4 * Incoming and outgoing message routing for an IPMI interface.
6 * Author: MontaVista Software, Inc.
7 * Corey Minyard <minyard@mvista.com>
10 * Copyright 2002 MontaVista Software Inc.
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <asm/system.h>
37 #include <linux/poll.h>
38 #include <linux/spinlock.h>
39 #include <linux/mutex.h>
40 #include <linux/slab.h>
41 #include <linux/ipmi.h>
42 #include <linux/ipmi_smi.h>
43 #include <linux/notifier.h>
44 #include <linux/init.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
48 #define PFX "IPMI message handler: "
50 #define IPMI_DRIVER_VERSION "39.2"
52 static struct ipmi_recv_msg
*ipmi_alloc_recv_msg(void);
53 static int ipmi_init_msghandler(void);
55 static int initialized
;
58 static struct proc_dir_entry
*proc_ipmi_root
;
59 #endif /* CONFIG_PROC_FS */
61 /* Remain in auto-maintenance mode for this amount of time (in ms). */
62 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
64 #define MAX_EVENTS_IN_QUEUE 25
67 * Don't let a message sit in a queue forever, always time it with at lest
68 * the max message timer. This is in milliseconds.
70 #define MAX_MSG_TIMEOUT 60000
73 * The main "user" data structure.
76 struct list_head link
;
78 /* Set to "0" when the user is destroyed. */
83 /* The upper layer that handles receive messages. */
84 struct ipmi_user_hndl
*handler
;
87 /* The interface this user is bound to. */
90 /* Does this interface receive IPMI events? */
95 struct list_head link
;
103 * This is used to form a linked lised during mass deletion.
104 * Since this is in an RCU list, we cannot use the link above
105 * or change any data until the RCU period completes. So we
106 * use this next variable during mass deletion so we can have
107 * a list and don't have to wait and restart the search on
108 * every individual deletion of a command.
110 struct cmd_rcvr
*next
;
114 unsigned int inuse
: 1;
115 unsigned int broadcast
: 1;
117 unsigned long timeout
;
118 unsigned long orig_timeout
;
119 unsigned int retries_left
;
122 * To verify on an incoming send message response that this is
123 * the message that the response is for, we keep a sequence id
124 * and increment it every time we send a message.
129 * This is held so we can properly respond to the message on a
130 * timeout, and it is used to hold the temporary data for
131 * retransmission, too.
133 struct ipmi_recv_msg
*recv_msg
;
137 * Store the information in a msgid (long) to allow us to find a
138 * sequence table entry from the msgid.
140 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
142 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
144 seq = ((msgid >> 26) & 0x3f); \
145 seqid = (msgid & 0x3fffff); \
148 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
150 struct ipmi_channel
{
151 unsigned char medium
;
152 unsigned char protocol
;
155 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
156 * but may be changed by the user.
158 unsigned char address
;
161 * My LUN. This should generally stay the SMS LUN, but just in
167 #ifdef CONFIG_PROC_FS
168 struct ipmi_proc_entry
{
170 struct ipmi_proc_entry
*next
;
175 struct platform_device
*dev
;
176 struct ipmi_device_id id
;
177 unsigned char guid
[16];
180 struct kref refcount
;
182 /* bmc device attributes */
183 struct device_attribute device_id_attr
;
184 struct device_attribute provides_dev_sdrs_attr
;
185 struct device_attribute revision_attr
;
186 struct device_attribute firmware_rev_attr
;
187 struct device_attribute version_attr
;
188 struct device_attribute add_dev_support_attr
;
189 struct device_attribute manufacturer_id_attr
;
190 struct device_attribute product_id_attr
;
191 struct device_attribute guid_attr
;
192 struct device_attribute aux_firmware_rev_attr
;
196 * Various statistics for IPMI, these index stats[] in the ipmi_smi
199 enum ipmi_stat_indexes
{
200 /* Commands we got from the user that were invalid. */
201 IPMI_STAT_sent_invalid_commands
= 0,
203 /* Commands we sent to the MC. */
204 IPMI_STAT_sent_local_commands
,
206 /* Responses from the MC that were delivered to a user. */
207 IPMI_STAT_handled_local_responses
,
209 /* Responses from the MC that were not delivered to a user. */
210 IPMI_STAT_unhandled_local_responses
,
212 /* Commands we sent out to the IPMB bus. */
213 IPMI_STAT_sent_ipmb_commands
,
215 /* Commands sent on the IPMB that had errors on the SEND CMD */
216 IPMI_STAT_sent_ipmb_command_errs
,
218 /* Each retransmit increments this count. */
219 IPMI_STAT_retransmitted_ipmb_commands
,
222 * When a message times out (runs out of retransmits) this is
225 IPMI_STAT_timed_out_ipmb_commands
,
228 * This is like above, but for broadcasts. Broadcasts are
229 * *not* included in the above count (they are expected to
232 IPMI_STAT_timed_out_ipmb_broadcasts
,
234 /* Responses I have sent to the IPMB bus. */
235 IPMI_STAT_sent_ipmb_responses
,
237 /* The response was delivered to the user. */
238 IPMI_STAT_handled_ipmb_responses
,
240 /* The response had invalid data in it. */
241 IPMI_STAT_invalid_ipmb_responses
,
243 /* The response didn't have anyone waiting for it. */
244 IPMI_STAT_unhandled_ipmb_responses
,
246 /* Commands we sent out to the IPMB bus. */
247 IPMI_STAT_sent_lan_commands
,
249 /* Commands sent on the IPMB that had errors on the SEND CMD */
250 IPMI_STAT_sent_lan_command_errs
,
252 /* Each retransmit increments this count. */
253 IPMI_STAT_retransmitted_lan_commands
,
256 * When a message times out (runs out of retransmits) this is
259 IPMI_STAT_timed_out_lan_commands
,
261 /* Responses I have sent to the IPMB bus. */
262 IPMI_STAT_sent_lan_responses
,
264 /* The response was delivered to the user. */
265 IPMI_STAT_handled_lan_responses
,
267 /* The response had invalid data in it. */
268 IPMI_STAT_invalid_lan_responses
,
270 /* The response didn't have anyone waiting for it. */
271 IPMI_STAT_unhandled_lan_responses
,
273 /* The command was delivered to the user. */
274 IPMI_STAT_handled_commands
,
276 /* The command had invalid data in it. */
277 IPMI_STAT_invalid_commands
,
279 /* The command didn't have anyone waiting for it. */
280 IPMI_STAT_unhandled_commands
,
282 /* Invalid data in an event. */
283 IPMI_STAT_invalid_events
,
285 /* Events that were received with the proper format. */
288 /* Retransmissions on IPMB that failed. */
289 IPMI_STAT_dropped_rexmit_ipmb_commands
,
291 /* Retransmissions on LAN that failed. */
292 IPMI_STAT_dropped_rexmit_lan_commands
,
294 /* This *must* remain last, add new values above this. */
299 #define IPMI_IPMB_NUM_SEQ 64
300 #define IPMI_MAX_CHANNELS 16
302 /* What interface number are we? */
305 struct kref refcount
;
307 /* Used for a list of interfaces. */
308 struct list_head link
;
311 * The list of upper layers that are using me. seq_lock
314 struct list_head users
;
316 /* Information to supply to users. */
317 unsigned char ipmi_version_major
;
318 unsigned char ipmi_version_minor
;
320 /* Used for wake ups at startup. */
321 wait_queue_head_t waitq
;
323 struct bmc_device
*bmc
;
328 * This is the lower-layer's sender routine. Note that you
329 * must either be holding the ipmi_interfaces_mutex or be in
330 * an umpreemptible region to use this. You must fetch the
331 * value into a local variable and make sure it is not NULL.
333 struct ipmi_smi_handlers
*handlers
;
336 #ifdef CONFIG_PROC_FS
337 /* A list of proc entries for this interface. */
338 struct mutex proc_entry_lock
;
339 struct ipmi_proc_entry
*proc_entries
;
342 /* Driver-model device for the system interface. */
343 struct device
*si_dev
;
346 * A table of sequence numbers for this interface. We use the
347 * sequence numbers for IPMB messages that go out of the
348 * interface to match them up with their responses. A routine
349 * is called periodically to time the items in this list.
352 struct seq_table seq_table
[IPMI_IPMB_NUM_SEQ
];
356 * Messages that were delayed for some reason (out of memory,
357 * for instance), will go in here to be processed later in a
358 * periodic timer interrupt.
360 spinlock_t waiting_msgs_lock
;
361 struct list_head waiting_msgs
;
364 * The list of command receivers that are registered for commands
367 struct mutex cmd_rcvrs_mutex
;
368 struct list_head cmd_rcvrs
;
371 * Events that were queues because no one was there to receive
374 spinlock_t events_lock
; /* For dealing with event stuff. */
375 struct list_head waiting_events
;
376 unsigned int waiting_events_count
; /* How many events in queue? */
377 char delivering_events
;
378 char event_msg_printed
;
381 * The event receiver for my BMC, only really used at panic
382 * shutdown as a place to store this.
384 unsigned char event_receiver
;
385 unsigned char event_receiver_lun
;
386 unsigned char local_sel_device
;
387 unsigned char local_event_generator
;
389 /* For handling of maintenance mode. */
390 int maintenance_mode
;
391 int maintenance_mode_enable
;
392 int auto_maintenance_timeout
;
393 spinlock_t maintenance_mode_lock
; /* Used in a timer... */
396 * A cheap hack, if this is non-null and a message to an
397 * interface comes in with a NULL user, call this routine with
398 * it. Note that the message will still be freed by the
399 * caller. This only works on the system interface.
401 void (*null_user_handler
)(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
);
404 * When we are scanning the channels for an SMI, this will
405 * tell which channel we are scanning.
409 /* Channel information */
410 struct ipmi_channel channels
[IPMI_MAX_CHANNELS
];
413 struct proc_dir_entry
*proc_dir
;
414 char proc_dir_name
[10];
416 atomic_t stats
[IPMI_NUM_STATS
];
419 * run_to_completion duplicate of smb_info, smi_info
420 * and ipmi_serial_info structures. Used to decrease numbers of
421 * parameters passed by "low" level IPMI code.
423 int run_to_completion
;
425 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
428 * The driver model view of the IPMI messaging driver.
430 static struct platform_driver ipmidriver
= {
433 .bus
= &platform_bus_type
436 static DEFINE_MUTEX(ipmidriver_mutex
);
438 static LIST_HEAD(ipmi_interfaces
);
439 static DEFINE_MUTEX(ipmi_interfaces_mutex
);
442 * List of watchers that want to know when smi's are added and deleted.
444 static LIST_HEAD(smi_watchers
);
445 static DEFINE_MUTEX(smi_watchers_mutex
);
448 #define ipmi_inc_stat(intf, stat) \
449 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
450 #define ipmi_get_stat(intf, stat) \
451 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
453 static int is_lan_addr(struct ipmi_addr
*addr
)
455 return addr
->addr_type
== IPMI_LAN_ADDR_TYPE
;
458 static int is_ipmb_addr(struct ipmi_addr
*addr
)
460 return addr
->addr_type
== IPMI_IPMB_ADDR_TYPE
;
463 static int is_ipmb_bcast_addr(struct ipmi_addr
*addr
)
465 return addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
;
468 static void free_recv_msg_list(struct list_head
*q
)
470 struct ipmi_recv_msg
*msg
, *msg2
;
472 list_for_each_entry_safe(msg
, msg2
, q
, link
) {
473 list_del(&msg
->link
);
474 ipmi_free_recv_msg(msg
);
478 static void free_smi_msg_list(struct list_head
*q
)
480 struct ipmi_smi_msg
*msg
, *msg2
;
482 list_for_each_entry_safe(msg
, msg2
, q
, link
) {
483 list_del(&msg
->link
);
484 ipmi_free_smi_msg(msg
);
488 static void clean_up_interface_data(ipmi_smi_t intf
)
491 struct cmd_rcvr
*rcvr
, *rcvr2
;
492 struct list_head list
;
494 free_smi_msg_list(&intf
->waiting_msgs
);
495 free_recv_msg_list(&intf
->waiting_events
);
498 * Wholesale remove all the entries from the list in the
499 * interface and wait for RCU to know that none are in use.
501 mutex_lock(&intf
->cmd_rcvrs_mutex
);
502 INIT_LIST_HEAD(&list
);
503 list_splice_init_rcu(&intf
->cmd_rcvrs
, &list
, synchronize_rcu
);
504 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
506 list_for_each_entry_safe(rcvr
, rcvr2
, &list
, link
)
509 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
510 if ((intf
->seq_table
[i
].inuse
)
511 && (intf
->seq_table
[i
].recv_msg
))
512 ipmi_free_recv_msg(intf
->seq_table
[i
].recv_msg
);
516 static void intf_free(struct kref
*ref
)
518 ipmi_smi_t intf
= container_of(ref
, struct ipmi_smi
, refcount
);
520 clean_up_interface_data(intf
);
524 struct watcher_entry
{
527 struct list_head link
;
530 int ipmi_smi_watcher_register(struct ipmi_smi_watcher
*watcher
)
533 LIST_HEAD(to_deliver
);
534 struct watcher_entry
*e
, *e2
;
536 mutex_lock(&smi_watchers_mutex
);
538 mutex_lock(&ipmi_interfaces_mutex
);
540 /* Build a list of things to deliver. */
541 list_for_each_entry(intf
, &ipmi_interfaces
, link
) {
542 if (intf
->intf_num
== -1)
544 e
= kmalloc(sizeof(*e
), GFP_KERNEL
);
547 kref_get(&intf
->refcount
);
549 e
->intf_num
= intf
->intf_num
;
550 list_add_tail(&e
->link
, &to_deliver
);
553 /* We will succeed, so add it to the list. */
554 list_add(&watcher
->link
, &smi_watchers
);
556 mutex_unlock(&ipmi_interfaces_mutex
);
558 list_for_each_entry_safe(e
, e2
, &to_deliver
, link
) {
560 watcher
->new_smi(e
->intf_num
, e
->intf
->si_dev
);
561 kref_put(&e
->intf
->refcount
, intf_free
);
565 mutex_unlock(&smi_watchers_mutex
);
570 mutex_unlock(&ipmi_interfaces_mutex
);
571 mutex_unlock(&smi_watchers_mutex
);
572 list_for_each_entry_safe(e
, e2
, &to_deliver
, link
) {
574 kref_put(&e
->intf
->refcount
, intf_free
);
579 EXPORT_SYMBOL(ipmi_smi_watcher_register
);
581 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher
*watcher
)
583 mutex_lock(&smi_watchers_mutex
);
584 list_del(&(watcher
->link
));
585 mutex_unlock(&smi_watchers_mutex
);
588 EXPORT_SYMBOL(ipmi_smi_watcher_unregister
);
591 * Must be called with smi_watchers_mutex held.
594 call_smi_watchers(int i
, struct device
*dev
)
596 struct ipmi_smi_watcher
*w
;
598 list_for_each_entry(w
, &smi_watchers
, link
) {
599 if (try_module_get(w
->owner
)) {
601 module_put(w
->owner
);
607 ipmi_addr_equal(struct ipmi_addr
*addr1
, struct ipmi_addr
*addr2
)
609 if (addr1
->addr_type
!= addr2
->addr_type
)
612 if (addr1
->channel
!= addr2
->channel
)
615 if (addr1
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
616 struct ipmi_system_interface_addr
*smi_addr1
617 = (struct ipmi_system_interface_addr
*) addr1
;
618 struct ipmi_system_interface_addr
*smi_addr2
619 = (struct ipmi_system_interface_addr
*) addr2
;
620 return (smi_addr1
->lun
== smi_addr2
->lun
);
623 if (is_ipmb_addr(addr1
) || is_ipmb_bcast_addr(addr1
)) {
624 struct ipmi_ipmb_addr
*ipmb_addr1
625 = (struct ipmi_ipmb_addr
*) addr1
;
626 struct ipmi_ipmb_addr
*ipmb_addr2
627 = (struct ipmi_ipmb_addr
*) addr2
;
629 return ((ipmb_addr1
->slave_addr
== ipmb_addr2
->slave_addr
)
630 && (ipmb_addr1
->lun
== ipmb_addr2
->lun
));
633 if (is_lan_addr(addr1
)) {
634 struct ipmi_lan_addr
*lan_addr1
635 = (struct ipmi_lan_addr
*) addr1
;
636 struct ipmi_lan_addr
*lan_addr2
637 = (struct ipmi_lan_addr
*) addr2
;
639 return ((lan_addr1
->remote_SWID
== lan_addr2
->remote_SWID
)
640 && (lan_addr1
->local_SWID
== lan_addr2
->local_SWID
)
641 && (lan_addr1
->session_handle
642 == lan_addr2
->session_handle
)
643 && (lan_addr1
->lun
== lan_addr2
->lun
));
649 int ipmi_validate_addr(struct ipmi_addr
*addr
, int len
)
651 if (len
< sizeof(struct ipmi_system_interface_addr
))
654 if (addr
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
655 if (addr
->channel
!= IPMI_BMC_CHANNEL
)
660 if ((addr
->channel
== IPMI_BMC_CHANNEL
)
661 || (addr
->channel
>= IPMI_MAX_CHANNELS
)
662 || (addr
->channel
< 0))
665 if (is_ipmb_addr(addr
) || is_ipmb_bcast_addr(addr
)) {
666 if (len
< sizeof(struct ipmi_ipmb_addr
))
671 if (is_lan_addr(addr
)) {
672 if (len
< sizeof(struct ipmi_lan_addr
))
679 EXPORT_SYMBOL(ipmi_validate_addr
);
681 unsigned int ipmi_addr_length(int addr_type
)
683 if (addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
684 return sizeof(struct ipmi_system_interface_addr
);
686 if ((addr_type
== IPMI_IPMB_ADDR_TYPE
)
687 || (addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
))
688 return sizeof(struct ipmi_ipmb_addr
);
690 if (addr_type
== IPMI_LAN_ADDR_TYPE
)
691 return sizeof(struct ipmi_lan_addr
);
695 EXPORT_SYMBOL(ipmi_addr_length
);
697 static void deliver_response(struct ipmi_recv_msg
*msg
)
700 ipmi_smi_t intf
= msg
->user_msg_data
;
702 /* Special handling for NULL users. */
703 if (intf
->null_user_handler
) {
704 intf
->null_user_handler(intf
, msg
);
705 ipmi_inc_stat(intf
, handled_local_responses
);
707 /* No handler, so give up. */
708 ipmi_inc_stat(intf
, unhandled_local_responses
);
710 ipmi_free_recv_msg(msg
);
712 ipmi_user_t user
= msg
->user
;
713 user
->handler
->ipmi_recv_hndl(msg
, user
->handler_data
);
718 deliver_err_response(struct ipmi_recv_msg
*msg
, int err
)
720 msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
721 msg
->msg_data
[0] = err
;
722 msg
->msg
.netfn
|= 1; /* Convert to a response. */
723 msg
->msg
.data_len
= 1;
724 msg
->msg
.data
= msg
->msg_data
;
725 deliver_response(msg
);
729 * Find the next sequence number not being used and add the given
730 * message with the given timeout to the sequence table. This must be
731 * called with the interface's seq_lock held.
733 static int intf_next_seq(ipmi_smi_t intf
,
734 struct ipmi_recv_msg
*recv_msg
,
735 unsigned long timeout
,
744 for (i
= intf
->curr_seq
; (i
+1)%IPMI_IPMB_NUM_SEQ
!= intf
->curr_seq
;
745 i
= (i
+1)%IPMI_IPMB_NUM_SEQ
) {
746 if (!intf
->seq_table
[i
].inuse
)
750 if (!intf
->seq_table
[i
].inuse
) {
751 intf
->seq_table
[i
].recv_msg
= recv_msg
;
754 * Start with the maximum timeout, when the send response
755 * comes in we will start the real timer.
757 intf
->seq_table
[i
].timeout
= MAX_MSG_TIMEOUT
;
758 intf
->seq_table
[i
].orig_timeout
= timeout
;
759 intf
->seq_table
[i
].retries_left
= retries
;
760 intf
->seq_table
[i
].broadcast
= broadcast
;
761 intf
->seq_table
[i
].inuse
= 1;
762 intf
->seq_table
[i
].seqid
= NEXT_SEQID(intf
->seq_table
[i
].seqid
);
764 *seqid
= intf
->seq_table
[i
].seqid
;
765 intf
->curr_seq
= (i
+1)%IPMI_IPMB_NUM_SEQ
;
774 * Return the receive message for the given sequence number and
775 * release the sequence number so it can be reused. Some other data
776 * is passed in to be sure the message matches up correctly (to help
777 * guard against message coming in after their timeout and the
778 * sequence number being reused).
780 static int intf_find_seq(ipmi_smi_t intf
,
785 struct ipmi_addr
*addr
,
786 struct ipmi_recv_msg
**recv_msg
)
791 if (seq
>= IPMI_IPMB_NUM_SEQ
)
794 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
795 if (intf
->seq_table
[seq
].inuse
) {
796 struct ipmi_recv_msg
*msg
= intf
->seq_table
[seq
].recv_msg
;
798 if ((msg
->addr
.channel
== channel
) && (msg
->msg
.cmd
== cmd
)
799 && (msg
->msg
.netfn
== netfn
)
800 && (ipmi_addr_equal(addr
, &(msg
->addr
)))) {
802 intf
->seq_table
[seq
].inuse
= 0;
806 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
812 /* Start the timer for a specific sequence table entry. */
813 static int intf_start_seq_timer(ipmi_smi_t intf
,
822 GET_SEQ_FROM_MSGID(msgid
, seq
, seqid
);
824 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
826 * We do this verification because the user can be deleted
827 * while a message is outstanding.
829 if ((intf
->seq_table
[seq
].inuse
)
830 && (intf
->seq_table
[seq
].seqid
== seqid
)) {
831 struct seq_table
*ent
= &(intf
->seq_table
[seq
]);
832 ent
->timeout
= ent
->orig_timeout
;
835 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
840 /* Got an error for the send message for a specific sequence number. */
841 static int intf_err_seq(ipmi_smi_t intf
,
849 struct ipmi_recv_msg
*msg
= NULL
;
852 GET_SEQ_FROM_MSGID(msgid
, seq
, seqid
);
854 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
856 * We do this verification because the user can be deleted
857 * while a message is outstanding.
859 if ((intf
->seq_table
[seq
].inuse
)
860 && (intf
->seq_table
[seq
].seqid
== seqid
)) {
861 struct seq_table
*ent
= &(intf
->seq_table
[seq
]);
867 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
870 deliver_err_response(msg
, err
);
876 int ipmi_create_user(unsigned int if_num
,
877 struct ipmi_user_hndl
*handler
,
882 ipmi_user_t new_user
;
887 * There is no module usecount here, because it's not
888 * required. Since this can only be used by and called from
889 * other modules, they will implicitly use this module, and
890 * thus this can't be removed unless the other modules are
898 * Make sure the driver is actually initialized, this handles
899 * problems with initialization order.
902 rv
= ipmi_init_msghandler();
907 * The init code doesn't return an error if it was turned
908 * off, but it won't initialize. Check that.
914 new_user
= kmalloc(sizeof(*new_user
), GFP_KERNEL
);
918 mutex_lock(&ipmi_interfaces_mutex
);
919 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
920 if (intf
->intf_num
== if_num
)
923 /* Not found, return an error */
928 /* Note that each existing user holds a refcount to the interface. */
929 kref_get(&intf
->refcount
);
931 kref_init(&new_user
->refcount
);
932 new_user
->handler
= handler
;
933 new_user
->handler_data
= handler_data
;
934 new_user
->intf
= intf
;
935 new_user
->gets_events
= 0;
937 if (!try_module_get(intf
->handlers
->owner
)) {
942 if (intf
->handlers
->inc_usecount
) {
943 rv
= intf
->handlers
->inc_usecount(intf
->send_info
);
945 module_put(intf
->handlers
->owner
);
951 * Hold the lock so intf->handlers is guaranteed to be good
954 mutex_unlock(&ipmi_interfaces_mutex
);
957 spin_lock_irqsave(&intf
->seq_lock
, flags
);
958 list_add_rcu(&new_user
->link
, &intf
->users
);
959 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
964 kref_put(&intf
->refcount
, intf_free
);
966 mutex_unlock(&ipmi_interfaces_mutex
);
970 EXPORT_SYMBOL(ipmi_create_user
);
972 static void free_user(struct kref
*ref
)
974 ipmi_user_t user
= container_of(ref
, struct ipmi_user
, refcount
);
978 int ipmi_destroy_user(ipmi_user_t user
)
980 ipmi_smi_t intf
= user
->intf
;
983 struct cmd_rcvr
*rcvr
;
984 struct cmd_rcvr
*rcvrs
= NULL
;
988 /* Remove the user from the interface's sequence table. */
989 spin_lock_irqsave(&intf
->seq_lock
, flags
);
990 list_del_rcu(&user
->link
);
992 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
993 if (intf
->seq_table
[i
].inuse
994 && (intf
->seq_table
[i
].recv_msg
->user
== user
)) {
995 intf
->seq_table
[i
].inuse
= 0;
996 ipmi_free_recv_msg(intf
->seq_table
[i
].recv_msg
);
999 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
1002 * Remove the user from the command receiver's table. First
1003 * we build a list of everything (not using the standard link,
1004 * since other things may be using it till we do
1005 * synchronize_rcu()) then free everything in that list.
1007 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1008 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1009 if (rcvr
->user
== user
) {
1010 list_del_rcu(&rcvr
->link
);
1015 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1023 mutex_lock(&ipmi_interfaces_mutex
);
1024 if (intf
->handlers
) {
1025 module_put(intf
->handlers
->owner
);
1026 if (intf
->handlers
->dec_usecount
)
1027 intf
->handlers
->dec_usecount(intf
->send_info
);
1029 mutex_unlock(&ipmi_interfaces_mutex
);
1031 kref_put(&intf
->refcount
, intf_free
);
1033 kref_put(&user
->refcount
, free_user
);
1037 EXPORT_SYMBOL(ipmi_destroy_user
);
1039 void ipmi_get_version(ipmi_user_t user
,
1040 unsigned char *major
,
1041 unsigned char *minor
)
1043 *major
= user
->intf
->ipmi_version_major
;
1044 *minor
= user
->intf
->ipmi_version_minor
;
1046 EXPORT_SYMBOL(ipmi_get_version
);
1048 int ipmi_set_my_address(ipmi_user_t user
,
1049 unsigned int channel
,
1050 unsigned char address
)
1052 if (channel
>= IPMI_MAX_CHANNELS
)
1054 user
->intf
->channels
[channel
].address
= address
;
1057 EXPORT_SYMBOL(ipmi_set_my_address
);
1059 int ipmi_get_my_address(ipmi_user_t user
,
1060 unsigned int channel
,
1061 unsigned char *address
)
1063 if (channel
>= IPMI_MAX_CHANNELS
)
1065 *address
= user
->intf
->channels
[channel
].address
;
1068 EXPORT_SYMBOL(ipmi_get_my_address
);
1070 int ipmi_set_my_LUN(ipmi_user_t user
,
1071 unsigned int channel
,
1074 if (channel
>= IPMI_MAX_CHANNELS
)
1076 user
->intf
->channels
[channel
].lun
= LUN
& 0x3;
1079 EXPORT_SYMBOL(ipmi_set_my_LUN
);
1081 int ipmi_get_my_LUN(ipmi_user_t user
,
1082 unsigned int channel
,
1083 unsigned char *address
)
1085 if (channel
>= IPMI_MAX_CHANNELS
)
1087 *address
= user
->intf
->channels
[channel
].lun
;
1090 EXPORT_SYMBOL(ipmi_get_my_LUN
);
1092 int ipmi_get_maintenance_mode(ipmi_user_t user
)
1095 unsigned long flags
;
1097 spin_lock_irqsave(&user
->intf
->maintenance_mode_lock
, flags
);
1098 mode
= user
->intf
->maintenance_mode
;
1099 spin_unlock_irqrestore(&user
->intf
->maintenance_mode_lock
, flags
);
1103 EXPORT_SYMBOL(ipmi_get_maintenance_mode
);
1105 static void maintenance_mode_update(ipmi_smi_t intf
)
1107 if (intf
->handlers
->set_maintenance_mode
)
1108 intf
->handlers
->set_maintenance_mode(
1109 intf
->send_info
, intf
->maintenance_mode_enable
);
1112 int ipmi_set_maintenance_mode(ipmi_user_t user
, int mode
)
1115 unsigned long flags
;
1116 ipmi_smi_t intf
= user
->intf
;
1118 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
1119 if (intf
->maintenance_mode
!= mode
) {
1121 case IPMI_MAINTENANCE_MODE_AUTO
:
1122 intf
->maintenance_mode
= mode
;
1123 intf
->maintenance_mode_enable
1124 = (intf
->auto_maintenance_timeout
> 0);
1127 case IPMI_MAINTENANCE_MODE_OFF
:
1128 intf
->maintenance_mode
= mode
;
1129 intf
->maintenance_mode_enable
= 0;
1132 case IPMI_MAINTENANCE_MODE_ON
:
1133 intf
->maintenance_mode
= mode
;
1134 intf
->maintenance_mode_enable
= 1;
1142 maintenance_mode_update(intf
);
1145 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
, flags
);
1149 EXPORT_SYMBOL(ipmi_set_maintenance_mode
);
1151 int ipmi_set_gets_events(ipmi_user_t user
, int val
)
1153 unsigned long flags
;
1154 ipmi_smi_t intf
= user
->intf
;
1155 struct ipmi_recv_msg
*msg
, *msg2
;
1156 struct list_head msgs
;
1158 INIT_LIST_HEAD(&msgs
);
1160 spin_lock_irqsave(&intf
->events_lock
, flags
);
1161 user
->gets_events
= val
;
1163 if (intf
->delivering_events
)
1165 * Another thread is delivering events for this, so
1166 * let it handle any new events.
1170 /* Deliver any queued events. */
1171 while (user
->gets_events
&& !list_empty(&intf
->waiting_events
)) {
1172 list_for_each_entry_safe(msg
, msg2
, &intf
->waiting_events
, link
)
1173 list_move_tail(&msg
->link
, &msgs
);
1174 intf
->waiting_events_count
= 0;
1175 if (intf
->event_msg_printed
) {
1176 printk(KERN_WARNING PFX
"Event queue no longer"
1178 intf
->event_msg_printed
= 0;
1181 intf
->delivering_events
= 1;
1182 spin_unlock_irqrestore(&intf
->events_lock
, flags
);
1184 list_for_each_entry_safe(msg
, msg2
, &msgs
, link
) {
1186 kref_get(&user
->refcount
);
1187 deliver_response(msg
);
1190 spin_lock_irqsave(&intf
->events_lock
, flags
);
1191 intf
->delivering_events
= 0;
1195 spin_unlock_irqrestore(&intf
->events_lock
, flags
);
1199 EXPORT_SYMBOL(ipmi_set_gets_events
);
1201 static struct cmd_rcvr
*find_cmd_rcvr(ipmi_smi_t intf
,
1202 unsigned char netfn
,
1206 struct cmd_rcvr
*rcvr
;
1208 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1209 if ((rcvr
->netfn
== netfn
) && (rcvr
->cmd
== cmd
)
1210 && (rcvr
->chans
& (1 << chan
)))
1216 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf
,
1217 unsigned char netfn
,
1221 struct cmd_rcvr
*rcvr
;
1223 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1224 if ((rcvr
->netfn
== netfn
) && (rcvr
->cmd
== cmd
)
1225 && (rcvr
->chans
& chans
))
1231 int ipmi_register_for_cmd(ipmi_user_t user
,
1232 unsigned char netfn
,
1236 ipmi_smi_t intf
= user
->intf
;
1237 struct cmd_rcvr
*rcvr
;
1241 rcvr
= kmalloc(sizeof(*rcvr
), GFP_KERNEL
);
1245 rcvr
->netfn
= netfn
;
1246 rcvr
->chans
= chans
;
1249 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1250 /* Make sure the command/netfn is not already registered. */
1251 if (!is_cmd_rcvr_exclusive(intf
, netfn
, cmd
, chans
)) {
1256 list_add_rcu(&rcvr
->link
, &intf
->cmd_rcvrs
);
1259 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1265 EXPORT_SYMBOL(ipmi_register_for_cmd
);
1267 int ipmi_unregister_for_cmd(ipmi_user_t user
,
1268 unsigned char netfn
,
1272 ipmi_smi_t intf
= user
->intf
;
1273 struct cmd_rcvr
*rcvr
;
1274 struct cmd_rcvr
*rcvrs
= NULL
;
1275 int i
, rv
= -ENOENT
;
1277 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1278 for (i
= 0; i
< IPMI_NUM_CHANNELS
; i
++) {
1279 if (((1 << i
) & chans
) == 0)
1281 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, i
);
1284 if (rcvr
->user
== user
) {
1286 rcvr
->chans
&= ~chans
;
1287 if (rcvr
->chans
== 0) {
1288 list_del_rcu(&rcvr
->link
);
1294 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1303 EXPORT_SYMBOL(ipmi_unregister_for_cmd
);
1305 static unsigned char
1306 ipmb_checksum(unsigned char *data
, int size
)
1308 unsigned char csum
= 0;
1310 for (; size
> 0; size
--, data
++)
1316 static inline void format_ipmb_msg(struct ipmi_smi_msg
*smi_msg
,
1317 struct kernel_ipmi_msg
*msg
,
1318 struct ipmi_ipmb_addr
*ipmb_addr
,
1320 unsigned char ipmb_seq
,
1322 unsigned char source_address
,
1323 unsigned char source_lun
)
1327 /* Format the IPMB header data. */
1328 smi_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
1329 smi_msg
->data
[1] = IPMI_SEND_MSG_CMD
;
1330 smi_msg
->data
[2] = ipmb_addr
->channel
;
1332 smi_msg
->data
[3] = 0;
1333 smi_msg
->data
[i
+3] = ipmb_addr
->slave_addr
;
1334 smi_msg
->data
[i
+4] = (msg
->netfn
<< 2) | (ipmb_addr
->lun
& 0x3);
1335 smi_msg
->data
[i
+5] = ipmb_checksum(&(smi_msg
->data
[i
+3]), 2);
1336 smi_msg
->data
[i
+6] = source_address
;
1337 smi_msg
->data
[i
+7] = (ipmb_seq
<< 2) | source_lun
;
1338 smi_msg
->data
[i
+8] = msg
->cmd
;
1340 /* Now tack on the data to the message. */
1341 if (msg
->data_len
> 0)
1342 memcpy(&(smi_msg
->data
[i
+9]), msg
->data
,
1344 smi_msg
->data_size
= msg
->data_len
+ 9;
1346 /* Now calculate the checksum and tack it on. */
1347 smi_msg
->data
[i
+smi_msg
->data_size
]
1348 = ipmb_checksum(&(smi_msg
->data
[i
+6]),
1349 smi_msg
->data_size
-6);
1352 * Add on the checksum size and the offset from the
1355 smi_msg
->data_size
+= 1 + i
;
1357 smi_msg
->msgid
= msgid
;
1360 static inline void format_lan_msg(struct ipmi_smi_msg
*smi_msg
,
1361 struct kernel_ipmi_msg
*msg
,
1362 struct ipmi_lan_addr
*lan_addr
,
1364 unsigned char ipmb_seq
,
1365 unsigned char source_lun
)
1367 /* Format the IPMB header data. */
1368 smi_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
1369 smi_msg
->data
[1] = IPMI_SEND_MSG_CMD
;
1370 smi_msg
->data
[2] = lan_addr
->channel
;
1371 smi_msg
->data
[3] = lan_addr
->session_handle
;
1372 smi_msg
->data
[4] = lan_addr
->remote_SWID
;
1373 smi_msg
->data
[5] = (msg
->netfn
<< 2) | (lan_addr
->lun
& 0x3);
1374 smi_msg
->data
[6] = ipmb_checksum(&(smi_msg
->data
[4]), 2);
1375 smi_msg
->data
[7] = lan_addr
->local_SWID
;
1376 smi_msg
->data
[8] = (ipmb_seq
<< 2) | source_lun
;
1377 smi_msg
->data
[9] = msg
->cmd
;
1379 /* Now tack on the data to the message. */
1380 if (msg
->data_len
> 0)
1381 memcpy(&(smi_msg
->data
[10]), msg
->data
,
1383 smi_msg
->data_size
= msg
->data_len
+ 10;
1385 /* Now calculate the checksum and tack it on. */
1386 smi_msg
->data
[smi_msg
->data_size
]
1387 = ipmb_checksum(&(smi_msg
->data
[7]),
1388 smi_msg
->data_size
-7);
1391 * Add on the checksum size and the offset from the
1394 smi_msg
->data_size
+= 1;
1396 smi_msg
->msgid
= msgid
;
1400 * Separate from ipmi_request so that the user does not have to be
1401 * supplied in certain circumstances (mainly at panic time). If
1402 * messages are supplied, they will be freed, even if an error
1405 static int i_ipmi_request(ipmi_user_t user
,
1407 struct ipmi_addr
*addr
,
1409 struct kernel_ipmi_msg
*msg
,
1410 void *user_msg_data
,
1412 struct ipmi_recv_msg
*supplied_recv
,
1414 unsigned char source_address
,
1415 unsigned char source_lun
,
1417 unsigned int retry_time_ms
)
1420 struct ipmi_smi_msg
*smi_msg
;
1421 struct ipmi_recv_msg
*recv_msg
;
1422 unsigned long flags
;
1423 struct ipmi_smi_handlers
*handlers
;
1427 recv_msg
= supplied_recv
;
1429 recv_msg
= ipmi_alloc_recv_msg();
1430 if (recv_msg
== NULL
)
1433 recv_msg
->user_msg_data
= user_msg_data
;
1436 smi_msg
= (struct ipmi_smi_msg
*) supplied_smi
;
1438 smi_msg
= ipmi_alloc_smi_msg();
1439 if (smi_msg
== NULL
) {
1440 ipmi_free_recv_msg(recv_msg
);
1446 handlers
= intf
->handlers
;
1452 recv_msg
->user
= user
;
1454 kref_get(&user
->refcount
);
1455 recv_msg
->msgid
= msgid
;
1457 * Store the message to send in the receive message so timeout
1458 * responses can get the proper response data.
1460 recv_msg
->msg
= *msg
;
1462 if (addr
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
1463 struct ipmi_system_interface_addr
*smi_addr
;
1465 if (msg
->netfn
& 1) {
1466 /* Responses are not allowed to the SMI. */
1471 smi_addr
= (struct ipmi_system_interface_addr
*) addr
;
1472 if (smi_addr
->lun
> 3) {
1473 ipmi_inc_stat(intf
, sent_invalid_commands
);
1478 memcpy(&recv_msg
->addr
, smi_addr
, sizeof(*smi_addr
));
1480 if ((msg
->netfn
== IPMI_NETFN_APP_REQUEST
)
1481 && ((msg
->cmd
== IPMI_SEND_MSG_CMD
)
1482 || (msg
->cmd
== IPMI_GET_MSG_CMD
)
1483 || (msg
->cmd
== IPMI_READ_EVENT_MSG_BUFFER_CMD
))) {
1485 * We don't let the user do these, since we manage
1486 * the sequence numbers.
1488 ipmi_inc_stat(intf
, sent_invalid_commands
);
1493 if (((msg
->netfn
== IPMI_NETFN_APP_REQUEST
)
1494 && ((msg
->cmd
== IPMI_COLD_RESET_CMD
)
1495 || (msg
->cmd
== IPMI_WARM_RESET_CMD
)))
1496 || (msg
->netfn
== IPMI_NETFN_FIRMWARE_REQUEST
)) {
1497 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
1498 intf
->auto_maintenance_timeout
1499 = IPMI_MAINTENANCE_MODE_TIMEOUT
;
1500 if (!intf
->maintenance_mode
1501 && !intf
->maintenance_mode_enable
) {
1502 intf
->maintenance_mode_enable
= 1;
1503 maintenance_mode_update(intf
);
1505 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
,
1509 if ((msg
->data_len
+ 2) > IPMI_MAX_MSG_LENGTH
) {
1510 ipmi_inc_stat(intf
, sent_invalid_commands
);
1515 smi_msg
->data
[0] = (msg
->netfn
<< 2) | (smi_addr
->lun
& 0x3);
1516 smi_msg
->data
[1] = msg
->cmd
;
1517 smi_msg
->msgid
= msgid
;
1518 smi_msg
->user_data
= recv_msg
;
1519 if (msg
->data_len
> 0)
1520 memcpy(&(smi_msg
->data
[2]), msg
->data
, msg
->data_len
);
1521 smi_msg
->data_size
= msg
->data_len
+ 2;
1522 ipmi_inc_stat(intf
, sent_local_commands
);
1523 } else if (is_ipmb_addr(addr
) || is_ipmb_bcast_addr(addr
)) {
1524 struct ipmi_ipmb_addr
*ipmb_addr
;
1525 unsigned char ipmb_seq
;
1529 if (addr
->channel
>= IPMI_MAX_CHANNELS
) {
1530 ipmi_inc_stat(intf
, sent_invalid_commands
);
1535 if (intf
->channels
[addr
->channel
].medium
1536 != IPMI_CHANNEL_MEDIUM_IPMB
) {
1537 ipmi_inc_stat(intf
, sent_invalid_commands
);
1543 if (addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
)
1544 retries
= 0; /* Don't retry broadcasts. */
1548 if (addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
) {
1550 * Broadcasts add a zero at the beginning of the
1551 * message, but otherwise is the same as an IPMB
1554 addr
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
1559 /* Default to 1 second retries. */
1560 if (retry_time_ms
== 0)
1561 retry_time_ms
= 1000;
1564 * 9 for the header and 1 for the checksum, plus
1565 * possibly one for the broadcast.
1567 if ((msg
->data_len
+ 10 + broadcast
) > IPMI_MAX_MSG_LENGTH
) {
1568 ipmi_inc_stat(intf
, sent_invalid_commands
);
1573 ipmb_addr
= (struct ipmi_ipmb_addr
*) addr
;
1574 if (ipmb_addr
->lun
> 3) {
1575 ipmi_inc_stat(intf
, sent_invalid_commands
);
1580 memcpy(&recv_msg
->addr
, ipmb_addr
, sizeof(*ipmb_addr
));
1582 if (recv_msg
->msg
.netfn
& 0x1) {
1584 * It's a response, so use the user's sequence
1587 ipmi_inc_stat(intf
, sent_ipmb_responses
);
1588 format_ipmb_msg(smi_msg
, msg
, ipmb_addr
, msgid
,
1590 source_address
, source_lun
);
1593 * Save the receive message so we can use it
1594 * to deliver the response.
1596 smi_msg
->user_data
= recv_msg
;
1598 /* It's a command, so get a sequence for it. */
1600 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
1603 * Create a sequence number with a 1 second
1604 * timeout and 4 retries.
1606 rv
= intf_next_seq(intf
,
1615 * We have used up all the sequence numbers,
1616 * probably, so abort.
1618 spin_unlock_irqrestore(&(intf
->seq_lock
),
1623 ipmi_inc_stat(intf
, sent_ipmb_commands
);
1626 * Store the sequence number in the message,
1627 * so that when the send message response
1628 * comes back we can start the timer.
1630 format_ipmb_msg(smi_msg
, msg
, ipmb_addr
,
1631 STORE_SEQ_IN_MSGID(ipmb_seq
, seqid
),
1632 ipmb_seq
, broadcast
,
1633 source_address
, source_lun
);
1636 * Copy the message into the recv message data, so we
1637 * can retransmit it later if necessary.
1639 memcpy(recv_msg
->msg_data
, smi_msg
->data
,
1640 smi_msg
->data_size
);
1641 recv_msg
->msg
.data
= recv_msg
->msg_data
;
1642 recv_msg
->msg
.data_len
= smi_msg
->data_size
;
1645 * We don't unlock until here, because we need
1646 * to copy the completed message into the
1647 * recv_msg before we release the lock.
1648 * Otherwise, race conditions may bite us. I
1649 * know that's pretty paranoid, but I prefer
1652 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
1654 } else if (is_lan_addr(addr
)) {
1655 struct ipmi_lan_addr
*lan_addr
;
1656 unsigned char ipmb_seq
;
1659 if (addr
->channel
>= IPMI_MAX_CHANNELS
) {
1660 ipmi_inc_stat(intf
, sent_invalid_commands
);
1665 if ((intf
->channels
[addr
->channel
].medium
1666 != IPMI_CHANNEL_MEDIUM_8023LAN
)
1667 && (intf
->channels
[addr
->channel
].medium
1668 != IPMI_CHANNEL_MEDIUM_ASYNC
)) {
1669 ipmi_inc_stat(intf
, sent_invalid_commands
);
1676 /* Default to 1 second retries. */
1677 if (retry_time_ms
== 0)
1678 retry_time_ms
= 1000;
1680 /* 11 for the header and 1 for the checksum. */
1681 if ((msg
->data_len
+ 12) > IPMI_MAX_MSG_LENGTH
) {
1682 ipmi_inc_stat(intf
, sent_invalid_commands
);
1687 lan_addr
= (struct ipmi_lan_addr
*) addr
;
1688 if (lan_addr
->lun
> 3) {
1689 ipmi_inc_stat(intf
, sent_invalid_commands
);
1694 memcpy(&recv_msg
->addr
, lan_addr
, sizeof(*lan_addr
));
1696 if (recv_msg
->msg
.netfn
& 0x1) {
1698 * It's a response, so use the user's sequence
1701 ipmi_inc_stat(intf
, sent_lan_responses
);
1702 format_lan_msg(smi_msg
, msg
, lan_addr
, msgid
,
1706 * Save the receive message so we can use it
1707 * to deliver the response.
1709 smi_msg
->user_data
= recv_msg
;
1711 /* It's a command, so get a sequence for it. */
1713 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
1716 * Create a sequence number with a 1 second
1717 * timeout and 4 retries.
1719 rv
= intf_next_seq(intf
,
1728 * We have used up all the sequence numbers,
1729 * probably, so abort.
1731 spin_unlock_irqrestore(&(intf
->seq_lock
),
1736 ipmi_inc_stat(intf
, sent_lan_commands
);
1739 * Store the sequence number in the message,
1740 * so that when the send message response
1741 * comes back we can start the timer.
1743 format_lan_msg(smi_msg
, msg
, lan_addr
,
1744 STORE_SEQ_IN_MSGID(ipmb_seq
, seqid
),
1745 ipmb_seq
, source_lun
);
1748 * Copy the message into the recv message data, so we
1749 * can retransmit it later if necessary.
1751 memcpy(recv_msg
->msg_data
, smi_msg
->data
,
1752 smi_msg
->data_size
);
1753 recv_msg
->msg
.data
= recv_msg
->msg_data
;
1754 recv_msg
->msg
.data_len
= smi_msg
->data_size
;
1757 * We don't unlock until here, because we need
1758 * to copy the completed message into the
1759 * recv_msg before we release the lock.
1760 * Otherwise, race conditions may bite us. I
1761 * know that's pretty paranoid, but I prefer
1764 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
1767 /* Unknown address type. */
1768 ipmi_inc_stat(intf
, sent_invalid_commands
);
1776 for (m
= 0; m
< smi_msg
->data_size
; m
++)
1777 printk(" %2.2x", smi_msg
->data
[m
]);
1782 handlers
->sender(intf
->send_info
, smi_msg
, priority
);
1789 ipmi_free_smi_msg(smi_msg
);
1790 ipmi_free_recv_msg(recv_msg
);
1794 static int check_addr(ipmi_smi_t intf
,
1795 struct ipmi_addr
*addr
,
1796 unsigned char *saddr
,
1799 if (addr
->channel
>= IPMI_MAX_CHANNELS
)
1801 *lun
= intf
->channels
[addr
->channel
].lun
;
1802 *saddr
= intf
->channels
[addr
->channel
].address
;
1806 int ipmi_request_settime(ipmi_user_t user
,
1807 struct ipmi_addr
*addr
,
1809 struct kernel_ipmi_msg
*msg
,
1810 void *user_msg_data
,
1813 unsigned int retry_time_ms
)
1815 unsigned char saddr
, lun
;
1820 rv
= check_addr(user
->intf
, addr
, &saddr
, &lun
);
1823 return i_ipmi_request(user
,
1836 EXPORT_SYMBOL(ipmi_request_settime
);
1838 int ipmi_request_supply_msgs(ipmi_user_t user
,
1839 struct ipmi_addr
*addr
,
1841 struct kernel_ipmi_msg
*msg
,
1842 void *user_msg_data
,
1844 struct ipmi_recv_msg
*supplied_recv
,
1847 unsigned char saddr
, lun
;
1852 rv
= check_addr(user
->intf
, addr
, &saddr
, &lun
);
1855 return i_ipmi_request(user
,
1868 EXPORT_SYMBOL(ipmi_request_supply_msgs
);
1870 #ifdef CONFIG_PROC_FS
1871 static int ipmb_file_read_proc(char *page
, char **start
, off_t off
,
1872 int count
, int *eof
, void *data
)
1874 char *out
= (char *) page
;
1875 ipmi_smi_t intf
= data
;
1879 for (i
= 0; i
< IPMI_MAX_CHANNELS
; i
++)
1880 rv
+= sprintf(out
+rv
, "%x ", intf
->channels
[i
].address
);
1881 out
[rv
-1] = '\n'; /* Replace the final space with a newline */
1887 static int version_file_read_proc(char *page
, char **start
, off_t off
,
1888 int count
, int *eof
, void *data
)
1890 char *out
= (char *) page
;
1891 ipmi_smi_t intf
= data
;
1893 return sprintf(out
, "%u.%u\n",
1894 ipmi_version_major(&intf
->bmc
->id
),
1895 ipmi_version_minor(&intf
->bmc
->id
));
1898 static int stat_file_read_proc(char *page
, char **start
, off_t off
,
1899 int count
, int *eof
, void *data
)
1901 char *out
= (char *) page
;
1902 ipmi_smi_t intf
= data
;
1904 out
+= sprintf(out
, "sent_invalid_commands: %u\n",
1905 ipmi_get_stat(intf
, sent_invalid_commands
));
1906 out
+= sprintf(out
, "sent_local_commands: %u\n",
1907 ipmi_get_stat(intf
, sent_local_commands
));
1908 out
+= sprintf(out
, "handled_local_responses: %u\n",
1909 ipmi_get_stat(intf
, handled_local_responses
));
1910 out
+= sprintf(out
, "unhandled_local_responses: %u\n",
1911 ipmi_get_stat(intf
, unhandled_local_responses
));
1912 out
+= sprintf(out
, "sent_ipmb_commands: %u\n",
1913 ipmi_get_stat(intf
, sent_ipmb_commands
));
1914 out
+= sprintf(out
, "sent_ipmb_command_errs: %u\n",
1915 ipmi_get_stat(intf
, sent_ipmb_command_errs
));
1916 out
+= sprintf(out
, "retransmitted_ipmb_commands: %u\n",
1917 ipmi_get_stat(intf
, retransmitted_ipmb_commands
));
1918 out
+= sprintf(out
, "timed_out_ipmb_commands: %u\n",
1919 ipmi_get_stat(intf
, timed_out_ipmb_commands
));
1920 out
+= sprintf(out
, "timed_out_ipmb_broadcasts: %u\n",
1921 ipmi_get_stat(intf
, timed_out_ipmb_broadcasts
));
1922 out
+= sprintf(out
, "sent_ipmb_responses: %u\n",
1923 ipmi_get_stat(intf
, sent_ipmb_responses
));
1924 out
+= sprintf(out
, "handled_ipmb_responses: %u\n",
1925 ipmi_get_stat(intf
, handled_ipmb_responses
));
1926 out
+= sprintf(out
, "invalid_ipmb_responses: %u\n",
1927 ipmi_get_stat(intf
, invalid_ipmb_responses
));
1928 out
+= sprintf(out
, "unhandled_ipmb_responses: %u\n",
1929 ipmi_get_stat(intf
, unhandled_ipmb_responses
));
1930 out
+= sprintf(out
, "sent_lan_commands: %u\n",
1931 ipmi_get_stat(intf
, sent_lan_commands
));
1932 out
+= sprintf(out
, "sent_lan_command_errs: %u\n",
1933 ipmi_get_stat(intf
, sent_lan_command_errs
));
1934 out
+= sprintf(out
, "retransmitted_lan_commands: %u\n",
1935 ipmi_get_stat(intf
, retransmitted_lan_commands
));
1936 out
+= sprintf(out
, "timed_out_lan_commands: %u\n",
1937 ipmi_get_stat(intf
, timed_out_lan_commands
));
1938 out
+= sprintf(out
, "sent_lan_responses: %u\n",
1939 ipmi_get_stat(intf
, sent_lan_responses
));
1940 out
+= sprintf(out
, "handled_lan_responses: %u\n",
1941 ipmi_get_stat(intf
, handled_lan_responses
));
1942 out
+= sprintf(out
, "invalid_lan_responses: %u\n",
1943 ipmi_get_stat(intf
, invalid_lan_responses
));
1944 out
+= sprintf(out
, "unhandled_lan_responses: %u\n",
1945 ipmi_get_stat(intf
, unhandled_lan_responses
));
1946 out
+= sprintf(out
, "handled_commands: %u\n",
1947 ipmi_get_stat(intf
, handled_commands
));
1948 out
+= sprintf(out
, "invalid_commands: %u\n",
1949 ipmi_get_stat(intf
, invalid_commands
));
1950 out
+= sprintf(out
, "unhandled_commands: %u\n",
1951 ipmi_get_stat(intf
, unhandled_commands
));
1952 out
+= sprintf(out
, "invalid_events: %u\n",
1953 ipmi_get_stat(intf
, invalid_events
));
1954 out
+= sprintf(out
, "events: %u\n",
1955 ipmi_get_stat(intf
, events
));
1956 out
+= sprintf(out
, "failed rexmit LAN msgs: %u\n",
1957 ipmi_get_stat(intf
, dropped_rexmit_lan_commands
));
1958 out
+= sprintf(out
, "failed rexmit IPMB msgs: %u\n",
1959 ipmi_get_stat(intf
, dropped_rexmit_ipmb_commands
));
1961 return (out
- ((char *) page
));
1963 #endif /* CONFIG_PROC_FS */
1965 int ipmi_smi_add_proc_entry(ipmi_smi_t smi
, char *name
,
1966 read_proc_t
*read_proc
,
1970 #ifdef CONFIG_PROC_FS
1971 struct proc_dir_entry
*file
;
1972 struct ipmi_proc_entry
*entry
;
1974 /* Create a list element. */
1975 entry
= kmalloc(sizeof(*entry
), GFP_KERNEL
);
1978 entry
->name
= kmalloc(strlen(name
)+1, GFP_KERNEL
);
1983 strcpy(entry
->name
, name
);
1985 file
= create_proc_entry(name
, 0, smi
->proc_dir
);
1992 file
->read_proc
= read_proc
;
1994 mutex_lock(&smi
->proc_entry_lock
);
1995 /* Stick it on the list. */
1996 entry
->next
= smi
->proc_entries
;
1997 smi
->proc_entries
= entry
;
1998 mutex_unlock(&smi
->proc_entry_lock
);
2000 #endif /* CONFIG_PROC_FS */
2004 EXPORT_SYMBOL(ipmi_smi_add_proc_entry
);
2006 static int add_proc_entries(ipmi_smi_t smi
, int num
)
2010 #ifdef CONFIG_PROC_FS
2011 sprintf(smi
->proc_dir_name
, "%d", num
);
2012 smi
->proc_dir
= proc_mkdir(smi
->proc_dir_name
, proc_ipmi_root
);
2017 rv
= ipmi_smi_add_proc_entry(smi
, "stats",
2018 stat_file_read_proc
,
2022 rv
= ipmi_smi_add_proc_entry(smi
, "ipmb",
2023 ipmb_file_read_proc
,
2027 rv
= ipmi_smi_add_proc_entry(smi
, "version",
2028 version_file_read_proc
,
2030 #endif /* CONFIG_PROC_FS */
2035 static void remove_proc_entries(ipmi_smi_t smi
)
2037 #ifdef CONFIG_PROC_FS
2038 struct ipmi_proc_entry
*entry
;
2040 mutex_lock(&smi
->proc_entry_lock
);
2041 while (smi
->proc_entries
) {
2042 entry
= smi
->proc_entries
;
2043 smi
->proc_entries
= entry
->next
;
2045 remove_proc_entry(entry
->name
, smi
->proc_dir
);
2049 mutex_unlock(&smi
->proc_entry_lock
);
2050 remove_proc_entry(smi
->proc_dir_name
, proc_ipmi_root
);
2051 #endif /* CONFIG_PROC_FS */
2054 static int __find_bmc_guid(struct device
*dev
, void *data
)
2056 unsigned char *id
= data
;
2057 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2058 return memcmp(bmc
->guid
, id
, 16) == 0;
2061 static struct bmc_device
*ipmi_find_bmc_guid(struct device_driver
*drv
,
2062 unsigned char *guid
)
2066 dev
= driver_find_device(drv
, NULL
, guid
, __find_bmc_guid
);
2068 return dev_get_drvdata(dev
);
2073 struct prod_dev_id
{
2074 unsigned int product_id
;
2075 unsigned char device_id
;
2078 static int __find_bmc_prod_dev_id(struct device
*dev
, void *data
)
2080 struct prod_dev_id
*id
= data
;
2081 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2083 return (bmc
->id
.product_id
== id
->product_id
2084 && bmc
->id
.device_id
== id
->device_id
);
2087 static struct bmc_device
*ipmi_find_bmc_prod_dev_id(
2088 struct device_driver
*drv
,
2089 unsigned int product_id
, unsigned char device_id
)
2091 struct prod_dev_id id
= {
2092 .product_id
= product_id
,
2093 .device_id
= device_id
,
2097 dev
= driver_find_device(drv
, NULL
, &id
, __find_bmc_prod_dev_id
);
2099 return dev_get_drvdata(dev
);
2104 static ssize_t
device_id_show(struct device
*dev
,
2105 struct device_attribute
*attr
,
2108 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2110 return snprintf(buf
, 10, "%u\n", bmc
->id
.device_id
);
2113 static ssize_t
provides_dev_sdrs_show(struct device
*dev
,
2114 struct device_attribute
*attr
,
2117 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2119 return snprintf(buf
, 10, "%u\n",
2120 (bmc
->id
.device_revision
& 0x80) >> 7);
2123 static ssize_t
revision_show(struct device
*dev
, struct device_attribute
*attr
,
2126 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2128 return snprintf(buf
, 20, "%u\n",
2129 bmc
->id
.device_revision
& 0x0F);
2132 static ssize_t
firmware_rev_show(struct device
*dev
,
2133 struct device_attribute
*attr
,
2136 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2138 return snprintf(buf
, 20, "%u.%x\n", bmc
->id
.firmware_revision_1
,
2139 bmc
->id
.firmware_revision_2
);
2142 static ssize_t
ipmi_version_show(struct device
*dev
,
2143 struct device_attribute
*attr
,
2146 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2148 return snprintf(buf
, 20, "%u.%u\n",
2149 ipmi_version_major(&bmc
->id
),
2150 ipmi_version_minor(&bmc
->id
));
2153 static ssize_t
add_dev_support_show(struct device
*dev
,
2154 struct device_attribute
*attr
,
2157 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2159 return snprintf(buf
, 10, "0x%02x\n",
2160 bmc
->id
.additional_device_support
);
2163 static ssize_t
manufacturer_id_show(struct device
*dev
,
2164 struct device_attribute
*attr
,
2167 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2169 return snprintf(buf
, 20, "0x%6.6x\n", bmc
->id
.manufacturer_id
);
2172 static ssize_t
product_id_show(struct device
*dev
,
2173 struct device_attribute
*attr
,
2176 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2178 return snprintf(buf
, 10, "0x%4.4x\n", bmc
->id
.product_id
);
2181 static ssize_t
aux_firmware_rev_show(struct device
*dev
,
2182 struct device_attribute
*attr
,
2185 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2187 return snprintf(buf
, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2188 bmc
->id
.aux_firmware_revision
[3],
2189 bmc
->id
.aux_firmware_revision
[2],
2190 bmc
->id
.aux_firmware_revision
[1],
2191 bmc
->id
.aux_firmware_revision
[0]);
2194 static ssize_t
guid_show(struct device
*dev
, struct device_attribute
*attr
,
2197 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2199 return snprintf(buf
, 100, "%Lx%Lx\n",
2200 (long long) bmc
->guid
[0],
2201 (long long) bmc
->guid
[8]);
2204 static void remove_files(struct bmc_device
*bmc
)
2209 device_remove_file(&bmc
->dev
->dev
,
2210 &bmc
->device_id_attr
);
2211 device_remove_file(&bmc
->dev
->dev
,
2212 &bmc
->provides_dev_sdrs_attr
);
2213 device_remove_file(&bmc
->dev
->dev
,
2214 &bmc
->revision_attr
);
2215 device_remove_file(&bmc
->dev
->dev
,
2216 &bmc
->firmware_rev_attr
);
2217 device_remove_file(&bmc
->dev
->dev
,
2218 &bmc
->version_attr
);
2219 device_remove_file(&bmc
->dev
->dev
,
2220 &bmc
->add_dev_support_attr
);
2221 device_remove_file(&bmc
->dev
->dev
,
2222 &bmc
->manufacturer_id_attr
);
2223 device_remove_file(&bmc
->dev
->dev
,
2224 &bmc
->product_id_attr
);
2226 if (bmc
->id
.aux_firmware_revision_set
)
2227 device_remove_file(&bmc
->dev
->dev
,
2228 &bmc
->aux_firmware_rev_attr
);
2230 device_remove_file(&bmc
->dev
->dev
,
2235 cleanup_bmc_device(struct kref
*ref
)
2237 struct bmc_device
*bmc
;
2239 bmc
= container_of(ref
, struct bmc_device
, refcount
);
2242 platform_device_unregister(bmc
->dev
);
2246 static void ipmi_bmc_unregister(ipmi_smi_t intf
)
2248 struct bmc_device
*bmc
= intf
->bmc
;
2250 if (intf
->sysfs_name
) {
2251 sysfs_remove_link(&intf
->si_dev
->kobj
, intf
->sysfs_name
);
2252 kfree(intf
->sysfs_name
);
2253 intf
->sysfs_name
= NULL
;
2255 if (intf
->my_dev_name
) {
2256 sysfs_remove_link(&bmc
->dev
->dev
.kobj
, intf
->my_dev_name
);
2257 kfree(intf
->my_dev_name
);
2258 intf
->my_dev_name
= NULL
;
2261 mutex_lock(&ipmidriver_mutex
);
2262 kref_put(&bmc
->refcount
, cleanup_bmc_device
);
2264 mutex_unlock(&ipmidriver_mutex
);
2267 static int create_files(struct bmc_device
*bmc
)
2271 bmc
->device_id_attr
.attr
.name
= "device_id";
2272 bmc
->device_id_attr
.attr
.mode
= S_IRUGO
;
2273 bmc
->device_id_attr
.show
= device_id_show
;
2275 bmc
->provides_dev_sdrs_attr
.attr
.name
= "provides_device_sdrs";
2276 bmc
->provides_dev_sdrs_attr
.attr
.mode
= S_IRUGO
;
2277 bmc
->provides_dev_sdrs_attr
.show
= provides_dev_sdrs_show
;
2279 bmc
->revision_attr
.attr
.name
= "revision";
2280 bmc
->revision_attr
.attr
.mode
= S_IRUGO
;
2281 bmc
->revision_attr
.show
= revision_show
;
2283 bmc
->firmware_rev_attr
.attr
.name
= "firmware_revision";
2284 bmc
->firmware_rev_attr
.attr
.mode
= S_IRUGO
;
2285 bmc
->firmware_rev_attr
.show
= firmware_rev_show
;
2287 bmc
->version_attr
.attr
.name
= "ipmi_version";
2288 bmc
->version_attr
.attr
.mode
= S_IRUGO
;
2289 bmc
->version_attr
.show
= ipmi_version_show
;
2291 bmc
->add_dev_support_attr
.attr
.name
= "additional_device_support";
2292 bmc
->add_dev_support_attr
.attr
.mode
= S_IRUGO
;
2293 bmc
->add_dev_support_attr
.show
= add_dev_support_show
;
2295 bmc
->manufacturer_id_attr
.attr
.name
= "manufacturer_id";
2296 bmc
->manufacturer_id_attr
.attr
.mode
= S_IRUGO
;
2297 bmc
->manufacturer_id_attr
.show
= manufacturer_id_show
;
2299 bmc
->product_id_attr
.attr
.name
= "product_id";
2300 bmc
->product_id_attr
.attr
.mode
= S_IRUGO
;
2301 bmc
->product_id_attr
.show
= product_id_show
;
2303 bmc
->guid_attr
.attr
.name
= "guid";
2304 bmc
->guid_attr
.attr
.mode
= S_IRUGO
;
2305 bmc
->guid_attr
.show
= guid_show
;
2307 bmc
->aux_firmware_rev_attr
.attr
.name
= "aux_firmware_revision";
2308 bmc
->aux_firmware_rev_attr
.attr
.mode
= S_IRUGO
;
2309 bmc
->aux_firmware_rev_attr
.show
= aux_firmware_rev_show
;
2311 err
= device_create_file(&bmc
->dev
->dev
,
2312 &bmc
->device_id_attr
);
2315 err
= device_create_file(&bmc
->dev
->dev
,
2316 &bmc
->provides_dev_sdrs_attr
);
2319 err
= device_create_file(&bmc
->dev
->dev
,
2320 &bmc
->revision_attr
);
2323 err
= device_create_file(&bmc
->dev
->dev
,
2324 &bmc
->firmware_rev_attr
);
2327 err
= device_create_file(&bmc
->dev
->dev
,
2328 &bmc
->version_attr
);
2331 err
= device_create_file(&bmc
->dev
->dev
,
2332 &bmc
->add_dev_support_attr
);
2335 err
= device_create_file(&bmc
->dev
->dev
,
2336 &bmc
->manufacturer_id_attr
);
2339 err
= device_create_file(&bmc
->dev
->dev
,
2340 &bmc
->product_id_attr
);
2343 if (bmc
->id
.aux_firmware_revision_set
) {
2344 err
= device_create_file(&bmc
->dev
->dev
,
2345 &bmc
->aux_firmware_rev_attr
);
2349 if (bmc
->guid_set
) {
2350 err
= device_create_file(&bmc
->dev
->dev
,
2359 if (bmc
->id
.aux_firmware_revision_set
)
2360 device_remove_file(&bmc
->dev
->dev
,
2361 &bmc
->aux_firmware_rev_attr
);
2363 device_remove_file(&bmc
->dev
->dev
,
2364 &bmc
->product_id_attr
);
2366 device_remove_file(&bmc
->dev
->dev
,
2367 &bmc
->manufacturer_id_attr
);
2369 device_remove_file(&bmc
->dev
->dev
,
2370 &bmc
->add_dev_support_attr
);
2372 device_remove_file(&bmc
->dev
->dev
,
2373 &bmc
->version_attr
);
2375 device_remove_file(&bmc
->dev
->dev
,
2376 &bmc
->firmware_rev_attr
);
2378 device_remove_file(&bmc
->dev
->dev
,
2379 &bmc
->revision_attr
);
2381 device_remove_file(&bmc
->dev
->dev
,
2382 &bmc
->provides_dev_sdrs_attr
);
2384 device_remove_file(&bmc
->dev
->dev
,
2385 &bmc
->device_id_attr
);
2390 static int ipmi_bmc_register(ipmi_smi_t intf
, int ifnum
,
2391 const char *sysfs_name
)
2394 struct bmc_device
*bmc
= intf
->bmc
;
2395 struct bmc_device
*old_bmc
;
2399 mutex_lock(&ipmidriver_mutex
);
2402 * Try to find if there is an bmc_device struct
2403 * representing the interfaced BMC already
2406 old_bmc
= ipmi_find_bmc_guid(&ipmidriver
.driver
, bmc
->guid
);
2408 old_bmc
= ipmi_find_bmc_prod_dev_id(&ipmidriver
.driver
,
2413 * If there is already an bmc_device, free the new one,
2414 * otherwise register the new BMC device
2418 intf
->bmc
= old_bmc
;
2421 kref_get(&bmc
->refcount
);
2422 mutex_unlock(&ipmidriver_mutex
);
2425 "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2426 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2427 bmc
->id
.manufacturer_id
,
2432 unsigned char orig_dev_id
= bmc
->id
.device_id
;
2433 int warn_printed
= 0;
2435 snprintf(name
, sizeof(name
),
2436 "ipmi_bmc.%4.4x", bmc
->id
.product_id
);
2438 while (ipmi_find_bmc_prod_dev_id(&ipmidriver
.driver
,
2440 bmc
->id
.device_id
)) {
2441 if (!warn_printed
) {
2442 printk(KERN_WARNING PFX
2443 "This machine has two different BMCs"
2444 " with the same product id and device"
2445 " id. This is an error in the"
2446 " firmware, but incrementing the"
2447 " device id to work around the problem."
2448 " Prod ID = 0x%x, Dev ID = 0x%x\n",
2449 bmc
->id
.product_id
, bmc
->id
.device_id
);
2452 bmc
->id
.device_id
++; /* Wraps at 255 */
2453 if (bmc
->id
.device_id
== orig_dev_id
) {
2455 "Out of device ids!\n");
2460 bmc
->dev
= platform_device_alloc(name
, bmc
->id
.device_id
);
2462 mutex_unlock(&ipmidriver_mutex
);
2465 " Unable to allocate platform device\n");
2468 bmc
->dev
->dev
.driver
= &ipmidriver
.driver
;
2469 dev_set_drvdata(&bmc
->dev
->dev
, bmc
);
2470 kref_init(&bmc
->refcount
);
2472 rv
= platform_device_add(bmc
->dev
);
2473 mutex_unlock(&ipmidriver_mutex
);
2475 platform_device_put(bmc
->dev
);
2479 " Unable to register bmc device: %d\n",
2482 * Don't go to out_err, you can only do that if
2483 * the device is registered already.
2488 rv
= create_files(bmc
);
2490 mutex_lock(&ipmidriver_mutex
);
2491 platform_device_unregister(bmc
->dev
);
2492 mutex_unlock(&ipmidriver_mutex
);
2498 "ipmi: Found new BMC (man_id: 0x%6.6x, "
2499 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2500 bmc
->id
.manufacturer_id
,
2506 * create symlink from system interface device to bmc device
2509 intf
->sysfs_name
= kstrdup(sysfs_name
, GFP_KERNEL
);
2510 if (!intf
->sysfs_name
) {
2513 "ipmi_msghandler: allocate link to BMC: %d\n",
2518 rv
= sysfs_create_link(&intf
->si_dev
->kobj
,
2519 &bmc
->dev
->dev
.kobj
, intf
->sysfs_name
);
2521 kfree(intf
->sysfs_name
);
2522 intf
->sysfs_name
= NULL
;
2524 "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2529 size
= snprintf(dummy
, 0, "ipmi%d", ifnum
);
2530 intf
->my_dev_name
= kmalloc(size
+1, GFP_KERNEL
);
2531 if (!intf
->my_dev_name
) {
2532 kfree(intf
->sysfs_name
);
2533 intf
->sysfs_name
= NULL
;
2536 "ipmi_msghandler: allocate link from BMC: %d\n",
2540 snprintf(intf
->my_dev_name
, size
+1, "ipmi%d", ifnum
);
2542 rv
= sysfs_create_link(&bmc
->dev
->dev
.kobj
, &intf
->si_dev
->kobj
,
2545 kfree(intf
->sysfs_name
);
2546 intf
->sysfs_name
= NULL
;
2547 kfree(intf
->my_dev_name
);
2548 intf
->my_dev_name
= NULL
;
2551 " Unable to create symlink to bmc: %d\n",
2559 ipmi_bmc_unregister(intf
);
2564 send_guid_cmd(ipmi_smi_t intf
, int chan
)
2566 struct kernel_ipmi_msg msg
;
2567 struct ipmi_system_interface_addr si
;
2569 si
.addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
2570 si
.channel
= IPMI_BMC_CHANNEL
;
2573 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
2574 msg
.cmd
= IPMI_GET_DEVICE_GUID_CMD
;
2577 return i_ipmi_request(NULL
,
2579 (struct ipmi_addr
*) &si
,
2586 intf
->channels
[0].address
,
2587 intf
->channels
[0].lun
,
2592 guid_handler(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
2594 if ((msg
->addr
.addr_type
!= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
2595 || (msg
->msg
.netfn
!= IPMI_NETFN_APP_RESPONSE
)
2596 || (msg
->msg
.cmd
!= IPMI_GET_DEVICE_GUID_CMD
))
2600 if (msg
->msg
.data
[0] != 0) {
2601 /* Error from getting the GUID, the BMC doesn't have one. */
2602 intf
->bmc
->guid_set
= 0;
2606 if (msg
->msg
.data_len
< 17) {
2607 intf
->bmc
->guid_set
= 0;
2608 printk(KERN_WARNING PFX
2609 "guid_handler: The GUID response from the BMC was too"
2610 " short, it was %d but should have been 17. Assuming"
2611 " GUID is not available.\n",
2616 memcpy(intf
->bmc
->guid
, msg
->msg
.data
, 16);
2617 intf
->bmc
->guid_set
= 1;
2619 wake_up(&intf
->waitq
);
2623 get_guid(ipmi_smi_t intf
)
2627 intf
->bmc
->guid_set
= 0x2;
2628 intf
->null_user_handler
= guid_handler
;
2629 rv
= send_guid_cmd(intf
, 0);
2631 /* Send failed, no GUID available. */
2632 intf
->bmc
->guid_set
= 0;
2633 wait_event(intf
->waitq
, intf
->bmc
->guid_set
!= 2);
2634 intf
->null_user_handler
= NULL
;
2638 send_channel_info_cmd(ipmi_smi_t intf
, int chan
)
2640 struct kernel_ipmi_msg msg
;
2641 unsigned char data
[1];
2642 struct ipmi_system_interface_addr si
;
2644 si
.addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
2645 si
.channel
= IPMI_BMC_CHANNEL
;
2648 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
2649 msg
.cmd
= IPMI_GET_CHANNEL_INFO_CMD
;
2653 return i_ipmi_request(NULL
,
2655 (struct ipmi_addr
*) &si
,
2662 intf
->channels
[0].address
,
2663 intf
->channels
[0].lun
,
2668 channel_handler(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
2673 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
2674 && (msg
->msg
.netfn
== IPMI_NETFN_APP_RESPONSE
)
2675 && (msg
->msg
.cmd
== IPMI_GET_CHANNEL_INFO_CMD
)) {
2676 /* It's the one we want */
2677 if (msg
->msg
.data
[0] != 0) {
2678 /* Got an error from the channel, just go on. */
2680 if (msg
->msg
.data
[0] == IPMI_INVALID_COMMAND_ERR
) {
2682 * If the MC does not support this
2683 * command, that is legal. We just
2684 * assume it has one IPMB at channel
2687 intf
->channels
[0].medium
2688 = IPMI_CHANNEL_MEDIUM_IPMB
;
2689 intf
->channels
[0].protocol
2690 = IPMI_CHANNEL_PROTOCOL_IPMB
;
2693 intf
->curr_channel
= IPMI_MAX_CHANNELS
;
2694 wake_up(&intf
->waitq
);
2699 if (msg
->msg
.data_len
< 4) {
2700 /* Message not big enough, just go on. */
2703 chan
= intf
->curr_channel
;
2704 intf
->channels
[chan
].medium
= msg
->msg
.data
[2] & 0x7f;
2705 intf
->channels
[chan
].protocol
= msg
->msg
.data
[3] & 0x1f;
2708 intf
->curr_channel
++;
2709 if (intf
->curr_channel
>= IPMI_MAX_CHANNELS
)
2710 wake_up(&intf
->waitq
);
2712 rv
= send_channel_info_cmd(intf
, intf
->curr_channel
);
2715 /* Got an error somehow, just give up. */
2716 intf
->curr_channel
= IPMI_MAX_CHANNELS
;
2717 wake_up(&intf
->waitq
);
2719 printk(KERN_WARNING PFX
2720 "Error sending channel information: %d\n",
2728 void ipmi_poll_interface(ipmi_user_t user
)
2730 ipmi_smi_t intf
= user
->intf
;
2732 if (intf
->handlers
->poll
)
2733 intf
->handlers
->poll(intf
->send_info
);
2735 EXPORT_SYMBOL(ipmi_poll_interface
);
2737 int ipmi_register_smi(struct ipmi_smi_handlers
*handlers
,
2739 struct ipmi_device_id
*device_id
,
2740 struct device
*si_dev
,
2741 const char *sysfs_name
,
2742 unsigned char slave_addr
)
2748 struct list_head
*link
;
2751 * Make sure the driver is actually initialized, this handles
2752 * problems with initialization order.
2755 rv
= ipmi_init_msghandler();
2759 * The init code doesn't return an error if it was turned
2760 * off, but it won't initialize. Check that.
2766 intf
= kzalloc(sizeof(*intf
), GFP_KERNEL
);
2770 intf
->ipmi_version_major
= ipmi_version_major(device_id
);
2771 intf
->ipmi_version_minor
= ipmi_version_minor(device_id
);
2773 intf
->bmc
= kzalloc(sizeof(*intf
->bmc
), GFP_KERNEL
);
2778 intf
->intf_num
= -1; /* Mark it invalid for now. */
2779 kref_init(&intf
->refcount
);
2780 intf
->bmc
->id
= *device_id
;
2781 intf
->si_dev
= si_dev
;
2782 for (j
= 0; j
< IPMI_MAX_CHANNELS
; j
++) {
2783 intf
->channels
[j
].address
= IPMI_BMC_SLAVE_ADDR
;
2784 intf
->channels
[j
].lun
= 2;
2786 if (slave_addr
!= 0)
2787 intf
->channels
[0].address
= slave_addr
;
2788 INIT_LIST_HEAD(&intf
->users
);
2789 intf
->handlers
= handlers
;
2790 intf
->send_info
= send_info
;
2791 spin_lock_init(&intf
->seq_lock
);
2792 for (j
= 0; j
< IPMI_IPMB_NUM_SEQ
; j
++) {
2793 intf
->seq_table
[j
].inuse
= 0;
2794 intf
->seq_table
[j
].seqid
= 0;
2797 #ifdef CONFIG_PROC_FS
2798 mutex_init(&intf
->proc_entry_lock
);
2800 spin_lock_init(&intf
->waiting_msgs_lock
);
2801 INIT_LIST_HEAD(&intf
->waiting_msgs
);
2802 spin_lock_init(&intf
->events_lock
);
2803 INIT_LIST_HEAD(&intf
->waiting_events
);
2804 intf
->waiting_events_count
= 0;
2805 mutex_init(&intf
->cmd_rcvrs_mutex
);
2806 spin_lock_init(&intf
->maintenance_mode_lock
);
2807 INIT_LIST_HEAD(&intf
->cmd_rcvrs
);
2808 init_waitqueue_head(&intf
->waitq
);
2809 for (i
= 0; i
< IPMI_NUM_STATS
; i
++)
2810 atomic_set(&intf
->stats
[i
], 0);
2812 intf
->proc_dir
= NULL
;
2814 mutex_lock(&smi_watchers_mutex
);
2815 mutex_lock(&ipmi_interfaces_mutex
);
2816 /* Look for a hole in the numbers. */
2818 link
= &ipmi_interfaces
;
2819 list_for_each_entry_rcu(tintf
, &ipmi_interfaces
, link
) {
2820 if (tintf
->intf_num
!= i
) {
2821 link
= &tintf
->link
;
2826 /* Add the new interface in numeric order. */
2828 list_add_rcu(&intf
->link
, &ipmi_interfaces
);
2830 list_add_tail_rcu(&intf
->link
, link
);
2832 rv
= handlers
->start_processing(send_info
, intf
);
2838 if ((intf
->ipmi_version_major
> 1)
2839 || ((intf
->ipmi_version_major
== 1)
2840 && (intf
->ipmi_version_minor
>= 5))) {
2842 * Start scanning the channels to see what is
2845 intf
->null_user_handler
= channel_handler
;
2846 intf
->curr_channel
= 0;
2847 rv
= send_channel_info_cmd(intf
, 0);
2851 /* Wait for the channel info to be read. */
2852 wait_event(intf
->waitq
,
2853 intf
->curr_channel
>= IPMI_MAX_CHANNELS
);
2854 intf
->null_user_handler
= NULL
;
2856 /* Assume a single IPMB channel at zero. */
2857 intf
->channels
[0].medium
= IPMI_CHANNEL_MEDIUM_IPMB
;
2858 intf
->channels
[0].protocol
= IPMI_CHANNEL_PROTOCOL_IPMB
;
2859 intf
->curr_channel
= IPMI_MAX_CHANNELS
;
2863 rv
= add_proc_entries(intf
, i
);
2865 rv
= ipmi_bmc_register(intf
, i
, sysfs_name
);
2870 remove_proc_entries(intf
);
2871 intf
->handlers
= NULL
;
2872 list_del_rcu(&intf
->link
);
2873 mutex_unlock(&ipmi_interfaces_mutex
);
2874 mutex_unlock(&smi_watchers_mutex
);
2876 kref_put(&intf
->refcount
, intf_free
);
2879 * Keep memory order straight for RCU readers. Make
2880 * sure everything else is committed to memory before
2881 * setting intf_num to mark the interface valid.
2885 mutex_unlock(&ipmi_interfaces_mutex
);
2886 /* After this point the interface is legal to use. */
2887 call_smi_watchers(i
, intf
->si_dev
);
2888 mutex_unlock(&smi_watchers_mutex
);
2893 EXPORT_SYMBOL(ipmi_register_smi
);
2895 static void cleanup_smi_msgs(ipmi_smi_t intf
)
2898 struct seq_table
*ent
;
2900 /* No need for locks, the interface is down. */
2901 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
2902 ent
= &(intf
->seq_table
[i
]);
2905 deliver_err_response(ent
->recv_msg
, IPMI_ERR_UNSPECIFIED
);
2909 int ipmi_unregister_smi(ipmi_smi_t intf
)
2911 struct ipmi_smi_watcher
*w
;
2912 int intf_num
= intf
->intf_num
;
2914 ipmi_bmc_unregister(intf
);
2916 mutex_lock(&smi_watchers_mutex
);
2917 mutex_lock(&ipmi_interfaces_mutex
);
2918 intf
->intf_num
= -1;
2919 intf
->handlers
= NULL
;
2920 list_del_rcu(&intf
->link
);
2921 mutex_unlock(&ipmi_interfaces_mutex
);
2924 cleanup_smi_msgs(intf
);
2926 remove_proc_entries(intf
);
2929 * Call all the watcher interfaces to tell them that
2930 * an interface is gone.
2932 list_for_each_entry(w
, &smi_watchers
, link
)
2933 w
->smi_gone(intf_num
);
2934 mutex_unlock(&smi_watchers_mutex
);
2936 kref_put(&intf
->refcount
, intf_free
);
2939 EXPORT_SYMBOL(ipmi_unregister_smi
);
2941 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf
,
2942 struct ipmi_smi_msg
*msg
)
2944 struct ipmi_ipmb_addr ipmb_addr
;
2945 struct ipmi_recv_msg
*recv_msg
;
2948 * This is 11, not 10, because the response must contain a
2951 if (msg
->rsp_size
< 11) {
2952 /* Message not big enough, just ignore it. */
2953 ipmi_inc_stat(intf
, invalid_ipmb_responses
);
2957 if (msg
->rsp
[2] != 0) {
2958 /* An error getting the response, just ignore it. */
2962 ipmb_addr
.addr_type
= IPMI_IPMB_ADDR_TYPE
;
2963 ipmb_addr
.slave_addr
= msg
->rsp
[6];
2964 ipmb_addr
.channel
= msg
->rsp
[3] & 0x0f;
2965 ipmb_addr
.lun
= msg
->rsp
[7] & 3;
2968 * It's a response from a remote entity. Look up the sequence
2969 * number and handle the response.
2971 if (intf_find_seq(intf
,
2975 (msg
->rsp
[4] >> 2) & (~1),
2976 (struct ipmi_addr
*) &(ipmb_addr
),
2979 * We were unable to find the sequence number,
2980 * so just nuke the message.
2982 ipmi_inc_stat(intf
, unhandled_ipmb_responses
);
2986 memcpy(recv_msg
->msg_data
,
2990 * The other fields matched, so no need to set them, except
2991 * for netfn, which needs to be the response that was
2992 * returned, not the request value.
2994 recv_msg
->msg
.netfn
= msg
->rsp
[4] >> 2;
2995 recv_msg
->msg
.data
= recv_msg
->msg_data
;
2996 recv_msg
->msg
.data_len
= msg
->rsp_size
- 10;
2997 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
2998 ipmi_inc_stat(intf
, handled_ipmb_responses
);
2999 deliver_response(recv_msg
);
3004 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf
,
3005 struct ipmi_smi_msg
*msg
)
3007 struct cmd_rcvr
*rcvr
;
3009 unsigned char netfn
;
3012 ipmi_user_t user
= NULL
;
3013 struct ipmi_ipmb_addr
*ipmb_addr
;
3014 struct ipmi_recv_msg
*recv_msg
;
3015 struct ipmi_smi_handlers
*handlers
;
3017 if (msg
->rsp_size
< 10) {
3018 /* Message not big enough, just ignore it. */
3019 ipmi_inc_stat(intf
, invalid_commands
);
3023 if (msg
->rsp
[2] != 0) {
3024 /* An error getting the response, just ignore it. */
3028 netfn
= msg
->rsp
[4] >> 2;
3030 chan
= msg
->rsp
[3] & 0xf;
3033 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3036 kref_get(&user
->refcount
);
3042 /* We didn't find a user, deliver an error response. */
3043 ipmi_inc_stat(intf
, unhandled_commands
);
3045 msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
3046 msg
->data
[1] = IPMI_SEND_MSG_CMD
;
3047 msg
->data
[2] = msg
->rsp
[3];
3048 msg
->data
[3] = msg
->rsp
[6];
3049 msg
->data
[4] = ((netfn
+ 1) << 2) | (msg
->rsp
[7] & 0x3);
3050 msg
->data
[5] = ipmb_checksum(&(msg
->data
[3]), 2);
3051 msg
->data
[6] = intf
->channels
[msg
->rsp
[3] & 0xf].address
;
3053 msg
->data
[7] = (msg
->rsp
[7] & 0xfc) | (msg
->rsp
[4] & 0x3);
3054 msg
->data
[8] = msg
->rsp
[8]; /* cmd */
3055 msg
->data
[9] = IPMI_INVALID_CMD_COMPLETION_CODE
;
3056 msg
->data
[10] = ipmb_checksum(&(msg
->data
[6]), 4);
3057 msg
->data_size
= 11;
3062 printk("Invalid command:");
3063 for (m
= 0; m
< msg
->data_size
; m
++)
3064 printk(" %2.2x", msg
->data
[m
]);
3069 handlers
= intf
->handlers
;
3071 handlers
->sender(intf
->send_info
, msg
, 0);
3073 * We used the message, so return the value
3074 * that causes it to not be freed or
3081 /* Deliver the message to the user. */
3082 ipmi_inc_stat(intf
, handled_commands
);
3084 recv_msg
= ipmi_alloc_recv_msg();
3087 * We couldn't allocate memory for the
3088 * message, so requeue it for handling
3092 kref_put(&user
->refcount
, free_user
);
3094 /* Extract the source address from the data. */
3095 ipmb_addr
= (struct ipmi_ipmb_addr
*) &recv_msg
->addr
;
3096 ipmb_addr
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
3097 ipmb_addr
->slave_addr
= msg
->rsp
[6];
3098 ipmb_addr
->lun
= msg
->rsp
[7] & 3;
3099 ipmb_addr
->channel
= msg
->rsp
[3] & 0xf;
3102 * Extract the rest of the message information
3103 * from the IPMB header.
3105 recv_msg
->user
= user
;
3106 recv_msg
->recv_type
= IPMI_CMD_RECV_TYPE
;
3107 recv_msg
->msgid
= msg
->rsp
[7] >> 2;
3108 recv_msg
->msg
.netfn
= msg
->rsp
[4] >> 2;
3109 recv_msg
->msg
.cmd
= msg
->rsp
[8];
3110 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3113 * We chop off 10, not 9 bytes because the checksum
3114 * at the end also needs to be removed.
3116 recv_msg
->msg
.data_len
= msg
->rsp_size
- 10;
3117 memcpy(recv_msg
->msg_data
,
3119 msg
->rsp_size
- 10);
3120 deliver_response(recv_msg
);
3127 static int handle_lan_get_msg_rsp(ipmi_smi_t intf
,
3128 struct ipmi_smi_msg
*msg
)
3130 struct ipmi_lan_addr lan_addr
;
3131 struct ipmi_recv_msg
*recv_msg
;
3135 * This is 13, not 12, because the response must contain a
3138 if (msg
->rsp_size
< 13) {
3139 /* Message not big enough, just ignore it. */
3140 ipmi_inc_stat(intf
, invalid_lan_responses
);
3144 if (msg
->rsp
[2] != 0) {
3145 /* An error getting the response, just ignore it. */
3149 lan_addr
.addr_type
= IPMI_LAN_ADDR_TYPE
;
3150 lan_addr
.session_handle
= msg
->rsp
[4];
3151 lan_addr
.remote_SWID
= msg
->rsp
[8];
3152 lan_addr
.local_SWID
= msg
->rsp
[5];
3153 lan_addr
.channel
= msg
->rsp
[3] & 0x0f;
3154 lan_addr
.privilege
= msg
->rsp
[3] >> 4;
3155 lan_addr
.lun
= msg
->rsp
[9] & 3;
3158 * It's a response from a remote entity. Look up the sequence
3159 * number and handle the response.
3161 if (intf_find_seq(intf
,
3165 (msg
->rsp
[6] >> 2) & (~1),
3166 (struct ipmi_addr
*) &(lan_addr
),
3169 * We were unable to find the sequence number,
3170 * so just nuke the message.
3172 ipmi_inc_stat(intf
, unhandled_lan_responses
);
3176 memcpy(recv_msg
->msg_data
,
3178 msg
->rsp_size
- 11);
3180 * The other fields matched, so no need to set them, except
3181 * for netfn, which needs to be the response that was
3182 * returned, not the request value.
3184 recv_msg
->msg
.netfn
= msg
->rsp
[6] >> 2;
3185 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3186 recv_msg
->msg
.data_len
= msg
->rsp_size
- 12;
3187 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
3188 ipmi_inc_stat(intf
, handled_lan_responses
);
3189 deliver_response(recv_msg
);
3194 static int handle_lan_get_msg_cmd(ipmi_smi_t intf
,
3195 struct ipmi_smi_msg
*msg
)
3197 struct cmd_rcvr
*rcvr
;
3199 unsigned char netfn
;
3202 ipmi_user_t user
= NULL
;
3203 struct ipmi_lan_addr
*lan_addr
;
3204 struct ipmi_recv_msg
*recv_msg
;
3206 if (msg
->rsp_size
< 12) {
3207 /* Message not big enough, just ignore it. */
3208 ipmi_inc_stat(intf
, invalid_commands
);
3212 if (msg
->rsp
[2] != 0) {
3213 /* An error getting the response, just ignore it. */
3217 netfn
= msg
->rsp
[6] >> 2;
3219 chan
= msg
->rsp
[3] & 0xf;
3222 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3225 kref_get(&user
->refcount
);
3231 /* We didn't find a user, just give up. */
3232 ipmi_inc_stat(intf
, unhandled_commands
);
3235 * Don't do anything with these messages, just allow
3240 /* Deliver the message to the user. */
3241 ipmi_inc_stat(intf
, handled_commands
);
3243 recv_msg
= ipmi_alloc_recv_msg();
3246 * We couldn't allocate memory for the
3247 * message, so requeue it for handling later.
3250 kref_put(&user
->refcount
, free_user
);
3252 /* Extract the source address from the data. */
3253 lan_addr
= (struct ipmi_lan_addr
*) &recv_msg
->addr
;
3254 lan_addr
->addr_type
= IPMI_LAN_ADDR_TYPE
;
3255 lan_addr
->session_handle
= msg
->rsp
[4];
3256 lan_addr
->remote_SWID
= msg
->rsp
[8];
3257 lan_addr
->local_SWID
= msg
->rsp
[5];
3258 lan_addr
->lun
= msg
->rsp
[9] & 3;
3259 lan_addr
->channel
= msg
->rsp
[3] & 0xf;
3260 lan_addr
->privilege
= msg
->rsp
[3] >> 4;
3263 * Extract the rest of the message information
3264 * from the IPMB header.
3266 recv_msg
->user
= user
;
3267 recv_msg
->recv_type
= IPMI_CMD_RECV_TYPE
;
3268 recv_msg
->msgid
= msg
->rsp
[9] >> 2;
3269 recv_msg
->msg
.netfn
= msg
->rsp
[6] >> 2;
3270 recv_msg
->msg
.cmd
= msg
->rsp
[10];
3271 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3274 * We chop off 12, not 11 bytes because the checksum
3275 * at the end also needs to be removed.
3277 recv_msg
->msg
.data_len
= msg
->rsp_size
- 12;
3278 memcpy(recv_msg
->msg_data
,
3280 msg
->rsp_size
- 12);
3281 deliver_response(recv_msg
);
3289 * This routine will handle "Get Message" command responses with
3290 * channels that use an OEM Medium. The message format belongs to
3291 * the OEM. See IPMI 2.0 specification, Chapter 6 and
3292 * Chapter 22, sections 22.6 and 22.24 for more details.
3294 static int handle_oem_get_msg_cmd(ipmi_smi_t intf
,
3295 struct ipmi_smi_msg
*msg
)
3297 struct cmd_rcvr
*rcvr
;
3299 unsigned char netfn
;
3302 ipmi_user_t user
= NULL
;
3303 struct ipmi_system_interface_addr
*smi_addr
;
3304 struct ipmi_recv_msg
*recv_msg
;
3307 * We expect the OEM SW to perform error checking
3308 * so we just do some basic sanity checks
3310 if (msg
->rsp_size
< 4) {
3311 /* Message not big enough, just ignore it. */
3312 ipmi_inc_stat(intf
, invalid_commands
);
3316 if (msg
->rsp
[2] != 0) {
3317 /* An error getting the response, just ignore it. */
3322 * This is an OEM Message so the OEM needs to know how
3323 * handle the message. We do no interpretation.
3325 netfn
= msg
->rsp
[0] >> 2;
3327 chan
= msg
->rsp
[3] & 0xf;
3330 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3333 kref_get(&user
->refcount
);
3339 /* We didn't find a user, just give up. */
3340 ipmi_inc_stat(intf
, unhandled_commands
);
3343 * Don't do anything with these messages, just allow
3349 /* Deliver the message to the user. */
3350 ipmi_inc_stat(intf
, handled_commands
);
3352 recv_msg
= ipmi_alloc_recv_msg();
3355 * We couldn't allocate memory for the
3356 * message, so requeue it for handling
3360 kref_put(&user
->refcount
, free_user
);
3363 * OEM Messages are expected to be delivered via
3364 * the system interface to SMS software. We might
3365 * need to visit this again depending on OEM
3368 smi_addr
= ((struct ipmi_system_interface_addr
*)
3370 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3371 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
3372 smi_addr
->lun
= msg
->rsp
[0] & 3;
3374 recv_msg
->user
= user
;
3375 recv_msg
->user_msg_data
= NULL
;
3376 recv_msg
->recv_type
= IPMI_OEM_RECV_TYPE
;
3377 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
3378 recv_msg
->msg
.cmd
= msg
->rsp
[1];
3379 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3382 * The message starts at byte 4 which follows the
3383 * the Channel Byte in the "GET MESSAGE" command
3385 recv_msg
->msg
.data_len
= msg
->rsp_size
- 4;
3386 memcpy(recv_msg
->msg_data
,
3389 deliver_response(recv_msg
);
3396 static void copy_event_into_recv_msg(struct ipmi_recv_msg
*recv_msg
,
3397 struct ipmi_smi_msg
*msg
)
3399 struct ipmi_system_interface_addr
*smi_addr
;
3401 recv_msg
->msgid
= 0;
3402 smi_addr
= (struct ipmi_system_interface_addr
*) &(recv_msg
->addr
);
3403 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3404 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
3405 smi_addr
->lun
= msg
->rsp
[0] & 3;
3406 recv_msg
->recv_type
= IPMI_ASYNC_EVENT_RECV_TYPE
;
3407 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
3408 recv_msg
->msg
.cmd
= msg
->rsp
[1];
3409 memcpy(recv_msg
->msg_data
, &(msg
->rsp
[3]), msg
->rsp_size
- 3);
3410 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3411 recv_msg
->msg
.data_len
= msg
->rsp_size
- 3;
3414 static int handle_read_event_rsp(ipmi_smi_t intf
,
3415 struct ipmi_smi_msg
*msg
)
3417 struct ipmi_recv_msg
*recv_msg
, *recv_msg2
;
3418 struct list_head msgs
;
3421 int deliver_count
= 0;
3422 unsigned long flags
;
3424 if (msg
->rsp_size
< 19) {
3425 /* Message is too small to be an IPMB event. */
3426 ipmi_inc_stat(intf
, invalid_events
);
3430 if (msg
->rsp
[2] != 0) {
3431 /* An error getting the event, just ignore it. */
3435 INIT_LIST_HEAD(&msgs
);
3437 spin_lock_irqsave(&intf
->events_lock
, flags
);
3439 ipmi_inc_stat(intf
, events
);
3442 * Allocate and fill in one message for every user that is
3446 list_for_each_entry_rcu(user
, &intf
->users
, link
) {
3447 if (!user
->gets_events
)
3450 recv_msg
= ipmi_alloc_recv_msg();
3453 list_for_each_entry_safe(recv_msg
, recv_msg2
, &msgs
,
3455 list_del(&recv_msg
->link
);
3456 ipmi_free_recv_msg(recv_msg
);
3459 * We couldn't allocate memory for the
3460 * message, so requeue it for handling
3469 copy_event_into_recv_msg(recv_msg
, msg
);
3470 recv_msg
->user
= user
;
3471 kref_get(&user
->refcount
);
3472 list_add_tail(&(recv_msg
->link
), &msgs
);
3476 if (deliver_count
) {
3477 /* Now deliver all the messages. */
3478 list_for_each_entry_safe(recv_msg
, recv_msg2
, &msgs
, link
) {
3479 list_del(&recv_msg
->link
);
3480 deliver_response(recv_msg
);
3482 } else if (intf
->waiting_events_count
< MAX_EVENTS_IN_QUEUE
) {
3484 * No one to receive the message, put it in queue if there's
3485 * not already too many things in the queue.
3487 recv_msg
= ipmi_alloc_recv_msg();
3490 * We couldn't allocate memory for the
3491 * message, so requeue it for handling
3498 copy_event_into_recv_msg(recv_msg
, msg
);
3499 list_add_tail(&(recv_msg
->link
), &(intf
->waiting_events
));
3500 intf
->waiting_events_count
++;
3501 } else if (!intf
->event_msg_printed
) {
3503 * There's too many things in the queue, discard this
3506 printk(KERN_WARNING PFX
"Event queue full, discarding"
3507 " incoming events\n");
3508 intf
->event_msg_printed
= 1;
3512 spin_unlock_irqrestore(&(intf
->events_lock
), flags
);
3517 static int handle_bmc_rsp(ipmi_smi_t intf
,
3518 struct ipmi_smi_msg
*msg
)
3520 struct ipmi_recv_msg
*recv_msg
;
3521 struct ipmi_user
*user
;
3523 recv_msg
= (struct ipmi_recv_msg
*) msg
->user_data
;
3524 if (recv_msg
== NULL
) {
3526 "IPMI message received with no owner. This\n"
3527 "could be because of a malformed message, or\n"
3528 "because of a hardware error. Contact your\n"
3529 "hardware vender for assistance\n");
3533 user
= recv_msg
->user
;
3534 /* Make sure the user still exists. */
3535 if (user
&& !user
->valid
) {
3536 /* The user for the message went away, so give up. */
3537 ipmi_inc_stat(intf
, unhandled_local_responses
);
3538 ipmi_free_recv_msg(recv_msg
);
3540 struct ipmi_system_interface_addr
*smi_addr
;
3542 ipmi_inc_stat(intf
, handled_local_responses
);
3543 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
3544 recv_msg
->msgid
= msg
->msgid
;
3545 smi_addr
= ((struct ipmi_system_interface_addr
*)
3547 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3548 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
3549 smi_addr
->lun
= msg
->rsp
[0] & 3;
3550 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
3551 recv_msg
->msg
.cmd
= msg
->rsp
[1];
3552 memcpy(recv_msg
->msg_data
,
3555 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3556 recv_msg
->msg
.data_len
= msg
->rsp_size
- 2;
3557 deliver_response(recv_msg
);
3564 * Handle a new message. Return 1 if the message should be requeued,
3565 * 0 if the message should be freed, or -1 if the message should not
3566 * be freed or requeued.
3568 static int handle_new_recv_msg(ipmi_smi_t intf
,
3569 struct ipmi_smi_msg
*msg
)
3577 for (m
= 0; m
< msg
->rsp_size
; m
++)
3578 printk(" %2.2x", msg
->rsp
[m
]);
3581 if (msg
->rsp_size
< 2) {
3582 /* Message is too small to be correct. */
3583 printk(KERN_WARNING PFX
"BMC returned to small a message"
3584 " for netfn %x cmd %x, got %d bytes\n",
3585 (msg
->data
[0] >> 2) | 1, msg
->data
[1], msg
->rsp_size
);
3587 /* Generate an error response for the message. */
3588 msg
->rsp
[0] = msg
->data
[0] | (1 << 2);
3589 msg
->rsp
[1] = msg
->data
[1];
3590 msg
->rsp
[2] = IPMI_ERR_UNSPECIFIED
;
3592 } else if (((msg
->rsp
[0] >> 2) != ((msg
->data
[0] >> 2) | 1))
3593 || (msg
->rsp
[1] != msg
->data
[1])) {
3595 * The NetFN and Command in the response is not even
3596 * marginally correct.
3598 printk(KERN_WARNING PFX
"BMC returned incorrect response,"
3599 " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3600 (msg
->data
[0] >> 2) | 1, msg
->data
[1],
3601 msg
->rsp
[0] >> 2, msg
->rsp
[1]);
3603 /* Generate an error response for the message. */
3604 msg
->rsp
[0] = msg
->data
[0] | (1 << 2);
3605 msg
->rsp
[1] = msg
->data
[1];
3606 msg
->rsp
[2] = IPMI_ERR_UNSPECIFIED
;
3610 if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3611 && (msg
->rsp
[1] == IPMI_SEND_MSG_CMD
)
3612 && (msg
->user_data
!= NULL
)) {
3614 * It's a response to a response we sent. For this we
3615 * deliver a send message response to the user.
3617 struct ipmi_recv_msg
*recv_msg
= msg
->user_data
;
3620 if (msg
->rsp_size
< 2)
3621 /* Message is too small to be correct. */
3624 chan
= msg
->data
[2] & 0x0f;
3625 if (chan
>= IPMI_MAX_CHANNELS
)
3626 /* Invalid channel number */
3632 /* Make sure the user still exists. */
3633 if (!recv_msg
->user
|| !recv_msg
->user
->valid
)
3636 recv_msg
->recv_type
= IPMI_RESPONSE_RESPONSE_TYPE
;
3637 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3638 recv_msg
->msg
.data_len
= 1;
3639 recv_msg
->msg_data
[0] = msg
->rsp
[2];
3640 deliver_response(recv_msg
);
3641 } else if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3642 && (msg
->rsp
[1] == IPMI_GET_MSG_CMD
)) {
3643 /* It's from the receive queue. */
3644 chan
= msg
->rsp
[3] & 0xf;
3645 if (chan
>= IPMI_MAX_CHANNELS
) {
3646 /* Invalid channel number */
3652 * We need to make sure the channels have been initialized.
3653 * The channel_handler routine will set the "curr_channel"
3654 * equal to or greater than IPMI_MAX_CHANNELS when all the
3655 * channels for this interface have been initialized.
3657 if (intf
->curr_channel
< IPMI_MAX_CHANNELS
) {
3658 requeue
= 0; /* Throw the message away */
3662 switch (intf
->channels
[chan
].medium
) {
3663 case IPMI_CHANNEL_MEDIUM_IPMB
:
3664 if (msg
->rsp
[4] & 0x04) {
3666 * It's a response, so find the
3667 * requesting message and send it up.
3669 requeue
= handle_ipmb_get_msg_rsp(intf
, msg
);
3672 * It's a command to the SMS from some other
3673 * entity. Handle that.
3675 requeue
= handle_ipmb_get_msg_cmd(intf
, msg
);
3679 case IPMI_CHANNEL_MEDIUM_8023LAN
:
3680 case IPMI_CHANNEL_MEDIUM_ASYNC
:
3681 if (msg
->rsp
[6] & 0x04) {
3683 * It's a response, so find the
3684 * requesting message and send it up.
3686 requeue
= handle_lan_get_msg_rsp(intf
, msg
);
3689 * It's a command to the SMS from some other
3690 * entity. Handle that.
3692 requeue
= handle_lan_get_msg_cmd(intf
, msg
);
3697 /* Check for OEM Channels. Clients had better
3698 register for these commands. */
3699 if ((intf
->channels
[chan
].medium
3700 >= IPMI_CHANNEL_MEDIUM_OEM_MIN
)
3701 && (intf
->channels
[chan
].medium
3702 <= IPMI_CHANNEL_MEDIUM_OEM_MAX
)) {
3703 requeue
= handle_oem_get_msg_cmd(intf
, msg
);
3706 * We don't handle the channel type, so just
3713 } else if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3714 && (msg
->rsp
[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD
)) {
3715 /* It's an asyncronous event. */
3716 requeue
= handle_read_event_rsp(intf
, msg
);
3718 /* It's a response from the local BMC. */
3719 requeue
= handle_bmc_rsp(intf
, msg
);
3726 /* Handle a new message from the lower layer. */
3727 void ipmi_smi_msg_received(ipmi_smi_t intf
,
3728 struct ipmi_smi_msg
*msg
)
3730 unsigned long flags
= 0; /* keep us warning-free. */
3732 int run_to_completion
;
3735 if ((msg
->data_size
>= 2)
3736 && (msg
->data
[0] == (IPMI_NETFN_APP_REQUEST
<< 2))
3737 && (msg
->data
[1] == IPMI_SEND_MSG_CMD
)
3738 && (msg
->user_data
== NULL
)) {
3740 * This is the local response to a command send, start
3741 * the timer for these. The user_data will not be
3742 * NULL if this is a response send, and we will let
3743 * response sends just go through.
3747 * Check for errors, if we get certain errors (ones
3748 * that mean basically we can try again later), we
3749 * ignore them and start the timer. Otherwise we
3750 * report the error immediately.
3752 if ((msg
->rsp_size
>= 3) && (msg
->rsp
[2] != 0)
3753 && (msg
->rsp
[2] != IPMI_NODE_BUSY_ERR
)
3754 && (msg
->rsp
[2] != IPMI_LOST_ARBITRATION_ERR
)
3755 && (msg
->rsp
[2] != IPMI_BUS_ERR
)
3756 && (msg
->rsp
[2] != IPMI_NAK_ON_WRITE_ERR
)) {
3757 int chan
= msg
->rsp
[3] & 0xf;
3759 /* Got an error sending the message, handle it. */
3760 if (chan
>= IPMI_MAX_CHANNELS
)
3761 ; /* This shouldn't happen */
3762 else if ((intf
->channels
[chan
].medium
3763 == IPMI_CHANNEL_MEDIUM_8023LAN
)
3764 || (intf
->channels
[chan
].medium
3765 == IPMI_CHANNEL_MEDIUM_ASYNC
))
3766 ipmi_inc_stat(intf
, sent_lan_command_errs
);
3768 ipmi_inc_stat(intf
, sent_ipmb_command_errs
);
3769 intf_err_seq(intf
, msg
->msgid
, msg
->rsp
[2]);
3771 /* The message was sent, start the timer. */
3772 intf_start_seq_timer(intf
, msg
->msgid
);
3774 ipmi_free_smi_msg(msg
);
3779 * To preserve message order, if the list is not empty, we
3780 * tack this message onto the end of the list.
3782 run_to_completion
= intf
->run_to_completion
;
3783 if (!run_to_completion
)
3784 spin_lock_irqsave(&intf
->waiting_msgs_lock
, flags
);
3785 if (!list_empty(&intf
->waiting_msgs
)) {
3786 list_add_tail(&msg
->link
, &intf
->waiting_msgs
);
3787 if (!run_to_completion
)
3788 spin_unlock_irqrestore(&intf
->waiting_msgs_lock
, flags
);
3791 if (!run_to_completion
)
3792 spin_unlock_irqrestore(&intf
->waiting_msgs_lock
, flags
);
3794 rv
= handle_new_recv_msg(intf
, msg
);
3797 * Could not handle the message now, just add it to a
3798 * list to handle later.
3800 run_to_completion
= intf
->run_to_completion
;
3801 if (!run_to_completion
)
3802 spin_lock_irqsave(&intf
->waiting_msgs_lock
, flags
);
3803 list_add_tail(&msg
->link
, &intf
->waiting_msgs
);
3804 if (!run_to_completion
)
3805 spin_unlock_irqrestore(&intf
->waiting_msgs_lock
, flags
);
3806 } else if (rv
== 0) {
3807 ipmi_free_smi_msg(msg
);
3813 EXPORT_SYMBOL(ipmi_smi_msg_received
);
3815 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf
)
3820 list_for_each_entry_rcu(user
, &intf
->users
, link
) {
3821 if (!user
->handler
->ipmi_watchdog_pretimeout
)
3824 user
->handler
->ipmi_watchdog_pretimeout(user
->handler_data
);
3828 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout
);
3830 static struct ipmi_smi_msg
*
3831 smi_from_recv_msg(ipmi_smi_t intf
, struct ipmi_recv_msg
*recv_msg
,
3832 unsigned char seq
, long seqid
)
3834 struct ipmi_smi_msg
*smi_msg
= ipmi_alloc_smi_msg();
3837 * If we can't allocate the message, then just return, we
3838 * get 4 retries, so this should be ok.
3842 memcpy(smi_msg
->data
, recv_msg
->msg
.data
, recv_msg
->msg
.data_len
);
3843 smi_msg
->data_size
= recv_msg
->msg
.data_len
;
3844 smi_msg
->msgid
= STORE_SEQ_IN_MSGID(seq
, seqid
);
3850 for (m
= 0; m
< smi_msg
->data_size
; m
++)
3851 printk(" %2.2x", smi_msg
->data
[m
]);
3858 static void check_msg_timeout(ipmi_smi_t intf
, struct seq_table
*ent
,
3859 struct list_head
*timeouts
, long timeout_period
,
3860 int slot
, unsigned long *flags
)
3862 struct ipmi_recv_msg
*msg
;
3863 struct ipmi_smi_handlers
*handlers
;
3865 if (intf
->intf_num
== -1)
3871 ent
->timeout
-= timeout_period
;
3872 if (ent
->timeout
> 0)
3875 if (ent
->retries_left
== 0) {
3876 /* The message has used all its retries. */
3878 msg
= ent
->recv_msg
;
3879 list_add_tail(&msg
->link
, timeouts
);
3881 ipmi_inc_stat(intf
, timed_out_ipmb_broadcasts
);
3882 else if (is_lan_addr(&ent
->recv_msg
->addr
))
3883 ipmi_inc_stat(intf
, timed_out_lan_commands
);
3885 ipmi_inc_stat(intf
, timed_out_ipmb_commands
);
3887 struct ipmi_smi_msg
*smi_msg
;
3888 /* More retries, send again. */
3891 * Start with the max timer, set to normal timer after
3892 * the message is sent.
3894 ent
->timeout
= MAX_MSG_TIMEOUT
;
3895 ent
->retries_left
--;
3896 smi_msg
= smi_from_recv_msg(intf
, ent
->recv_msg
, slot
,
3899 if (is_lan_addr(&ent
->recv_msg
->addr
))
3901 dropped_rexmit_lan_commands
);
3904 dropped_rexmit_ipmb_commands
);
3908 spin_unlock_irqrestore(&intf
->seq_lock
, *flags
);
3911 * Send the new message. We send with a zero
3912 * priority. It timed out, I doubt time is that
3913 * critical now, and high priority messages are really
3914 * only for messages to the local MC, which don't get
3917 handlers
= intf
->handlers
;
3919 if (is_lan_addr(&ent
->recv_msg
->addr
))
3921 retransmitted_lan_commands
);
3924 retransmitted_ipmb_commands
);
3926 intf
->handlers
->sender(intf
->send_info
,
3929 ipmi_free_smi_msg(smi_msg
);
3931 spin_lock_irqsave(&intf
->seq_lock
, *flags
);
3935 static void ipmi_timeout_handler(long timeout_period
)
3938 struct list_head timeouts
;
3939 struct ipmi_recv_msg
*msg
, *msg2
;
3940 struct ipmi_smi_msg
*smi_msg
, *smi_msg2
;
3941 unsigned long flags
;
3945 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
3946 /* See if any waiting messages need to be processed. */
3947 spin_lock_irqsave(&intf
->waiting_msgs_lock
, flags
);
3948 list_for_each_entry_safe(smi_msg
, smi_msg2
,
3949 &intf
->waiting_msgs
, link
) {
3950 if (!handle_new_recv_msg(intf
, smi_msg
)) {
3951 list_del(&smi_msg
->link
);
3952 ipmi_free_smi_msg(smi_msg
);
3955 * To preserve message order, quit if we
3956 * can't handle a message.
3961 spin_unlock_irqrestore(&intf
->waiting_msgs_lock
, flags
);
3964 * Go through the seq table and find any messages that
3965 * have timed out, putting them in the timeouts
3968 INIT_LIST_HEAD(&timeouts
);
3969 spin_lock_irqsave(&intf
->seq_lock
, flags
);
3970 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++)
3971 check_msg_timeout(intf
, &(intf
->seq_table
[i
]),
3972 &timeouts
, timeout_period
, i
,
3974 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
3976 list_for_each_entry_safe(msg
, msg2
, &timeouts
, link
)
3977 deliver_err_response(msg
, IPMI_TIMEOUT_COMPLETION_CODE
);
3980 * Maintenance mode handling. Check the timeout
3981 * optimistically before we claim the lock. It may
3982 * mean a timeout gets missed occasionally, but that
3983 * only means the timeout gets extended by one period
3984 * in that case. No big deal, and it avoids the lock
3987 if (intf
->auto_maintenance_timeout
> 0) {
3988 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
3989 if (intf
->auto_maintenance_timeout
> 0) {
3990 intf
->auto_maintenance_timeout
3992 if (!intf
->maintenance_mode
3993 && (intf
->auto_maintenance_timeout
<= 0)) {
3994 intf
->maintenance_mode_enable
= 0;
3995 maintenance_mode_update(intf
);
3998 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
,
4005 static void ipmi_request_event(void)
4008 struct ipmi_smi_handlers
*handlers
;
4012 * Called from the timer, no need to check if handlers is
4015 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4016 /* No event requests when in maintenance mode. */
4017 if (intf
->maintenance_mode_enable
)
4020 handlers
= intf
->handlers
;
4022 handlers
->request_events(intf
->send_info
);
4027 static struct timer_list ipmi_timer
;
4029 /* Call every ~100 ms. */
4030 #define IPMI_TIMEOUT_TIME 100
4032 /* How many jiffies does it take to get to the timeout time. */
4033 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
4036 * Request events from the queue every second (this is the number of
4037 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
4038 * future, IPMI will add a way to know immediately if an event is in
4039 * the queue and this silliness can go away.
4041 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
4043 static atomic_t stop_operation
;
4044 static unsigned int ticks_to_req_ev
= IPMI_REQUEST_EV_TIME
;
4046 static void ipmi_timeout(unsigned long data
)
4048 if (atomic_read(&stop_operation
))
4052 if (ticks_to_req_ev
== 0) {
4053 ipmi_request_event();
4054 ticks_to_req_ev
= IPMI_REQUEST_EV_TIME
;
4057 ipmi_timeout_handler(IPMI_TIMEOUT_TIME
);
4059 mod_timer(&ipmi_timer
, jiffies
+ IPMI_TIMEOUT_JIFFIES
);
4063 static atomic_t smi_msg_inuse_count
= ATOMIC_INIT(0);
4064 static atomic_t recv_msg_inuse_count
= ATOMIC_INIT(0);
4066 /* FIXME - convert these to slabs. */
4067 static void free_smi_msg(struct ipmi_smi_msg
*msg
)
4069 atomic_dec(&smi_msg_inuse_count
);
4073 struct ipmi_smi_msg
*ipmi_alloc_smi_msg(void)
4075 struct ipmi_smi_msg
*rv
;
4076 rv
= kmalloc(sizeof(struct ipmi_smi_msg
), GFP_ATOMIC
);
4078 rv
->done
= free_smi_msg
;
4079 rv
->user_data
= NULL
;
4080 atomic_inc(&smi_msg_inuse_count
);
4084 EXPORT_SYMBOL(ipmi_alloc_smi_msg
);
4086 static void free_recv_msg(struct ipmi_recv_msg
*msg
)
4088 atomic_dec(&recv_msg_inuse_count
);
4092 static struct ipmi_recv_msg
*ipmi_alloc_recv_msg(void)
4094 struct ipmi_recv_msg
*rv
;
4096 rv
= kmalloc(sizeof(struct ipmi_recv_msg
), GFP_ATOMIC
);
4099 rv
->done
= free_recv_msg
;
4100 atomic_inc(&recv_msg_inuse_count
);
4105 void ipmi_free_recv_msg(struct ipmi_recv_msg
*msg
)
4108 kref_put(&msg
->user
->refcount
, free_user
);
4111 EXPORT_SYMBOL(ipmi_free_recv_msg
);
4113 #ifdef CONFIG_IPMI_PANIC_EVENT
4115 static void dummy_smi_done_handler(struct ipmi_smi_msg
*msg
)
4119 static void dummy_recv_done_handler(struct ipmi_recv_msg
*msg
)
4123 #ifdef CONFIG_IPMI_PANIC_STRING
4124 static void event_receiver_fetcher(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
4126 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
4127 && (msg
->msg
.netfn
== IPMI_NETFN_SENSOR_EVENT_RESPONSE
)
4128 && (msg
->msg
.cmd
== IPMI_GET_EVENT_RECEIVER_CMD
)
4129 && (msg
->msg
.data
[0] == IPMI_CC_NO_ERROR
)) {
4130 /* A get event receiver command, save it. */
4131 intf
->event_receiver
= msg
->msg
.data
[1];
4132 intf
->event_receiver_lun
= msg
->msg
.data
[2] & 0x3;
4136 static void device_id_fetcher(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
4138 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
4139 && (msg
->msg
.netfn
== IPMI_NETFN_APP_RESPONSE
)
4140 && (msg
->msg
.cmd
== IPMI_GET_DEVICE_ID_CMD
)
4141 && (msg
->msg
.data
[0] == IPMI_CC_NO_ERROR
)) {
4143 * A get device id command, save if we are an event
4144 * receiver or generator.
4146 intf
->local_sel_device
= (msg
->msg
.data
[6] >> 2) & 1;
4147 intf
->local_event_generator
= (msg
->msg
.data
[6] >> 5) & 1;
4152 static void send_panic_events(char *str
)
4154 struct kernel_ipmi_msg msg
;
4156 unsigned char data
[16];
4157 struct ipmi_system_interface_addr
*si
;
4158 struct ipmi_addr addr
;
4159 struct ipmi_smi_msg smi_msg
;
4160 struct ipmi_recv_msg recv_msg
;
4162 si
= (struct ipmi_system_interface_addr
*) &addr
;
4163 si
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
4164 si
->channel
= IPMI_BMC_CHANNEL
;
4167 /* Fill in an event telling that we have failed. */
4168 msg
.netfn
= 0x04; /* Sensor or Event. */
4169 msg
.cmd
= 2; /* Platform event command. */
4172 data
[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4173 data
[1] = 0x03; /* This is for IPMI 1.0. */
4174 data
[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4175 data
[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4176 data
[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4179 * Put a few breadcrumbs in. Hopefully later we can add more things
4180 * to make the panic events more useful.
4188 smi_msg
.done
= dummy_smi_done_handler
;
4189 recv_msg
.done
= dummy_recv_done_handler
;
4191 /* For every registered interface, send the event. */
4192 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4193 if (!intf
->handlers
)
4194 /* Interface is not ready. */
4197 intf
->run_to_completion
= 1;
4198 /* Send the event announcing the panic. */
4199 intf
->handlers
->set_run_to_completion(intf
->send_info
, 1);
4200 i_ipmi_request(NULL
,
4209 intf
->channels
[0].address
,
4210 intf
->channels
[0].lun
,
4211 0, 1); /* Don't retry, and don't wait. */
4214 #ifdef CONFIG_IPMI_PANIC_STRING
4216 * On every interface, dump a bunch of OEM event holding the
4222 /* For every registered interface, send the event. */
4223 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4225 struct ipmi_ipmb_addr
*ipmb
;
4228 if (intf
->intf_num
== -1)
4229 /* Interface was not ready yet. */
4233 * intf_num is used as an marker to tell if the
4234 * interface is valid. Thus we need a read barrier to
4235 * make sure data fetched before checking intf_num
4241 * First job here is to figure out where to send the
4242 * OEM events. There's no way in IPMI to send OEM
4243 * events using an event send command, so we have to
4244 * find the SEL to put them in and stick them in
4248 /* Get capabilities from the get device id. */
4249 intf
->local_sel_device
= 0;
4250 intf
->local_event_generator
= 0;
4251 intf
->event_receiver
= 0;
4253 /* Request the device info from the local MC. */
4254 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
4255 msg
.cmd
= IPMI_GET_DEVICE_ID_CMD
;
4258 intf
->null_user_handler
= device_id_fetcher
;
4259 i_ipmi_request(NULL
,
4268 intf
->channels
[0].address
,
4269 intf
->channels
[0].lun
,
4270 0, 1); /* Don't retry, and don't wait. */
4272 if (intf
->local_event_generator
) {
4273 /* Request the event receiver from the local MC. */
4274 msg
.netfn
= IPMI_NETFN_SENSOR_EVENT_REQUEST
;
4275 msg
.cmd
= IPMI_GET_EVENT_RECEIVER_CMD
;
4278 intf
->null_user_handler
= event_receiver_fetcher
;
4279 i_ipmi_request(NULL
,
4288 intf
->channels
[0].address
,
4289 intf
->channels
[0].lun
,
4290 0, 1); /* no retry, and no wait. */
4292 intf
->null_user_handler
= NULL
;
4295 * Validate the event receiver. The low bit must not
4296 * be 1 (it must be a valid IPMB address), it cannot
4297 * be zero, and it must not be my address.
4299 if (((intf
->event_receiver
& 1) == 0)
4300 && (intf
->event_receiver
!= 0)
4301 && (intf
->event_receiver
!= intf
->channels
[0].address
)) {
4303 * The event receiver is valid, send an IPMB
4306 ipmb
= (struct ipmi_ipmb_addr
*) &addr
;
4307 ipmb
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
4308 ipmb
->channel
= 0; /* FIXME - is this right? */
4309 ipmb
->lun
= intf
->event_receiver_lun
;
4310 ipmb
->slave_addr
= intf
->event_receiver
;
4311 } else if (intf
->local_sel_device
) {
4313 * The event receiver was not valid (or was
4314 * me), but I am an SEL device, just dump it
4317 si
= (struct ipmi_system_interface_addr
*) &addr
;
4318 si
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
4319 si
->channel
= IPMI_BMC_CHANNEL
;
4322 continue; /* No where to send the event. */
4324 msg
.netfn
= IPMI_NETFN_STORAGE_REQUEST
; /* Storage. */
4325 msg
.cmd
= IPMI_ADD_SEL_ENTRY_CMD
;
4331 int size
= strlen(p
);
4337 data
[2] = 0xf0; /* OEM event without timestamp. */
4338 data
[3] = intf
->channels
[0].address
;
4339 data
[4] = j
++; /* sequence # */
4341 * Always give 11 bytes, so strncpy will fill
4342 * it with zeroes for me.
4344 strncpy(data
+5, p
, 11);
4347 i_ipmi_request(NULL
,
4356 intf
->channels
[0].address
,
4357 intf
->channels
[0].lun
,
4358 0, 1); /* no retry, and no wait. */
4361 #endif /* CONFIG_IPMI_PANIC_STRING */
4363 #endif /* CONFIG_IPMI_PANIC_EVENT */
4365 static int has_panicked
;
4367 static int panic_event(struct notifier_block
*this,
4368 unsigned long event
,
4377 /* For every registered interface, set it to run to completion. */
4378 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4379 if (!intf
->handlers
)
4380 /* Interface is not ready. */
4383 intf
->run_to_completion
= 1;
4384 intf
->handlers
->set_run_to_completion(intf
->send_info
, 1);
4387 #ifdef CONFIG_IPMI_PANIC_EVENT
4388 send_panic_events(ptr
);
4394 static struct notifier_block panic_block
= {
4395 .notifier_call
= panic_event
,
4397 .priority
= 200 /* priority: INT_MAX >= x >= 0 */
4400 static int ipmi_init_msghandler(void)
4407 rv
= driver_register(&ipmidriver
.driver
);
4409 printk(KERN_ERR PFX
"Could not register IPMI driver\n");
4413 printk(KERN_INFO
"ipmi message handler version "
4414 IPMI_DRIVER_VERSION
"\n");
4416 #ifdef CONFIG_PROC_FS
4417 proc_ipmi_root
= proc_mkdir("ipmi", NULL
);
4418 if (!proc_ipmi_root
) {
4419 printk(KERN_ERR PFX
"Unable to create IPMI proc dir");
4423 #endif /* CONFIG_PROC_FS */
4425 setup_timer(&ipmi_timer
, ipmi_timeout
, 0);
4426 mod_timer(&ipmi_timer
, jiffies
+ IPMI_TIMEOUT_JIFFIES
);
4428 atomic_notifier_chain_register(&panic_notifier_list
, &panic_block
);
4435 static __init
int ipmi_init_msghandler_mod(void)
4437 ipmi_init_msghandler();
4441 static __exit
void cleanup_ipmi(void)
4448 atomic_notifier_chain_unregister(&panic_notifier_list
, &panic_block
);
4451 * This can't be called if any interfaces exist, so no worry
4452 * about shutting down the interfaces.
4456 * Tell the timer to stop, then wait for it to stop. This
4457 * avoids problems with race conditions removing the timer
4460 atomic_inc(&stop_operation
);
4461 del_timer_sync(&ipmi_timer
);
4463 #ifdef CONFIG_PROC_FS
4464 remove_proc_entry(proc_ipmi_root
->name
, NULL
);
4465 #endif /* CONFIG_PROC_FS */
4467 driver_unregister(&ipmidriver
.driver
);
4471 /* Check for buffer leaks. */
4472 count
= atomic_read(&smi_msg_inuse_count
);
4474 printk(KERN_WARNING PFX
"SMI message count %d at exit\n",
4476 count
= atomic_read(&recv_msg_inuse_count
);
4478 printk(KERN_WARNING PFX
"recv message count %d at exit\n",
4481 module_exit(cleanup_ipmi
);
4483 module_init(ipmi_init_msghandler_mod
);
4484 MODULE_LICENSE("GPL");
4485 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4486 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4488 MODULE_VERSION(IPMI_DRIVER_VERSION
);