2 * Driver for Micronas drx397xD demodulator
4 * Copyright (C) 2007 Henk Vergonet <Henk.Vergonet@gmail.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; If not, see <http://www.gnu.org/licenses/>.
20 #define DEBUG /* uncomment if you want debugging output */
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/init.h>
25 #include <linux/device.h>
26 #include <linux/delay.h>
27 #include <linux/string.h>
28 #include <linux/firmware.h>
29 #include <asm/div64.h>
31 #include "dvb_frontend.h"
34 static const char mod_name
[] = "drx397xD";
36 #define MAX_CLOCK_DRIFT 200 /* maximal 200 PPM allowed */
42 #define _FW_ENTRY(a, b, c) b
43 #include "drx397xD_fw.h"
47 struct drx397xD_state
{
48 struct i2c_adapter
*i2c
;
49 struct dvb_frontend frontend
;
50 struct drx397xD_config config
;
53 u32 bandwidth_parm
; /* internal bandwidth conversions */
54 u32 f_osc
; /* w90: actual osc frequency [Hz] */
58 static const char *blob_name
[] = {
59 #define _BLOB_ENTRY(a, b) a
60 #include "drx397xD_fw.h"
64 #define _BLOB_ENTRY(a, b) b
65 #include "drx397xD_fw.h"
70 const struct firmware
*file
;
73 const u8
*data
[ARRAY_SIZE(blob_name
)];
75 #define _FW_ENTRY(a, b, c) { \
78 .lock = __RW_LOCK_UNLOCKED(fw[c].lock), \
81 #include "drx397xD_fw.h"
84 /* use only with writer lock aquired */
85 static void _drx_release_fw(struct drx397xD_state
*s
, enum fw_ix ix
)
87 memset(&fw
[ix
].data
[0], 0, sizeof(fw
[0].data
));
89 release_firmware(fw
[ix
].file
);
92 static void drx_release_fw(struct drx397xD_state
*s
)
94 enum fw_ix ix
= s
->chip_rev
;
96 pr_debug("%s\n", __func__
);
98 write_lock(&fw
[ix
].lock
);
101 if (fw
[ix
].refcnt
== 0)
102 _drx_release_fw(s
, ix
);
104 write_unlock(&fw
[ix
].lock
);
107 static int drx_load_fw(struct drx397xD_state
*s
, enum fw_ix ix
)
111 int i
= 0, j
, rc
= -EINVAL
;
113 pr_debug("%s\n", __func__
);
115 if (ix
< 0 || ix
>= ARRAY_SIZE(fw
))
119 write_lock(&fw
[ix
].lock
);
124 memset(&fw
[ix
].data
[0], 0, sizeof(fw
[0].data
));
126 rc
= request_firmware(&fw
[ix
].file
, fw
[ix
].name
, s
->i2c
->dev
.parent
);
128 printk(KERN_ERR
"%s: Firmware \"%s\" not available\n",
129 mod_name
, fw
[ix
].name
);
133 if (!fw
[ix
].file
->data
|| fw
[ix
].file
->size
< 10)
136 data
= fw
[ix
].file
->data
;
137 size
= fw
[ix
].file
->size
;
139 if (data
[i
++] != 2) /* check firmware version */
144 case 0x00: /* bytecode */
148 case 0x01: /* reset */
149 case 0x02: /* sleep */
152 case 0xfe: /* name */
153 len
= strnlen(&data
[i
], size
- i
);
154 if (i
+ len
+ 1 >= size
)
156 if (data
[i
+ len
+ 1] != 0)
158 for (j
= 0; j
< ARRAY_SIZE(blob_name
); j
++) {
159 if (strcmp(blob_name
[j
], &data
[i
]) == 0) {
160 fw
[ix
].data
[j
] = &data
[i
+ len
+ 1];
161 pr_debug("Loading %s\n", blob_name
[j
]);
166 case 0xff: /* file terminator */
177 printk(KERN_ERR
"%s: Firmware is corrupt\n", mod_name
);
179 _drx_release_fw(s
, ix
);
183 write_unlock(&fw
[ix
].lock
);
189 static int write_fw(struct drx397xD_state
*s
, enum blob_ix ix
)
192 int len
, rc
= 0, i
= 0;
193 struct i2c_msg msg
= {
194 .addr
= s
->config
.demod_address
,
198 if (ix
< 0 || ix
>= ARRAY_SIZE(blob_name
)) {
199 pr_debug("%s drx_fw_ix_t out of range\n", __func__
);
202 pr_debug("%s %s\n", __func__
, blob_name
[ix
]);
204 read_lock(&fw
[s
->chip_rev
].lock
);
205 data
= fw
[s
->chip_rev
].data
[ix
];
213 case 0: /* bytecode */
216 msg
.buf
= (__u8
*) &data
[i
];
217 if (i2c_transfer(s
->i2c
, &msg
, 1) != 1) {
232 read_unlock(&fw
[s
->chip_rev
].lock
);
237 /* Function is not endian safe, use the RD16 wrapper below */
238 static int _read16(struct drx397xD_state
*s
, __le32 i2c_adr
)
243 struct i2c_msg msg
[2] = {
245 .addr
= s
->config
.demod_address
,
250 .addr
= s
->config
.demod_address
,
257 *(__le32
*) a
= i2c_adr
;
259 rc
= i2c_transfer(s
->i2c
, msg
, 2);
263 return le16_to_cpu(v
);
266 /* Function is not endian safe, use the WR16.. wrappers below */
267 static int _write16(struct drx397xD_state
*s
, __le32 i2c_adr
, __le16 val
)
271 struct i2c_msg msg
= {
272 .addr
= s
->config
.demod_address
,
278 *(__le32
*)a
= i2c_adr
;
279 *(__le16
*)&a
[4] = val
;
281 rc
= i2c_transfer(s
->i2c
, &msg
, 1);
288 #define WR16(ss, adr, val) \
289 _write16(ss, I2C_ADR_C0(adr), cpu_to_le16(val))
290 #define WR16_E0(ss, adr, val) \
291 _write16(ss, I2C_ADR_E0(adr), cpu_to_le16(val))
292 #define RD16(ss, adr) \
293 _read16(ss, I2C_ADR_C0(adr))
295 #define EXIT_RC(cmd) \
296 if ((rc = (cmd)) < 0) \
300 static int PLL_Set(struct drx397xD_state
*s
,
301 struct dvb_frontend_parameters
*fep
, int *df_tuner
)
303 struct dvb_frontend
*fe
= &s
->frontend
;
304 u32 f_tuner
, f
= fep
->frequency
;
307 pr_debug("%s\n", __func__
);
309 if ((f
> s
->frontend
.ops
.tuner_ops
.info
.frequency_max
) ||
310 (f
< s
->frontend
.ops
.tuner_ops
.info
.frequency_min
))
314 if (!s
->frontend
.ops
.tuner_ops
.set_params
||
315 !s
->frontend
.ops
.tuner_ops
.get_frequency
)
318 rc
= s
->frontend
.ops
.tuner_ops
.set_params(fe
, fep
);
322 rc
= s
->frontend
.ops
.tuner_ops
.get_frequency(fe
, &f_tuner
);
326 *df_tuner
= f_tuner
- f
;
327 pr_debug("%s requested %d [Hz] tuner %d [Hz]\n", __func__
, f
,
333 /* Demodulator helper functions */
334 static int SC_WaitForReady(struct drx397xD_state
*s
)
339 pr_debug("%s\n", __func__
);
342 rc
= RD16(s
, 0x820043);
350 static int SC_SendCommand(struct drx397xD_state
*s
, int cmd
)
354 pr_debug("%s\n", __func__
);
356 WR16(s
, 0x820043, cmd
);
358 rc
= RD16(s
, 0x820042);
359 if ((rc
& 0xffff) == 0xffff)
365 static int HI_Command(struct drx397xD_state
*s
, u16 cmd
)
369 pr_debug("%s\n", __func__
);
371 rc
= WR16(s
, 0x420032, cmd
);
376 rc
= RD16(s
, 0x420032);
378 rc
= RD16(s
, 0x420031);
388 static int HI_CfgCommand(struct drx397xD_state
*s
)
391 pr_debug("%s\n", __func__
);
393 WR16(s
, 0x420033, 0x3973);
394 WR16(s
, 0x420034, s
->config
.w50
); /* code 4, log 4 */
395 WR16(s
, 0x420035, s
->config
.w52
); /* code 15, log 9 */
396 WR16(s
, 0x420036, s
->config
.demod_address
<< 1);
397 WR16(s
, 0x420037, s
->config
.w56
); /* code (set_i2c ?? initX 1 ), log 1 */
398 /* WR16(s, 0x420033, 0x3973); */
399 if ((s
->config
.w56
& 8) == 0)
400 return HI_Command(s
, 3);
402 return WR16(s
, 0x420032, 0x3);
405 static const u8 fastIncrDecLUT_15273
[] = {
406 0x0e, 0x0f, 0x0f, 0x10, 0x11, 0x12, 0x12, 0x13, 0x14,
407 0x15, 0x16, 0x17, 0x18, 0x1a, 0x1b, 0x1c, 0x1d, 0x1f
410 static const u8 slowIncrDecLUT_15272
[] = {
414 static int SetCfgIfAgc(struct drx397xD_state
*s
, struct drx397xD_CfgIfAgc
*agc
)
420 int quot
, rem
, i
, rc
= -EINVAL
;
422 pr_debug("%s\n", __func__
);
424 if (agc
->w04
> 0x3ff)
428 EXIT_RC(RD16(s
, 0x0c20010));
430 EXIT_RC(WR16(s
, 0x0c20010, rc
));
431 return WR16(s
, 0x0c20030, agc
->w04
& 0x7ff);
445 EXIT_RC(RD16(s
, 0x0c20010));
447 EXIT_RC(WR16(s
, 0x0c20010, rc
));
449 EXIT_RC(WR16(s
, 0x0c20025, (w06
>> 1) & 0x1ff));
450 EXIT_RC(WR16(s
, 0x0c20031, (w0A
- w08
) >> 1));
451 EXIT_RC(WR16(s
, 0x0c20032, ((w0A
+ w08
) >> 1) - 0x1ff));
462 EXIT_RC(WR16(s
, 0x0c20024, quot
));
464 i
= fastIncrDecLUT_15273
[rem
/ 8];
465 EXIT_RC(WR16(s
, 0x0c2002d, i
));
466 EXIT_RC(WR16(s
, 0x0c2002e, i
));
468 i
= slowIncrDecLUT_15272
[rem
/ 28];
469 EXIT_RC(WR16(s
, 0x0c2002b, i
));
470 rc
= WR16(s
, 0x0c2002c, i
);
475 static int SetCfgRfAgc(struct drx397xD_state
*s
, struct drx397xD_CfgRfAgc
*agc
)
481 pr_debug("%s %d 0x%x 0x%x\n", __func__
, agc
->d00
, w04
, w06
);
491 EXIT_RC(WR16(s
, 0x0c20036, w04
));
493 EXIT_RC(WR16(s
, 0x0c20015, s
->config
.w9C
));
494 EXIT_RC(RD16(s
, 0x0c20010));
496 EXIT_RC(WR16(s
, 0x0c20010, rc
));
497 EXIT_RC(RD16(s
, 0x0c20013));
503 EXIT_RC(WR16(s
, 0x0c20015, s
->config
.w9C
));
504 EXIT_RC(RD16(s
, 0x0c20010));
507 EXIT_RC(WR16(s
, 0x0c20010, rc
));
508 EXIT_RC(WR16(s
, 0x0c20051, (w06
>> 4) & 0x3f));
509 EXIT_RC(RD16(s
, 0x0c20013));
514 EXIT_RC(WR16(s
, 0x0c20015, s
->config
.w9C
));
515 EXIT_RC(RD16(s
, 0x0c20010));
517 EXIT_RC(WR16(s
, 0x0c20010, rc
));
519 EXIT_RC(WR16(s
, 0x0c20036, 0));
521 EXIT_RC(RD16(s
, 0x0c20013));
524 rc
= WR16(s
, 0x0c20013, rc
);
530 static int GetLockStatus(struct drx397xD_state
*s
, int *lockstat
)
536 rc
= RD16(s
, 0x082004b);
540 if (s
->config
.d60
!= 2)
552 static int CorrectSysClockDeviation(struct drx397xD_state
*s
)
558 pr_debug("%s\n", __func__
);
560 if (s
->config
.d5C
== 0) {
561 EXIT_RC(WR16(s
, 0x08200e8, 0x010));
562 EXIT_RC(WR16(s
, 0x08200e9, 0x113));
566 if (s
->config
.d5C
!= 1)
569 rc
= RD16(s
, 0x0820048);
571 rc
= GetLockStatus(s
, &lockstat
);
574 if ((lockstat
& 1) == 0)
577 EXIT_RC(WR16(s
, 0x0420033, 0x200));
578 EXIT_RC(WR16(s
, 0x0420034, 0xc5));
579 EXIT_RC(WR16(s
, 0x0420035, 0x10));
580 EXIT_RC(WR16(s
, 0x0420036, 0x1));
581 EXIT_RC(WR16(s
, 0x0420037, 0xa));
582 EXIT_RC(HI_Command(s
, 6));
583 EXIT_RC(RD16(s
, 0x0420040));
585 EXIT_RC(RD16(s
, 0x0420041));
593 if (!s
->bandwidth_parm
)
596 /* round & convert to Hz */
597 clk
= ((u64
) (clk
+ 0x800000) * s
->bandwidth_parm
+ (1 << 20)) >> 21;
598 clk_limit
= s
->config
.f_osc
* MAX_CLOCK_DRIFT
/ 1000;
600 if (clk
- s
->config
.f_osc
* 1000 + clk_limit
<= 2 * clk_limit
) {
602 pr_debug("%s: osc %d %d [Hz]\n", __func__
,
603 s
->config
.f_osc
* 1000, clk
- s
->config
.f_osc
* 1000);
605 rc
= WR16(s
, 0x08200e8, 0);
611 static int ConfigureMPEGOutput(struct drx397xD_state
*s
, int type
)
615 pr_debug("%s\n", __func__
);
618 if (s
->config
.w98
== 0) {
625 if (s
->config
.w9A
== 0)
630 EXIT_RC(WR16(s
, 0x2150045, 0));
631 EXIT_RC(WR16(s
, 0x2150010, si
));
632 EXIT_RC(WR16(s
, 0x2150011, bp
));
633 rc
= WR16(s
, 0x2150012, (type
== 0 ? 0xfff : 0));
639 static int drx_tune(struct drx397xD_state
*s
,
640 struct dvb_frontend_parameters
*fep
)
646 u32 edi
= 0, ebx
= 0, ebp
= 0, edx
= 0;
647 u16 v20
= 0, v1E
= 0, v16
= 0, v14
= 0, v12
= 0, v10
= 0, v0E
= 0;
649 int rc
, df_tuner
= 0;
651 pr_debug("%s %d\n", __func__
, s
->config
.d60
);
653 if (s
->config
.d60
!= 2)
655 rc
= CorrectSysClockDeviation(s
);
660 rc
= ConfigureMPEGOutput(s
, 0);
665 rc
= PLL_Set(s
, fep
, &df_tuner
);
667 printk(KERN_ERR
"Error in pll_set\n");
672 a
= rc
= RD16(s
, 0x2150016);
675 b
= rc
= RD16(s
, 0x2150010);
678 c
= rc
= RD16(s
, 0x2150034);
681 d
= rc
= RD16(s
, 0x2150035);
684 rc
= WR16(s
, 0x2150014, c
);
685 rc
= WR16(s
, 0x2150015, d
);
686 rc
= WR16(s
, 0x2150010, 0);
687 rc
= WR16(s
, 0x2150000, 2);
688 rc
= WR16(s
, 0x2150036, 0x0fff);
689 rc
= WR16(s
, 0x2150016, a
);
691 rc
= WR16(s
, 0x2150010, 2);
692 rc
= WR16(s
, 0x2150007, 0);
693 rc
= WR16(s
, 0x2150000, 1);
694 rc
= WR16(s
, 0x2110000, 0);
695 rc
= WR16(s
, 0x0800000, 0);
696 rc
= WR16(s
, 0x2800000, 0);
697 rc
= WR16(s
, 0x2110010, 0x664);
699 rc
= write_fw(s
, DRXD_ResetECRAM
);
700 rc
= WR16(s
, 0x2110000, 1);
702 rc
= write_fw(s
, DRXD_InitSC
);
706 rc
= SetCfgIfAgc(s
, &s
->config
.ifagc
);
710 rc
= SetCfgRfAgc(s
, &s
->config
.rfagc
);
714 if (fep
->u
.ofdm
.transmission_mode
!= TRANSMISSION_MODE_2K
)
716 switch (fep
->u
.ofdm
.transmission_mode
) {
717 case TRANSMISSION_MODE_8K
:
719 if (s
->chip_rev
== DRXD_FW_B1
)
722 rc
= WR16(s
, 0x2010010, 0);
731 if (s
->chip_rev
== DRXD_FW_B1
)
734 rc
= WR16(s
, 0x2010010, 1);
743 switch (fep
->u
.ofdm
.guard_interval
) {
744 case GUARD_INTERVAL_1_4
:
747 case GUARD_INTERVAL_1_8
:
750 case GUARD_INTERVAL_1_16
:
753 case GUARD_INTERVAL_1_32
:
769 switch (fep
->u
.ofdm
.hierarchy_information
) {
772 if (s
->chip_rev
== DRXD_FW_B1
)
774 rc
= WR16(s
, 0x1c10047, 1);
777 rc
= WR16(s
, 0x2010012, 1);
792 if (s
->chip_rev
== DRXD_FW_B1
)
794 rc
= WR16(s
, 0x1c10047, 2);
797 rc
= WR16(s
, 0x2010012, 2);
812 if (s
->chip_rev
== DRXD_FW_B1
)
814 rc
= WR16(s
, 0x1c10047, 3);
817 rc
= WR16(s
, 0x2010012, 3);
832 if (s
->chip_rev
== DRXD_FW_B1
)
834 rc
= WR16(s
, 0x1c10047, 0);
837 rc
= WR16(s
, 0x2010012, 0);
840 /* QPSK QAM16 QAM64 */
841 ebx
= 0x19f; /* 62 */
842 ebp
= 0x1fb; /* 15 */
843 v20
= 0x16a; /* 62 */
844 v1E
= 0x195; /* 62 */
845 v16
= 0x1bb; /* 15 */
846 v14
= 0x1ef; /* 15 */
852 switch (fep
->u
.ofdm
.constellation
) {
856 if (s
->chip_rev
== DRXD_FW_B1
)
859 rc
= WR16(s
, 0x1c10046, 0);
862 rc
= WR16(s
, 0x2010011, 0);
865 rc
= WR16(s
, 0x201001a, 0x10);
868 rc
= WR16(s
, 0x201001b, 0);
871 rc
= WR16(s
, 0x201001c, 0);
874 rc
= WR16(s
, 0x1c10062, v20
);
877 rc
= WR16(s
, 0x1c1002a, v1C
);
880 rc
= WR16(s
, 0x1c10015, v16
);
883 rc
= WR16(s
, 0x1c10016, v12
);
889 if (s
->chip_rev
== DRXD_FW_B1
)
892 rc
= WR16(s
, 0x1c10046, 1);
895 rc
= WR16(s
, 0x2010011, 1);
898 rc
= WR16(s
, 0x201001a, 0x10);
901 rc
= WR16(s
, 0x201001b, 4);
904 rc
= WR16(s
, 0x201001c, 0);
907 rc
= WR16(s
, 0x1c10062, v1E
);
910 rc
= WR16(s
, 0x1c1002a, v1A
);
913 rc
= WR16(s
, 0x1c10015, v14
);
916 rc
= WR16(s
, 0x1c10016, v10
);
922 rc
= WR16(s
, 0x1c10046, 2);
925 rc
= WR16(s
, 0x2010011, 2);
928 rc
= WR16(s
, 0x201001a, 0x20);
931 rc
= WR16(s
, 0x201001b, 8);
934 rc
= WR16(s
, 0x201001c, 2);
937 rc
= WR16(s
, 0x1c10062, ebx
);
940 rc
= WR16(s
, 0x1c1002a, v18
);
943 rc
= WR16(s
, 0x1c10015, ebp
);
946 rc
= WR16(s
, 0x1c10016, v0E
);
952 if (s
->config
.s20d24
== 1) {
953 rc
= WR16(s
, 0x2010013, 0);
955 rc
= WR16(s
, 0x2010013, 1);
959 switch (fep
->u
.ofdm
.code_rate_HP
) {
963 if (s
->chip_rev
== DRXD_FW_B1
)
965 rc
= WR16(s
, 0x2090011, 0);
969 if (s
->chip_rev
== DRXD_FW_B1
)
971 rc
= WR16(s
, 0x2090011, 1);
975 if (s
->chip_rev
== DRXD_FW_B1
)
977 rc
= WR16(s
, 0x2090011, 2);
979 case FEC_5_6
: /* 5 */
981 if (s
->chip_rev
== DRXD_FW_B1
)
983 rc
= WR16(s
, 0x2090011, 3);
985 case FEC_7_8
: /* 7 */
987 if (s
->chip_rev
== DRXD_FW_B1
)
989 rc
= WR16(s
, 0x2090011, 4);
995 switch (fep
->u
.ofdm
.bandwidth
) {
999 case BANDWIDTH_8_MHZ
: /* 0 */
1000 case BANDWIDTH_AUTO
:
1001 rc
= WR16(s
, 0x0c2003f, 0x32);
1002 s
->bandwidth_parm
= ebx
= 0x8b8249;
1005 case BANDWIDTH_7_MHZ
:
1006 rc
= WR16(s
, 0x0c2003f, 0x3b);
1007 s
->bandwidth_parm
= ebx
= 0x7a1200;
1010 case BANDWIDTH_6_MHZ
:
1011 rc
= WR16(s
, 0x0c2003f, 0x47);
1012 s
->bandwidth_parm
= ebx
= 0x68a1b6;
1020 rc
= WR16(s
, 0x08200ec, edx
);
1024 rc
= RD16(s
, 0x0820050);
1027 rc
= WR16(s
, 0x0820050, rc
);
1030 /* Configure bandwidth specific factor */
1031 ebx
= div64_u64(((u64
) (s
->f_osc
) << 21) + (ebx
>> 1),
1032 (u64
)ebx
) - 0x800000;
1033 EXIT_RC(WR16(s
, 0x0c50010, ebx
& 0xffff));
1034 EXIT_RC(WR16(s
, 0x0c50011, ebx
>> 16));
1036 /* drx397xD oscillator calibration */
1037 ebx
= div64_u64(((u64
) (s
->config
.f_if
+ df_tuner
) << 28) +
1038 (s
->f_osc
>> 1), (u64
)s
->f_osc
);
1041 if (fep
->inversion
== INVERSION_ON
)
1042 ebx
= 0x10000000 - ebx
;
1044 EXIT_RC(WR16(s
, 0x0c30010, ebx
& 0xffff));
1045 EXIT_RC(WR16(s
, 0x0c30011, ebx
>> 16));
1047 EXIT_RC(WR16(s
, 0x0800000, 1));
1048 EXIT_RC(RD16(s
, 0x0800000));
1051 EXIT_RC(SC_WaitForReady(s
));
1052 EXIT_RC(WR16(s
, 0x0820042, 0));
1053 EXIT_RC(WR16(s
, 0x0820041, v22
));
1054 EXIT_RC(WR16(s
, 0x0820040, edi
));
1055 EXIT_RC(SC_SendCommand(s
, 3));
1057 rc
= RD16(s
, 0x0800000);
1060 WR16(s
, 0x0820042, 0);
1061 WR16(s
, 0x0820041, 1);
1062 WR16(s
, 0x0820040, 1);
1063 SC_SendCommand(s
, 1);
1066 rc
= WR16(s
, 0x2150000, 2);
1067 rc
= WR16(s
, 0x2150016, a
);
1068 rc
= WR16(s
, 0x2150010, 4);
1069 rc
= WR16(s
, 0x2150036, 0);
1070 rc
= WR16(s
, 0x2150000, 1);
1077 /*******************************************************************************
1079 ******************************************************************************/
1081 static int drx397x_init(struct dvb_frontend
*fe
)
1083 struct drx397xD_state
*s
= fe
->demodulator_priv
;
1086 pr_debug("%s\n", __func__
);
1088 s
->config
.rfagc
.d00
= 2; /* 0x7c */
1089 s
->config
.rfagc
.w04
= 0;
1090 s
->config
.rfagc
.w06
= 0x3ff;
1092 s
->config
.ifagc
.d00
= 0; /* 0x68 */
1093 s
->config
.ifagc
.w04
= 0;
1094 s
->config
.ifagc
.w06
= 140;
1095 s
->config
.ifagc
.w08
= 0;
1096 s
->config
.ifagc
.w0A
= 0x3ff;
1097 s
->config
.ifagc
.w0C
= 0x388;
1099 /* for signal strenght calculations */
1100 s
->config
.ss76
= 820;
1101 s
->config
.ss78
= 2200;
1102 s
->config
.ss7A
= 150;
1108 s
->config
.f_if
= 42800000; /* d14: intermediate frequency [Hz] */
1109 s
->config
.f_osc
= 48000; /* s66 : oscillator frequency [kHz] */
1110 s
->config
.w92
= 12000;
1112 s
->config
.w9C
= 0x000e;
1113 s
->config
.w9E
= 0x0000;
1115 /* ConfigureMPEGOutput params */
1120 /* get chip revision */
1121 rc
= RD16(s
, 0x2410019);
1126 printk(KERN_INFO
"%s: chip revision A2\n", mod_name
);
1127 rc
= drx_load_fw(s
, DRXD_FW_A2
);
1130 rc
= (rc
>> 12) - 3;
1133 s
->flags
|= F_SET_0D4h
;
1136 s
->flags
|= F_SET_0D0h
;
1142 s
->flags
|= F_SET_0D4h
;
1147 printk(KERN_INFO
"%s: chip revision B1.%d\n", mod_name
, rc
);
1148 rc
= drx_load_fw(s
, DRXD_FW_B1
);
1153 rc
= WR16(s
, 0x0420033, 0x3973);
1157 rc
= HI_Command(s
, 2);
1161 if (s
->chip_rev
== DRXD_FW_A2
) {
1162 rc
= WR16(s
, 0x043012d, 0x47F);
1166 rc
= WR16_E0(s
, 0x0400000, 0);
1170 if (s
->config
.w92
> 20000 || s
->config
.w92
% 4000) {
1171 printk(KERN_ERR
"%s: invalid osc frequency\n", mod_name
);
1176 rc
= WR16(s
, 0x2410010, 1);
1179 rc
= WR16(s
, 0x2410011, 0x15);
1182 rc
= WR16(s
, 0x2410012, s
->config
.w92
/ 4000);
1186 rc
= WR16(s
, 0x2410015, 2);
1190 rc
= WR16(s
, 0x2410017, 0x3973);
1194 s
->f_osc
= s
->config
.f_osc
* 1000; /* initial estimator */
1198 rc
= HI_CfgCommand(s
);
1202 rc
= write_fw(s
, DRXD_InitAtomicRead
);
1206 if (s
->chip_rev
== DRXD_FW_A2
) {
1207 rc
= WR16(s
, 0x2150013, 0);
1212 rc
= WR16_E0(s
, 0x0400002, 0);
1215 rc
= WR16(s
, 0x0400002, 0);
1219 if (s
->chip_rev
== DRXD_FW_A2
) {
1220 rc
= write_fw(s
, DRXD_ResetCEFR
);
1224 rc
= write_fw(s
, DRXD_microcode
);
1228 s
->config
.w9C
= 0x0e;
1229 if (s
->flags
& F_SET_0D0h
) {
1231 rc
= RD16(s
, 0x0c20010);
1233 goto write_DRXD_InitFE_1
;
1236 rc
= WR16(s
, 0x0c20010, rc
);
1238 goto write_DRXD_InitFE_1
;
1240 rc
= RD16(s
, 0x0c20011);
1242 goto write_DRXD_InitFE_1
;
1245 rc
= WR16(s
, 0x0c20011, rc
);
1247 goto write_DRXD_InitFE_1
;
1249 rc
= WR16(s
, 0x0c20012, 1);
1252 write_DRXD_InitFE_1
:
1254 rc
= write_fw(s
, DRXD_InitFE_1
);
1259 if (s
->chip_rev
== DRXD_FW_B1
) {
1260 if (s
->flags
& F_SET_0D0h
)
1263 if (s
->flags
& F_SET_0D0h
)
1267 rc
= WR16(s
, 0x0C20012, rc
);
1271 rc
= WR16(s
, 0x0C20013, s
->config
.w9E
);
1274 rc
= WR16(s
, 0x0C20015, s
->config
.w9C
);
1278 rc
= write_fw(s
, DRXD_InitFE_2
);
1281 rc
= write_fw(s
, DRXD_InitFT
);
1284 rc
= write_fw(s
, DRXD_InitCP
);
1287 rc
= write_fw(s
, DRXD_InitCE
);
1290 rc
= write_fw(s
, DRXD_InitEQ
);
1293 rc
= write_fw(s
, DRXD_InitEC
);
1296 rc
= write_fw(s
, DRXD_InitSC
);
1300 rc
= SetCfgIfAgc(s
, &s
->config
.ifagc
);
1304 rc
= SetCfgRfAgc(s
, &s
->config
.rfagc
);
1308 rc
= ConfigureMPEGOutput(s
, 1);
1309 rc
= WR16(s
, 0x08201fe, 0x0017);
1310 rc
= WR16(s
, 0x08201ff, 0x0101);
1320 static int drx397x_get_frontend(struct dvb_frontend
*fe
,
1321 struct dvb_frontend_parameters
*params
)
1326 static int drx397x_set_frontend(struct dvb_frontend
*fe
,
1327 struct dvb_frontend_parameters
*params
)
1329 struct drx397xD_state
*s
= fe
->demodulator_priv
;
1331 s
->config
.s20d24
= 1;
1333 return drx_tune(s
, params
);
1336 static int drx397x_get_tune_settings(struct dvb_frontend
*fe
,
1337 struct dvb_frontend_tune_settings
1340 fe_tune_settings
->min_delay_ms
= 10000;
1341 fe_tune_settings
->step_size
= 0;
1342 fe_tune_settings
->max_drift
= 0;
1347 static int drx397x_read_status(struct dvb_frontend
*fe
, fe_status_t
*status
)
1349 struct drx397xD_state
*s
= fe
->demodulator_priv
;
1352 GetLockStatus(s
, &lockstat
);
1356 CorrectSysClockDeviation(s
);
1357 ConfigureMPEGOutput(s
, 1);
1358 *status
= FE_HAS_LOCK
| FE_HAS_SYNC
| FE_HAS_VITERBI
;
1361 *status
|= FE_HAS_CARRIER
| FE_HAS_SIGNAL
;
1366 static int drx397x_read_ber(struct dvb_frontend
*fe
, unsigned int *ber
)
1373 static int drx397x_read_snr(struct dvb_frontend
*fe
, u16
*snr
)
1380 static int drx397x_read_signal_strength(struct dvb_frontend
*fe
, u16
*strength
)
1382 struct drx397xD_state
*s
= fe
->demodulator_priv
;
1385 if (s
->config
.ifagc
.d00
== 2) {
1389 rc
= RD16(s
, 0x0c20035);
1395 /* Signal strength is calculated using the following formula:
1397 * a = 2200 * 150 / (2200 + 150);
1398 * a = a * 3300 / (a + 820);
1399 * b = 2200 * 3300 / (2200 + 820);
1400 * c = (((b-a) * rc) >> 10 + a) << 4;
1401 * strength = ~c & 0xffff;
1403 * The following does the same but with less rounding errors:
1405 *strength
= ~(7720 + (rc
* 30744 >> 10));
1410 static int drx397x_read_ucblocks(struct dvb_frontend
*fe
,
1411 unsigned int *ucblocks
)
1418 static int drx397x_sleep(struct dvb_frontend
*fe
)
1423 static void drx397x_release(struct dvb_frontend
*fe
)
1425 struct drx397xD_state
*s
= fe
->demodulator_priv
;
1426 printk(KERN_INFO
"%s: release demodulator\n", mod_name
);
1434 static struct dvb_frontend_ops drx397x_ops
= {
1437 .name
= "Micronas DRX397xD DVB-T Frontend",
1439 .frequency_min
= 47125000,
1440 .frequency_max
= 855250000,
1441 .frequency_stepsize
= 166667,
1442 .frequency_tolerance
= 0,
1443 .caps
= /* 0x0C01B2EAE */
1444 FE_CAN_FEC_1_2
| /* = 0x2, */
1445 FE_CAN_FEC_2_3
| /* = 0x4, */
1446 FE_CAN_FEC_3_4
| /* = 0x8, */
1447 FE_CAN_FEC_5_6
| /* = 0x20, */
1448 FE_CAN_FEC_7_8
| /* = 0x80, */
1449 FE_CAN_FEC_AUTO
| /* = 0x200, */
1450 FE_CAN_QPSK
| /* = 0x400, */
1451 FE_CAN_QAM_16
| /* = 0x800, */
1452 FE_CAN_QAM_64
| /* = 0x2000, */
1453 FE_CAN_QAM_AUTO
| /* = 0x10000, */
1454 FE_CAN_TRANSMISSION_MODE_AUTO
| /* = 0x20000, */
1455 FE_CAN_GUARD_INTERVAL_AUTO
| /* = 0x80000, */
1456 FE_CAN_HIERARCHY_AUTO
| /* = 0x100000, */
1457 FE_CAN_RECOVER
| /* = 0x40000000, */
1458 FE_CAN_MUTE_TS
/* = 0x80000000 */
1461 .release
= drx397x_release
,
1462 .init
= drx397x_init
,
1463 .sleep
= drx397x_sleep
,
1465 .set_frontend
= drx397x_set_frontend
,
1466 .get_tune_settings
= drx397x_get_tune_settings
,
1467 .get_frontend
= drx397x_get_frontend
,
1469 .read_status
= drx397x_read_status
,
1470 .read_snr
= drx397x_read_snr
,
1471 .read_signal_strength
= drx397x_read_signal_strength
,
1472 .read_ber
= drx397x_read_ber
,
1473 .read_ucblocks
= drx397x_read_ucblocks
,
1476 struct dvb_frontend
*drx397xD_attach(const struct drx397xD_config
*config
,
1477 struct i2c_adapter
*i2c
)
1479 struct drx397xD_state
*state
;
1481 /* allocate memory for the internal state */
1482 state
= kzalloc(sizeof(struct drx397xD_state
), GFP_KERNEL
);
1486 /* setup the state */
1488 memcpy(&state
->config
, config
, sizeof(struct drx397xD_config
));
1490 /* check if the demod is there */
1491 if (RD16(state
, 0x2410019) < 0)
1494 /* create dvb_frontend */
1495 memcpy(&state
->frontend
.ops
, &drx397x_ops
,
1496 sizeof(struct dvb_frontend_ops
));
1497 state
->frontend
.demodulator_priv
= state
;
1499 return &state
->frontend
;
1505 EXPORT_SYMBOL(drx397xD_attach
);
1507 MODULE_DESCRIPTION("Micronas DRX397xD DVB-T Frontend");
1508 MODULE_AUTHOR("Henk Vergonet");
1509 MODULE_LICENSE("GPL");