_buf_item_init(bp, tp->t_mountp);
94 bip = bp->b_fspriv;
95 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
96 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
97 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
98 if (reset_recur)
99 bip->bli_recur = 0;
102 * Take a reference for this transaction on the buf item.
104 atomic_inc(&bip->bli_refcount);
107 * Get a log_item_desc to point at the new item.
109 xfs_trans_add_item(tp, &bip->bli_item);
112 * Initialize b_fsprivate2 so we can find it with incore_match()
113 * in xfs_trans_get_buf() and friends above.
115 bp->b_transp = tp;
119 void
120 xfs_trans_bjoin(
121 struct xfs_trans *tp,
122 struct xfs_buf *bp)
124 _xfs_trans_bjoin(tp, bp, 0);
125 trace_xfs_trans_bjoin(bp->b_fspriv);
129 * Get and lock the buffer for the caller if it is not already
130 * locked within the given transaction. If it is already locked
131 * within the transaction, just increment its lock recursion count
132 * and return a pointer to it.
134 * If the transaction pointer is NULL, make this just a normal
135 * get_buf() call.
137 struct xfs_buf *
138 xfs_trans_get_buf_map(
139 struct xfs_trans *tp,
140 struct xfs_buftarg *target,
141 struct xfs_buf_map *map,
142 int nmaps,
143 xfs_buf_flags_t flags)
145 xfs_buf_t *bp;
146 xfs_buf_log_item_t *bip;
148 if (!tp)
149 return xfs_buf_get_map(target, map, nmaps, flags);
152 * If we find the buffer in the cache with this transaction
153 * pointer in its b_fsprivate2 field, then we know we already
154 * have it locked. In this case we just increment the lock
155 * recursion count and return the buffer to the caller.
157 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
158 if (bp != NULL) {
159 ASSERT(xfs_buf_islocked(bp));
160 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
161 xfs_buf_stale(bp);
162 XFS_BUF_DONE(bp);
165 ASSERT(bp->b_transp == tp);
166 bip = bp->b_fspriv;
167 ASSERT(bip != NULL);
168 ASSERT(atomic_read(&bip->bli_refcount) > 0);
169 bip->bli_recur++;
170 trace_xfs_trans_get_buf_recur(bip);
171 return (bp);
174 bp = xfs_buf_get_map(target, map, nmaps, flags);
175 if (bp == NULL) {
176 return NULL;
179 ASSERT(!bp->b_error);
181 _xfs_trans_bjoin(tp, bp, 1);
182 trace_xfs_trans_get_buf(bp->b_fspriv);
183 return (bp);
187 * Get and lock the superblock buffer of this file system for the
188 * given transaction.
190 * We don't need to use incore_match() here, because the superblock
191 * buffer is a private buffer which we keep a pointer to in the
192 * mount structure.
194 xfs_buf_t *
195 xfs_trans_getsb(xfs_trans_t *tp,
196 struct xfs_mount *mp,
197 int flags)
199 xfs_buf_t *bp;
200 xfs_buf_log_item_t *bip;
203 * Default to just trying to lock the superblock buffer
204 * if tp is NULL.
206 if (tp == NULL) {
207 return (xfs_getsb(mp, flags));
211 * If the superblock buffer already has this transaction
212 * pointer in its b_fsprivate2 field, then we know we already
213 * have it locked. In this case we just increment the lock
214 * recursion count and return the buffer to the caller.
216 bp = mp->m_sb_bp;
217 if (bp->b_transp == tp) {
218 bip = bp->b_fspriv;
219 ASSERT(bip != NULL);
220 ASSERT(atomic_read(&bip->bli_refcount) > 0);
221 bip->bli_recur++;
222 trace_xfs_trans_getsb_recur(bip);
223 return (bp);
226 bp = xfs_getsb(mp, flags);
227 if (bp == NULL)
228 return NULL;
230 _xfs_trans_bjoin(tp, bp, 1);
231 trace_xfs_trans_getsb(bp->b_fspriv);
232 return (bp);
235 #ifdef DEBUG
236 xfs_buftarg_t *xfs_error_target;
237 int xfs_do_error;
238 int xfs_req_num;
239 int xfs_error_mod = 33;
240 #endif
243 * Get and lock the buffer for the caller if it is not already
244 * locked within the given transaction. If it has not yet been
245 * read in, read it from disk. If it is already locked
246 * within the transaction and already read in, just increment its
247 * lock recursion count and return a pointer to it.
249 * If the transaction pointer is NULL, make this just a normal
250 * read_buf() call.
253 xfs_trans_read_buf_map(
254 struct xfs_mount *mp,
255 struct xfs_trans *tp,
256 struct xfs_buftarg *target,
257 struct xfs_buf_map *map,
258 int nmaps,
259 xfs_buf_flags_t flags,
260 struct xfs_buf **bpp,
261 const struct xfs_buf_ops *ops)
263 xfs_buf_t *bp;
264 xfs_buf_log_item_t *bip;
265 int error;
267 *bpp = NULL;
268 if (!tp) {
269 bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
270 if (!bp)
271 return (flags & XBF_TRYLOCK) ?
272 EAGAIN : XFS_ERROR(ENOMEM);
274 if (bp->b_error) {
275 error = bp->b_error;
276 xfs_buf_ioerror_alert(bp, __func__);
277 XFS_BUF_UNDONE(bp);
278 xfs_buf_stale(bp);
279 xfs_buf_relse(bp);
280 return error;
282 #ifdef DEBUG
283 if (xfs_do_error) {
284 if (xfs_error_target == target) {
285 if (((xfs_req_num++) % xfs_error_mod) == 0) {
286 xfs_buf_relse(bp);
287 xfs_debug(mp, "Returning error!");
288 return XFS_ERROR(EIO);
292 #endif
293 if (XFS_FORCED_SHUTDOWN(mp))
294 goto shutdown_abort;
295 *bpp = bp;
296 return 0;
300 * If we find the buffer in the cache with this transaction
301 * pointer in its b_fsprivate2 field, then we know we already
302 * have it locked. If it is already read in we just increment
303 * the lock recursion count and return the buffer to the caller.
304 * If the buffer is not yet read in, then we read it in, increment
305 * the lock recursion count, and return it to the caller.
307 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
308 if (bp != NULL) {
309 ASSERT(xfs_buf_islocked(bp));
310 ASSERT(bp->b_transp == tp);
311 ASSERT(bp->b_fspriv != NULL);
312 ASSERT(!bp->b_error);
313 if (!(XFS_BUF_ISDONE(bp))) {
314 trace_xfs_trans_read_buf_io(bp, _RET_IP_);
315 ASSERT(!XFS_BUF_ISASYNC(bp));
316 ASSERT(bp->b_iodone == NULL);
317 XFS_BUF_READ(bp);
318 bp->b_ops = ops;
319 xfsbdstrat(tp->t_mountp, bp);
320 error = xfs_buf_iowait(bp);
321 if (error) {
322 xfs_buf_ioerror_alert(bp, __func__);
323 xfs_buf_relse(bp);
325 * We can gracefully recover from most read
326 * errors. Ones we can't are those that happen
327 * after the transaction's already dirty.
329 if (tp->t_flags & XFS_TRANS_DIRTY)
330 xfs_force_shutdown(tp->t_mountp,
331 SHUTDOWN_META_IO_ERROR);
332 return error;
336 * We never locked this buf ourselves, so we shouldn't
337 * brelse it either. Just get out.
339 if (XFS_FORCED_SHUTDOWN(mp)) {
340 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
341 *bpp = NULL;
342 return XFS_ERROR(EIO);
346 bip = bp->b_fspriv;
347 bip->bli_recur++;
349 ASSERT(atomic_read(&bip->bli_refcount) > 0);
350 trace_xfs_trans_read_buf_recur(bip);
351 *bpp = bp;
352 return 0;
355 bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
356 if (bp == NULL) {
357 *bpp = NULL;
358 return (flags & XBF_TRYLOCK) ?
359 0 : XFS_ERROR(ENOMEM);
361 if (bp->b_error) {
362 error = bp->b_error;
363 xfs_buf_stale(bp);
364 XFS_BUF_DONE(bp);
365 xfs_buf_ioerror_alert(bp, __func__);
366 if (tp->t_flags & XFS_TRANS_DIRTY)
367 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
368 xfs_buf_relse(bp);
369 return error;
371 #ifdef DEBUG
372 if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) {
373 if (xfs_error_target == target) {
374 if (((xfs_req_num++) % xfs_error_mod) == 0) {
375 xfs_force_shutdown(tp->t_mountp,
376 SHUTDOWN_META_IO_ERROR);
377 xfs_buf_relse(bp);
378 xfs_debug(mp, "Returning trans error!");
379 return XFS_ERROR(EIO);
383 #endif
384 if (XFS_FORCED_SHUTDOWN(mp))
385 goto shutdown_abort;
387 _xfs_trans_bjoin(tp, bp, 1);
388 trace_xfs_trans_read_buf(bp->b_fspriv);
390 *bpp = bp;
391 return 0;
393 shutdown_abort:
394 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
395 xfs_buf_relse(bp);
396 *bpp = NULL;
397 return XFS_ERROR(EIO);
402 * Release the buffer bp which was previously acquired with one of the
403 * xfs_trans_... buffer allocation routines if the buffer has not
404 * been modified within this transaction. If the buffer is modified
405 * within this transaction, do decrement the recursion count but do
406 * not release the buffer even if the count goes to 0. If the buffer is not
407 * modified within the transaction, decrement the recursion count and
408 * release the buffer if the recursion count goes to 0.
410 * If the buffer is to be released and it was not modified before
411 * this transaction began, then free the buf_log_item associated with it.
413 * If the transaction pointer is NULL, make this just a normal
414 * brelse() call.
416 void
417 xfs_trans_brelse(xfs_trans_t *tp,
418 xfs_buf_t *bp)
420 xfs_buf_log_item_t *bip;
423 * Default to a normal brelse() call if the tp is NULL.
425 if (tp == NULL) {
426 ASSERT(bp->b_transp == NULL);
427 xfs_buf_relse(bp);
428 return;
431 ASSERT(bp->b_transp == tp);
432 bip = bp->b_fspriv;
433 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
434 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
435 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
436 ASSERT(atomic_read(&bip->bli_refcount) > 0);
438 trace_xfs_trans_brelse(bip);
441 * If the release is just for a recursive lock,
442 * then decrement the count and return.
444 if (bip->bli_recur > 0) {
445 bip->bli_recur--;
446 return;
450 * If the buffer is dirty within this transaction, we can't
451 * release it until we commit.
453 if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
454 return;
457 * If the buffer has been invalidated, then we can't release
458 * it until the transaction commits to disk unless it is re-dirtied
459 * as part of this transaction. This prevents us from pulling
460 * the item from the AIL before we should.
462 if (bip->bli_flags & XFS_BLI_STALE)
463 return;
465 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
468 * Free up the log item descriptor tracking the released item.
470 xfs_trans_del_item(&bip->bli_item);
473 * Clear the hold flag in the buf log item if it is set.
474 * We wouldn't want the next user of the buffer to
475 * get confused.
477 if (bip->bli_flags & XFS_BLI_HOLD) {
478 bip->bli_flags &= ~XFS_BLI_HOLD;
482 * Drop our reference to the buf log item.
484 atomic_dec(&bip->bli_refcount);
487 * If the buf item is not tracking data in the log, then
488 * we must free it before releasing the buffer back to the
489 * free pool. Before releasing the buffer to the free pool,
490 * clear the transaction pointer in b_fsprivate2 to dissolve
491 * its relation to this transaction.
493 if (!xfs_buf_item_dirty(bip)) {
494 /***
495 ASSERT(bp->b_pincount == 0);
496 ***/
497 ASSERT(atomic_read(&bip->bli_refcount) == 0);
498 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
499 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
500 xfs_buf_item_relse(bp);
503 bp->b_transp = NULL;
504 xfs_buf_relse(bp);
508 * Mark the buffer as not needing to be unlocked when the buf item's
509 * IOP_UNLOCK() routine is called. The buffer must already be locked
510 * and associated with the given transaction.
512 /* ARGSUSED */
513 void
514 xfs_trans_bhold(xfs_trans_t *tp,
515 xfs_buf_t *bp)
517 xfs_buf_log_item_t *bip = bp->b_fspriv;
519 ASSERT(bp->b_transp == tp);
520 ASSERT(bip != NULL);
521 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
522 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
523 ASSERT(atomic_read(&bip->bli_refcount) > 0);
525 bip->bli_flags |= XFS_BLI_HOLD;
526 trace_xfs_trans_bhold(bip);
530 * Cancel the previous buffer hold request made on this buffer
531 * for this transaction.
533 void
534 xfs_trans_bhold_release(xfs_trans_t *tp,
535 xfs_buf_t *bp)
537 xfs_buf_log_item_t *bip = bp->b_fspriv;
539 ASSERT(bp->b_transp == tp);
540 ASSERT(bip != NULL);
541 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
542 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
543 ASSERT(atomic_read(&bip->bli_refcount) > 0);
544 ASSERT(bip->bli_flags & XFS_BLI_HOLD);
546 bip->bli_flags &= ~XFS_BLI_HOLD;
547 trace_xfs_trans_bhold_release(bip);
551 * This is called to mark bytes first through last inclusive of the given
552 * buffer as needing to be logged when the transaction is committed.
553 * The buffer must already be associated with the given transaction.
555 * First and last are numbers relative to the beginning of this buffer,
556 * so the first byte in the buffer is numbered 0 regardless of the
557 * value of b_blkno.
559 void
560 xfs_trans_log_buf(xfs_trans_t *tp,
561 xfs_buf_t *bp,
562 uint first,
563 uint last)
565 xfs_buf_log_item_t *bip = bp->b_fspriv;
567 ASSERT(bp->b_transp == tp);
568 ASSERT(bip != NULL);
569 ASSERT(first <= last && last < BBTOB(bp->b_length));
570 ASSERT(bp->b_iodone == NULL ||
571 bp->b_iodone == xfs_buf_iodone_callbacks);
574 * Mark the buffer as needing to be written out eventually,
575 * and set its iodone function to remove the buffer's buf log
576 * item from the AIL and free it when the buffer is flushed
577 * to disk. See xfs_buf_attach_iodone() for more details
578 * on li_cb and xfs_buf_iodone_callbacks().
579 * If we end up aborting this transaction, we trap this buffer
580 * inside the b_bdstrat callback so that this won't get written to
581 * disk.
583 XFS_BUF_DONE(bp);
585 ASSERT(atomic_read(&bip->bli_refcount) > 0);
586 bp->b_iodone = xfs_buf_iodone_callbacks;
587 bip->bli_item.li_cb = xfs_buf_iodone;
589 trace_xfs_trans_log_buf(bip);
592 * If we invalidated the buffer within this transaction, then
593 * cancel the invalidation now that we're dirtying the buffer
594 * again. There are no races with the code in xfs_buf_item_unpin(),
595 * because we have a reference to the buffer this entire time.
597 if (bip->bli_flags & XFS_BLI_STALE) {
598 bip->bli_flags &= ~XFS_BLI_STALE;
599 ASSERT(XFS_BUF_ISSTALE(bp));
600 XFS_BUF_UNSTALE(bp);
601 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
604 tp->t_flags |= XFS_TRANS_DIRTY;
605 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
606 bip->bli_flags |= XFS_BLI_LOGGED;
607 xfs_buf_item_log(bip, first, last);
612 * Invalidate a buffer that is being used within a transaction.
614 * Typically this is because the blocks in the buffer are being freed, so we
615 * need to prevent it from being written out when we're done. Allowing it
616 * to be written again might overwrite data in the free blocks if they are
617 * reallocated to a file.
619 * We prevent the buffer from being written out by marking it stale. We can't
620 * get rid of the buf log item at this point because the buffer may still be
621 * pinned by another transaction. If that is the case, then we'll wait until
622 * the buffer is committed to disk for the last time (we can tell by the ref
623 * count) and free it in xfs_buf_item_unpin(). Until that happens we will
624 * keep the buffer locked so that the buffer and buf log item are not reused.
626 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
627 * the buf item. This will be used at recovery time to determine that copies
628 * of the buffer in the log before this should not be replayed.
630 * We mark the item descriptor and the transaction dirty so that we'll hold
631 * the buffer until after the commit.
633 * Since we're invalidating the buffer, we also clear the state about which
634 * parts of the buffer have been logged. We also clear the flag indicating
635 * that this is an inode buffer since the data in the buffer will no longer
636 * be valid.
638 * We set the stale bit in the buffer as well since we're getting rid of it.
640 void
641 xfs_trans_binval(
642 xfs_trans_t *tp,
643 xfs_buf_t *bp)
645 xfs_buf_log_item_t *bip = bp->b_fspriv;
646 int i;
648 ASSERT(bp->b_transp == tp);
649 ASSERT(bip != NULL);
650 ASSERT(atomic_read(&bip->bli_refcount) > 0);
652 trace_xfs_trans_binval(bip);
654 if (bip->bli_flags & XFS_BLI_STALE) {
656 * If the buffer is already invalidated, then
657 * just return.
659 ASSERT(XFS_BUF_ISSTALE(bp));
660 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
661 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
662 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
663 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
664 ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
665 ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
666 return;
669 xfs_buf_stale(bp);
671 bip->bli_flags |= XFS_BLI_STALE;
672 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
673 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
674 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
675 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
676 for (i = 0; i < bip->bli_format_count; i++) {
677 memset(bip->bli_formats[i].blf_data_map, 0,
678 (bip->bli_formats[i].blf_map_size * sizeof(uint)));
680 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
681 tp->t_flags |= XFS_TRANS_DIRTY;
685 * This call is used to indicate that the buffer contains on-disk inodes which
686 * must be handled specially during recovery. They require special handling
687 * because only the di_next_unlinked from the inodes in the buffer should be
688 * recovered. The rest of the data in the buffer is logged via the inodes
689 * themselves.
691 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
692 * transferred to the buffer's log format structure so that we'll know what to
693 * do at recovery time.
695 void
696 xfs_trans_inode_buf(
697 xfs_trans_t *tp,
698 xfs_buf_t *bp)
700 xfs_buf_log_item_t *bip = bp->b_fspriv;
702 ASSERT(bp->b_transp == tp);
703 ASSERT(bip != NULL);
704 ASSERT(atomic_read(&bip->bli_refcount) > 0);
706 bip->bli_flags |= XFS_BLI_INODE_BUF;
707 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
711 * This call is used to indicate that the buffer is going to
712 * be staled and was an inode buffer. This means it gets
713 * special processing during unpin - where any inodes
714 * associated with the buffer should be removed from ail.
715 * There is also special processing during recovery,
716 * any replay of the inodes in the buffer needs to be
717 * prevented as the buffer may have been reused.
719 void
720 xfs_trans_stale_inode_buf(
721 xfs_trans_t *tp,
722 xfs_buf_t *bp)
724 xfs_buf_log_item_t *bip = bp->b_fspriv;
726 ASSERT(bp->b_transp == tp);
727 ASSERT(bip != NULL);
728 ASSERT(atomic_read(&bip->bli_refcount) > 0);
730 bip->bli_flags |= XFS_BLI_STALE_INODE;
731 bip->bli_item.li_cb = xfs_buf_iodone;
732 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
736 * Mark the buffer as being one which contains newly allocated
737 * inodes. We need to make sure that even if this buffer is
738 * relogged as an 'inode buf' we still recover all of the inode
739 * images in the face of a crash. This works in coordination with
740 * xfs_buf_item_committed() to ensure that the buffer remains in the
741 * AIL at its original location even after it has been relogged.
743 /* ARGSUSED */
744 void
745 xfs_trans_inode_alloc_buf(
746 xfs_trans_t *tp,
747 xfs_buf_t *bp)
749 xfs_buf_log_item_t *bip = bp->b_fspriv;
751 ASSERT(bp->b_transp == tp);
752 ASSERT(bip != NULL);
753 ASSERT(atomic_read(&bip->bli_refcount) > 0);
755 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
756 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
760 * Set the type of the buffer for log recovery so that it can correctly identify
761 * and hence attach the correct buffer ops to the buffer after replay.
763 void
764 xfs_trans_buf_set_type(
765 struct xfs_trans *tp,
766 struct xfs_buf *bp,
767 enum xfs_blft type)
769 struct xfs_buf_log_item *bip = bp->b_fspriv;
771 if (!tp)
772 return;
774 ASSERT(bp->b_transp == tp);
775 ASSERT(bip != NULL);
776 ASSERT(atomic_read(&bip->bli_refcount) > 0);
778 xfs_blft_to_flags(&bip->__bli_format, type);
781 void
782 xfs_trans_buf_copy_type(
783 struct xfs_buf *dst_bp,
784 struct xfs_buf *src_bp)
786 struct xfs_buf_log_item *sbip = src_bp->b_fspriv;
787 struct xfs_buf_log_item *dbip = dst_bp->b_fspriv;
788 enum xfs_blft type;
790 type = xfs_blft_from_flags(&sbip->__bli_format);
791 xfs_blft_to_flags(&dbip->__bli_format, type);
795 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
796 * dquots. However, unlike in inode buffer recovery, dquot buffers get
797 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
798 * The only thing that makes dquot buffers different from regular
799 * buffers is that we must not replay dquot bufs when recovering
800 * if a _corresponding_ quotaoff has happened. We also have to distinguish
801 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
802 * can be turned off independently.
804 /* ARGSUSED */
805 void
806 xfs_trans_dquot_buf(
807 xfs_trans_t *tp,
808 xfs_buf_t *bp,
809 uint type)
811 struct xfs_buf_log_item *bip = bp->b_fspriv;
813 ASSERT(type == XFS_BLF_UDQUOT_BUF ||
814 type == XFS_BLF_PDQUOT_BUF ||
815 type == XFS_BLF_GDQUOT_BUF);
817 bip->__bli_format.blf_flags |= type;
819 switch (type) {
820 case XFS_BLF_UDQUOT_BUF:
821 type = XFS_BLFT_UDQUOT_BUF;
822 break;
823 case XFS_BLF_PDQUOT_BUF:
824 type = XFS_BLFT_PDQUOT_BUF;
825 break;
826 case XFS_BLF_GDQUOT_BUF:
827 type = XFS_BLFT_GDQUOT_BUF;
828 break;
829 default:
830 type = XFS_BLFT_UNKNOWN_BUF;
831 break;
834 xfs_trans_buf_set_type(tp, bp, type);