2 * DVB USB Linux driver for Afatech AF9015 DVB-T USB2.0 receiver
4 * Copyright (C) 2007 Antti Palosaari <crope@iki.fi>
6 * Thanks to Afatech who kindly provided information.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/string.h>
30 #include <linux/slab.h>
31 #include <linux/firmware.h>
33 #include "dvb_frontend.h"
34 #include "af9013_priv.h"
40 struct i2c_adapter
*i2c
;
41 struct dvb_frontend frontend
;
43 struct af9013_config config
;
50 unsigned long next_statistics_check
;
53 static u8 regmask
[8] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff };
55 static int af9013_write_regs(struct af9013_state
*state
, u8 mbox
, u16 reg
,
59 struct i2c_msg msg
= {
60 .addr
= state
->config
.demod_address
,
68 memcpy(&buf
[3], val
, len
);
70 if (i2c_transfer(state
->i2c
, &msg
, 1) != 1) {
71 warn("I2C write failed reg:%04x len:%d", reg
, len
);
77 static int af9013_write_ofdm_regs(struct af9013_state
*state
, u16 reg
, u8
*val
,
80 u8 mbox
= (1 << 0)|(1 << 1)|((len
- 1) << 2)|(0 << 6)|(0 << 7);
81 return af9013_write_regs(state
, mbox
, reg
, val
, len
);
84 static int af9013_write_ofsm_regs(struct af9013_state
*state
, u16 reg
, u8
*val
,
87 u8 mbox
= (1 << 0)|(1 << 1)|((len
- 1) << 2)|(1 << 6)|(1 << 7);
88 return af9013_write_regs(state
, mbox
, reg
, val
, len
);
91 /* write single register */
92 static int af9013_write_reg(struct af9013_state
*state
, u16 reg
, u8 val
)
94 return af9013_write_ofdm_regs(state
, reg
, &val
, 1);
97 /* read single register */
98 static int af9013_read_reg(struct af9013_state
*state
, u16 reg
, u8
*val
)
100 u8 obuf
[3] = { reg
>> 8, reg
& 0xff, 0 };
102 struct i2c_msg msg
[2] = {
104 .addr
= state
->config
.demod_address
,
109 .addr
= state
->config
.demod_address
,
116 if (i2c_transfer(state
->i2c
, msg
, 2) != 2) {
117 warn("I2C read failed reg:%04x", reg
);
124 static int af9013_write_reg_bits(struct af9013_state
*state
, u16 reg
, u8 pos
,
130 ret
= af9013_read_reg(state
, reg
, &tmp
);
134 mask
= regmask
[len
- 1] << pos
;
135 tmp
= (tmp
& ~mask
) | ((val
<< pos
) & mask
);
137 return af9013_write_reg(state
, reg
, tmp
);
140 static int af9013_read_reg_bits(struct af9013_state
*state
, u16 reg
, u8 pos
,
146 ret
= af9013_read_reg(state
, reg
, &tmp
);
149 *val
= (tmp
>> pos
) & regmask
[len
- 1];
153 static int af9013_set_gpio(struct af9013_state
*state
, u8 gpio
, u8 gpioval
)
158 deb_info("%s: gpio:%d gpioval:%02x\n", __func__
, gpio
, gpioval
);
160 /* GPIO0 & GPIO1 0xd735
161 GPIO2 & GPIO3 0xd736 */
174 err("invalid gpio:%d\n", gpio
);
191 ret
= af9013_write_reg_bits(state
, addr
, pos
, 4, gpioval
);
197 static u32
af913_div(u32 a
, u32 b
, u32 x
)
200 deb_info("%s: a:%d b:%d x:%d\n", __func__
, a
, b
, x
);
207 for (i
= 0; i
< x
; i
++) {
215 r
= (c
<< (u32
)x
) + r
;
217 deb_info("%s: a:%d b:%d x:%d r:%d r:%x\n", __func__
, a
, b
, x
, r
, r
);
221 static int af9013_set_coeff(struct af9013_state
*state
, fe_bandwidth_t bw
)
226 u32
uninitialized_var(ns_coeff1_2048nu
);
227 u32
uninitialized_var(ns_coeff1_8191nu
);
228 u32
uninitialized_var(ns_coeff1_8192nu
);
229 u32
uninitialized_var(ns_coeff1_8193nu
);
230 u32
uninitialized_var(ns_coeff2_2k
);
231 u32
uninitialized_var(ns_coeff2_8k
);
233 deb_info("%s: adc_clock:%d bw:%d\n", __func__
,
234 state
->config
.adc_clock
, bw
);
236 switch (state
->config
.adc_clock
) {
237 case 28800: /* 28.800 MHz */
239 case BANDWIDTH_6_MHZ
:
240 ns_coeff1_2048nu
= 0x01e79e7a;
241 ns_coeff1_8191nu
= 0x0079eb6e;
242 ns_coeff1_8192nu
= 0x0079e79e;
243 ns_coeff1_8193nu
= 0x0079e3cf;
244 ns_coeff2_2k
= 0x00f3cf3d;
245 ns_coeff2_8k
= 0x003cf3cf;
247 case BANDWIDTH_7_MHZ
:
248 ns_coeff1_2048nu
= 0x0238e38e;
249 ns_coeff1_8191nu
= 0x008e3d55;
250 ns_coeff1_8192nu
= 0x008e38e4;
251 ns_coeff1_8193nu
= 0x008e3472;
252 ns_coeff2_2k
= 0x011c71c7;
253 ns_coeff2_8k
= 0x00471c72;
255 case BANDWIDTH_8_MHZ
:
256 ns_coeff1_2048nu
= 0x028a28a3;
257 ns_coeff1_8191nu
= 0x00a28f3d;
258 ns_coeff1_8192nu
= 0x00a28a29;
259 ns_coeff1_8193nu
= 0x00a28514;
260 ns_coeff2_2k
= 0x01451451;
261 ns_coeff2_8k
= 0x00514514;
267 case 20480: /* 20.480 MHz */
269 case BANDWIDTH_6_MHZ
:
270 ns_coeff1_2048nu
= 0x02adb6dc;
271 ns_coeff1_8191nu
= 0x00ab7313;
272 ns_coeff1_8192nu
= 0x00ab6db7;
273 ns_coeff1_8193nu
= 0x00ab685c;
274 ns_coeff2_2k
= 0x0156db6e;
275 ns_coeff2_8k
= 0x0055b6dc;
277 case BANDWIDTH_7_MHZ
:
278 ns_coeff1_2048nu
= 0x03200001;
279 ns_coeff1_8191nu
= 0x00c80640;
280 ns_coeff1_8192nu
= 0x00c80000;
281 ns_coeff1_8193nu
= 0x00c7f9c0;
282 ns_coeff2_2k
= 0x01900000;
283 ns_coeff2_8k
= 0x00640000;
285 case BANDWIDTH_8_MHZ
:
286 ns_coeff1_2048nu
= 0x03924926;
287 ns_coeff1_8191nu
= 0x00e4996e;
288 ns_coeff1_8192nu
= 0x00e49249;
289 ns_coeff1_8193nu
= 0x00e48b25;
290 ns_coeff2_2k
= 0x01c92493;
291 ns_coeff2_8k
= 0x00724925;
297 case 28000: /* 28.000 MHz */
299 case BANDWIDTH_6_MHZ
:
300 ns_coeff1_2048nu
= 0x01f58d10;
301 ns_coeff1_8191nu
= 0x007d672f;
302 ns_coeff1_8192nu
= 0x007d6344;
303 ns_coeff1_8193nu
= 0x007d5f59;
304 ns_coeff2_2k
= 0x00fac688;
305 ns_coeff2_8k
= 0x003eb1a2;
307 case BANDWIDTH_7_MHZ
:
308 ns_coeff1_2048nu
= 0x02492492;
309 ns_coeff1_8191nu
= 0x00924db7;
310 ns_coeff1_8192nu
= 0x00924925;
311 ns_coeff1_8193nu
= 0x00924492;
312 ns_coeff2_2k
= 0x01249249;
313 ns_coeff2_8k
= 0x00492492;
315 case BANDWIDTH_8_MHZ
:
316 ns_coeff1_2048nu
= 0x029cbc15;
317 ns_coeff1_8191nu
= 0x00a7343f;
318 ns_coeff1_8192nu
= 0x00a72f05;
319 ns_coeff1_8193nu
= 0x00a729cc;
320 ns_coeff2_2k
= 0x014e5e0a;
321 ns_coeff2_8k
= 0x00539783;
327 case 25000: /* 25.000 MHz */
329 case BANDWIDTH_6_MHZ
:
330 ns_coeff1_2048nu
= 0x0231bcb5;
331 ns_coeff1_8191nu
= 0x008c7391;
332 ns_coeff1_8192nu
= 0x008c6f2d;
333 ns_coeff1_8193nu
= 0x008c6aca;
334 ns_coeff2_2k
= 0x0118de5b;
335 ns_coeff2_8k
= 0x00463797;
337 case BANDWIDTH_7_MHZ
:
338 ns_coeff1_2048nu
= 0x028f5c29;
339 ns_coeff1_8191nu
= 0x00a3dc29;
340 ns_coeff1_8192nu
= 0x00a3d70a;
341 ns_coeff1_8193nu
= 0x00a3d1ec;
342 ns_coeff2_2k
= 0x0147ae14;
343 ns_coeff2_8k
= 0x0051eb85;
345 case BANDWIDTH_8_MHZ
:
346 ns_coeff1_2048nu
= 0x02ecfb9d;
347 ns_coeff1_8191nu
= 0x00bb44c1;
348 ns_coeff1_8192nu
= 0x00bb3ee7;
349 ns_coeff1_8193nu
= 0x00bb390d;
350 ns_coeff2_2k
= 0x01767dce;
351 ns_coeff2_8k
= 0x005d9f74;
362 err("invalid bandwidth");
366 buf
[i
++] = (u8
) ((ns_coeff1_2048nu
& 0x03000000) >> 24);
367 buf
[i
++] = (u8
) ((ns_coeff1_2048nu
& 0x00ff0000) >> 16);
368 buf
[i
++] = (u8
) ((ns_coeff1_2048nu
& 0x0000ff00) >> 8);
369 buf
[i
++] = (u8
) ((ns_coeff1_2048nu
& 0x000000ff));
370 buf
[i
++] = (u8
) ((ns_coeff2_2k
& 0x01c00000) >> 22);
371 buf
[i
++] = (u8
) ((ns_coeff2_2k
& 0x003fc000) >> 14);
372 buf
[i
++] = (u8
) ((ns_coeff2_2k
& 0x00003fc0) >> 6);
373 buf
[i
++] = (u8
) ((ns_coeff2_2k
& 0x0000003f));
374 buf
[i
++] = (u8
) ((ns_coeff1_8191nu
& 0x03000000) >> 24);
375 buf
[i
++] = (u8
) ((ns_coeff1_8191nu
& 0x00ffc000) >> 16);
376 buf
[i
++] = (u8
) ((ns_coeff1_8191nu
& 0x0000ff00) >> 8);
377 buf
[i
++] = (u8
) ((ns_coeff1_8191nu
& 0x000000ff));
378 buf
[i
++] = (u8
) ((ns_coeff1_8192nu
& 0x03000000) >> 24);
379 buf
[i
++] = (u8
) ((ns_coeff1_8192nu
& 0x00ffc000) >> 16);
380 buf
[i
++] = (u8
) ((ns_coeff1_8192nu
& 0x0000ff00) >> 8);
381 buf
[i
++] = (u8
) ((ns_coeff1_8192nu
& 0x000000ff));
382 buf
[i
++] = (u8
) ((ns_coeff1_8193nu
& 0x03000000) >> 24);
383 buf
[i
++] = (u8
) ((ns_coeff1_8193nu
& 0x00ffc000) >> 16);
384 buf
[i
++] = (u8
) ((ns_coeff1_8193nu
& 0x0000ff00) >> 8);
385 buf
[i
++] = (u8
) ((ns_coeff1_8193nu
& 0x000000ff));
386 buf
[i
++] = (u8
) ((ns_coeff2_8k
& 0x01c00000) >> 22);
387 buf
[i
++] = (u8
) ((ns_coeff2_8k
& 0x003fc000) >> 14);
388 buf
[i
++] = (u8
) ((ns_coeff2_8k
& 0x00003fc0) >> 6);
389 buf
[i
++] = (u8
) ((ns_coeff2_8k
& 0x0000003f));
391 deb_info("%s: coeff:", __func__
);
392 debug_dump(buf
, sizeof(buf
), deb_info
);
395 for (i
= 0; i
< sizeof(buf
); i
++) {
396 ret
= af9013_write_reg(state
, 0xae00 + i
, buf
[i
]);
404 static int af9013_set_adc_ctrl(struct af9013_state
*state
)
410 deb_info("%s: adc_clock:%d\n", __func__
, state
->config
.adc_clock
);
412 /* adc frequency type */
413 switch (state
->config
.adc_clock
) {
414 case 28800: /* 28.800 MHz */
417 case 20480: /* 20.480 MHz */
420 case 28000: /* 28.000 MHz */
423 case 25000: /* 25.000 MHz */
431 adc_cw
= af913_div(state
->config
.adc_clock
*1000, 1000000ul, 19ul);
433 buf
[0] = (u8
) ((adc_cw
& 0x000000ff));
434 buf
[1] = (u8
) ((adc_cw
& 0x0000ff00) >> 8);
435 buf
[2] = (u8
) ((adc_cw
& 0x00ff0000) >> 16);
437 deb_info("%s: adc_cw:", __func__
);
438 debug_dump(buf
, sizeof(buf
), deb_info
);
441 for (i
= 0; i
< sizeof(buf
); i
++) {
442 ret
= af9013_write_reg(state
, 0xd180 + i
, buf
[i
]);
446 ret
= af9013_write_reg_bits(state
, 0x9bd2, 0, 4, tmp
);
451 static int af9013_set_freq_ctrl(struct af9013_state
*state
, fe_bandwidth_t bw
)
456 u32 adc_freq
, freq_cw
;
460 for (j
= 0; j
< 3; j
++) {
462 addr
= 0xd140; /* fcw normal */
463 bfs_spec_inv
= state
->config
.rf_spec_inv
? -1 : 1;
465 addr
= 0x9be7; /* fcw dummy ram */
466 bfs_spec_inv
= state
->config
.rf_spec_inv
? -1 : 1;
468 addr
= 0x9bea; /* fcw inverted */
469 bfs_spec_inv
= state
->config
.rf_spec_inv
? 1 : -1;
472 adc_freq
= state
->config
.adc_clock
* 1000;
473 if_sample_freq
= state
->config
.tuner_if
* 1000;
475 /* TDA18271 uses different sampling freq for every bw */
476 if (state
->config
.tuner
== AF9013_TUNER_TDA18271
) {
478 case BANDWIDTH_6_MHZ
:
479 if_sample_freq
= 3300000; /* 3.3 MHz */
481 case BANDWIDTH_7_MHZ
:
482 if_sample_freq
= 3800000; /* 3.8 MHz */
484 case BANDWIDTH_8_MHZ
:
486 if_sample_freq
= 4300000; /* 4.3 MHz */
491 while (if_sample_freq
> (adc_freq
/ 2))
492 if_sample_freq
= if_sample_freq
- adc_freq
;
494 if (if_sample_freq
>= 0)
495 bfs_spec_inv
= bfs_spec_inv
* (-1);
497 if_sample_freq
= if_sample_freq
* (-1);
499 freq_cw
= af913_div(if_sample_freq
, adc_freq
, 23ul);
501 if (bfs_spec_inv
== -1)
502 freq_cw
= 0x00800000 - freq_cw
;
504 buf
[0] = (u8
) ((freq_cw
& 0x000000ff));
505 buf
[1] = (u8
) ((freq_cw
& 0x0000ff00) >> 8);
506 buf
[2] = (u8
) ((freq_cw
& 0x007f0000) >> 16);
509 deb_info("%s: freq_cw:", __func__
);
510 debug_dump(buf
, sizeof(buf
), deb_info
);
513 for (i
= 0; i
< sizeof(buf
); i
++) {
514 ret
= af9013_write_reg(state
, addr
++, buf
[i
]);
523 static int af9013_set_ofdm_params(struct af9013_state
*state
,
524 struct dvb_ofdm_parameters
*params
, u8
*auto_mode
)
527 u8 i
, buf
[3] = {0, 0, 0};
528 *auto_mode
= 0; /* set if parameters are requested to auto set */
530 switch (params
->transmission_mode
) {
531 case TRANSMISSION_MODE_AUTO
:
533 case TRANSMISSION_MODE_2K
:
535 case TRANSMISSION_MODE_8K
:
542 switch (params
->guard_interval
) {
543 case GUARD_INTERVAL_AUTO
:
545 case GUARD_INTERVAL_1_32
:
547 case GUARD_INTERVAL_1_16
:
550 case GUARD_INTERVAL_1_8
:
553 case GUARD_INTERVAL_1_4
:
560 switch (params
->hierarchy_information
) {
578 switch (params
->constellation
) {
593 /* Use HP. How and which case we can switch to LP? */
596 switch (params
->code_rate_HP
) {
617 switch (params
->code_rate_LP
) {
619 /* if HIERARCHY_NONE and FEC_NONE then LP FEC is set to FEC_AUTO
620 by dvb_frontend.c for compatibility */
621 if (params
->hierarchy_information
!= HIERARCHY_NONE
)
638 if (params
->hierarchy_information
== HIERARCHY_AUTO
)
644 switch (params
->bandwidth
) {
645 case BANDWIDTH_6_MHZ
:
647 case BANDWIDTH_7_MHZ
:
650 case BANDWIDTH_8_MHZ
:
658 for (i
= 0; i
< sizeof(buf
); i
++) {
659 ret
= af9013_write_reg(state
, 0xd3c0 + i
, buf
[i
]);
667 static int af9013_reset(struct af9013_state
*state
, u8 sleep
)
671 deb_info("%s\n", __func__
);
673 /* enable OFDM reset */
674 ret
= af9013_write_reg_bits(state
, 0xd417, 4, 1, 1);
678 /* start reset mechanism */
679 ret
= af9013_write_reg(state
, 0xaeff, 1);
683 /* reset is done when bit 1 is set */
684 for (i
= 0; i
< 150; i
++) {
685 ret
= af9013_read_reg_bits(state
, 0xd417, 1, 1, &tmp
);
689 break; /* reset done */
695 /* don't clear reset when going to sleep */
697 /* clear OFDM reset */
698 ret
= af9013_write_reg_bits(state
, 0xd417, 1, 1, 0);
702 /* disable OFDM reset */
703 ret
= af9013_write_reg_bits(state
, 0xd417, 4, 1, 0);
709 static int af9013_power_ctrl(struct af9013_state
*state
, u8 onoff
)
712 deb_info("%s: onoff:%d\n", __func__
, onoff
);
716 ret
= af9013_write_reg_bits(state
, 0xd73a, 3, 1, 0);
719 ret
= af9013_write_reg_bits(state
, 0xd417, 1, 1, 0);
722 ret
= af9013_write_reg_bits(state
, 0xd417, 4, 1, 0);
725 ret
= af9013_reset(state
, 1);
728 ret
= af9013_write_reg_bits(state
, 0xd73a, 3, 1, 1);
734 static int af9013_lock_led(struct af9013_state
*state
, u8 onoff
)
736 deb_info("%s: onoff:%d\n", __func__
, onoff
);
738 return af9013_write_reg_bits(state
, 0xd730, 0, 1, onoff
);
741 static int af9013_set_frontend(struct dvb_frontend
*fe
,
742 struct dvb_frontend_parameters
*params
)
744 struct af9013_state
*state
= fe
->demodulator_priv
;
746 u8 auto_mode
; /* auto set TPS */
748 deb_info("%s: freq:%d bw:%d\n", __func__
, params
->frequency
,
749 params
->u
.ofdm
.bandwidth
);
751 state
->frequency
= params
->frequency
;
753 /* program CFOE coefficients */
754 ret
= af9013_set_coeff(state
, params
->u
.ofdm
.bandwidth
);
758 /* program frequency control */
759 ret
= af9013_set_freq_ctrl(state
, params
->u
.ofdm
.bandwidth
);
763 /* clear TPS lock flag (inverted flag) */
764 ret
= af9013_write_reg_bits(state
, 0xd330, 3, 1, 1);
768 /* clear MPEG2 lock flag */
769 ret
= af9013_write_reg_bits(state
, 0xd507, 6, 1, 0);
773 /* empty channel function */
774 ret
= af9013_write_reg_bits(state
, 0x9bfe, 0, 1, 0);
778 /* empty DVB-T channel function */
779 ret
= af9013_write_reg_bits(state
, 0x9bc2, 0, 1, 0);
784 if (fe
->ops
.tuner_ops
.set_params
)
785 fe
->ops
.tuner_ops
.set_params(fe
, params
);
787 /* program TPS and bandwidth, check if auto mode needed */
788 ret
= af9013_set_ofdm_params(state
, ¶ms
->u
.ofdm
, &auto_mode
);
793 /* clear easy mode flag */
794 ret
= af9013_write_reg(state
, 0xaefd, 0);
795 deb_info("%s: auto TPS\n", __func__
);
797 /* set easy mode flag */
798 ret
= af9013_write_reg(state
, 0xaefd, 1);
801 ret
= af9013_write_reg(state
, 0xaefe, 0);
802 deb_info("%s: manual TPS\n", __func__
);
807 /* everything is set, lets try to receive channel - OFSM GO! */
808 ret
= af9013_write_reg(state
, 0xffff, 0);
816 static int af9013_get_frontend(struct dvb_frontend
*fe
,
817 struct dvb_frontend_parameters
*p
)
819 struct af9013_state
*state
= fe
->demodulator_priv
;
822 deb_info("%s\n", __func__
);
824 /* read TPS registers */
825 for (i
= 0; i
< 3; i
++) {
826 ret
= af9013_read_reg(state
, 0xd3c0 + i
, &buf
[i
]);
831 switch ((buf
[1] >> 6) & 3) {
833 p
->u
.ofdm
.constellation
= QPSK
;
836 p
->u
.ofdm
.constellation
= QAM_16
;
839 p
->u
.ofdm
.constellation
= QAM_64
;
843 switch ((buf
[0] >> 0) & 3) {
845 p
->u
.ofdm
.transmission_mode
= TRANSMISSION_MODE_2K
;
848 p
->u
.ofdm
.transmission_mode
= TRANSMISSION_MODE_8K
;
851 switch ((buf
[0] >> 2) & 3) {
853 p
->u
.ofdm
.guard_interval
= GUARD_INTERVAL_1_32
;
856 p
->u
.ofdm
.guard_interval
= GUARD_INTERVAL_1_16
;
859 p
->u
.ofdm
.guard_interval
= GUARD_INTERVAL_1_8
;
862 p
->u
.ofdm
.guard_interval
= GUARD_INTERVAL_1_4
;
866 switch ((buf
[0] >> 4) & 7) {
868 p
->u
.ofdm
.hierarchy_information
= HIERARCHY_NONE
;
871 p
->u
.ofdm
.hierarchy_information
= HIERARCHY_1
;
874 p
->u
.ofdm
.hierarchy_information
= HIERARCHY_2
;
877 p
->u
.ofdm
.hierarchy_information
= HIERARCHY_4
;
881 switch ((buf
[2] >> 0) & 7) {
883 p
->u
.ofdm
.code_rate_HP
= FEC_1_2
;
886 p
->u
.ofdm
.code_rate_HP
= FEC_2_3
;
889 p
->u
.ofdm
.code_rate_HP
= FEC_3_4
;
892 p
->u
.ofdm
.code_rate_HP
= FEC_5_6
;
895 p
->u
.ofdm
.code_rate_HP
= FEC_7_8
;
899 switch ((buf
[2] >> 3) & 7) {
901 p
->u
.ofdm
.code_rate_LP
= FEC_1_2
;
904 p
->u
.ofdm
.code_rate_LP
= FEC_2_3
;
907 p
->u
.ofdm
.code_rate_LP
= FEC_3_4
;
910 p
->u
.ofdm
.code_rate_LP
= FEC_5_6
;
913 p
->u
.ofdm
.code_rate_LP
= FEC_7_8
;
917 switch ((buf
[1] >> 2) & 3) {
919 p
->u
.ofdm
.bandwidth
= BANDWIDTH_6_MHZ
;
922 p
->u
.ofdm
.bandwidth
= BANDWIDTH_7_MHZ
;
925 p
->u
.ofdm
.bandwidth
= BANDWIDTH_8_MHZ
;
929 p
->inversion
= INVERSION_AUTO
;
930 p
->frequency
= state
->frequency
;
936 static int af9013_update_ber_unc(struct dvb_frontend
*fe
)
938 struct af9013_state
*state
= fe
->demodulator_priv
;
941 u32 error_bit_count
= 0;
942 u32 total_bit_count
= 0;
943 u32 abort_packet_count
= 0;
947 /* check if error bit count is ready */
948 ret
= af9013_read_reg_bits(state
, 0xd391, 4, 1, &buf
[0]);
954 /* get RSD packet abort count */
955 for (i
= 0; i
< 2; i
++) {
956 ret
= af9013_read_reg(state
, 0xd38a + i
, &buf
[i
]);
960 abort_packet_count
= (buf
[1] << 8) + buf
[0];
962 /* get error bit count */
963 for (i
= 0; i
< 3; i
++) {
964 ret
= af9013_read_reg(state
, 0xd387 + i
, &buf
[i
]);
968 error_bit_count
= (buf
[2] << 16) + (buf
[1] << 8) + buf
[0];
969 error_bit_count
= error_bit_count
- abort_packet_count
* 8 * 8;
971 /* get used RSD counting period (10000 RSD packets used) */
972 for (i
= 0; i
< 2; i
++) {
973 ret
= af9013_read_reg(state
, 0xd385 + i
, &buf
[i
]);
977 total_bit_count
= (buf
[1] << 8) + buf
[0];
978 total_bit_count
= total_bit_count
- abort_packet_count
;
979 total_bit_count
= total_bit_count
* 204 * 8;
982 state
->ber
= error_bit_count
* 1000000000 / total_bit_count
;
984 state
->ucblocks
+= abort_packet_count
;
986 deb_info("%s: err bits:%d total bits:%d abort count:%d\n", __func__
,
987 error_bit_count
, total_bit_count
, abort_packet_count
);
989 /* set BER counting range */
990 ret
= af9013_write_reg(state
, 0xd385, 10000 & 0xff);
993 ret
= af9013_write_reg(state
, 0xd386, 10000 >> 8);
996 /* reset and start BER counter */
997 ret
= af9013_write_reg_bits(state
, 0xd391, 4, 1, 1);
1006 static int af9013_update_snr(struct dvb_frontend
*fe
)
1008 struct af9013_state
*state
= fe
->demodulator_priv
;
1012 struct snr_table
*uninitialized_var(snr_table
);
1014 /* check if quantizer ready (for snr) */
1015 ret
= af9013_read_reg_bits(state
, 0xd2e1, 3, 1, &buf
[0]);
1019 /* quantizer ready - read it */
1020 for (i
= 0; i
< 3; i
++) {
1021 ret
= af9013_read_reg(state
, 0xd2e3 + i
, &buf
[i
]);
1025 quant
= (buf
[2] << 16) + (buf
[1] << 8) + buf
[0];
1027 /* read current constellation */
1028 ret
= af9013_read_reg(state
, 0xd3c1, &buf
[0]);
1032 switch ((buf
[0] >> 6) & 3) {
1034 len
= ARRAY_SIZE(qpsk_snr_table
);
1035 snr_table
= qpsk_snr_table
;
1038 len
= ARRAY_SIZE(qam16_snr_table
);
1039 snr_table
= qam16_snr_table
;
1042 len
= ARRAY_SIZE(qam64_snr_table
);
1043 snr_table
= qam64_snr_table
;
1051 for (i
= 0; i
< len
; i
++) {
1052 if (quant
< snr_table
[i
].val
) {
1053 state
->snr
= snr_table
[i
].snr
* 10;
1059 /* set quantizer super frame count */
1060 ret
= af9013_write_reg(state
, 0xd2e2, 1);
1064 /* check quantizer availability */
1065 for (i
= 0; i
< 10; i
++) {
1067 ret
= af9013_read_reg_bits(state
, 0xd2e6, 0, 1,
1075 /* reset quantizer */
1076 ret
= af9013_write_reg_bits(state
, 0xd2e1, 3, 1, 1);
1085 static int af9013_update_signal_strength(struct dvb_frontend
*fe
)
1087 struct af9013_state
*state
= fe
->demodulator_priv
;
1090 u8 rf_gain
, rf_50
, rf_80
, if_gain
, if_50
, if_80
;
1091 int signal_strength
;
1093 deb_info("%s\n", __func__
);
1095 state
->signal_strength
= 0;
1097 ret
= af9013_read_reg_bits(state
, 0x9bee, 0, 1, &tmp0
);
1101 ret
= af9013_read_reg(state
, 0x9bbd, &rf_50
);
1104 ret
= af9013_read_reg(state
, 0x9bd0, &rf_80
);
1107 ret
= af9013_read_reg(state
, 0x9be2, &if_50
);
1110 ret
= af9013_read_reg(state
, 0x9be4, &if_80
);
1113 ret
= af9013_read_reg(state
, 0xd07c, &rf_gain
);
1116 ret
= af9013_read_reg(state
, 0xd07d, &if_gain
);
1119 signal_strength
= (0xffff / (9 * (rf_50
+ if_50
) - \
1120 11 * (rf_80
+ if_80
))) * (10 * (rf_gain
+ if_gain
) - \
1121 11 * (rf_80
+ if_80
));
1122 if (signal_strength
< 0)
1123 signal_strength
= 0;
1124 else if (signal_strength
> 0xffff)
1125 signal_strength
= 0xffff;
1127 state
->signal_strength
= signal_strength
;
1134 static int af9013_update_statistics(struct dvb_frontend
*fe
)
1136 struct af9013_state
*state
= fe
->demodulator_priv
;
1139 if (time_before(jiffies
, state
->next_statistics_check
))
1142 /* set minimum statistic update interval */
1143 state
->next_statistics_check
= jiffies
+ msecs_to_jiffies(1200);
1145 ret
= af9013_update_signal_strength(fe
);
1148 ret
= af9013_update_snr(fe
);
1151 ret
= af9013_update_ber_unc(fe
);
1159 static int af9013_get_tune_settings(struct dvb_frontend
*fe
,
1160 struct dvb_frontend_tune_settings
*fesettings
)
1162 fesettings
->min_delay_ms
= 800;
1163 fesettings
->step_size
= 0;
1164 fesettings
->max_drift
= 0;
1169 static int af9013_read_status(struct dvb_frontend
*fe
, fe_status_t
*status
)
1171 struct af9013_state
*state
= fe
->demodulator_priv
;
1177 ret
= af9013_read_reg_bits(state
, 0xd330, 3, 1, &tmp
);
1181 *status
|= FE_HAS_VITERBI
| FE_HAS_CARRIER
| FE_HAS_SIGNAL
;
1184 ret
= af9013_read_reg_bits(state
, 0xd507, 6, 1, &tmp
);
1188 *status
|= FE_HAS_SYNC
| FE_HAS_LOCK
;
1190 if (!(*status
& FE_HAS_SIGNAL
)) {
1192 ret
= af9013_read_reg_bits(state
, 0xd1a0, 6, 1, &tmp
);
1196 *status
|= FE_HAS_SIGNAL
;
1199 if (!(*status
& FE_HAS_CARRIER
)) {
1201 ret
= af9013_read_reg_bits(state
, 0xd333, 7, 1, &tmp
);
1205 *status
|= FE_HAS_CARRIER
;
1208 if (!(*status
& FE_HAS_CARRIER
)) {
1210 ret
= af9013_read_reg_bits(state
, 0xd334, 6, 1, &tmp
);
1214 *status
|= FE_HAS_CARRIER
;
1217 ret
= af9013_update_statistics(fe
);
1224 static int af9013_read_ber(struct dvb_frontend
*fe
, u32
*ber
)
1226 struct af9013_state
*state
= fe
->demodulator_priv
;
1228 ret
= af9013_update_statistics(fe
);
1233 static int af9013_read_signal_strength(struct dvb_frontend
*fe
, u16
*strength
)
1235 struct af9013_state
*state
= fe
->demodulator_priv
;
1237 ret
= af9013_update_statistics(fe
);
1238 *strength
= state
->signal_strength
;
1242 static int af9013_read_snr(struct dvb_frontend
*fe
, u16
*snr
)
1244 struct af9013_state
*state
= fe
->demodulator_priv
;
1246 ret
= af9013_update_statistics(fe
);
1251 static int af9013_read_ucblocks(struct dvb_frontend
*fe
, u32
*ucblocks
)
1253 struct af9013_state
*state
= fe
->demodulator_priv
;
1255 ret
= af9013_update_statistics(fe
);
1256 *ucblocks
= state
->ucblocks
;
1260 static int af9013_sleep(struct dvb_frontend
*fe
)
1262 struct af9013_state
*state
= fe
->demodulator_priv
;
1264 deb_info("%s\n", __func__
);
1266 ret
= af9013_lock_led(state
, 0);
1270 ret
= af9013_power_ctrl(state
, 0);
1275 static int af9013_init(struct dvb_frontend
*fe
)
1277 struct af9013_state
*state
= fe
->demodulator_priv
;
1280 struct regdesc
*init
;
1281 deb_info("%s\n", __func__
);
1284 ret
= af9013_reset(state
, 0);
1289 ret
= af9013_power_ctrl(state
, 1);
1294 ret
= af9013_write_reg(state
, 0xd73a, 0xa4);
1298 /* write API version to firmware */
1299 for (i
= 0; i
< sizeof(state
->config
.api_version
); i
++) {
1300 ret
= af9013_write_reg(state
, 0x9bf2 + i
,
1301 state
->config
.api_version
[i
]);
1306 /* program ADC control */
1307 ret
= af9013_set_adc_ctrl(state
);
1311 /* set I2C master clock */
1312 ret
= af9013_write_reg(state
, 0xd416, 0x14);
1317 ret
= af9013_write_reg_bits(state
, 0xd700, 1, 1, 1);
1321 /* set no trigger */
1322 ret
= af9013_write_reg_bits(state
, 0xd700, 2, 1, 0);
1326 /* set read-update bit for constellation */
1327 ret
= af9013_write_reg_bits(state
, 0xd371, 1, 1, 1);
1331 /* enable FEC monitor */
1332 ret
= af9013_write_reg_bits(state
, 0xd392, 1, 1, 1);
1336 /* load OFSM settings */
1337 deb_info("%s: load ofsm settings\n", __func__
);
1338 len
= ARRAY_SIZE(ofsm_init
);
1340 for (i
= 0; i
< len
; i
++) {
1341 ret
= af9013_write_reg_bits(state
, init
[i
].addr
, init
[i
].pos
,
1342 init
[i
].len
, init
[i
].val
);
1347 /* load tuner specific settings */
1348 deb_info("%s: load tuner specific settings\n", __func__
);
1349 switch (state
->config
.tuner
) {
1350 case AF9013_TUNER_MXL5003D
:
1351 len
= ARRAY_SIZE(tuner_init_mxl5003d
);
1352 init
= tuner_init_mxl5003d
;
1354 case AF9013_TUNER_MXL5005D
:
1355 case AF9013_TUNER_MXL5005R
:
1356 len
= ARRAY_SIZE(tuner_init_mxl5005
);
1357 init
= tuner_init_mxl5005
;
1359 case AF9013_TUNER_ENV77H11D5
:
1360 len
= ARRAY_SIZE(tuner_init_env77h11d5
);
1361 init
= tuner_init_env77h11d5
;
1363 case AF9013_TUNER_MT2060
:
1364 len
= ARRAY_SIZE(tuner_init_mt2060
);
1365 init
= tuner_init_mt2060
;
1367 case AF9013_TUNER_MC44S803
:
1368 len
= ARRAY_SIZE(tuner_init_mc44s803
);
1369 init
= tuner_init_mc44s803
;
1371 case AF9013_TUNER_QT1010
:
1372 case AF9013_TUNER_QT1010A
:
1373 len
= ARRAY_SIZE(tuner_init_qt1010
);
1374 init
= tuner_init_qt1010
;
1376 case AF9013_TUNER_MT2060_2
:
1377 len
= ARRAY_SIZE(tuner_init_mt2060_2
);
1378 init
= tuner_init_mt2060_2
;
1380 case AF9013_TUNER_TDA18271
:
1381 len
= ARRAY_SIZE(tuner_init_tda18271
);
1382 init
= tuner_init_tda18271
;
1384 case AF9013_TUNER_UNKNOWN
:
1386 len
= ARRAY_SIZE(tuner_init_unknown
);
1387 init
= tuner_init_unknown
;
1391 for (i
= 0; i
< len
; i
++) {
1392 ret
= af9013_write_reg_bits(state
, init
[i
].addr
, init
[i
].pos
,
1393 init
[i
].len
, init
[i
].val
);
1399 deb_info("%s: setting ts mode\n", __func__
);
1400 tmp0
= 0; /* parallel mode */
1401 tmp1
= 0; /* serial mode */
1402 switch (state
->config
.output_mode
) {
1403 case AF9013_OUTPUT_MODE_PARALLEL
:
1406 case AF9013_OUTPUT_MODE_SERIAL
:
1409 case AF9013_OUTPUT_MODE_USB
:
1410 /* usb mode for AF9015 */
1414 ret
= af9013_write_reg_bits(state
, 0xd500, 1, 1, tmp0
); /* parallel */
1417 ret
= af9013_write_reg_bits(state
, 0xd500, 2, 1, tmp1
); /* serial */
1421 /* enable lock led */
1422 ret
= af9013_lock_led(state
, 1);
1430 static struct dvb_frontend_ops af9013_ops
;
1432 static int af9013_download_firmware(struct af9013_state
*state
)
1434 int i
, len
, packets
, remainder
, ret
;
1435 const struct firmware
*fw
;
1436 u16 addr
= 0x5100; /* firmware start address */
1441 u8
*fw_file
= AF9013_DEFAULT_FIRMWARE
;
1444 /* check whether firmware is already running */
1445 ret
= af9013_read_reg(state
, 0x98be, &val
);
1449 deb_info("%s: firmware status:%02x\n", __func__
, val
);
1451 if (val
== 0x0c) /* fw is running, no need for download */
1454 info("found a '%s' in cold state, will try to load a firmware",
1455 af9013_ops
.info
.name
);
1457 /* request the firmware, this will block and timeout */
1458 ret
= request_firmware(&fw
, fw_file
, state
->i2c
->dev
.parent
);
1460 err("did not find the firmware file. (%s) "
1461 "Please see linux/Documentation/dvb/ for more details" \
1462 " on firmware-problems. (%d)",
1467 info("downloading firmware from file '%s'", fw_file
);
1470 for (i
= 0; i
< fw
->size
; i
++)
1471 checksum
+= fw
->data
[i
];
1473 fw_params
[0] = checksum
>> 8;
1474 fw_params
[1] = checksum
& 0xff;
1475 fw_params
[2] = fw
->size
>> 8;
1476 fw_params
[3] = fw
->size
& 0xff;
1478 /* write fw checksum & size */
1479 ret
= af9013_write_ofsm_regs(state
, 0x50fc,
1480 fw_params
, sizeof(fw_params
));
1484 #define FW_PACKET_MAX_DATA 16
1486 packets
= fw
->size
/ FW_PACKET_MAX_DATA
;
1487 remainder
= fw
->size
% FW_PACKET_MAX_DATA
;
1488 len
= FW_PACKET_MAX_DATA
;
1489 for (i
= 0; i
<= packets
; i
++) {
1490 if (i
== packets
) /* set size of the last packet */
1493 data
= (u8
*)(fw
->data
+ i
* FW_PACKET_MAX_DATA
);
1494 ret
= af9013_write_ofsm_regs(state
, addr
, data
, len
);
1495 addr
+= FW_PACKET_MAX_DATA
;
1498 err("firmware download failed at %d with %d", i
, ret
);
1503 /* request boot firmware */
1504 ret
= af9013_write_reg(state
, 0xe205, 1);
1508 for (i
= 0; i
< 15; i
++) {
1511 /* check firmware status */
1512 ret
= af9013_read_reg(state
, 0x98be, &val
);
1516 deb_info("%s: firmware status:%02x\n", __func__
, val
);
1518 if (val
== 0x0c || val
== 0x04) /* success or fail */
1523 err("firmware did not run");
1525 } else if (val
!= 0x0c) {
1526 err("firmware boot timeout");
1531 release_firmware(fw
);
1535 info("found a '%s' in warm state.", af9013_ops
.info
.name
);
1539 static int af9013_i2c_gate_ctrl(struct dvb_frontend
*fe
, int enable
)
1542 struct af9013_state
*state
= fe
->demodulator_priv
;
1543 deb_info("%s: enable:%d\n", __func__
, enable
);
1545 if (state
->config
.output_mode
== AF9013_OUTPUT_MODE_USB
)
1546 ret
= af9013_write_reg_bits(state
, 0xd417, 3, 1, enable
);
1548 ret
= af9013_write_reg_bits(state
, 0xd607, 2, 1, enable
);
1553 static void af9013_release(struct dvb_frontend
*fe
)
1555 struct af9013_state
*state
= fe
->demodulator_priv
;
1559 static struct dvb_frontend_ops af9013_ops
;
1561 struct dvb_frontend
*af9013_attach(const struct af9013_config
*config
,
1562 struct i2c_adapter
*i2c
)
1565 struct af9013_state
*state
= NULL
;
1568 /* allocate memory for the internal state */
1569 state
= kzalloc(sizeof(struct af9013_state
), GFP_KERNEL
);
1573 /* setup the state */
1575 memcpy(&state
->config
, config
, sizeof(struct af9013_config
));
1578 ret
= af9013_read_reg_bits(state
, 0xd733, 4, 4, &buf
[2]);
1583 for (i
= 0; i
< 2; i
++) {
1584 ret
= af9013_read_reg(state
, 0x116b + i
, &buf
[i
]);
1588 deb_info("%s: chip version:%d ROM version:%d.%d\n", __func__
,
1589 buf
[2], buf
[0], buf
[1]);
1591 /* download firmware */
1592 if (state
->config
.output_mode
!= AF9013_OUTPUT_MODE_USB
) {
1593 ret
= af9013_download_firmware(state
);
1598 /* firmware version */
1599 for (i
= 0; i
< 3; i
++) {
1600 ret
= af9013_read_reg(state
, 0x5103 + i
, &buf
[i
]);
1604 info("firmware version:%d.%d.%d", buf
[0], buf
[1], buf
[2]);
1606 /* settings for mp2if */
1607 if (state
->config
.output_mode
== AF9013_OUTPUT_MODE_USB
) {
1608 /* AF9015 split PSB to 1.5k + 0.5k */
1609 ret
= af9013_write_reg_bits(state
, 0xd50b, 2, 1, 1);
1611 /* AF9013 change the output bit to data7 */
1612 ret
= af9013_write_reg_bits(state
, 0xd500, 3, 1, 1);
1615 /* AF9013 set mpeg to full speed */
1616 ret
= af9013_write_reg_bits(state
, 0xd502, 4, 1, 1);
1620 ret
= af9013_write_reg_bits(state
, 0xd520, 4, 1, 1);
1625 for (i
= 0; i
< sizeof(state
->config
.gpio
); i
++) {
1626 ret
= af9013_set_gpio(state
, i
, state
->config
.gpio
[i
]);
1631 /* create dvb_frontend */
1632 memcpy(&state
->frontend
.ops
, &af9013_ops
,
1633 sizeof(struct dvb_frontend_ops
));
1634 state
->frontend
.demodulator_priv
= state
;
1636 return &state
->frontend
;
1641 EXPORT_SYMBOL(af9013_attach
);
1643 static struct dvb_frontend_ops af9013_ops
= {
1645 .name
= "Afatech AF9013 DVB-T",
1647 .frequency_min
= 174000000,
1648 .frequency_max
= 862000000,
1649 .frequency_stepsize
= 250000,
1650 .frequency_tolerance
= 0,
1652 FE_CAN_FEC_1_2
| FE_CAN_FEC_2_3
| FE_CAN_FEC_3_4
|
1653 FE_CAN_FEC_5_6
| FE_CAN_FEC_7_8
| FE_CAN_FEC_AUTO
|
1654 FE_CAN_QPSK
| FE_CAN_QAM_16
|
1655 FE_CAN_QAM_64
| FE_CAN_QAM_AUTO
|
1656 FE_CAN_TRANSMISSION_MODE_AUTO
|
1657 FE_CAN_GUARD_INTERVAL_AUTO
|
1658 FE_CAN_HIERARCHY_AUTO
|
1663 .release
= af9013_release
,
1664 .init
= af9013_init
,
1665 .sleep
= af9013_sleep
,
1666 .i2c_gate_ctrl
= af9013_i2c_gate_ctrl
,
1668 .set_frontend
= af9013_set_frontend
,
1669 .get_frontend
= af9013_get_frontend
,
1671 .get_tune_settings
= af9013_get_tune_settings
,
1673 .read_status
= af9013_read_status
,
1674 .read_ber
= af9013_read_ber
,
1675 .read_signal_strength
= af9013_read_signal_strength
,
1676 .read_snr
= af9013_read_snr
,
1677 .read_ucblocks
= af9013_read_ucblocks
,
1680 module_param_named(debug
, af9013_debug
, int, 0644);
1681 MODULE_PARM_DESC(debug
, "Turn on/off frontend debugging (default:off).");
1683 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
1684 MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver");
1685 MODULE_LICENSE("GPL");