sctp: lack the check for ports in sctp_v6_cmp_addr
[linux/fpc-iii.git] / kernel / signal.c
blob6eb8466819b7810998e6a74dd2cf9c57a37625e6
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #include <linux/cn_proc.h>
36 #include <linux/compiler.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/signal.h>
41 #include <asm/param.h>
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44 #include <asm/siginfo.h>
45 #include <asm/cacheflush.h>
46 #include "audit.h" /* audit_signal_info() */
49 * SLAB caches for signal bits.
52 static struct kmem_cache *sigqueue_cachep;
54 int print_fatal_signals __read_mostly;
56 static void __user *sig_handler(struct task_struct *t, int sig)
58 return t->sighand->action[sig - 1].sa.sa_handler;
61 static int sig_handler_ignored(void __user *handler, int sig)
63 /* Is it explicitly or implicitly ignored? */
64 return handler == SIG_IGN ||
65 (handler == SIG_DFL && sig_kernel_ignore(sig));
68 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
70 void __user *handler;
72 handler = sig_handler(t, sig);
74 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
75 handler == SIG_DFL && !force)
76 return 1;
78 return sig_handler_ignored(handler, sig);
81 static int sig_ignored(struct task_struct *t, int sig, bool force)
84 * Blocked signals are never ignored, since the
85 * signal handler may change by the time it is
86 * unblocked.
88 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
89 return 0;
91 if (!sig_task_ignored(t, sig, force))
92 return 0;
95 * Tracers may want to know about even ignored signals.
97 return !t->ptrace;
101 * Re-calculate pending state from the set of locally pending
102 * signals, globally pending signals, and blocked signals.
104 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
106 unsigned long ready;
107 long i;
109 switch (_NSIG_WORDS) {
110 default:
111 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
112 ready |= signal->sig[i] &~ blocked->sig[i];
113 break;
115 case 4: ready = signal->sig[3] &~ blocked->sig[3];
116 ready |= signal->sig[2] &~ blocked->sig[2];
117 ready |= signal->sig[1] &~ blocked->sig[1];
118 ready |= signal->sig[0] &~ blocked->sig[0];
119 break;
121 case 2: ready = signal->sig[1] &~ blocked->sig[1];
122 ready |= signal->sig[0] &~ blocked->sig[0];
123 break;
125 case 1: ready = signal->sig[0] &~ blocked->sig[0];
127 return ready != 0;
130 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
132 static int recalc_sigpending_tsk(struct task_struct *t)
134 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
135 PENDING(&t->pending, &t->blocked) ||
136 PENDING(&t->signal->shared_pending, &t->blocked)) {
137 set_tsk_thread_flag(t, TIF_SIGPENDING);
138 return 1;
141 * We must never clear the flag in another thread, or in current
142 * when it's possible the current syscall is returning -ERESTART*.
143 * So we don't clear it here, and only callers who know they should do.
145 return 0;
149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
150 * This is superfluous when called on current, the wakeup is a harmless no-op.
152 void recalc_sigpending_and_wake(struct task_struct *t)
154 if (recalc_sigpending_tsk(t))
155 signal_wake_up(t, 0);
158 void recalc_sigpending(void)
160 if (!recalc_sigpending_tsk(current) && !freezing(current))
161 clear_thread_flag(TIF_SIGPENDING);
165 /* Given the mask, find the first available signal that should be serviced. */
167 #define SYNCHRONOUS_MASK \
168 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
169 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
171 int next_signal(struct sigpending *pending, sigset_t *mask)
173 unsigned long i, *s, *m, x;
174 int sig = 0;
176 s = pending->signal.sig;
177 m = mask->sig;
180 * Handle the first word specially: it contains the
181 * synchronous signals that need to be dequeued first.
183 x = *s &~ *m;
184 if (x) {
185 if (x & SYNCHRONOUS_MASK)
186 x &= SYNCHRONOUS_MASK;
187 sig = ffz(~x) + 1;
188 return sig;
191 switch (_NSIG_WORDS) {
192 default:
193 for (i = 1; i < _NSIG_WORDS; ++i) {
194 x = *++s &~ *++m;
195 if (!x)
196 continue;
197 sig = ffz(~x) + i*_NSIG_BPW + 1;
198 break;
200 break;
202 case 2:
203 x = s[1] &~ m[1];
204 if (!x)
205 break;
206 sig = ffz(~x) + _NSIG_BPW + 1;
207 break;
209 case 1:
210 /* Nothing to do */
211 break;
214 return sig;
217 static inline void print_dropped_signal(int sig)
219 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
221 if (!print_fatal_signals)
222 return;
224 if (!__ratelimit(&ratelimit_state))
225 return;
227 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
228 current->comm, current->pid, sig);
232 * task_set_jobctl_pending - set jobctl pending bits
233 * @task: target task
234 * @mask: pending bits to set
236 * Clear @mask from @task->jobctl. @mask must be subset of
237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
238 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
239 * cleared. If @task is already being killed or exiting, this function
240 * becomes noop.
242 * CONTEXT:
243 * Must be called with @task->sighand->siglock held.
245 * RETURNS:
246 * %true if @mask is set, %false if made noop because @task was dying.
248 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
250 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
251 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
252 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
254 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
255 return false;
257 if (mask & JOBCTL_STOP_SIGMASK)
258 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
260 task->jobctl |= mask;
261 return true;
265 * task_clear_jobctl_trapping - clear jobctl trapping bit
266 * @task: target task
268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
269 * Clear it and wake up the ptracer. Note that we don't need any further
270 * locking. @task->siglock guarantees that @task->parent points to the
271 * ptracer.
273 * CONTEXT:
274 * Must be called with @task->sighand->siglock held.
276 void task_clear_jobctl_trapping(struct task_struct *task)
278 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
279 task->jobctl &= ~JOBCTL_TRAPPING;
280 smp_mb(); /* advised by wake_up_bit() */
281 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
286 * task_clear_jobctl_pending - clear jobctl pending bits
287 * @task: target task
288 * @mask: pending bits to clear
290 * Clear @mask from @task->jobctl. @mask must be subset of
291 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
292 * STOP bits are cleared together.
294 * If clearing of @mask leaves no stop or trap pending, this function calls
295 * task_clear_jobctl_trapping().
297 * CONTEXT:
298 * Must be called with @task->sighand->siglock held.
300 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
302 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
304 if (mask & JOBCTL_STOP_PENDING)
305 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
307 task->jobctl &= ~mask;
309 if (!(task->jobctl & JOBCTL_PENDING_MASK))
310 task_clear_jobctl_trapping(task);
314 * task_participate_group_stop - participate in a group stop
315 * @task: task participating in a group stop
317 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
318 * Group stop states are cleared and the group stop count is consumed if
319 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
320 * stop, the appropriate %SIGNAL_* flags are set.
322 * CONTEXT:
323 * Must be called with @task->sighand->siglock held.
325 * RETURNS:
326 * %true if group stop completion should be notified to the parent, %false
327 * otherwise.
329 static bool task_participate_group_stop(struct task_struct *task)
331 struct signal_struct *sig = task->signal;
332 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
334 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
336 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
338 if (!consume)
339 return false;
341 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
342 sig->group_stop_count--;
345 * Tell the caller to notify completion iff we are entering into a
346 * fresh group stop. Read comment in do_signal_stop() for details.
348 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
349 sig->flags = SIGNAL_STOP_STOPPED;
350 return true;
352 return false;
356 * allocate a new signal queue record
357 * - this may be called without locks if and only if t == current, otherwise an
358 * appropriate lock must be held to stop the target task from exiting
360 static struct sigqueue *
361 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
363 struct sigqueue *q = NULL;
364 struct user_struct *user;
367 * Protect access to @t credentials. This can go away when all
368 * callers hold rcu read lock.
370 rcu_read_lock();
371 user = get_uid(__task_cred(t)->user);
372 atomic_inc(&user->sigpending);
373 rcu_read_unlock();
375 if (override_rlimit ||
376 atomic_read(&user->sigpending) <=
377 task_rlimit(t, RLIMIT_SIGPENDING)) {
378 q = kmem_cache_alloc(sigqueue_cachep, flags);
379 } else {
380 print_dropped_signal(sig);
383 if (unlikely(q == NULL)) {
384 atomic_dec(&user->sigpending);
385 free_uid(user);
386 } else {
387 INIT_LIST_HEAD(&q->list);
388 q->flags = 0;
389 q->user = user;
392 return q;
395 static void __sigqueue_free(struct sigqueue *q)
397 if (q->flags & SIGQUEUE_PREALLOC)
398 return;
399 atomic_dec(&q->user->sigpending);
400 free_uid(q->user);
401 kmem_cache_free(sigqueue_cachep, q);
404 void flush_sigqueue(struct sigpending *queue)
406 struct sigqueue *q;
408 sigemptyset(&queue->signal);
409 while (!list_empty(&queue->list)) {
410 q = list_entry(queue->list.next, struct sigqueue , list);
411 list_del_init(&q->list);
412 __sigqueue_free(q);
417 * Flush all pending signals for a task.
419 void __flush_signals(struct task_struct *t)
421 clear_tsk_thread_flag(t, TIF_SIGPENDING);
422 flush_sigqueue(&t->pending);
423 flush_sigqueue(&t->signal->shared_pending);
426 void flush_signals(struct task_struct *t)
428 unsigned long flags;
430 spin_lock_irqsave(&t->sighand->siglock, flags);
431 __flush_signals(t);
432 spin_unlock_irqrestore(&t->sighand->siglock, flags);
435 static void __flush_itimer_signals(struct sigpending *pending)
437 sigset_t signal, retain;
438 struct sigqueue *q, *n;
440 signal = pending->signal;
441 sigemptyset(&retain);
443 list_for_each_entry_safe(q, n, &pending->list, list) {
444 int sig = q->info.si_signo;
446 if (likely(q->info.si_code != SI_TIMER)) {
447 sigaddset(&retain, sig);
448 } else {
449 sigdelset(&signal, sig);
450 list_del_init(&q->list);
451 __sigqueue_free(q);
455 sigorsets(&pending->signal, &signal, &retain);
458 void flush_itimer_signals(void)
460 struct task_struct *tsk = current;
461 unsigned long flags;
463 spin_lock_irqsave(&tsk->sighand->siglock, flags);
464 __flush_itimer_signals(&tsk->pending);
465 __flush_itimer_signals(&tsk->signal->shared_pending);
466 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
469 void ignore_signals(struct task_struct *t)
471 int i;
473 for (i = 0; i < _NSIG; ++i)
474 t->sighand->action[i].sa.sa_handler = SIG_IGN;
476 flush_signals(t);
480 * Flush all handlers for a task.
483 void
484 flush_signal_handlers(struct task_struct *t, int force_default)
486 int i;
487 struct k_sigaction *ka = &t->sighand->action[0];
488 for (i = _NSIG ; i != 0 ; i--) {
489 if (force_default || ka->sa.sa_handler != SIG_IGN)
490 ka->sa.sa_handler = SIG_DFL;
491 ka->sa.sa_flags = 0;
492 #ifdef __ARCH_HAS_SA_RESTORER
493 ka->sa.sa_restorer = NULL;
494 #endif
495 sigemptyset(&ka->sa.sa_mask);
496 ka++;
500 int unhandled_signal(struct task_struct *tsk, int sig)
502 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
503 if (is_global_init(tsk))
504 return 1;
505 if (handler != SIG_IGN && handler != SIG_DFL)
506 return 0;
507 /* if ptraced, let the tracer determine */
508 return !tsk->ptrace;
512 * Notify the system that a driver wants to block all signals for this
513 * process, and wants to be notified if any signals at all were to be
514 * sent/acted upon. If the notifier routine returns non-zero, then the
515 * signal will be acted upon after all. If the notifier routine returns 0,
516 * then then signal will be blocked. Only one block per process is
517 * allowed. priv is a pointer to private data that the notifier routine
518 * can use to determine if the signal should be blocked or not.
520 void
521 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
523 unsigned long flags;
525 spin_lock_irqsave(&current->sighand->siglock, flags);
526 current->notifier_mask = mask;
527 current->notifier_data = priv;
528 current->notifier = notifier;
529 spin_unlock_irqrestore(&current->sighand->siglock, flags);
532 /* Notify the system that blocking has ended. */
534 void
535 unblock_all_signals(void)
537 unsigned long flags;
539 spin_lock_irqsave(&current->sighand->siglock, flags);
540 current->notifier = NULL;
541 current->notifier_data = NULL;
542 recalc_sigpending();
543 spin_unlock_irqrestore(&current->sighand->siglock, flags);
546 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
548 struct sigqueue *q, *first = NULL;
551 * Collect the siginfo appropriate to this signal. Check if
552 * there is another siginfo for the same signal.
554 list_for_each_entry(q, &list->list, list) {
555 if (q->info.si_signo == sig) {
556 if (first)
557 goto still_pending;
558 first = q;
562 sigdelset(&list->signal, sig);
564 if (first) {
565 still_pending:
566 list_del_init(&first->list);
567 copy_siginfo(info, &first->info);
568 __sigqueue_free(first);
569 } else {
571 * Ok, it wasn't in the queue. This must be
572 * a fast-pathed signal or we must have been
573 * out of queue space. So zero out the info.
575 info->si_signo = sig;
576 info->si_errno = 0;
577 info->si_code = SI_USER;
578 info->si_pid = 0;
579 info->si_uid = 0;
583 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
584 siginfo_t *info)
586 int sig = next_signal(pending, mask);
588 if (sig) {
589 if (current->notifier) {
590 if (sigismember(current->notifier_mask, sig)) {
591 if (!(current->notifier)(current->notifier_data)) {
592 clear_thread_flag(TIF_SIGPENDING);
593 return 0;
598 collect_signal(sig, pending, info);
601 return sig;
605 * Dequeue a signal and return the element to the caller, which is
606 * expected to free it.
608 * All callers have to hold the siglock.
610 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
612 int signr;
614 /* We only dequeue private signals from ourselves, we don't let
615 * signalfd steal them
617 signr = __dequeue_signal(&tsk->pending, mask, info);
618 if (!signr) {
619 signr = __dequeue_signal(&tsk->signal->shared_pending,
620 mask, info);
622 * itimer signal ?
624 * itimers are process shared and we restart periodic
625 * itimers in the signal delivery path to prevent DoS
626 * attacks in the high resolution timer case. This is
627 * compliant with the old way of self-restarting
628 * itimers, as the SIGALRM is a legacy signal and only
629 * queued once. Changing the restart behaviour to
630 * restart the timer in the signal dequeue path is
631 * reducing the timer noise on heavy loaded !highres
632 * systems too.
634 if (unlikely(signr == SIGALRM)) {
635 struct hrtimer *tmr = &tsk->signal->real_timer;
637 if (!hrtimer_is_queued(tmr) &&
638 tsk->signal->it_real_incr.tv64 != 0) {
639 hrtimer_forward(tmr, tmr->base->get_time(),
640 tsk->signal->it_real_incr);
641 hrtimer_restart(tmr);
646 recalc_sigpending();
647 if (!signr)
648 return 0;
650 if (unlikely(sig_kernel_stop(signr))) {
652 * Set a marker that we have dequeued a stop signal. Our
653 * caller might release the siglock and then the pending
654 * stop signal it is about to process is no longer in the
655 * pending bitmasks, but must still be cleared by a SIGCONT
656 * (and overruled by a SIGKILL). So those cases clear this
657 * shared flag after we've set it. Note that this flag may
658 * remain set after the signal we return is ignored or
659 * handled. That doesn't matter because its only purpose
660 * is to alert stop-signal processing code when another
661 * processor has come along and cleared the flag.
663 current->jobctl |= JOBCTL_STOP_DEQUEUED;
665 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
667 * Release the siglock to ensure proper locking order
668 * of timer locks outside of siglocks. Note, we leave
669 * irqs disabled here, since the posix-timers code is
670 * about to disable them again anyway.
672 spin_unlock(&tsk->sighand->siglock);
673 do_schedule_next_timer(info);
674 spin_lock(&tsk->sighand->siglock);
676 return signr;
680 * Tell a process that it has a new active signal..
682 * NOTE! we rely on the previous spin_lock to
683 * lock interrupts for us! We can only be called with
684 * "siglock" held, and the local interrupt must
685 * have been disabled when that got acquired!
687 * No need to set need_resched since signal event passing
688 * goes through ->blocked
690 void signal_wake_up_state(struct task_struct *t, unsigned int state)
692 set_tsk_thread_flag(t, TIF_SIGPENDING);
694 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
695 * case. We don't check t->state here because there is a race with it
696 * executing another processor and just now entering stopped state.
697 * By using wake_up_state, we ensure the process will wake up and
698 * handle its death signal.
700 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
701 kick_process(t);
705 * Remove signals in mask from the pending set and queue.
706 * Returns 1 if any signals were found.
708 * All callers must be holding the siglock.
710 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
712 struct sigqueue *q, *n;
713 sigset_t m;
715 sigandsets(&m, mask, &s->signal);
716 if (sigisemptyset(&m))
717 return 0;
719 sigandnsets(&s->signal, &s->signal, mask);
720 list_for_each_entry_safe(q, n, &s->list, list) {
721 if (sigismember(mask, q->info.si_signo)) {
722 list_del_init(&q->list);
723 __sigqueue_free(q);
726 return 1;
729 static inline int is_si_special(const struct siginfo *info)
731 return info <= SEND_SIG_FORCED;
734 static inline bool si_fromuser(const struct siginfo *info)
736 return info == SEND_SIG_NOINFO ||
737 (!is_si_special(info) && SI_FROMUSER(info));
741 * called with RCU read lock from check_kill_permission()
743 static int kill_ok_by_cred(struct task_struct *t)
745 const struct cred *cred = current_cred();
746 const struct cred *tcred = __task_cred(t);
748 if (uid_eq(cred->euid, tcred->suid) ||
749 uid_eq(cred->euid, tcred->uid) ||
750 uid_eq(cred->uid, tcred->suid) ||
751 uid_eq(cred->uid, tcred->uid))
752 return 1;
754 if (ns_capable(tcred->user_ns, CAP_KILL))
755 return 1;
757 return 0;
761 * Bad permissions for sending the signal
762 * - the caller must hold the RCU read lock
764 static int check_kill_permission(int sig, struct siginfo *info,
765 struct task_struct *t)
767 struct pid *sid;
768 int error;
770 if (!valid_signal(sig))
771 return -EINVAL;
773 if (!si_fromuser(info))
774 return 0;
776 error = audit_signal_info(sig, t); /* Let audit system see the signal */
777 if (error)
778 return error;
780 if (!same_thread_group(current, t) &&
781 !kill_ok_by_cred(t)) {
782 switch (sig) {
783 case SIGCONT:
784 sid = task_session(t);
786 * We don't return the error if sid == NULL. The
787 * task was unhashed, the caller must notice this.
789 if (!sid || sid == task_session(current))
790 break;
791 default:
792 return -EPERM;
796 return security_task_kill(t, info, sig, 0);
800 * ptrace_trap_notify - schedule trap to notify ptracer
801 * @t: tracee wanting to notify tracer
803 * This function schedules sticky ptrace trap which is cleared on the next
804 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
805 * ptracer.
807 * If @t is running, STOP trap will be taken. If trapped for STOP and
808 * ptracer is listening for events, tracee is woken up so that it can
809 * re-trap for the new event. If trapped otherwise, STOP trap will be
810 * eventually taken without returning to userland after the existing traps
811 * are finished by PTRACE_CONT.
813 * CONTEXT:
814 * Must be called with @task->sighand->siglock held.
816 static void ptrace_trap_notify(struct task_struct *t)
818 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
819 assert_spin_locked(&t->sighand->siglock);
821 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
822 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
826 * Handle magic process-wide effects of stop/continue signals. Unlike
827 * the signal actions, these happen immediately at signal-generation
828 * time regardless of blocking, ignoring, or handling. This does the
829 * actual continuing for SIGCONT, but not the actual stopping for stop
830 * signals. The process stop is done as a signal action for SIG_DFL.
832 * Returns true if the signal should be actually delivered, otherwise
833 * it should be dropped.
835 static bool prepare_signal(int sig, struct task_struct *p, bool force)
837 struct signal_struct *signal = p->signal;
838 struct task_struct *t;
839 sigset_t flush;
841 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
842 if (signal->flags & SIGNAL_GROUP_COREDUMP)
843 return sig == SIGKILL;
845 * The process is in the middle of dying, nothing to do.
847 } else if (sig_kernel_stop(sig)) {
849 * This is a stop signal. Remove SIGCONT from all queues.
851 siginitset(&flush, sigmask(SIGCONT));
852 flush_sigqueue_mask(&flush, &signal->shared_pending);
853 for_each_thread(p, t)
854 flush_sigqueue_mask(&flush, &t->pending);
855 } else if (sig == SIGCONT) {
856 unsigned int why;
858 * Remove all stop signals from all queues, wake all threads.
860 siginitset(&flush, SIG_KERNEL_STOP_MASK);
861 flush_sigqueue_mask(&flush, &signal->shared_pending);
862 for_each_thread(p, t) {
863 flush_sigqueue_mask(&flush, &t->pending);
864 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
865 if (likely(!(t->ptrace & PT_SEIZED)))
866 wake_up_state(t, __TASK_STOPPED);
867 else
868 ptrace_trap_notify(t);
872 * Notify the parent with CLD_CONTINUED if we were stopped.
874 * If we were in the middle of a group stop, we pretend it
875 * was already finished, and then continued. Since SIGCHLD
876 * doesn't queue we report only CLD_STOPPED, as if the next
877 * CLD_CONTINUED was dropped.
879 why = 0;
880 if (signal->flags & SIGNAL_STOP_STOPPED)
881 why |= SIGNAL_CLD_CONTINUED;
882 else if (signal->group_stop_count)
883 why |= SIGNAL_CLD_STOPPED;
885 if (why) {
887 * The first thread which returns from do_signal_stop()
888 * will take ->siglock, notice SIGNAL_CLD_MASK, and
889 * notify its parent. See get_signal_to_deliver().
891 signal->flags = why | SIGNAL_STOP_CONTINUED;
892 signal->group_stop_count = 0;
893 signal->group_exit_code = 0;
897 return !sig_ignored(p, sig, force);
901 * Test if P wants to take SIG. After we've checked all threads with this,
902 * it's equivalent to finding no threads not blocking SIG. Any threads not
903 * blocking SIG were ruled out because they are not running and already
904 * have pending signals. Such threads will dequeue from the shared queue
905 * as soon as they're available, so putting the signal on the shared queue
906 * will be equivalent to sending it to one such thread.
908 static inline int wants_signal(int sig, struct task_struct *p)
910 if (sigismember(&p->blocked, sig))
911 return 0;
912 if (p->flags & PF_EXITING)
913 return 0;
914 if (sig == SIGKILL)
915 return 1;
916 if (task_is_stopped_or_traced(p))
917 return 0;
918 return task_curr(p) || !signal_pending(p);
921 static void complete_signal(int sig, struct task_struct *p, int group)
923 struct signal_struct *signal = p->signal;
924 struct task_struct *t;
927 * Now find a thread we can wake up to take the signal off the queue.
929 * If the main thread wants the signal, it gets first crack.
930 * Probably the least surprising to the average bear.
932 if (wants_signal(sig, p))
933 t = p;
934 else if (!group || thread_group_empty(p))
936 * There is just one thread and it does not need to be woken.
937 * It will dequeue unblocked signals before it runs again.
939 return;
940 else {
942 * Otherwise try to find a suitable thread.
944 t = signal->curr_target;
945 while (!wants_signal(sig, t)) {
946 t = next_thread(t);
947 if (t == signal->curr_target)
949 * No thread needs to be woken.
950 * Any eligible threads will see
951 * the signal in the queue soon.
953 return;
955 signal->curr_target = t;
959 * Found a killable thread. If the signal will be fatal,
960 * then start taking the whole group down immediately.
962 if (sig_fatal(p, sig) &&
963 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
964 !sigismember(&t->real_blocked, sig) &&
965 (sig == SIGKILL || !t->ptrace)) {
967 * This signal will be fatal to the whole group.
969 if (!sig_kernel_coredump(sig)) {
971 * Start a group exit and wake everybody up.
972 * This way we don't have other threads
973 * running and doing things after a slower
974 * thread has the fatal signal pending.
976 signal->flags = SIGNAL_GROUP_EXIT;
977 signal->group_exit_code = sig;
978 signal->group_stop_count = 0;
979 t = p;
980 do {
981 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
982 sigaddset(&t->pending.signal, SIGKILL);
983 signal_wake_up(t, 1);
984 } while_each_thread(p, t);
985 return;
990 * The signal is already in the shared-pending queue.
991 * Tell the chosen thread to wake up and dequeue it.
993 signal_wake_up(t, sig == SIGKILL);
994 return;
997 static inline int legacy_queue(struct sigpending *signals, int sig)
999 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1002 #ifdef CONFIG_USER_NS
1003 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1005 if (current_user_ns() == task_cred_xxx(t, user_ns))
1006 return;
1008 if (SI_FROMKERNEL(info))
1009 return;
1011 rcu_read_lock();
1012 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1013 make_kuid(current_user_ns(), info->si_uid));
1014 rcu_read_unlock();
1016 #else
1017 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1019 return;
1021 #endif
1023 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1024 int group, int from_ancestor_ns)
1026 struct sigpending *pending;
1027 struct sigqueue *q;
1028 int override_rlimit;
1029 int ret = 0, result;
1031 assert_spin_locked(&t->sighand->siglock);
1033 result = TRACE_SIGNAL_IGNORED;
1034 if (!prepare_signal(sig, t,
1035 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1036 goto ret;
1038 pending = group ? &t->signal->shared_pending : &t->pending;
1040 * Short-circuit ignored signals and support queuing
1041 * exactly one non-rt signal, so that we can get more
1042 * detailed information about the cause of the signal.
1044 result = TRACE_SIGNAL_ALREADY_PENDING;
1045 if (legacy_queue(pending, sig))
1046 goto ret;
1048 result = TRACE_SIGNAL_DELIVERED;
1050 * fast-pathed signals for kernel-internal things like SIGSTOP
1051 * or SIGKILL.
1053 if (info == SEND_SIG_FORCED)
1054 goto out_set;
1057 * Real-time signals must be queued if sent by sigqueue, or
1058 * some other real-time mechanism. It is implementation
1059 * defined whether kill() does so. We attempt to do so, on
1060 * the principle of least surprise, but since kill is not
1061 * allowed to fail with EAGAIN when low on memory we just
1062 * make sure at least one signal gets delivered and don't
1063 * pass on the info struct.
1065 if (sig < SIGRTMIN)
1066 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1067 else
1068 override_rlimit = 0;
1070 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1071 override_rlimit);
1072 if (q) {
1073 list_add_tail(&q->list, &pending->list);
1074 switch ((unsigned long) info) {
1075 case (unsigned long) SEND_SIG_NOINFO:
1076 q->info.si_signo = sig;
1077 q->info.si_errno = 0;
1078 q->info.si_code = SI_USER;
1079 q->info.si_pid = task_tgid_nr_ns(current,
1080 task_active_pid_ns(t));
1081 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1082 break;
1083 case (unsigned long) SEND_SIG_PRIV:
1084 q->info.si_signo = sig;
1085 q->info.si_errno = 0;
1086 q->info.si_code = SI_KERNEL;
1087 q->info.si_pid = 0;
1088 q->info.si_uid = 0;
1089 break;
1090 default:
1091 copy_siginfo(&q->info, info);
1092 if (from_ancestor_ns)
1093 q->info.si_pid = 0;
1094 break;
1097 userns_fixup_signal_uid(&q->info, t);
1099 } else if (!is_si_special(info)) {
1100 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1102 * Queue overflow, abort. We may abort if the
1103 * signal was rt and sent by user using something
1104 * other than kill().
1106 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1107 ret = -EAGAIN;
1108 goto ret;
1109 } else {
1111 * This is a silent loss of information. We still
1112 * send the signal, but the *info bits are lost.
1114 result = TRACE_SIGNAL_LOSE_INFO;
1118 out_set:
1119 signalfd_notify(t, sig);
1120 sigaddset(&pending->signal, sig);
1121 complete_signal(sig, t, group);
1122 ret:
1123 trace_signal_generate(sig, info, t, group, result);
1124 return ret;
1127 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1128 int group)
1130 int from_ancestor_ns = 0;
1132 #ifdef CONFIG_PID_NS
1133 from_ancestor_ns = si_fromuser(info) &&
1134 !task_pid_nr_ns(current, task_active_pid_ns(t));
1135 #endif
1137 return __send_signal(sig, info, t, group, from_ancestor_ns);
1140 static void print_fatal_signal(int signr)
1142 struct pt_regs *regs = signal_pt_regs();
1143 printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1145 #if defined(__i386__) && !defined(__arch_um__)
1146 printk(KERN_INFO "code at %08lx: ", regs->ip);
1148 int i;
1149 for (i = 0; i < 16; i++) {
1150 unsigned char insn;
1152 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1153 break;
1154 printk(KERN_CONT "%02x ", insn);
1157 printk(KERN_CONT "\n");
1158 #endif
1159 preempt_disable();
1160 show_regs(regs);
1161 preempt_enable();
1164 static int __init setup_print_fatal_signals(char *str)
1166 get_option (&str, &print_fatal_signals);
1168 return 1;
1171 __setup("print-fatal-signals=", setup_print_fatal_signals);
1174 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1176 return send_signal(sig, info, p, 1);
1179 static int
1180 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1182 return send_signal(sig, info, t, 0);
1185 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1186 bool group)
1188 unsigned long flags;
1189 int ret = -ESRCH;
1191 if (lock_task_sighand(p, &flags)) {
1192 ret = send_signal(sig, info, p, group);
1193 unlock_task_sighand(p, &flags);
1196 return ret;
1200 * Force a signal that the process can't ignore: if necessary
1201 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1203 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1204 * since we do not want to have a signal handler that was blocked
1205 * be invoked when user space had explicitly blocked it.
1207 * We don't want to have recursive SIGSEGV's etc, for example,
1208 * that is why we also clear SIGNAL_UNKILLABLE.
1211 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1213 unsigned long int flags;
1214 int ret, blocked, ignored;
1215 struct k_sigaction *action;
1217 spin_lock_irqsave(&t->sighand->siglock, flags);
1218 action = &t->sighand->action[sig-1];
1219 ignored = action->sa.sa_handler == SIG_IGN;
1220 blocked = sigismember(&t->blocked, sig);
1221 if (blocked || ignored) {
1222 action->sa.sa_handler = SIG_DFL;
1223 if (blocked) {
1224 sigdelset(&t->blocked, sig);
1225 recalc_sigpending_and_wake(t);
1228 if (action->sa.sa_handler == SIG_DFL)
1229 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1230 ret = specific_send_sig_info(sig, info, t);
1231 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1233 return ret;
1237 * Nuke all other threads in the group.
1239 int zap_other_threads(struct task_struct *p)
1241 struct task_struct *t = p;
1242 int count = 0;
1244 p->signal->group_stop_count = 0;
1246 while_each_thread(p, t) {
1247 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1248 count++;
1250 /* Don't bother with already dead threads */
1251 if (t->exit_state)
1252 continue;
1253 sigaddset(&t->pending.signal, SIGKILL);
1254 signal_wake_up(t, 1);
1257 return count;
1260 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1261 unsigned long *flags)
1263 struct sighand_struct *sighand;
1265 for (;;) {
1266 local_irq_save(*flags);
1267 rcu_read_lock();
1268 sighand = rcu_dereference(tsk->sighand);
1269 if (unlikely(sighand == NULL)) {
1270 rcu_read_unlock();
1271 local_irq_restore(*flags);
1272 break;
1275 spin_lock(&sighand->siglock);
1276 if (likely(sighand == tsk->sighand)) {
1277 rcu_read_unlock();
1278 break;
1280 spin_unlock(&sighand->siglock);
1281 rcu_read_unlock();
1282 local_irq_restore(*flags);
1285 return sighand;
1289 * send signal info to all the members of a group
1291 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1293 int ret;
1295 rcu_read_lock();
1296 ret = check_kill_permission(sig, info, p);
1297 rcu_read_unlock();
1299 if (!ret && sig)
1300 ret = do_send_sig_info(sig, info, p, true);
1302 return ret;
1306 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1307 * control characters do (^C, ^Z etc)
1308 * - the caller must hold at least a readlock on tasklist_lock
1310 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1312 struct task_struct *p = NULL;
1313 int retval, success;
1315 success = 0;
1316 retval = -ESRCH;
1317 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1318 int err = group_send_sig_info(sig, info, p);
1319 success |= !err;
1320 retval = err;
1321 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1322 return success ? 0 : retval;
1325 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1327 int error = -ESRCH;
1328 struct task_struct *p;
1330 rcu_read_lock();
1331 retry:
1332 p = pid_task(pid, PIDTYPE_PID);
1333 if (p) {
1334 error = group_send_sig_info(sig, info, p);
1335 if (unlikely(error == -ESRCH))
1337 * The task was unhashed in between, try again.
1338 * If it is dead, pid_task() will return NULL,
1339 * if we race with de_thread() it will find the
1340 * new leader.
1342 goto retry;
1344 rcu_read_unlock();
1346 return error;
1349 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1351 int error;
1352 rcu_read_lock();
1353 error = kill_pid_info(sig, info, find_vpid(pid));
1354 rcu_read_unlock();
1355 return error;
1358 static int kill_as_cred_perm(const struct cred *cred,
1359 struct task_struct *target)
1361 const struct cred *pcred = __task_cred(target);
1362 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1363 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1364 return 0;
1365 return 1;
1368 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1369 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1370 const struct cred *cred, u32 secid)
1372 int ret = -EINVAL;
1373 struct task_struct *p;
1374 unsigned long flags;
1376 if (!valid_signal(sig))
1377 return ret;
1379 rcu_read_lock();
1380 p = pid_task(pid, PIDTYPE_PID);
1381 if (!p) {
1382 ret = -ESRCH;
1383 goto out_unlock;
1385 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1386 ret = -EPERM;
1387 goto out_unlock;
1389 ret = security_task_kill(p, info, sig, secid);
1390 if (ret)
1391 goto out_unlock;
1393 if (sig) {
1394 if (lock_task_sighand(p, &flags)) {
1395 ret = __send_signal(sig, info, p, 1, 0);
1396 unlock_task_sighand(p, &flags);
1397 } else
1398 ret = -ESRCH;
1400 out_unlock:
1401 rcu_read_unlock();
1402 return ret;
1404 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1407 * kill_something_info() interprets pid in interesting ways just like kill(2).
1409 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1410 * is probably wrong. Should make it like BSD or SYSV.
1413 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1415 int ret;
1417 if (pid > 0) {
1418 rcu_read_lock();
1419 ret = kill_pid_info(sig, info, find_vpid(pid));
1420 rcu_read_unlock();
1421 return ret;
1424 read_lock(&tasklist_lock);
1425 if (pid != -1) {
1426 ret = __kill_pgrp_info(sig, info,
1427 pid ? find_vpid(-pid) : task_pgrp(current));
1428 } else {
1429 int retval = 0, count = 0;
1430 struct task_struct * p;
1432 for_each_process(p) {
1433 if (task_pid_vnr(p) > 1 &&
1434 !same_thread_group(p, current)) {
1435 int err = group_send_sig_info(sig, info, p);
1436 ++count;
1437 if (err != -EPERM)
1438 retval = err;
1441 ret = count ? retval : -ESRCH;
1443 read_unlock(&tasklist_lock);
1445 return ret;
1449 * These are for backward compatibility with the rest of the kernel source.
1452 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1455 * Make sure legacy kernel users don't send in bad values
1456 * (normal paths check this in check_kill_permission).
1458 if (!valid_signal(sig))
1459 return -EINVAL;
1461 return do_send_sig_info(sig, info, p, false);
1464 #define __si_special(priv) \
1465 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1468 send_sig(int sig, struct task_struct *p, int priv)
1470 return send_sig_info(sig, __si_special(priv), p);
1473 void
1474 force_sig(int sig, struct task_struct *p)
1476 force_sig_info(sig, SEND_SIG_PRIV, p);
1480 * When things go south during signal handling, we
1481 * will force a SIGSEGV. And if the signal that caused
1482 * the problem was already a SIGSEGV, we'll want to
1483 * make sure we don't even try to deliver the signal..
1486 force_sigsegv(int sig, struct task_struct *p)
1488 if (sig == SIGSEGV) {
1489 unsigned long flags;
1490 spin_lock_irqsave(&p->sighand->siglock, flags);
1491 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1492 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1494 force_sig(SIGSEGV, p);
1495 return 0;
1498 int kill_pgrp(struct pid *pid, int sig, int priv)
1500 int ret;
1502 read_lock(&tasklist_lock);
1503 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1504 read_unlock(&tasklist_lock);
1506 return ret;
1508 EXPORT_SYMBOL(kill_pgrp);
1510 int kill_pid(struct pid *pid, int sig, int priv)
1512 return kill_pid_info(sig, __si_special(priv), pid);
1514 EXPORT_SYMBOL(kill_pid);
1517 * These functions support sending signals using preallocated sigqueue
1518 * structures. This is needed "because realtime applications cannot
1519 * afford to lose notifications of asynchronous events, like timer
1520 * expirations or I/O completions". In the case of POSIX Timers
1521 * we allocate the sigqueue structure from the timer_create. If this
1522 * allocation fails we are able to report the failure to the application
1523 * with an EAGAIN error.
1525 struct sigqueue *sigqueue_alloc(void)
1527 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1529 if (q)
1530 q->flags |= SIGQUEUE_PREALLOC;
1532 return q;
1535 void sigqueue_free(struct sigqueue *q)
1537 unsigned long flags;
1538 spinlock_t *lock = &current->sighand->siglock;
1540 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1542 * We must hold ->siglock while testing q->list
1543 * to serialize with collect_signal() or with
1544 * __exit_signal()->flush_sigqueue().
1546 spin_lock_irqsave(lock, flags);
1547 q->flags &= ~SIGQUEUE_PREALLOC;
1549 * If it is queued it will be freed when dequeued,
1550 * like the "regular" sigqueue.
1552 if (!list_empty(&q->list))
1553 q = NULL;
1554 spin_unlock_irqrestore(lock, flags);
1556 if (q)
1557 __sigqueue_free(q);
1560 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1562 int sig = q->info.si_signo;
1563 struct sigpending *pending;
1564 unsigned long flags;
1565 int ret, result;
1567 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1569 ret = -1;
1570 if (!likely(lock_task_sighand(t, &flags)))
1571 goto ret;
1573 ret = 1; /* the signal is ignored */
1574 result = TRACE_SIGNAL_IGNORED;
1575 if (!prepare_signal(sig, t, false))
1576 goto out;
1578 ret = 0;
1579 if (unlikely(!list_empty(&q->list))) {
1581 * If an SI_TIMER entry is already queue just increment
1582 * the overrun count.
1584 BUG_ON(q->info.si_code != SI_TIMER);
1585 q->info.si_overrun++;
1586 result = TRACE_SIGNAL_ALREADY_PENDING;
1587 goto out;
1589 q->info.si_overrun = 0;
1591 signalfd_notify(t, sig);
1592 pending = group ? &t->signal->shared_pending : &t->pending;
1593 list_add_tail(&q->list, &pending->list);
1594 sigaddset(&pending->signal, sig);
1595 complete_signal(sig, t, group);
1596 result = TRACE_SIGNAL_DELIVERED;
1597 out:
1598 trace_signal_generate(sig, &q->info, t, group, result);
1599 unlock_task_sighand(t, &flags);
1600 ret:
1601 return ret;
1605 * Let a parent know about the death of a child.
1606 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1608 * Returns true if our parent ignored us and so we've switched to
1609 * self-reaping.
1611 bool do_notify_parent(struct task_struct *tsk, int sig)
1613 struct siginfo info;
1614 unsigned long flags;
1615 struct sighand_struct *psig;
1616 bool autoreap = false;
1617 cputime_t utime, stime;
1619 BUG_ON(sig == -1);
1621 /* do_notify_parent_cldstop should have been called instead. */
1622 BUG_ON(task_is_stopped_or_traced(tsk));
1624 BUG_ON(!tsk->ptrace &&
1625 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1627 if (sig != SIGCHLD) {
1629 * This is only possible if parent == real_parent.
1630 * Check if it has changed security domain.
1632 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1633 sig = SIGCHLD;
1636 info.si_signo = sig;
1637 info.si_errno = 0;
1639 * We are under tasklist_lock here so our parent is tied to
1640 * us and cannot change.
1642 * task_active_pid_ns will always return the same pid namespace
1643 * until a task passes through release_task.
1645 * write_lock() currently calls preempt_disable() which is the
1646 * same as rcu_read_lock(), but according to Oleg, this is not
1647 * correct to rely on this
1649 rcu_read_lock();
1650 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1651 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1652 task_uid(tsk));
1653 rcu_read_unlock();
1655 task_cputime(tsk, &utime, &stime);
1656 info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1657 info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1659 info.si_status = tsk->exit_code & 0x7f;
1660 if (tsk->exit_code & 0x80)
1661 info.si_code = CLD_DUMPED;
1662 else if (tsk->exit_code & 0x7f)
1663 info.si_code = CLD_KILLED;
1664 else {
1665 info.si_code = CLD_EXITED;
1666 info.si_status = tsk->exit_code >> 8;
1669 psig = tsk->parent->sighand;
1670 spin_lock_irqsave(&psig->siglock, flags);
1671 if (!tsk->ptrace && sig == SIGCHLD &&
1672 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1673 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1675 * We are exiting and our parent doesn't care. POSIX.1
1676 * defines special semantics for setting SIGCHLD to SIG_IGN
1677 * or setting the SA_NOCLDWAIT flag: we should be reaped
1678 * automatically and not left for our parent's wait4 call.
1679 * Rather than having the parent do it as a magic kind of
1680 * signal handler, we just set this to tell do_exit that we
1681 * can be cleaned up without becoming a zombie. Note that
1682 * we still call __wake_up_parent in this case, because a
1683 * blocked sys_wait4 might now return -ECHILD.
1685 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1686 * is implementation-defined: we do (if you don't want
1687 * it, just use SIG_IGN instead).
1689 autoreap = true;
1690 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1691 sig = 0;
1693 if (valid_signal(sig) && sig)
1694 __group_send_sig_info(sig, &info, tsk->parent);
1695 __wake_up_parent(tsk, tsk->parent);
1696 spin_unlock_irqrestore(&psig->siglock, flags);
1698 return autoreap;
1702 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1703 * @tsk: task reporting the state change
1704 * @for_ptracer: the notification is for ptracer
1705 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1707 * Notify @tsk's parent that the stopped/continued state has changed. If
1708 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1709 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1711 * CONTEXT:
1712 * Must be called with tasklist_lock at least read locked.
1714 static void do_notify_parent_cldstop(struct task_struct *tsk,
1715 bool for_ptracer, int why)
1717 struct siginfo info;
1718 unsigned long flags;
1719 struct task_struct *parent;
1720 struct sighand_struct *sighand;
1721 cputime_t utime, stime;
1723 if (for_ptracer) {
1724 parent = tsk->parent;
1725 } else {
1726 tsk = tsk->group_leader;
1727 parent = tsk->real_parent;
1730 info.si_signo = SIGCHLD;
1731 info.si_errno = 0;
1733 * see comment in do_notify_parent() about the following 4 lines
1735 rcu_read_lock();
1736 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1737 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1738 rcu_read_unlock();
1740 task_cputime(tsk, &utime, &stime);
1741 info.si_utime = cputime_to_clock_t(utime);
1742 info.si_stime = cputime_to_clock_t(stime);
1744 info.si_code = why;
1745 switch (why) {
1746 case CLD_CONTINUED:
1747 info.si_status = SIGCONT;
1748 break;
1749 case CLD_STOPPED:
1750 info.si_status = tsk->signal->group_exit_code & 0x7f;
1751 break;
1752 case CLD_TRAPPED:
1753 info.si_status = tsk->exit_code & 0x7f;
1754 break;
1755 default:
1756 BUG();
1759 sighand = parent->sighand;
1760 spin_lock_irqsave(&sighand->siglock, flags);
1761 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1762 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1763 __group_send_sig_info(SIGCHLD, &info, parent);
1765 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1767 __wake_up_parent(tsk, parent);
1768 spin_unlock_irqrestore(&sighand->siglock, flags);
1771 static inline int may_ptrace_stop(void)
1773 if (!likely(current->ptrace))
1774 return 0;
1776 * Are we in the middle of do_coredump?
1777 * If so and our tracer is also part of the coredump stopping
1778 * is a deadlock situation, and pointless because our tracer
1779 * is dead so don't allow us to stop.
1780 * If SIGKILL was already sent before the caller unlocked
1781 * ->siglock we must see ->core_state != NULL. Otherwise it
1782 * is safe to enter schedule().
1784 * This is almost outdated, a task with the pending SIGKILL can't
1785 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1786 * after SIGKILL was already dequeued.
1788 if (unlikely(current->mm->core_state) &&
1789 unlikely(current->mm == current->parent->mm))
1790 return 0;
1792 return 1;
1796 * Return non-zero if there is a SIGKILL that should be waking us up.
1797 * Called with the siglock held.
1799 static int sigkill_pending(struct task_struct *tsk)
1801 return sigismember(&tsk->pending.signal, SIGKILL) ||
1802 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1806 * This must be called with current->sighand->siglock held.
1808 * This should be the path for all ptrace stops.
1809 * We always set current->last_siginfo while stopped here.
1810 * That makes it a way to test a stopped process for
1811 * being ptrace-stopped vs being job-control-stopped.
1813 * If we actually decide not to stop at all because the tracer
1814 * is gone, we keep current->exit_code unless clear_code.
1816 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1817 __releases(&current->sighand->siglock)
1818 __acquires(&current->sighand->siglock)
1820 bool gstop_done = false;
1822 if (arch_ptrace_stop_needed(exit_code, info)) {
1824 * The arch code has something special to do before a
1825 * ptrace stop. This is allowed to block, e.g. for faults
1826 * on user stack pages. We can't keep the siglock while
1827 * calling arch_ptrace_stop, so we must release it now.
1828 * To preserve proper semantics, we must do this before
1829 * any signal bookkeeping like checking group_stop_count.
1830 * Meanwhile, a SIGKILL could come in before we retake the
1831 * siglock. That must prevent us from sleeping in TASK_TRACED.
1832 * So after regaining the lock, we must check for SIGKILL.
1834 spin_unlock_irq(&current->sighand->siglock);
1835 arch_ptrace_stop(exit_code, info);
1836 spin_lock_irq(&current->sighand->siglock);
1837 if (sigkill_pending(current))
1838 return;
1842 * We're committing to trapping. TRACED should be visible before
1843 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1844 * Also, transition to TRACED and updates to ->jobctl should be
1845 * atomic with respect to siglock and should be done after the arch
1846 * hook as siglock is released and regrabbed across it.
1848 set_current_state(TASK_TRACED);
1850 current->last_siginfo = info;
1851 current->exit_code = exit_code;
1854 * If @why is CLD_STOPPED, we're trapping to participate in a group
1855 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1856 * across siglock relocks since INTERRUPT was scheduled, PENDING
1857 * could be clear now. We act as if SIGCONT is received after
1858 * TASK_TRACED is entered - ignore it.
1860 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1861 gstop_done = task_participate_group_stop(current);
1863 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1864 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1865 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1866 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1868 /* entering a trap, clear TRAPPING */
1869 task_clear_jobctl_trapping(current);
1871 spin_unlock_irq(&current->sighand->siglock);
1872 read_lock(&tasklist_lock);
1873 if (may_ptrace_stop()) {
1875 * Notify parents of the stop.
1877 * While ptraced, there are two parents - the ptracer and
1878 * the real_parent of the group_leader. The ptracer should
1879 * know about every stop while the real parent is only
1880 * interested in the completion of group stop. The states
1881 * for the two don't interact with each other. Notify
1882 * separately unless they're gonna be duplicates.
1884 do_notify_parent_cldstop(current, true, why);
1885 if (gstop_done && ptrace_reparented(current))
1886 do_notify_parent_cldstop(current, false, why);
1889 * Don't want to allow preemption here, because
1890 * sys_ptrace() needs this task to be inactive.
1892 * XXX: implement read_unlock_no_resched().
1894 preempt_disable();
1895 read_unlock(&tasklist_lock);
1896 preempt_enable_no_resched();
1897 freezable_schedule();
1898 } else {
1900 * By the time we got the lock, our tracer went away.
1901 * Don't drop the lock yet, another tracer may come.
1903 * If @gstop_done, the ptracer went away between group stop
1904 * completion and here. During detach, it would have set
1905 * JOBCTL_STOP_PENDING on us and we'll re-enter
1906 * TASK_STOPPED in do_signal_stop() on return, so notifying
1907 * the real parent of the group stop completion is enough.
1909 if (gstop_done)
1910 do_notify_parent_cldstop(current, false, why);
1912 /* tasklist protects us from ptrace_freeze_traced() */
1913 __set_current_state(TASK_RUNNING);
1914 if (clear_code)
1915 current->exit_code = 0;
1916 read_unlock(&tasklist_lock);
1920 * We are back. Now reacquire the siglock before touching
1921 * last_siginfo, so that we are sure to have synchronized with
1922 * any signal-sending on another CPU that wants to examine it.
1924 spin_lock_irq(&current->sighand->siglock);
1925 current->last_siginfo = NULL;
1927 /* LISTENING can be set only during STOP traps, clear it */
1928 current->jobctl &= ~JOBCTL_LISTENING;
1931 * Queued signals ignored us while we were stopped for tracing.
1932 * So check for any that we should take before resuming user mode.
1933 * This sets TIF_SIGPENDING, but never clears it.
1935 recalc_sigpending_tsk(current);
1938 static void ptrace_do_notify(int signr, int exit_code, int why)
1940 siginfo_t info;
1942 memset(&info, 0, sizeof info);
1943 info.si_signo = signr;
1944 info.si_code = exit_code;
1945 info.si_pid = task_pid_vnr(current);
1946 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1948 /* Let the debugger run. */
1949 ptrace_stop(exit_code, why, 1, &info);
1952 void ptrace_notify(int exit_code)
1954 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1955 if (unlikely(current->task_works))
1956 task_work_run();
1958 spin_lock_irq(&current->sighand->siglock);
1959 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1960 spin_unlock_irq(&current->sighand->siglock);
1964 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1965 * @signr: signr causing group stop if initiating
1967 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1968 * and participate in it. If already set, participate in the existing
1969 * group stop. If participated in a group stop (and thus slept), %true is
1970 * returned with siglock released.
1972 * If ptraced, this function doesn't handle stop itself. Instead,
1973 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1974 * untouched. The caller must ensure that INTERRUPT trap handling takes
1975 * places afterwards.
1977 * CONTEXT:
1978 * Must be called with @current->sighand->siglock held, which is released
1979 * on %true return.
1981 * RETURNS:
1982 * %false if group stop is already cancelled or ptrace trap is scheduled.
1983 * %true if participated in group stop.
1985 static bool do_signal_stop(int signr)
1986 __releases(&current->sighand->siglock)
1988 struct signal_struct *sig = current->signal;
1990 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1991 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1992 struct task_struct *t;
1994 /* signr will be recorded in task->jobctl for retries */
1995 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1997 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1998 unlikely(signal_group_exit(sig)))
1999 return false;
2001 * There is no group stop already in progress. We must
2002 * initiate one now.
2004 * While ptraced, a task may be resumed while group stop is
2005 * still in effect and then receive a stop signal and
2006 * initiate another group stop. This deviates from the
2007 * usual behavior as two consecutive stop signals can't
2008 * cause two group stops when !ptraced. That is why we
2009 * also check !task_is_stopped(t) below.
2011 * The condition can be distinguished by testing whether
2012 * SIGNAL_STOP_STOPPED is already set. Don't generate
2013 * group_exit_code in such case.
2015 * This is not necessary for SIGNAL_STOP_CONTINUED because
2016 * an intervening stop signal is required to cause two
2017 * continued events regardless of ptrace.
2019 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2020 sig->group_exit_code = signr;
2022 sig->group_stop_count = 0;
2024 if (task_set_jobctl_pending(current, signr | gstop))
2025 sig->group_stop_count++;
2027 t = current;
2028 while_each_thread(current, t) {
2030 * Setting state to TASK_STOPPED for a group
2031 * stop is always done with the siglock held,
2032 * so this check has no races.
2034 if (!task_is_stopped(t) &&
2035 task_set_jobctl_pending(t, signr | gstop)) {
2036 sig->group_stop_count++;
2037 if (likely(!(t->ptrace & PT_SEIZED)))
2038 signal_wake_up(t, 0);
2039 else
2040 ptrace_trap_notify(t);
2045 if (likely(!current->ptrace)) {
2046 int notify = 0;
2049 * If there are no other threads in the group, or if there
2050 * is a group stop in progress and we are the last to stop,
2051 * report to the parent.
2053 if (task_participate_group_stop(current))
2054 notify = CLD_STOPPED;
2056 __set_current_state(TASK_STOPPED);
2057 spin_unlock_irq(&current->sighand->siglock);
2060 * Notify the parent of the group stop completion. Because
2061 * we're not holding either the siglock or tasklist_lock
2062 * here, ptracer may attach inbetween; however, this is for
2063 * group stop and should always be delivered to the real
2064 * parent of the group leader. The new ptracer will get
2065 * its notification when this task transitions into
2066 * TASK_TRACED.
2068 if (notify) {
2069 read_lock(&tasklist_lock);
2070 do_notify_parent_cldstop(current, false, notify);
2071 read_unlock(&tasklist_lock);
2074 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2075 freezable_schedule();
2076 return true;
2077 } else {
2079 * While ptraced, group stop is handled by STOP trap.
2080 * Schedule it and let the caller deal with it.
2082 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2083 return false;
2088 * do_jobctl_trap - take care of ptrace jobctl traps
2090 * When PT_SEIZED, it's used for both group stop and explicit
2091 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2092 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2093 * the stop signal; otherwise, %SIGTRAP.
2095 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2096 * number as exit_code and no siginfo.
2098 * CONTEXT:
2099 * Must be called with @current->sighand->siglock held, which may be
2100 * released and re-acquired before returning with intervening sleep.
2102 static void do_jobctl_trap(void)
2104 struct signal_struct *signal = current->signal;
2105 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2107 if (current->ptrace & PT_SEIZED) {
2108 if (!signal->group_stop_count &&
2109 !(signal->flags & SIGNAL_STOP_STOPPED))
2110 signr = SIGTRAP;
2111 WARN_ON_ONCE(!signr);
2112 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2113 CLD_STOPPED);
2114 } else {
2115 WARN_ON_ONCE(!signr);
2116 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2117 current->exit_code = 0;
2121 static int ptrace_signal(int signr, siginfo_t *info)
2123 ptrace_signal_deliver();
2125 * We do not check sig_kernel_stop(signr) but set this marker
2126 * unconditionally because we do not know whether debugger will
2127 * change signr. This flag has no meaning unless we are going
2128 * to stop after return from ptrace_stop(). In this case it will
2129 * be checked in do_signal_stop(), we should only stop if it was
2130 * not cleared by SIGCONT while we were sleeping. See also the
2131 * comment in dequeue_signal().
2133 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2134 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2136 /* We're back. Did the debugger cancel the sig? */
2137 signr = current->exit_code;
2138 if (signr == 0)
2139 return signr;
2141 current->exit_code = 0;
2144 * Update the siginfo structure if the signal has
2145 * changed. If the debugger wanted something
2146 * specific in the siginfo structure then it should
2147 * have updated *info via PTRACE_SETSIGINFO.
2149 if (signr != info->si_signo) {
2150 info->si_signo = signr;
2151 info->si_errno = 0;
2152 info->si_code = SI_USER;
2153 rcu_read_lock();
2154 info->si_pid = task_pid_vnr(current->parent);
2155 info->si_uid = from_kuid_munged(current_user_ns(),
2156 task_uid(current->parent));
2157 rcu_read_unlock();
2160 /* If the (new) signal is now blocked, requeue it. */
2161 if (sigismember(&current->blocked, signr)) {
2162 specific_send_sig_info(signr, info, current);
2163 signr = 0;
2166 return signr;
2169 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2170 struct pt_regs *regs, void *cookie)
2172 struct sighand_struct *sighand = current->sighand;
2173 struct signal_struct *signal = current->signal;
2174 int signr;
2176 if (unlikely(current->task_works))
2177 task_work_run();
2179 if (unlikely(uprobe_deny_signal()))
2180 return 0;
2183 * Do this once, we can't return to user-mode if freezing() == T.
2184 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2185 * thus do not need another check after return.
2187 try_to_freeze();
2189 relock:
2190 spin_lock_irq(&sighand->siglock);
2192 * Every stopped thread goes here after wakeup. Check to see if
2193 * we should notify the parent, prepare_signal(SIGCONT) encodes
2194 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2196 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2197 int why;
2199 if (signal->flags & SIGNAL_CLD_CONTINUED)
2200 why = CLD_CONTINUED;
2201 else
2202 why = CLD_STOPPED;
2204 signal->flags &= ~SIGNAL_CLD_MASK;
2206 spin_unlock_irq(&sighand->siglock);
2209 * Notify the parent that we're continuing. This event is
2210 * always per-process and doesn't make whole lot of sense
2211 * for ptracers, who shouldn't consume the state via
2212 * wait(2) either, but, for backward compatibility, notify
2213 * the ptracer of the group leader too unless it's gonna be
2214 * a duplicate.
2216 read_lock(&tasklist_lock);
2217 do_notify_parent_cldstop(current, false, why);
2219 if (ptrace_reparented(current->group_leader))
2220 do_notify_parent_cldstop(current->group_leader,
2221 true, why);
2222 read_unlock(&tasklist_lock);
2224 goto relock;
2227 for (;;) {
2228 struct k_sigaction *ka;
2230 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2231 do_signal_stop(0))
2232 goto relock;
2234 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2235 do_jobctl_trap();
2236 spin_unlock_irq(&sighand->siglock);
2237 goto relock;
2240 signr = dequeue_signal(current, &current->blocked, info);
2242 if (!signr)
2243 break; /* will return 0 */
2245 if (unlikely(current->ptrace) && signr != SIGKILL) {
2246 signr = ptrace_signal(signr, info);
2247 if (!signr)
2248 continue;
2251 ka = &sighand->action[signr-1];
2253 /* Trace actually delivered signals. */
2254 trace_signal_deliver(signr, info, ka);
2256 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2257 continue;
2258 if (ka->sa.sa_handler != SIG_DFL) {
2259 /* Run the handler. */
2260 *return_ka = *ka;
2262 if (ka->sa.sa_flags & SA_ONESHOT)
2263 ka->sa.sa_handler = SIG_DFL;
2265 break; /* will return non-zero "signr" value */
2269 * Now we are doing the default action for this signal.
2271 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2272 continue;
2275 * Global init gets no signals it doesn't want.
2276 * Container-init gets no signals it doesn't want from same
2277 * container.
2279 * Note that if global/container-init sees a sig_kernel_only()
2280 * signal here, the signal must have been generated internally
2281 * or must have come from an ancestor namespace. In either
2282 * case, the signal cannot be dropped.
2284 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2285 !sig_kernel_only(signr))
2286 continue;
2288 if (sig_kernel_stop(signr)) {
2290 * The default action is to stop all threads in
2291 * the thread group. The job control signals
2292 * do nothing in an orphaned pgrp, but SIGSTOP
2293 * always works. Note that siglock needs to be
2294 * dropped during the call to is_orphaned_pgrp()
2295 * because of lock ordering with tasklist_lock.
2296 * This allows an intervening SIGCONT to be posted.
2297 * We need to check for that and bail out if necessary.
2299 if (signr != SIGSTOP) {
2300 spin_unlock_irq(&sighand->siglock);
2302 /* signals can be posted during this window */
2304 if (is_current_pgrp_orphaned())
2305 goto relock;
2307 spin_lock_irq(&sighand->siglock);
2310 if (likely(do_signal_stop(info->si_signo))) {
2311 /* It released the siglock. */
2312 goto relock;
2316 * We didn't actually stop, due to a race
2317 * with SIGCONT or something like that.
2319 continue;
2322 spin_unlock_irq(&sighand->siglock);
2325 * Anything else is fatal, maybe with a core dump.
2327 current->flags |= PF_SIGNALED;
2329 if (sig_kernel_coredump(signr)) {
2330 if (print_fatal_signals)
2331 print_fatal_signal(info->si_signo);
2332 proc_coredump_connector(current);
2334 * If it was able to dump core, this kills all
2335 * other threads in the group and synchronizes with
2336 * their demise. If we lost the race with another
2337 * thread getting here, it set group_exit_code
2338 * first and our do_group_exit call below will use
2339 * that value and ignore the one we pass it.
2341 do_coredump(info);
2345 * Death signals, no core dump.
2347 do_group_exit(info->si_signo);
2348 /* NOTREACHED */
2350 spin_unlock_irq(&sighand->siglock);
2351 return signr;
2355 * signal_delivered -
2356 * @sig: number of signal being delivered
2357 * @info: siginfo_t of signal being delivered
2358 * @ka: sigaction setting that chose the handler
2359 * @regs: user register state
2360 * @stepping: nonzero if debugger single-step or block-step in use
2362 * This function should be called when a signal has successfully been
2363 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2364 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2365 * is set in @ka->sa.sa_flags. Tracing is notified.
2367 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2368 struct pt_regs *regs, int stepping)
2370 sigset_t blocked;
2372 /* A signal was successfully delivered, and the
2373 saved sigmask was stored on the signal frame,
2374 and will be restored by sigreturn. So we can
2375 simply clear the restore sigmask flag. */
2376 clear_restore_sigmask();
2378 sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2379 if (!(ka->sa.sa_flags & SA_NODEFER))
2380 sigaddset(&blocked, sig);
2381 set_current_blocked(&blocked);
2382 tracehook_signal_handler(sig, info, ka, regs, stepping);
2385 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2387 if (failed)
2388 force_sigsegv(ksig->sig, current);
2389 else
2390 signal_delivered(ksig->sig, &ksig->info, &ksig->ka,
2391 signal_pt_regs(), stepping);
2395 * It could be that complete_signal() picked us to notify about the
2396 * group-wide signal. Other threads should be notified now to take
2397 * the shared signals in @which since we will not.
2399 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2401 sigset_t retarget;
2402 struct task_struct *t;
2404 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2405 if (sigisemptyset(&retarget))
2406 return;
2408 t = tsk;
2409 while_each_thread(tsk, t) {
2410 if (t->flags & PF_EXITING)
2411 continue;
2413 if (!has_pending_signals(&retarget, &t->blocked))
2414 continue;
2415 /* Remove the signals this thread can handle. */
2416 sigandsets(&retarget, &retarget, &t->blocked);
2418 if (!signal_pending(t))
2419 signal_wake_up(t, 0);
2421 if (sigisemptyset(&retarget))
2422 break;
2426 void exit_signals(struct task_struct *tsk)
2428 int group_stop = 0;
2429 sigset_t unblocked;
2432 * @tsk is about to have PF_EXITING set - lock out users which
2433 * expect stable threadgroup.
2435 threadgroup_change_begin(tsk);
2437 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2438 tsk->flags |= PF_EXITING;
2439 threadgroup_change_end(tsk);
2440 return;
2443 spin_lock_irq(&tsk->sighand->siglock);
2445 * From now this task is not visible for group-wide signals,
2446 * see wants_signal(), do_signal_stop().
2448 tsk->flags |= PF_EXITING;
2450 threadgroup_change_end(tsk);
2452 if (!signal_pending(tsk))
2453 goto out;
2455 unblocked = tsk->blocked;
2456 signotset(&unblocked);
2457 retarget_shared_pending(tsk, &unblocked);
2459 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2460 task_participate_group_stop(tsk))
2461 group_stop = CLD_STOPPED;
2462 out:
2463 spin_unlock_irq(&tsk->sighand->siglock);
2466 * If group stop has completed, deliver the notification. This
2467 * should always go to the real parent of the group leader.
2469 if (unlikely(group_stop)) {
2470 read_lock(&tasklist_lock);
2471 do_notify_parent_cldstop(tsk, false, group_stop);
2472 read_unlock(&tasklist_lock);
2476 EXPORT_SYMBOL(recalc_sigpending);
2477 EXPORT_SYMBOL_GPL(dequeue_signal);
2478 EXPORT_SYMBOL(flush_signals);
2479 EXPORT_SYMBOL(force_sig);
2480 EXPORT_SYMBOL(send_sig);
2481 EXPORT_SYMBOL(send_sig_info);
2482 EXPORT_SYMBOL(sigprocmask);
2483 EXPORT_SYMBOL(block_all_signals);
2484 EXPORT_SYMBOL(unblock_all_signals);
2488 * System call entry points.
2492 * sys_restart_syscall - restart a system call
2494 SYSCALL_DEFINE0(restart_syscall)
2496 struct restart_block *restart = &current_thread_info()->restart_block;
2497 return restart->fn(restart);
2500 long do_no_restart_syscall(struct restart_block *param)
2502 return -EINTR;
2505 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2507 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2508 sigset_t newblocked;
2509 /* A set of now blocked but previously unblocked signals. */
2510 sigandnsets(&newblocked, newset, &current->blocked);
2511 retarget_shared_pending(tsk, &newblocked);
2513 tsk->blocked = *newset;
2514 recalc_sigpending();
2518 * set_current_blocked - change current->blocked mask
2519 * @newset: new mask
2521 * It is wrong to change ->blocked directly, this helper should be used
2522 * to ensure the process can't miss a shared signal we are going to block.
2524 void set_current_blocked(sigset_t *newset)
2526 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2527 __set_current_blocked(newset);
2530 void __set_current_blocked(const sigset_t *newset)
2532 struct task_struct *tsk = current;
2534 spin_lock_irq(&tsk->sighand->siglock);
2535 __set_task_blocked(tsk, newset);
2536 spin_unlock_irq(&tsk->sighand->siglock);
2540 * This is also useful for kernel threads that want to temporarily
2541 * (or permanently) block certain signals.
2543 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2544 * interface happily blocks "unblockable" signals like SIGKILL
2545 * and friends.
2547 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2549 struct task_struct *tsk = current;
2550 sigset_t newset;
2552 /* Lockless, only current can change ->blocked, never from irq */
2553 if (oldset)
2554 *oldset = tsk->blocked;
2556 switch (how) {
2557 case SIG_BLOCK:
2558 sigorsets(&newset, &tsk->blocked, set);
2559 break;
2560 case SIG_UNBLOCK:
2561 sigandnsets(&newset, &tsk->blocked, set);
2562 break;
2563 case SIG_SETMASK:
2564 newset = *set;
2565 break;
2566 default:
2567 return -EINVAL;
2570 __set_current_blocked(&newset);
2571 return 0;
2575 * sys_rt_sigprocmask - change the list of currently blocked signals
2576 * @how: whether to add, remove, or set signals
2577 * @nset: stores pending signals
2578 * @oset: previous value of signal mask if non-null
2579 * @sigsetsize: size of sigset_t type
2581 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2582 sigset_t __user *, oset, size_t, sigsetsize)
2584 sigset_t old_set, new_set;
2585 int error;
2587 /* XXX: Don't preclude handling different sized sigset_t's. */
2588 if (sigsetsize != sizeof(sigset_t))
2589 return -EINVAL;
2591 old_set = current->blocked;
2593 if (nset) {
2594 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2595 return -EFAULT;
2596 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2598 error = sigprocmask(how, &new_set, NULL);
2599 if (error)
2600 return error;
2603 if (oset) {
2604 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2605 return -EFAULT;
2608 return 0;
2611 #ifdef CONFIG_COMPAT
2612 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2613 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2615 #ifdef __BIG_ENDIAN
2616 sigset_t old_set = current->blocked;
2618 /* XXX: Don't preclude handling different sized sigset_t's. */
2619 if (sigsetsize != sizeof(sigset_t))
2620 return -EINVAL;
2622 if (nset) {
2623 compat_sigset_t new32;
2624 sigset_t new_set;
2625 int error;
2626 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2627 return -EFAULT;
2629 sigset_from_compat(&new_set, &new32);
2630 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2632 error = sigprocmask(how, &new_set, NULL);
2633 if (error)
2634 return error;
2636 if (oset) {
2637 compat_sigset_t old32;
2638 sigset_to_compat(&old32, &old_set);
2639 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2640 return -EFAULT;
2642 return 0;
2643 #else
2644 return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2645 (sigset_t __user *)oset, sigsetsize);
2646 #endif
2648 #endif
2650 static int do_sigpending(void *set, unsigned long sigsetsize)
2652 if (sigsetsize > sizeof(sigset_t))
2653 return -EINVAL;
2655 spin_lock_irq(&current->sighand->siglock);
2656 sigorsets(set, &current->pending.signal,
2657 &current->signal->shared_pending.signal);
2658 spin_unlock_irq(&current->sighand->siglock);
2660 /* Outside the lock because only this thread touches it. */
2661 sigandsets(set, &current->blocked, set);
2662 return 0;
2666 * sys_rt_sigpending - examine a pending signal that has been raised
2667 * while blocked
2668 * @uset: stores pending signals
2669 * @sigsetsize: size of sigset_t type or larger
2671 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2673 sigset_t set;
2674 int err = do_sigpending(&set, sigsetsize);
2675 if (!err && copy_to_user(uset, &set, sigsetsize))
2676 err = -EFAULT;
2677 return err;
2680 #ifdef CONFIG_COMPAT
2681 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2682 compat_size_t, sigsetsize)
2684 #ifdef __BIG_ENDIAN
2685 sigset_t set;
2686 int err = do_sigpending(&set, sigsetsize);
2687 if (!err) {
2688 compat_sigset_t set32;
2689 sigset_to_compat(&set32, &set);
2690 /* we can get here only if sigsetsize <= sizeof(set) */
2691 if (copy_to_user(uset, &set32, sigsetsize))
2692 err = -EFAULT;
2694 return err;
2695 #else
2696 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2697 #endif
2699 #endif
2701 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2703 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2705 int err;
2707 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2708 return -EFAULT;
2709 if (from->si_code < 0)
2710 return __copy_to_user(to, from, sizeof(siginfo_t))
2711 ? -EFAULT : 0;
2713 * If you change siginfo_t structure, please be sure
2714 * this code is fixed accordingly.
2715 * Please remember to update the signalfd_copyinfo() function
2716 * inside fs/signalfd.c too, in case siginfo_t changes.
2717 * It should never copy any pad contained in the structure
2718 * to avoid security leaks, but must copy the generic
2719 * 3 ints plus the relevant union member.
2721 err = __put_user(from->si_signo, &to->si_signo);
2722 err |= __put_user(from->si_errno, &to->si_errno);
2723 err |= __put_user((short)from->si_code, &to->si_code);
2724 switch (from->si_code & __SI_MASK) {
2725 case __SI_KILL:
2726 err |= __put_user(from->si_pid, &to->si_pid);
2727 err |= __put_user(from->si_uid, &to->si_uid);
2728 break;
2729 case __SI_TIMER:
2730 err |= __put_user(from->si_tid, &to->si_tid);
2731 err |= __put_user(from->si_overrun, &to->si_overrun);
2732 err |= __put_user(from->si_ptr, &to->si_ptr);
2733 break;
2734 case __SI_POLL:
2735 err |= __put_user(from->si_band, &to->si_band);
2736 err |= __put_user(from->si_fd, &to->si_fd);
2737 break;
2738 case __SI_FAULT:
2739 err |= __put_user(from->si_addr, &to->si_addr);
2740 #ifdef __ARCH_SI_TRAPNO
2741 err |= __put_user(from->si_trapno, &to->si_trapno);
2742 #endif
2743 #ifdef BUS_MCEERR_AO
2745 * Other callers might not initialize the si_lsb field,
2746 * so check explicitly for the right codes here.
2748 if (from->si_signo == SIGBUS &&
2749 (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2750 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2751 #endif
2752 break;
2753 case __SI_CHLD:
2754 err |= __put_user(from->si_pid, &to->si_pid);
2755 err |= __put_user(from->si_uid, &to->si_uid);
2756 err |= __put_user(from->si_status, &to->si_status);
2757 err |= __put_user(from->si_utime, &to->si_utime);
2758 err |= __put_user(from->si_stime, &to->si_stime);
2759 break;
2760 case __SI_RT: /* This is not generated by the kernel as of now. */
2761 case __SI_MESGQ: /* But this is */
2762 err |= __put_user(from->si_pid, &to->si_pid);
2763 err |= __put_user(from->si_uid, &to->si_uid);
2764 err |= __put_user(from->si_ptr, &to->si_ptr);
2765 break;
2766 #ifdef __ARCH_SIGSYS
2767 case __SI_SYS:
2768 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2769 err |= __put_user(from->si_syscall, &to->si_syscall);
2770 err |= __put_user(from->si_arch, &to->si_arch);
2771 break;
2772 #endif
2773 default: /* this is just in case for now ... */
2774 err |= __put_user(from->si_pid, &to->si_pid);
2775 err |= __put_user(from->si_uid, &to->si_uid);
2776 break;
2778 return err;
2781 #endif
2784 * do_sigtimedwait - wait for queued signals specified in @which
2785 * @which: queued signals to wait for
2786 * @info: if non-null, the signal's siginfo is returned here
2787 * @ts: upper bound on process time suspension
2789 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2790 const struct timespec *ts)
2792 struct task_struct *tsk = current;
2793 long timeout = MAX_SCHEDULE_TIMEOUT;
2794 sigset_t mask = *which;
2795 int sig;
2797 if (ts) {
2798 if (!timespec_valid(ts))
2799 return -EINVAL;
2800 timeout = timespec_to_jiffies(ts);
2802 * We can be close to the next tick, add another one
2803 * to ensure we will wait at least the time asked for.
2805 if (ts->tv_sec || ts->tv_nsec)
2806 timeout++;
2810 * Invert the set of allowed signals to get those we want to block.
2812 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2813 signotset(&mask);
2815 spin_lock_irq(&tsk->sighand->siglock);
2816 sig = dequeue_signal(tsk, &mask, info);
2817 if (!sig && timeout) {
2819 * None ready, temporarily unblock those we're interested
2820 * while we are sleeping in so that we'll be awakened when
2821 * they arrive. Unblocking is always fine, we can avoid
2822 * set_current_blocked().
2824 tsk->real_blocked = tsk->blocked;
2825 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2826 recalc_sigpending();
2827 spin_unlock_irq(&tsk->sighand->siglock);
2829 timeout = freezable_schedule_timeout_interruptible(timeout);
2831 spin_lock_irq(&tsk->sighand->siglock);
2832 __set_task_blocked(tsk, &tsk->real_blocked);
2833 sigemptyset(&tsk->real_blocked);
2834 sig = dequeue_signal(tsk, &mask, info);
2836 spin_unlock_irq(&tsk->sighand->siglock);
2838 if (sig)
2839 return sig;
2840 return timeout ? -EINTR : -EAGAIN;
2844 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2845 * in @uthese
2846 * @uthese: queued signals to wait for
2847 * @uinfo: if non-null, the signal's siginfo is returned here
2848 * @uts: upper bound on process time suspension
2849 * @sigsetsize: size of sigset_t type
2851 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2852 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2853 size_t, sigsetsize)
2855 sigset_t these;
2856 struct timespec ts;
2857 siginfo_t info;
2858 int ret;
2860 /* XXX: Don't preclude handling different sized sigset_t's. */
2861 if (sigsetsize != sizeof(sigset_t))
2862 return -EINVAL;
2864 if (copy_from_user(&these, uthese, sizeof(these)))
2865 return -EFAULT;
2867 if (uts) {
2868 if (copy_from_user(&ts, uts, sizeof(ts)))
2869 return -EFAULT;
2872 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2874 if (ret > 0 && uinfo) {
2875 if (copy_siginfo_to_user(uinfo, &info))
2876 ret = -EFAULT;
2879 return ret;
2883 * sys_kill - send a signal to a process
2884 * @pid: the PID of the process
2885 * @sig: signal to be sent
2887 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2889 struct siginfo info;
2891 info.si_signo = sig;
2892 info.si_errno = 0;
2893 info.si_code = SI_USER;
2894 info.si_pid = task_tgid_vnr(current);
2895 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2897 return kill_something_info(sig, &info, pid);
2900 static int
2901 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2903 struct task_struct *p;
2904 int error = -ESRCH;
2906 rcu_read_lock();
2907 p = find_task_by_vpid(pid);
2908 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2909 error = check_kill_permission(sig, info, p);
2911 * The null signal is a permissions and process existence
2912 * probe. No signal is actually delivered.
2914 if (!error && sig) {
2915 error = do_send_sig_info(sig, info, p, false);
2917 * If lock_task_sighand() failed we pretend the task
2918 * dies after receiving the signal. The window is tiny,
2919 * and the signal is private anyway.
2921 if (unlikely(error == -ESRCH))
2922 error = 0;
2925 rcu_read_unlock();
2927 return error;
2930 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2932 struct siginfo info = {};
2934 info.si_signo = sig;
2935 info.si_errno = 0;
2936 info.si_code = SI_TKILL;
2937 info.si_pid = task_tgid_vnr(current);
2938 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2940 return do_send_specific(tgid, pid, sig, &info);
2944 * sys_tgkill - send signal to one specific thread
2945 * @tgid: the thread group ID of the thread
2946 * @pid: the PID of the thread
2947 * @sig: signal to be sent
2949 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2950 * exists but it's not belonging to the target process anymore. This
2951 * method solves the problem of threads exiting and PIDs getting reused.
2953 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2955 /* This is only valid for single tasks */
2956 if (pid <= 0 || tgid <= 0)
2957 return -EINVAL;
2959 return do_tkill(tgid, pid, sig);
2963 * sys_tkill - send signal to one specific task
2964 * @pid: the PID of the task
2965 * @sig: signal to be sent
2967 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2969 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2971 /* This is only valid for single tasks */
2972 if (pid <= 0)
2973 return -EINVAL;
2975 return do_tkill(0, pid, sig);
2978 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2980 /* Not even root can pretend to send signals from the kernel.
2981 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2983 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2984 (task_pid_vnr(current) != pid)) {
2985 /* We used to allow any < 0 si_code */
2986 WARN_ON_ONCE(info->si_code < 0);
2987 return -EPERM;
2989 info->si_signo = sig;
2991 /* POSIX.1b doesn't mention process groups. */
2992 return kill_proc_info(sig, info, pid);
2996 * sys_rt_sigqueueinfo - send signal information to a signal
2997 * @pid: the PID of the thread
2998 * @sig: signal to be sent
2999 * @uinfo: signal info to be sent
3001 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3002 siginfo_t __user *, uinfo)
3004 siginfo_t info;
3005 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3006 return -EFAULT;
3007 return do_rt_sigqueueinfo(pid, sig, &info);
3010 #ifdef CONFIG_COMPAT
3011 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3012 compat_pid_t, pid,
3013 int, sig,
3014 struct compat_siginfo __user *, uinfo)
3016 siginfo_t info = {};
3017 int ret = copy_siginfo_from_user32(&info, uinfo);
3018 if (unlikely(ret))
3019 return ret;
3020 return do_rt_sigqueueinfo(pid, sig, &info);
3022 #endif
3024 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3026 /* This is only valid for single tasks */
3027 if (pid <= 0 || tgid <= 0)
3028 return -EINVAL;
3030 /* Not even root can pretend to send signals from the kernel.
3031 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3033 if (((info->si_code >= 0 || info->si_code == SI_TKILL)) &&
3034 (task_pid_vnr(current) != pid)) {
3035 /* We used to allow any < 0 si_code */
3036 WARN_ON_ONCE(info->si_code < 0);
3037 return -EPERM;
3039 info->si_signo = sig;
3041 return do_send_specific(tgid, pid, sig, info);
3044 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3045 siginfo_t __user *, uinfo)
3047 siginfo_t info;
3049 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3050 return -EFAULT;
3052 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3055 #ifdef CONFIG_COMPAT
3056 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3057 compat_pid_t, tgid,
3058 compat_pid_t, pid,
3059 int, sig,
3060 struct compat_siginfo __user *, uinfo)
3062 siginfo_t info = {};
3064 if (copy_siginfo_from_user32(&info, uinfo))
3065 return -EFAULT;
3066 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3068 #endif
3071 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3073 void kernel_sigaction(int sig, __sighandler_t action)
3075 spin_lock_irq(&current->sighand->siglock);
3076 current->sighand->action[sig - 1].sa.sa_handler = action;
3077 if (action == SIG_IGN) {
3078 sigset_t mask;
3080 sigemptyset(&mask);
3081 sigaddset(&mask, sig);
3083 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3084 flush_sigqueue_mask(&mask, &current->pending);
3085 recalc_sigpending();
3087 spin_unlock_irq(&current->sighand->siglock);
3089 EXPORT_SYMBOL(kernel_sigaction);
3091 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3093 struct task_struct *p = current, *t;
3094 struct k_sigaction *k;
3095 sigset_t mask;
3097 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3098 return -EINVAL;
3100 k = &p->sighand->action[sig-1];
3102 spin_lock_irq(&p->sighand->siglock);
3103 if (oact)
3104 *oact = *k;
3106 if (act) {
3107 sigdelsetmask(&act->sa.sa_mask,
3108 sigmask(SIGKILL) | sigmask(SIGSTOP));
3109 *k = *act;
3111 * POSIX 3.3.1.3:
3112 * "Setting a signal action to SIG_IGN for a signal that is
3113 * pending shall cause the pending signal to be discarded,
3114 * whether or not it is blocked."
3116 * "Setting a signal action to SIG_DFL for a signal that is
3117 * pending and whose default action is to ignore the signal
3118 * (for example, SIGCHLD), shall cause the pending signal to
3119 * be discarded, whether or not it is blocked"
3121 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3122 sigemptyset(&mask);
3123 sigaddset(&mask, sig);
3124 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3125 for_each_thread(p, t)
3126 flush_sigqueue_mask(&mask, &t->pending);
3130 spin_unlock_irq(&p->sighand->siglock);
3131 return 0;
3134 static int
3135 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3137 stack_t oss;
3138 int error;
3140 oss.ss_sp = (void __user *) current->sas_ss_sp;
3141 oss.ss_size = current->sas_ss_size;
3142 oss.ss_flags = sas_ss_flags(sp);
3144 if (uss) {
3145 void __user *ss_sp;
3146 size_t ss_size;
3147 int ss_flags;
3149 error = -EFAULT;
3150 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3151 goto out;
3152 error = __get_user(ss_sp, &uss->ss_sp) |
3153 __get_user(ss_flags, &uss->ss_flags) |
3154 __get_user(ss_size, &uss->ss_size);
3155 if (error)
3156 goto out;
3158 error = -EPERM;
3159 if (on_sig_stack(sp))
3160 goto out;
3162 error = -EINVAL;
3164 * Note - this code used to test ss_flags incorrectly:
3165 * old code may have been written using ss_flags==0
3166 * to mean ss_flags==SS_ONSTACK (as this was the only
3167 * way that worked) - this fix preserves that older
3168 * mechanism.
3170 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3171 goto out;
3173 if (ss_flags == SS_DISABLE) {
3174 ss_size = 0;
3175 ss_sp = NULL;
3176 } else {
3177 error = -ENOMEM;
3178 if (ss_size < MINSIGSTKSZ)
3179 goto out;
3182 current->sas_ss_sp = (unsigned long) ss_sp;
3183 current->sas_ss_size = ss_size;
3186 error = 0;
3187 if (uoss) {
3188 error = -EFAULT;
3189 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3190 goto out;
3191 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3192 __put_user(oss.ss_size, &uoss->ss_size) |
3193 __put_user(oss.ss_flags, &uoss->ss_flags);
3196 out:
3197 return error;
3199 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3201 return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3204 int restore_altstack(const stack_t __user *uss)
3206 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3207 /* squash all but EFAULT for now */
3208 return err == -EFAULT ? err : 0;
3211 int __save_altstack(stack_t __user *uss, unsigned long sp)
3213 struct task_struct *t = current;
3214 return __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3215 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3216 __put_user(t->sas_ss_size, &uss->ss_size);
3219 #ifdef CONFIG_COMPAT
3220 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3221 const compat_stack_t __user *, uss_ptr,
3222 compat_stack_t __user *, uoss_ptr)
3224 stack_t uss, uoss;
3225 int ret;
3226 mm_segment_t seg;
3228 if (uss_ptr) {
3229 compat_stack_t uss32;
3231 memset(&uss, 0, sizeof(stack_t));
3232 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3233 return -EFAULT;
3234 uss.ss_sp = compat_ptr(uss32.ss_sp);
3235 uss.ss_flags = uss32.ss_flags;
3236 uss.ss_size = uss32.ss_size;
3238 seg = get_fs();
3239 set_fs(KERNEL_DS);
3240 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3241 (stack_t __force __user *) &uoss,
3242 compat_user_stack_pointer());
3243 set_fs(seg);
3244 if (ret >= 0 && uoss_ptr) {
3245 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3246 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3247 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3248 __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3249 ret = -EFAULT;
3251 return ret;
3254 int compat_restore_altstack(const compat_stack_t __user *uss)
3256 int err = compat_sys_sigaltstack(uss, NULL);
3257 /* squash all but -EFAULT for now */
3258 return err == -EFAULT ? err : 0;
3261 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3263 struct task_struct *t = current;
3264 return __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3265 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3266 __put_user(t->sas_ss_size, &uss->ss_size);
3268 #endif
3270 #ifdef __ARCH_WANT_SYS_SIGPENDING
3273 * sys_sigpending - examine pending signals
3274 * @set: where mask of pending signal is returned
3276 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3278 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3281 #endif
3283 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3285 * sys_sigprocmask - examine and change blocked signals
3286 * @how: whether to add, remove, or set signals
3287 * @nset: signals to add or remove (if non-null)
3288 * @oset: previous value of signal mask if non-null
3290 * Some platforms have their own version with special arguments;
3291 * others support only sys_rt_sigprocmask.
3294 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3295 old_sigset_t __user *, oset)
3297 old_sigset_t old_set, new_set;
3298 sigset_t new_blocked;
3300 old_set = current->blocked.sig[0];
3302 if (nset) {
3303 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3304 return -EFAULT;
3306 new_blocked = current->blocked;
3308 switch (how) {
3309 case SIG_BLOCK:
3310 sigaddsetmask(&new_blocked, new_set);
3311 break;
3312 case SIG_UNBLOCK:
3313 sigdelsetmask(&new_blocked, new_set);
3314 break;
3315 case SIG_SETMASK:
3316 new_blocked.sig[0] = new_set;
3317 break;
3318 default:
3319 return -EINVAL;
3322 set_current_blocked(&new_blocked);
3325 if (oset) {
3326 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3327 return -EFAULT;
3330 return 0;
3332 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3334 #ifndef CONFIG_ODD_RT_SIGACTION
3336 * sys_rt_sigaction - alter an action taken by a process
3337 * @sig: signal to be sent
3338 * @act: new sigaction
3339 * @oact: used to save the previous sigaction
3340 * @sigsetsize: size of sigset_t type
3342 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3343 const struct sigaction __user *, act,
3344 struct sigaction __user *, oact,
3345 size_t, sigsetsize)
3347 struct k_sigaction new_sa, old_sa;
3348 int ret = -EINVAL;
3350 /* XXX: Don't preclude handling different sized sigset_t's. */
3351 if (sigsetsize != sizeof(sigset_t))
3352 goto out;
3354 if (act) {
3355 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3356 return -EFAULT;
3359 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3361 if (!ret && oact) {
3362 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3363 return -EFAULT;
3365 out:
3366 return ret;
3368 #ifdef CONFIG_COMPAT
3369 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3370 const struct compat_sigaction __user *, act,
3371 struct compat_sigaction __user *, oact,
3372 compat_size_t, sigsetsize)
3374 struct k_sigaction new_ka, old_ka;
3375 compat_sigset_t mask;
3376 #ifdef __ARCH_HAS_SA_RESTORER
3377 compat_uptr_t restorer;
3378 #endif
3379 int ret;
3381 /* XXX: Don't preclude handling different sized sigset_t's. */
3382 if (sigsetsize != sizeof(compat_sigset_t))
3383 return -EINVAL;
3385 if (act) {
3386 compat_uptr_t handler;
3387 ret = get_user(handler, &act->sa_handler);
3388 new_ka.sa.sa_handler = compat_ptr(handler);
3389 #ifdef __ARCH_HAS_SA_RESTORER
3390 ret |= get_user(restorer, &act->sa_restorer);
3391 new_ka.sa.sa_restorer = compat_ptr(restorer);
3392 #endif
3393 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3394 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3395 if (ret)
3396 return -EFAULT;
3397 sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3400 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3401 if (!ret && oact) {
3402 sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3403 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3404 &oact->sa_handler);
3405 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3406 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3407 #ifdef __ARCH_HAS_SA_RESTORER
3408 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3409 &oact->sa_restorer);
3410 #endif
3412 return ret;
3414 #endif
3415 #endif /* !CONFIG_ODD_RT_SIGACTION */
3417 #ifdef CONFIG_OLD_SIGACTION
3418 SYSCALL_DEFINE3(sigaction, int, sig,
3419 const struct old_sigaction __user *, act,
3420 struct old_sigaction __user *, oact)
3422 struct k_sigaction new_ka, old_ka;
3423 int ret;
3425 if (act) {
3426 old_sigset_t mask;
3427 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3428 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3429 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3430 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3431 __get_user(mask, &act->sa_mask))
3432 return -EFAULT;
3433 #ifdef __ARCH_HAS_KA_RESTORER
3434 new_ka.ka_restorer = NULL;
3435 #endif
3436 siginitset(&new_ka.sa.sa_mask, mask);
3439 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3441 if (!ret && oact) {
3442 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3443 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3444 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3445 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3446 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3447 return -EFAULT;
3450 return ret;
3452 #endif
3453 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3454 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3455 const struct compat_old_sigaction __user *, act,
3456 struct compat_old_sigaction __user *, oact)
3458 struct k_sigaction new_ka, old_ka;
3459 int ret;
3460 compat_old_sigset_t mask;
3461 compat_uptr_t handler, restorer;
3463 if (act) {
3464 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3465 __get_user(handler, &act->sa_handler) ||
3466 __get_user(restorer, &act->sa_restorer) ||
3467 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3468 __get_user(mask, &act->sa_mask))
3469 return -EFAULT;
3471 #ifdef __ARCH_HAS_KA_RESTORER
3472 new_ka.ka_restorer = NULL;
3473 #endif
3474 new_ka.sa.sa_handler = compat_ptr(handler);
3475 new_ka.sa.sa_restorer = compat_ptr(restorer);
3476 siginitset(&new_ka.sa.sa_mask, mask);
3479 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3481 if (!ret && oact) {
3482 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3483 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3484 &oact->sa_handler) ||
3485 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3486 &oact->sa_restorer) ||
3487 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3488 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3489 return -EFAULT;
3491 return ret;
3493 #endif
3495 #ifdef CONFIG_SGETMASK_SYSCALL
3498 * For backwards compatibility. Functionality superseded by sigprocmask.
3500 SYSCALL_DEFINE0(sgetmask)
3502 /* SMP safe */
3503 return current->blocked.sig[0];
3506 SYSCALL_DEFINE1(ssetmask, int, newmask)
3508 int old = current->blocked.sig[0];
3509 sigset_t newset;
3511 siginitset(&newset, newmask);
3512 set_current_blocked(&newset);
3514 return old;
3516 #endif /* CONFIG_SGETMASK_SYSCALL */
3518 #ifdef __ARCH_WANT_SYS_SIGNAL
3520 * For backwards compatibility. Functionality superseded by sigaction.
3522 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3524 struct k_sigaction new_sa, old_sa;
3525 int ret;
3527 new_sa.sa.sa_handler = handler;
3528 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3529 sigemptyset(&new_sa.sa.sa_mask);
3531 ret = do_sigaction(sig, &new_sa, &old_sa);
3533 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3535 #endif /* __ARCH_WANT_SYS_SIGNAL */
3537 #ifdef __ARCH_WANT_SYS_PAUSE
3539 SYSCALL_DEFINE0(pause)
3541 while (!signal_pending(current)) {
3542 current->state = TASK_INTERRUPTIBLE;
3543 schedule();
3545 return -ERESTARTNOHAND;
3548 #endif
3550 static int sigsuspend(sigset_t *set)
3552 current->saved_sigmask = current->blocked;
3553 set_current_blocked(set);
3555 current->state = TASK_INTERRUPTIBLE;
3556 schedule();
3557 set_restore_sigmask();
3558 return -ERESTARTNOHAND;
3562 * sys_rt_sigsuspend - replace the signal mask for a value with the
3563 * @unewset value until a signal is received
3564 * @unewset: new signal mask value
3565 * @sigsetsize: size of sigset_t type
3567 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3569 sigset_t newset;
3571 /* XXX: Don't preclude handling different sized sigset_t's. */
3572 if (sigsetsize != sizeof(sigset_t))
3573 return -EINVAL;
3575 if (copy_from_user(&newset, unewset, sizeof(newset)))
3576 return -EFAULT;
3577 return sigsuspend(&newset);
3580 #ifdef CONFIG_COMPAT
3581 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3583 #ifdef __BIG_ENDIAN
3584 sigset_t newset;
3585 compat_sigset_t newset32;
3587 /* XXX: Don't preclude handling different sized sigset_t's. */
3588 if (sigsetsize != sizeof(sigset_t))
3589 return -EINVAL;
3591 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3592 return -EFAULT;
3593 sigset_from_compat(&newset, &newset32);
3594 return sigsuspend(&newset);
3595 #else
3596 /* on little-endian bitmaps don't care about granularity */
3597 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3598 #endif
3600 #endif
3602 #ifdef CONFIG_OLD_SIGSUSPEND
3603 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3605 sigset_t blocked;
3606 siginitset(&blocked, mask);
3607 return sigsuspend(&blocked);
3609 #endif
3610 #ifdef CONFIG_OLD_SIGSUSPEND3
3611 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3613 sigset_t blocked;
3614 siginitset(&blocked, mask);
3615 return sigsuspend(&blocked);
3617 #endif
3619 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3621 return NULL;
3624 void __init signals_init(void)
3626 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3629 #ifdef CONFIG_KGDB_KDB
3630 #include <linux/kdb.h>
3632 * kdb_send_sig_info - Allows kdb to send signals without exposing
3633 * signal internals. This function checks if the required locks are
3634 * available before calling the main signal code, to avoid kdb
3635 * deadlocks.
3637 void
3638 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3640 static struct task_struct *kdb_prev_t;
3641 int sig, new_t;
3642 if (!spin_trylock(&t->sighand->siglock)) {
3643 kdb_printf("Can't do kill command now.\n"
3644 "The sigmask lock is held somewhere else in "
3645 "kernel, try again later\n");
3646 return;
3648 spin_unlock(&t->sighand->siglock);
3649 new_t = kdb_prev_t != t;
3650 kdb_prev_t = t;
3651 if (t->state != TASK_RUNNING && new_t) {
3652 kdb_printf("Process is not RUNNING, sending a signal from "
3653 "kdb risks deadlock\n"
3654 "on the run queue locks. "
3655 "The signal has _not_ been sent.\n"
3656 "Reissue the kill command if you want to risk "
3657 "the deadlock.\n");
3658 return;
3660 sig = info->si_signo;
3661 if (send_sig_info(sig, info, t))
3662 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3663 sig, t->pid);
3664 else
3665 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3667 #endif /* CONFIG_KGDB_KDB */