1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3 * This driver supports the memory controllers found on the Intel
4 * processor family Sandy Bridge.
6 * This file may be distributed under the terms of the
7 * GNU General Public License version 2 only.
9 * Copyright (c) 2011 by:
10 * Mauro Carvalho Chehab
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <linux/mod_devicetable.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/intel-family.h>
27 #include <asm/processor.h>
30 #include "edac_module.h"
33 static LIST_HEAD(sbridge_edac_list
);
36 * Alter this version for the module when modifications are made
38 #define SBRIDGE_REVISION " Ver: 1.1.2 "
39 #define EDAC_MOD_STR "sbridge_edac"
44 #define sbridge_printk(level, fmt, arg...) \
45 edac_printk(level, "sbridge", fmt, ##arg)
47 #define sbridge_mc_printk(mci, level, fmt, arg...) \
48 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
51 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
53 #define GET_BITFIELD(v, lo, hi) \
54 (((v) & GENMASK_ULL(hi, lo)) >> (lo))
56 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
57 static const u32 sbridge_dram_rule
[] = {
58 0x80, 0x88, 0x90, 0x98, 0xa0,
59 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
62 static const u32 ibridge_dram_rule
[] = {
63 0x60, 0x68, 0x70, 0x78, 0x80,
64 0x88, 0x90, 0x98, 0xa0, 0xa8,
65 0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
66 0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
69 static const u32 knl_dram_rule
[] = {
70 0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
71 0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
72 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
73 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
74 0x100, 0x108, 0x110, 0x118, /* 20-23 */
77 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
78 #define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
80 static char *show_dram_attr(u32 attr
)
94 static const u32 sbridge_interleave_list
[] = {
95 0x84, 0x8c, 0x94, 0x9c, 0xa4,
96 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
99 static const u32 ibridge_interleave_list
[] = {
100 0x64, 0x6c, 0x74, 0x7c, 0x84,
101 0x8c, 0x94, 0x9c, 0xa4, 0xac,
102 0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
103 0xdc, 0xe4, 0xec, 0xf4, 0xfc,
106 static const u32 knl_interleave_list
[] = {
107 0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
108 0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
109 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
110 0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
111 0x104, 0x10c, 0x114, 0x11c, /* 20-23 */
114 struct interleave_pkg
{
119 static const struct interleave_pkg sbridge_interleave_pkg
[] = {
130 static const struct interleave_pkg ibridge_interleave_pkg
[] = {
141 static inline int sad_pkg(const struct interleave_pkg
*table
, u32 reg
,
144 return GET_BITFIELD(reg
, table
[interleave
].start
,
145 table
[interleave
].end
);
148 /* Devices 12 Function 7 */
152 #define HASWELL_TOLM 0xd0
153 #define HASWELL_TOHM_0 0xd4
154 #define HASWELL_TOHM_1 0xd8
155 #define KNL_TOLM 0xd0
156 #define KNL_TOHM_0 0xd4
157 #define KNL_TOHM_1 0xd8
159 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
160 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
162 /* Device 13 Function 6 */
164 #define SAD_TARGET 0xf0
166 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
168 #define SOURCE_ID_KNL(reg) GET_BITFIELD(reg, 12, 14)
170 #define SAD_CONTROL 0xf4
172 /* Device 14 function 0 */
174 static const u32 tad_dram_rule
[] = {
175 0x40, 0x44, 0x48, 0x4c,
176 0x50, 0x54, 0x58, 0x5c,
177 0x60, 0x64, 0x68, 0x6c,
179 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
181 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
182 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
183 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
184 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
185 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
186 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
187 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
189 /* Device 15, function 0 */
192 #define KNL_MCMTR 0x624
194 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
195 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
196 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
198 /* Device 15, function 1 */
200 #define RASENABLES 0xac
201 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
203 /* Device 15, functions 2-5 */
205 static const int mtr_regs
[] = {
209 static const int knl_mtr_reg
= 0xb60;
211 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
212 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
213 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
214 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
215 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
217 static const u32 tad_ch_nilv_offset
[] = {
218 0x90, 0x94, 0x98, 0x9c,
219 0xa0, 0xa4, 0xa8, 0xac,
220 0xb0, 0xb4, 0xb8, 0xbc,
222 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
223 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
225 static const u32 rir_way_limit
[] = {
226 0x108, 0x10c, 0x110, 0x114, 0x118,
228 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
230 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
231 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
233 #define MAX_RIR_WAY 8
235 static const u32 rir_offset
[MAX_RIR_RANGES
][MAX_RIR_WAY
] = {
236 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
237 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
238 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
239 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
240 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
243 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
244 GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
246 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
247 GET_BITFIELD(reg, 2, 15) : GET_BITFIELD(reg, 2, 14))
249 /* Device 16, functions 2-7 */
252 * FIXME: Implement the error count reads directly
255 static const u32 correrrcnt
[] = {
256 0x104, 0x108, 0x10c, 0x110,
259 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
260 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
261 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
262 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
264 static const u32 correrrthrsld
[] = {
265 0x11c, 0x120, 0x124, 0x128,
268 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
269 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
272 /* Device 17, function 0 */
274 #define SB_RANK_CFG_A 0x0328
276 #define IB_RANK_CFG_A 0x0320
282 #define NUM_CHANNELS 4 /* Max channels per MC */
283 #define MAX_DIMMS 3 /* Max DIMMS per channel */
284 #define KNL_MAX_CHAS 38 /* KNL max num. of Cache Home Agents */
285 #define KNL_MAX_CHANNELS 6 /* KNL max num. of PCI channels */
286 #define KNL_MAX_EDCS 8 /* Embedded DRAM controllers */
287 #define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
304 struct sbridge_info
{
308 u64 (*get_tolm
)(struct sbridge_pvt
*pvt
);
309 u64 (*get_tohm
)(struct sbridge_pvt
*pvt
);
310 u64 (*rir_limit
)(u32 reg
);
311 u64 (*sad_limit
)(u32 reg
);
312 u32 (*interleave_mode
)(u32 reg
);
313 u32 (*dram_attr
)(u32 reg
);
314 const u32
*dram_rule
;
315 const u32
*interleave_list
;
316 const struct interleave_pkg
*interleave_pkg
;
319 u8 (*get_node_id
)(struct sbridge_pvt
*pvt
);
320 enum mem_type (*get_memory_type
)(struct sbridge_pvt
*pvt
);
321 enum dev_type (*get_width
)(struct sbridge_pvt
*pvt
, u32 mtr
);
322 struct pci_dev
*pci_vtd
;
325 struct sbridge_channel
{
330 struct pci_id_descr
{
336 struct pci_id_table
{
337 const struct pci_id_descr
*descr
;
345 struct list_head list
;
347 u8 node_id
, source_id
;
348 struct pci_dev
**pdev
;
352 struct mem_ctl_info
*mci
;
356 struct pci_dev
*pci_cha
[KNL_MAX_CHAS
];
357 struct pci_dev
*pci_channel
[KNL_MAX_CHANNELS
];
358 struct pci_dev
*pci_mc0
;
359 struct pci_dev
*pci_mc1
;
360 struct pci_dev
*pci_mc0_misc
;
361 struct pci_dev
*pci_mc1_misc
;
362 struct pci_dev
*pci_mc_info
; /* tolm, tohm */
366 /* Devices per socket */
367 struct pci_dev
*pci_ddrio
;
368 struct pci_dev
*pci_sad0
, *pci_sad1
;
369 struct pci_dev
*pci_br0
, *pci_br1
;
370 /* Devices per memory controller */
371 struct pci_dev
*pci_ha
, *pci_ta
, *pci_ras
;
372 struct pci_dev
*pci_tad
[NUM_CHANNELS
];
374 struct sbridge_dev
*sbridge_dev
;
376 struct sbridge_info info
;
377 struct sbridge_channel channel
[NUM_CHANNELS
];
379 /* Memory type detection */
380 bool is_mirrored
, is_lockstep
, is_close_pg
;
383 /* Memory description */
388 #define PCI_DESCR(device_id, opt, domain) \
389 .dev_id = (device_id), \
393 static const struct pci_id_descr pci_dev_descr_sbridge
[] = {
394 /* Processor Home Agent */
395 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
, 0, IMC0
) },
397 /* Memory controller */
398 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
, 0, IMC0
) },
399 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
, 0, IMC0
) },
400 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
, 0, IMC0
) },
401 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
, 0, IMC0
) },
402 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
, 0, IMC0
) },
403 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
, 0, IMC0
) },
404 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
, 1, SOCK
) },
406 /* System Address Decoder */
407 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
, 0, SOCK
) },
408 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
, 0, SOCK
) },
410 /* Broadcast Registers */
411 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR
, 0, SOCK
) },
414 #define PCI_ID_TABLE_ENTRY(A, N, M, T) { \
416 .n_devs_per_imc = N, \
417 .n_devs_per_sock = ARRAY_SIZE(A), \
418 .n_imcs_per_sock = M, \
422 static const struct pci_id_table pci_dev_descr_sbridge_table
[] = {
423 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge
, ARRAY_SIZE(pci_dev_descr_sbridge
), 1, SANDY_BRIDGE
),
424 {0,} /* 0 terminated list. */
427 /* This changes depending if 1HA or 2HA:
429 * 0x0eb8 (17.0) is DDRIO0
431 * 0x0ebc (17.4) is DDRIO0
433 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
434 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
437 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
438 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
439 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
440 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
441 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
442 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
443 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
444 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
445 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
446 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
447 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
448 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
449 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
450 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
451 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
452 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c
453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d
455 static const struct pci_id_descr pci_dev_descr_ibridge
[] = {
456 /* Processor Home Agent */
457 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
, 0, IMC0
) },
459 /* Memory controller */
460 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
, 0, IMC0
) },
461 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
, 0, IMC0
) },
462 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
, 0, IMC0
) },
463 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
, 0, IMC0
) },
464 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
, 0, IMC0
) },
465 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
, 0, IMC0
) },
467 /* Optional, mode 2HA */
468 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
, 1, IMC1
) },
469 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA
, 1, IMC1
) },
470 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS
, 1, IMC1
) },
471 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
, 1, IMC1
) },
472 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
, 1, IMC1
) },
473 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2
, 1, IMC1
) },
474 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3
, 1, IMC1
) },
476 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
, 1, SOCK
) },
477 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
, 1, SOCK
) },
479 /* System Address Decoder */
480 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
, 0, SOCK
) },
482 /* Broadcast Registers */
483 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
, 1, SOCK
) },
484 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
, 0, SOCK
) },
488 static const struct pci_id_table pci_dev_descr_ibridge_table
[] = {
489 PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge
, 12, 2, IVY_BRIDGE
),
490 {0,} /* 0 terminated list. */
493 /* Haswell support */
496 * - 3 DDR3 channels, 2 DPC per channel
499 * - 4 DDR4 channels, 3 DPC per channel
502 * - 4 DDR4 channels, 3 DPC per channel
505 * - each IMC interfaces with a SMI 2 channel
506 * - each SMI channel interfaces with a scalable memory buffer
507 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
509 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
510 #define HASWELL_HASYSDEFEATURE2 0x84
511 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
512 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
513 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
514 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
515 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM 0x2f71
516 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
517 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM 0x2f79
518 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
519 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
520 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
521 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
522 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
523 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
524 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
525 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
526 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
527 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
528 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
529 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
530 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
532 static const struct pci_id_descr pci_dev_descr_haswell
[] = {
533 /* first item must be the HA */
534 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
, 0, IMC0
) },
535 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
, 1, IMC1
) },
537 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
, 0, IMC0
) },
538 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM
, 0, IMC0
) },
539 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
, 0, IMC0
) },
540 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
, 0, IMC0
) },
541 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
, 1, IMC0
) },
542 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
, 1, IMC0
) },
544 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
, 1, IMC1
) },
545 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM
, 1, IMC1
) },
546 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
, 1, IMC1
) },
547 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
, 1, IMC1
) },
548 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2
, 1, IMC1
) },
549 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3
, 1, IMC1
) },
551 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
, 0, SOCK
) },
552 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
, 0, SOCK
) },
553 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
, 1, SOCK
) },
554 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1
, 1, SOCK
) },
555 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2
, 1, SOCK
) },
556 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3
, 1, SOCK
) },
559 static const struct pci_id_table pci_dev_descr_haswell_table
[] = {
560 PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell
, 13, 2, HASWELL
),
561 {0,} /* 0 terminated list. */
564 /* Knight's Landing Support */
566 * KNL's memory channels are swizzled between memory controllers.
567 * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
569 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
571 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
572 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC 0x7840
573 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
574 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN 0x7843
575 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
576 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA 0x7844
577 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
578 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0 0x782a
579 /* SAD target - 1-29-1 (1 of these) */
580 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1 0x782b
581 /* Caching / Home Agent */
582 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA 0x782c
583 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
584 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM 0x7810
587 * KNL differs from SB, IB, and Haswell in that it has multiple
588 * instances of the same device with the same device ID, so we handle that
589 * by creating as many copies in the table as we expect to find.
590 * (Like device ID must be grouped together.)
593 static const struct pci_id_descr pci_dev_descr_knl
[] = {
594 [0 ... 1] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC
, 0, IMC0
)},
595 [2 ... 7] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN
, 0, IMC0
) },
596 [8] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA
, 0, IMC0
) },
597 [9] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM
, 0, IMC0
) },
598 [10] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0
, 0, SOCK
) },
599 [11] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1
, 0, SOCK
) },
600 [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA
, 0, SOCK
) },
603 static const struct pci_id_table pci_dev_descr_knl_table
[] = {
604 PCI_ID_TABLE_ENTRY(pci_dev_descr_knl
, ARRAY_SIZE(pci_dev_descr_knl
), 1, KNIGHTS_LANDING
),
613 * - 2 DDR3 channels, 2 DPC per channel
616 * - 4 DDR4 channels, 3 DPC per channel
619 * - 4 DDR4 channels, 3 DPC per channel
622 * - each IMC interfaces with a SMI 2 channel
623 * - each SMI channel interfaces with a scalable memory buffer
624 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
626 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
627 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0
628 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60
629 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8
630 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM 0x6f71
631 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68
632 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM 0x6f79
633 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
634 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
635 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
636 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
637 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
638 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
639 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
640 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
641 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
642 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
643 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
645 static const struct pci_id_descr pci_dev_descr_broadwell
[] = {
646 /* first item must be the HA */
647 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
, 0, IMC0
) },
648 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1
, 1, IMC1
) },
650 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
, 0, IMC0
) },
651 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM
, 0, IMC0
) },
652 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
, 0, IMC0
) },
653 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1
, 0, IMC0
) },
654 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2
, 1, IMC0
) },
655 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3
, 1, IMC0
) },
657 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA
, 1, IMC1
) },
658 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM
, 1, IMC1
) },
659 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
, 1, IMC1
) },
660 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1
, 1, IMC1
) },
661 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2
, 1, IMC1
) },
662 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3
, 1, IMC1
) },
664 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0
, 0, SOCK
) },
665 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1
, 0, SOCK
) },
666 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0
, 1, SOCK
) },
669 static const struct pci_id_table pci_dev_descr_broadwell_table
[] = {
670 PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell
, 10, 2, BROADWELL
),
671 {0,} /* 0 terminated list. */
675 /****************************************************************************
676 Ancillary status routines
677 ****************************************************************************/
679 static inline int numrank(enum type type
, u32 mtr
)
681 int ranks
= (1 << RANK_CNT_BITS(mtr
));
684 if (type
== HASWELL
|| type
== BROADWELL
|| type
== KNIGHTS_LANDING
)
688 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
689 ranks
, max
, (unsigned int)RANK_CNT_BITS(mtr
), mtr
);
696 static inline int numrow(u32 mtr
)
698 int rows
= (RANK_WIDTH_BITS(mtr
) + 12);
700 if (rows
< 13 || rows
> 18) {
701 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
702 rows
, (unsigned int)RANK_WIDTH_BITS(mtr
), mtr
);
709 static inline int numcol(u32 mtr
)
711 int cols
= (COL_WIDTH_BITS(mtr
) + 10);
714 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
715 cols
, (unsigned int)COL_WIDTH_BITS(mtr
), mtr
);
722 static struct sbridge_dev
*get_sbridge_dev(u8 bus
, enum domain dom
, int multi_bus
,
723 struct sbridge_dev
*prev
)
725 struct sbridge_dev
*sbridge_dev
;
728 * If we have devices scattered across several busses that pertain
729 * to the same memory controller, we'll lump them all together.
732 return list_first_entry_or_null(&sbridge_edac_list
,
733 struct sbridge_dev
, list
);
736 sbridge_dev
= list_entry(prev
? prev
->list
.next
737 : sbridge_edac_list
.next
, struct sbridge_dev
, list
);
739 list_for_each_entry_from(sbridge_dev
, &sbridge_edac_list
, list
) {
740 if (sbridge_dev
->bus
== bus
&& (dom
== SOCK
|| dom
== sbridge_dev
->dom
))
747 static struct sbridge_dev
*alloc_sbridge_dev(u8 bus
, enum domain dom
,
748 const struct pci_id_table
*table
)
750 struct sbridge_dev
*sbridge_dev
;
752 sbridge_dev
= kzalloc(sizeof(*sbridge_dev
), GFP_KERNEL
);
756 sbridge_dev
->pdev
= kcalloc(table
->n_devs_per_imc
,
757 sizeof(*sbridge_dev
->pdev
),
759 if (!sbridge_dev
->pdev
) {
764 sbridge_dev
->bus
= bus
;
765 sbridge_dev
->dom
= dom
;
766 sbridge_dev
->n_devs
= table
->n_devs_per_imc
;
767 list_add_tail(&sbridge_dev
->list
, &sbridge_edac_list
);
772 static void free_sbridge_dev(struct sbridge_dev
*sbridge_dev
)
774 list_del(&sbridge_dev
->list
);
775 kfree(sbridge_dev
->pdev
);
779 static u64
sbridge_get_tolm(struct sbridge_pvt
*pvt
)
783 /* Address range is 32:28 */
784 pci_read_config_dword(pvt
->pci_sad1
, TOLM
, ®
);
785 return GET_TOLM(reg
);
788 static u64
sbridge_get_tohm(struct sbridge_pvt
*pvt
)
792 pci_read_config_dword(pvt
->pci_sad1
, TOHM
, ®
);
793 return GET_TOHM(reg
);
796 static u64
ibridge_get_tolm(struct sbridge_pvt
*pvt
)
800 pci_read_config_dword(pvt
->pci_br1
, TOLM
, ®
);
802 return GET_TOLM(reg
);
805 static u64
ibridge_get_tohm(struct sbridge_pvt
*pvt
)
809 pci_read_config_dword(pvt
->pci_br1
, TOHM
, ®
);
811 return GET_TOHM(reg
);
814 static u64
rir_limit(u32 reg
)
816 return ((u64
)GET_BITFIELD(reg
, 1, 10) << 29) | 0x1fffffff;
819 static u64
sad_limit(u32 reg
)
821 return (GET_BITFIELD(reg
, 6, 25) << 26) | 0x3ffffff;
824 static u32
interleave_mode(u32 reg
)
826 return GET_BITFIELD(reg
, 1, 1);
829 static u32
dram_attr(u32 reg
)
831 return GET_BITFIELD(reg
, 2, 3);
834 static u64
knl_sad_limit(u32 reg
)
836 return (GET_BITFIELD(reg
, 7, 26) << 26) | 0x3ffffff;
839 static u32
knl_interleave_mode(u32 reg
)
841 return GET_BITFIELD(reg
, 1, 2);
844 static const char * const knl_intlv_mode
[] = {
845 "[8:6]", "[10:8]", "[14:12]", "[32:30]"
848 static const char *get_intlv_mode_str(u32 reg
, enum type t
)
850 if (t
== KNIGHTS_LANDING
)
851 return knl_intlv_mode
[knl_interleave_mode(reg
)];
853 return interleave_mode(reg
) ? "[8:6]" : "[8:6]XOR[18:16]";
856 static u32
dram_attr_knl(u32 reg
)
858 return GET_BITFIELD(reg
, 3, 4);
862 static enum mem_type
get_memory_type(struct sbridge_pvt
*pvt
)
867 if (pvt
->pci_ddrio
) {
868 pci_read_config_dword(pvt
->pci_ddrio
, pvt
->info
.rankcfgr
,
870 if (GET_BITFIELD(reg
, 11, 11))
871 /* FIXME: Can also be LRDIMM */
881 static enum mem_type
haswell_get_memory_type(struct sbridge_pvt
*pvt
)
884 bool registered
= false;
885 enum mem_type mtype
= MEM_UNKNOWN
;
890 pci_read_config_dword(pvt
->pci_ddrio
,
891 HASWELL_DDRCRCLKCONTROLS
, ®
);
893 if (GET_BITFIELD(reg
, 16, 16))
896 pci_read_config_dword(pvt
->pci_ta
, MCMTR
, ®
);
897 if (GET_BITFIELD(reg
, 14, 14)) {
913 static enum dev_type
knl_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
915 /* for KNL value is fixed */
919 static enum dev_type
sbridge_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
921 /* there's no way to figure out */
925 static enum dev_type
__ibridge_get_width(u32 mtr
)
947 static enum dev_type
ibridge_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
950 * ddr3_width on the documentation but also valid for DDR4 on
953 return __ibridge_get_width(GET_BITFIELD(mtr
, 7, 8));
956 static enum dev_type
broadwell_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
958 /* ddr3_width on the documentation but also valid for DDR4 */
959 return __ibridge_get_width(GET_BITFIELD(mtr
, 8, 9));
962 static enum mem_type
knl_get_memory_type(struct sbridge_pvt
*pvt
)
964 /* DDR4 RDIMMS and LRDIMMS are supported */
968 static u8
get_node_id(struct sbridge_pvt
*pvt
)
971 pci_read_config_dword(pvt
->pci_br0
, SAD_CONTROL
, ®
);
972 return GET_BITFIELD(reg
, 0, 2);
975 static u8
haswell_get_node_id(struct sbridge_pvt
*pvt
)
979 pci_read_config_dword(pvt
->pci_sad1
, SAD_CONTROL
, ®
);
980 return GET_BITFIELD(reg
, 0, 3);
983 static u8
knl_get_node_id(struct sbridge_pvt
*pvt
)
987 pci_read_config_dword(pvt
->pci_sad1
, SAD_CONTROL
, ®
);
988 return GET_BITFIELD(reg
, 0, 2);
992 static u64
haswell_get_tolm(struct sbridge_pvt
*pvt
)
996 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOLM
, ®
);
997 return (GET_BITFIELD(reg
, 26, 31) << 26) | 0x3ffffff;
1000 static u64
haswell_get_tohm(struct sbridge_pvt
*pvt
)
1005 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_0
, ®
);
1006 rc
= GET_BITFIELD(reg
, 26, 31);
1007 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_1
, ®
);
1008 rc
= ((reg
<< 6) | rc
) << 26;
1010 return rc
| 0x1ffffff;
1013 static u64
knl_get_tolm(struct sbridge_pvt
*pvt
)
1017 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOLM
, ®
);
1018 return (GET_BITFIELD(reg
, 26, 31) << 26) | 0x3ffffff;
1021 static u64
knl_get_tohm(struct sbridge_pvt
*pvt
)
1026 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOHM_0
, ®_lo
);
1027 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOHM_1
, ®_hi
);
1028 rc
= ((u64
)reg_hi
<< 32) | reg_lo
;
1029 return rc
| 0x3ffffff;
1033 static u64
haswell_rir_limit(u32 reg
)
1035 return (((u64
)GET_BITFIELD(reg
, 1, 11) + 1) << 29) - 1;
1038 static inline u8
sad_pkg_socket(u8 pkg
)
1040 /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1041 return ((pkg
>> 3) << 2) | (pkg
& 0x3);
1044 static inline u8
sad_pkg_ha(u8 pkg
)
1046 return (pkg
>> 2) & 0x1;
1049 static int haswell_chan_hash(int idx
, u64 addr
)
1054 * XOR even bits from 12:26 to bit0 of idx,
1055 * odd bits from 13:27 to bit1
1057 for (i
= 12; i
< 28; i
+= 2)
1058 idx
^= (addr
>> i
) & 3;
1063 /* Low bits of TAD limit, and some metadata. */
1064 static const u32 knl_tad_dram_limit_lo
[] = {
1065 0x400, 0x500, 0x600, 0x700,
1066 0x800, 0x900, 0xa00, 0xb00,
1069 /* Low bits of TAD offset. */
1070 static const u32 knl_tad_dram_offset_lo
[] = {
1071 0x404, 0x504, 0x604, 0x704,
1072 0x804, 0x904, 0xa04, 0xb04,
1075 /* High 16 bits of TAD limit and offset. */
1076 static const u32 knl_tad_dram_hi
[] = {
1077 0x408, 0x508, 0x608, 0x708,
1078 0x808, 0x908, 0xa08, 0xb08,
1081 /* Number of ways a tad entry is interleaved. */
1082 static const u32 knl_tad_ways
[] = {
1087 * Retrieve the n'th Target Address Decode table entry
1088 * from the memory controller's TAD table.
1090 * @pvt: driver private data
1091 * @entry: which entry you want to retrieve
1092 * @mc: which memory controller (0 or 1)
1093 * @offset: output tad range offset
1094 * @limit: output address of first byte above tad range
1095 * @ways: output number of interleave ways
1097 * The offset value has curious semantics. It's a sort of running total
1098 * of the sizes of all the memory regions that aren't mapped in this
1101 static int knl_get_tad(const struct sbridge_pvt
*pvt
,
1108 u32 reg_limit_lo
, reg_offset_lo
, reg_hi
;
1109 struct pci_dev
*pci_mc
;
1114 pci_mc
= pvt
->knl
.pci_mc0
;
1117 pci_mc
= pvt
->knl
.pci_mc1
;
1124 pci_read_config_dword(pci_mc
,
1125 knl_tad_dram_limit_lo
[entry
], ®_limit_lo
);
1126 pci_read_config_dword(pci_mc
,
1127 knl_tad_dram_offset_lo
[entry
], ®_offset_lo
);
1128 pci_read_config_dword(pci_mc
,
1129 knl_tad_dram_hi
[entry
], ®_hi
);
1131 /* Is this TAD entry enabled? */
1132 if (!GET_BITFIELD(reg_limit_lo
, 0, 0))
1135 way_id
= GET_BITFIELD(reg_limit_lo
, 3, 5);
1137 if (way_id
< ARRAY_SIZE(knl_tad_ways
)) {
1138 *ways
= knl_tad_ways
[way_id
];
1141 sbridge_printk(KERN_ERR
,
1142 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1148 * The least significant 6 bits of base and limit are truncated.
1149 * For limit, we fill the missing bits with 1s.
1151 *offset
= ((u64
) GET_BITFIELD(reg_offset_lo
, 6, 31) << 6) |
1152 ((u64
) GET_BITFIELD(reg_hi
, 0, 15) << 32);
1153 *limit
= ((u64
) GET_BITFIELD(reg_limit_lo
, 6, 31) << 6) | 63 |
1154 ((u64
) GET_BITFIELD(reg_hi
, 16, 31) << 32);
1159 /* Determine which memory controller is responsible for a given channel. */
1160 static int knl_channel_mc(int channel
)
1162 WARN_ON(channel
< 0 || channel
>= 6);
1164 return channel
< 3 ? 1 : 0;
1168 * Get the Nth entry from EDC_ROUTE_TABLE register.
1169 * (This is the per-tile mapping of logical interleave targets to
1170 * physical EDC modules.)
1182 static u32
knl_get_edc_route(int entry
, u32 reg
)
1184 WARN_ON(entry
>= KNL_MAX_EDCS
);
1185 return GET_BITFIELD(reg
, entry
*3, (entry
*3)+2);
1189 * Get the Nth entry from MC_ROUTE_TABLE register.
1190 * (This is the per-tile mapping of logical interleave targets to
1191 * physical DRAM channels modules.)
1193 * entry 0: mc 0:2 channel 18:19
1194 * 1: mc 3:5 channel 20:21
1195 * 2: mc 6:8 channel 22:23
1196 * 3: mc 9:11 channel 24:25
1197 * 4: mc 12:14 channel 26:27
1198 * 5: mc 15:17 channel 28:29
1201 * Though we have 3 bits to identify the MC, we should only see
1202 * the values 0 or 1.
1205 static u32
knl_get_mc_route(int entry
, u32 reg
)
1209 WARN_ON(entry
>= KNL_MAX_CHANNELS
);
1211 mc
= GET_BITFIELD(reg
, entry
*3, (entry
*3)+2);
1212 chan
= GET_BITFIELD(reg
, (entry
*2) + 18, (entry
*2) + 18 + 1);
1214 return knl_channel_remap(mc
, chan
);
1218 * Render the EDC_ROUTE register in human-readable form.
1219 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1221 static void knl_show_edc_route(u32 reg
, char *s
)
1225 for (i
= 0; i
< KNL_MAX_EDCS
; i
++) {
1226 s
[i
*2] = knl_get_edc_route(i
, reg
) + '0';
1230 s
[KNL_MAX_EDCS
*2 - 1] = '\0';
1234 * Render the MC_ROUTE register in human-readable form.
1235 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1237 static void knl_show_mc_route(u32 reg
, char *s
)
1241 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++) {
1242 s
[i
*2] = knl_get_mc_route(i
, reg
) + '0';
1246 s
[KNL_MAX_CHANNELS
*2 - 1] = '\0';
1249 #define KNL_EDC_ROUTE 0xb8
1250 #define KNL_MC_ROUTE 0xb4
1252 /* Is this dram rule backed by regular DRAM in flat mode? */
1253 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1255 /* Is this dram rule cached? */
1256 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1258 /* Is this rule backed by edc ? */
1259 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1261 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1262 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1264 /* Is this rule mod3? */
1265 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1268 * Figure out how big our RAM modules are.
1270 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1271 * have to figure this out from the SAD rules, interleave lists, route tables,
1274 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1275 * inspect the TAD rules to figure out how large the SAD regions really are.
1277 * When we know the real size of a SAD region and how many ways it's
1278 * interleaved, we know the individual contribution of each channel to
1281 * Finally, we have to check whether each channel participates in each SAD
1284 * Fortunately, KNL only supports one DIMM per channel, so once we know how
1285 * much memory the channel uses, we know the DIMM is at least that large.
1286 * (The BIOS might possibly choose not to map all available memory, in which
1287 * case we will underreport the size of the DIMM.)
1289 * In theory, we could try to determine the EDC sizes as well, but that would
1290 * only work in flat mode, not in cache mode.
1292 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1295 static int knl_get_dimm_capacity(struct sbridge_pvt
*pvt
, u64
*mc_sizes
)
1297 u64 sad_base
, sad_size
, sad_limit
= 0;
1298 u64 tad_base
, tad_size
, tad_limit
, tad_deadspace
, tad_livespace
;
1301 int intrlv_ways
, tad_ways
;
1304 u64 sad_actual_size
[2]; /* sad size accounting for holes, per mc */
1305 u32 dram_rule
, interleave_reg
;
1306 u32 mc_route_reg
[KNL_MAX_CHAS
];
1307 u32 edc_route_reg
[KNL_MAX_CHAS
];
1309 char edc_route_string
[KNL_MAX_EDCS
*2];
1310 char mc_route_string
[KNL_MAX_CHANNELS
*2];
1315 int participants
[KNL_MAX_CHANNELS
];
1316 int participant_count
= 0;
1318 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++)
1321 /* Read the EDC route table in each CHA. */
1323 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
1324 pci_read_config_dword(pvt
->knl
.pci_cha
[i
],
1325 KNL_EDC_ROUTE
, &edc_route_reg
[i
]);
1327 if (i
> 0 && edc_route_reg
[i
] != edc_route_reg
[i
-1]) {
1328 knl_show_edc_route(edc_route_reg
[i
-1],
1330 if (cur_reg_start
== i
-1)
1331 edac_dbg(0, "edc route table for CHA %d: %s\n",
1332 cur_reg_start
, edc_route_string
);
1334 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1335 cur_reg_start
, i
-1, edc_route_string
);
1339 knl_show_edc_route(edc_route_reg
[i
-1], edc_route_string
);
1340 if (cur_reg_start
== i
-1)
1341 edac_dbg(0, "edc route table for CHA %d: %s\n",
1342 cur_reg_start
, edc_route_string
);
1344 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1345 cur_reg_start
, i
-1, edc_route_string
);
1347 /* Read the MC route table in each CHA. */
1349 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
1350 pci_read_config_dword(pvt
->knl
.pci_cha
[i
],
1351 KNL_MC_ROUTE
, &mc_route_reg
[i
]);
1353 if (i
> 0 && mc_route_reg
[i
] != mc_route_reg
[i
-1]) {
1354 knl_show_mc_route(mc_route_reg
[i
-1], mc_route_string
);
1355 if (cur_reg_start
== i
-1)
1356 edac_dbg(0, "mc route table for CHA %d: %s\n",
1357 cur_reg_start
, mc_route_string
);
1359 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1360 cur_reg_start
, i
-1, mc_route_string
);
1364 knl_show_mc_route(mc_route_reg
[i
-1], mc_route_string
);
1365 if (cur_reg_start
== i
-1)
1366 edac_dbg(0, "mc route table for CHA %d: %s\n",
1367 cur_reg_start
, mc_route_string
);
1369 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1370 cur_reg_start
, i
-1, mc_route_string
);
1372 /* Process DRAM rules */
1373 for (sad_rule
= 0; sad_rule
< pvt
->info
.max_sad
; sad_rule
++) {
1374 /* previous limit becomes the new base */
1375 sad_base
= sad_limit
;
1377 pci_read_config_dword(pvt
->pci_sad0
,
1378 pvt
->info
.dram_rule
[sad_rule
], &dram_rule
);
1380 if (!DRAM_RULE_ENABLE(dram_rule
))
1383 edram_only
= KNL_EDRAM_ONLY(dram_rule
);
1385 sad_limit
= pvt
->info
.sad_limit(dram_rule
)+1;
1386 sad_size
= sad_limit
- sad_base
;
1388 pci_read_config_dword(pvt
->pci_sad0
,
1389 pvt
->info
.interleave_list
[sad_rule
], &interleave_reg
);
1392 * Find out how many ways this dram rule is interleaved.
1393 * We stop when we see the first channel again.
1395 first_pkg
= sad_pkg(pvt
->info
.interleave_pkg
,
1397 for (intrlv_ways
= 1; intrlv_ways
< 8; intrlv_ways
++) {
1398 pkg
= sad_pkg(pvt
->info
.interleave_pkg
,
1399 interleave_reg
, intrlv_ways
);
1401 if ((pkg
& 0x8) == 0) {
1403 * 0 bit means memory is non-local,
1404 * which KNL doesn't support
1406 edac_dbg(0, "Unexpected interleave target %d\n",
1411 if (pkg
== first_pkg
)
1414 if (KNL_MOD3(dram_rule
))
1417 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1422 edram_only
? ", EDRAM" : "");
1425 * Find out how big the SAD region really is by iterating
1426 * over TAD tables (SAD regions may contain holes).
1427 * Each memory controller might have a different TAD table, so
1428 * we have to look at both.
1430 * Livespace is the memory that's mapped in this TAD table,
1431 * deadspace is the holes (this could be the MMIO hole, or it
1432 * could be memory that's mapped by the other TAD table but
1435 for (mc
= 0; mc
< 2; mc
++) {
1436 sad_actual_size
[mc
] = 0;
1439 tad_rule
< ARRAY_SIZE(
1440 knl_tad_dram_limit_lo
);
1442 if (knl_get_tad(pvt
,
1450 tad_size
= (tad_limit
+1) -
1451 (tad_livespace
+ tad_deadspace
);
1452 tad_livespace
+= tad_size
;
1453 tad_base
= (tad_limit
+1) - tad_size
;
1455 if (tad_base
< sad_base
) {
1456 if (tad_limit
> sad_base
)
1457 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1458 } else if (tad_base
< sad_limit
) {
1459 if (tad_limit
+1 > sad_limit
) {
1460 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1462 /* TAD region is completely inside SAD region */
1463 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1465 tad_limit
, tad_size
,
1467 sad_actual_size
[mc
] += tad_size
;
1470 tad_base
= tad_limit
+1;
1474 for (mc
= 0; mc
< 2; mc
++) {
1475 edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1476 mc
, sad_actual_size
[mc
], sad_actual_size
[mc
]);
1479 /* Ignore EDRAM rule */
1483 /* Figure out which channels participate in interleave. */
1484 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++)
1485 participants
[channel
] = 0;
1487 /* For each channel, does at least one CHA have
1488 * this channel mapped to the given target?
1490 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++) {
1491 for (way
= 0; way
< intrlv_ways
; way
++) {
1495 if (KNL_MOD3(dram_rule
))
1498 target
= 0x7 & sad_pkg(
1499 pvt
->info
.interleave_pkg
, interleave_reg
, way
);
1501 for (cha
= 0; cha
< KNL_MAX_CHAS
; cha
++) {
1502 if (knl_get_mc_route(target
,
1503 mc_route_reg
[cha
]) == channel
1504 && !participants
[channel
]) {
1505 participant_count
++;
1506 participants
[channel
] = 1;
1513 if (participant_count
!= intrlv_ways
)
1514 edac_dbg(0, "participant_count (%d) != interleave_ways (%d): DIMM size may be incorrect\n",
1515 participant_count
, intrlv_ways
);
1517 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++) {
1518 mc
= knl_channel_mc(channel
);
1519 if (participants
[channel
]) {
1520 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1522 sad_actual_size
[mc
]/intrlv_ways
,
1524 mc_sizes
[channel
] +=
1525 sad_actual_size
[mc
]/intrlv_ways
;
1533 static void get_source_id(struct mem_ctl_info
*mci
)
1535 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1538 if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
||
1539 pvt
->info
.type
== KNIGHTS_LANDING
)
1540 pci_read_config_dword(pvt
->pci_sad1
, SAD_TARGET
, ®
);
1542 pci_read_config_dword(pvt
->pci_br0
, SAD_TARGET
, ®
);
1544 if (pvt
->info
.type
== KNIGHTS_LANDING
)
1545 pvt
->sbridge_dev
->source_id
= SOURCE_ID_KNL(reg
);
1547 pvt
->sbridge_dev
->source_id
= SOURCE_ID(reg
);
1550 static int __populate_dimms(struct mem_ctl_info
*mci
,
1551 u64 knl_mc_sizes
[KNL_MAX_CHANNELS
],
1552 enum edac_type mode
)
1554 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1555 int channels
= pvt
->info
.type
== KNIGHTS_LANDING
? KNL_MAX_CHANNELS
1557 unsigned int i
, j
, banks
, ranks
, rows
, cols
, npages
;
1558 struct dimm_info
*dimm
;
1559 enum mem_type mtype
;
1562 mtype
= pvt
->info
.get_memory_type(pvt
);
1563 if (mtype
== MEM_RDDR3
|| mtype
== MEM_RDDR4
)
1564 edac_dbg(0, "Memory is registered\n");
1565 else if (mtype
== MEM_UNKNOWN
)
1566 edac_dbg(0, "Cannot determine memory type\n");
1568 edac_dbg(0, "Memory is unregistered\n");
1570 if (mtype
== MEM_DDR4
|| mtype
== MEM_RDDR4
)
1575 for (i
= 0; i
< channels
; i
++) {
1578 int max_dimms_per_channel
;
1580 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1581 max_dimms_per_channel
= 1;
1582 if (!pvt
->knl
.pci_channel
[i
])
1585 max_dimms_per_channel
= ARRAY_SIZE(mtr_regs
);
1586 if (!pvt
->pci_tad
[i
])
1590 for (j
= 0; j
< max_dimms_per_channel
; j
++) {
1591 dimm
= EDAC_DIMM_PTR(mci
->layers
, mci
->dimms
, mci
->n_layers
, i
, j
, 0);
1592 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1593 pci_read_config_dword(pvt
->knl
.pci_channel
[i
],
1596 pci_read_config_dword(pvt
->pci_tad
[i
],
1599 edac_dbg(4, "Channel #%d MTR%d = %x\n", i
, j
, mtr
);
1600 if (IS_DIMM_PRESENT(mtr
)) {
1601 if (!IS_ECC_ENABLED(pvt
->info
.mcmtr
)) {
1602 sbridge_printk(KERN_ERR
, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1603 pvt
->sbridge_dev
->source_id
,
1604 pvt
->sbridge_dev
->dom
, i
);
1607 pvt
->channel
[i
].dimms
++;
1609 ranks
= numrank(pvt
->info
.type
, mtr
);
1611 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1612 /* For DDR4, this is fixed. */
1614 rows
= knl_mc_sizes
[i
] /
1615 ((u64
) cols
* ranks
* banks
* 8);
1621 size
= ((u64
)rows
* cols
* banks
* ranks
) >> (20 - 3);
1622 npages
= MiB_TO_PAGES(size
);
1624 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1625 pvt
->sbridge_dev
->mc
, pvt
->sbridge_dev
->dom
, i
, j
,
1627 banks
, ranks
, rows
, cols
);
1629 dimm
->nr_pages
= npages
;
1631 dimm
->dtype
= pvt
->info
.get_width(pvt
, mtr
);
1632 dimm
->mtype
= mtype
;
1633 dimm
->edac_mode
= mode
;
1634 snprintf(dimm
->label
, sizeof(dimm
->label
),
1635 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1636 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
, i
, j
);
1644 static int get_dimm_config(struct mem_ctl_info
*mci
)
1646 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1647 u64 knl_mc_sizes
[KNL_MAX_CHANNELS
];
1648 enum edac_type mode
;
1651 if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
) {
1652 pci_read_config_dword(pvt
->pci_ha
, HASWELL_HASYSDEFEATURE2
, ®
);
1653 pvt
->is_chan_hash
= GET_BITFIELD(reg
, 21, 21);
1655 pvt
->sbridge_dev
->node_id
= pvt
->info
.get_node_id(pvt
);
1656 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1657 pvt
->sbridge_dev
->mc
,
1658 pvt
->sbridge_dev
->node_id
,
1659 pvt
->sbridge_dev
->source_id
);
1661 /* KNL doesn't support mirroring or lockstep,
1662 * and is always closed page
1664 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1665 mode
= EDAC_S4ECD4ED
;
1666 pvt
->is_mirrored
= false;
1668 if (knl_get_dimm_capacity(pvt
, knl_mc_sizes
) != 0)
1670 pci_read_config_dword(pvt
->pci_ta
, KNL_MCMTR
, &pvt
->info
.mcmtr
);
1672 pci_read_config_dword(pvt
->pci_ras
, RASENABLES
, ®
);
1673 if (IS_MIRROR_ENABLED(reg
)) {
1674 edac_dbg(0, "Memory mirror is enabled\n");
1675 pvt
->is_mirrored
= true;
1677 edac_dbg(0, "Memory mirror is disabled\n");
1678 pvt
->is_mirrored
= false;
1681 pci_read_config_dword(pvt
->pci_ta
, MCMTR
, &pvt
->info
.mcmtr
);
1682 if (IS_LOCKSTEP_ENABLED(pvt
->info
.mcmtr
)) {
1683 edac_dbg(0, "Lockstep is enabled\n");
1684 mode
= EDAC_S8ECD8ED
;
1685 pvt
->is_lockstep
= true;
1687 edac_dbg(0, "Lockstep is disabled\n");
1688 mode
= EDAC_S4ECD4ED
;
1689 pvt
->is_lockstep
= false;
1691 if (IS_CLOSE_PG(pvt
->info
.mcmtr
)) {
1692 edac_dbg(0, "address map is on closed page mode\n");
1693 pvt
->is_close_pg
= true;
1695 edac_dbg(0, "address map is on open page mode\n");
1696 pvt
->is_close_pg
= false;
1700 return __populate_dimms(mci
, knl_mc_sizes
, mode
);
1703 static void get_memory_layout(const struct mem_ctl_info
*mci
)
1705 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1706 int i
, j
, k
, n_sads
, n_tads
, sad_interl
;
1714 * Step 1) Get TOLM/TOHM ranges
1717 pvt
->tolm
= pvt
->info
.get_tolm(pvt
);
1718 tmp_mb
= (1 + pvt
->tolm
) >> 20;
1720 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1721 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1722 gb
, (mb
*1000)/1024, (u64
)pvt
->tolm
);
1724 /* Address range is already 45:25 */
1725 pvt
->tohm
= pvt
->info
.get_tohm(pvt
);
1726 tmp_mb
= (1 + pvt
->tohm
) >> 20;
1728 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1729 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1730 gb
, (mb
*1000)/1024, (u64
)pvt
->tohm
);
1733 * Step 2) Get SAD range and SAD Interleave list
1734 * TAD registers contain the interleave wayness. However, it
1735 * seems simpler to just discover it indirectly, with the
1739 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
1740 /* SAD_LIMIT Address range is 45:26 */
1741 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
1743 limit
= pvt
->info
.sad_limit(reg
);
1745 if (!DRAM_RULE_ENABLE(reg
))
1751 tmp_mb
= (limit
+ 1) >> 20;
1752 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1753 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1755 show_dram_attr(pvt
->info
.dram_attr(reg
)),
1757 ((u64
)tmp_mb
) << 20L,
1758 get_intlv_mode_str(reg
, pvt
->info
.type
),
1762 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
1764 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
1765 for (j
= 0; j
< 8; j
++) {
1766 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, j
);
1767 if (j
> 0 && sad_interl
== pkg
)
1770 edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1775 if (pvt
->info
.type
== KNIGHTS_LANDING
)
1779 * Step 3) Get TAD range
1782 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
1783 pci_read_config_dword(pvt
->pci_ha
, tad_dram_rule
[n_tads
], ®
);
1784 limit
= TAD_LIMIT(reg
);
1787 tmp_mb
= (limit
+ 1) >> 20;
1789 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1790 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1791 n_tads
, gb
, (mb
*1000)/1024,
1792 ((u64
)tmp_mb
) << 20L,
1793 (u32
)(1 << TAD_SOCK(reg
)),
1794 (u32
)TAD_CH(reg
) + 1,
1804 * Step 4) Get TAD offsets, per each channel
1806 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1807 if (!pvt
->channel
[i
].dimms
)
1809 for (j
= 0; j
< n_tads
; j
++) {
1810 pci_read_config_dword(pvt
->pci_tad
[i
],
1811 tad_ch_nilv_offset
[j
],
1813 tmp_mb
= TAD_OFFSET(reg
) >> 20;
1814 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1815 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1818 ((u64
)tmp_mb
) << 20L,
1824 * Step 6) Get RIR Wayness/Limit, per each channel
1826 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1827 if (!pvt
->channel
[i
].dimms
)
1829 for (j
= 0; j
< MAX_RIR_RANGES
; j
++) {
1830 pci_read_config_dword(pvt
->pci_tad
[i
],
1834 if (!IS_RIR_VALID(reg
))
1837 tmp_mb
= pvt
->info
.rir_limit(reg
) >> 20;
1838 rir_way
= 1 << RIR_WAY(reg
);
1839 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1840 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1843 ((u64
)tmp_mb
) << 20L,
1847 for (k
= 0; k
< rir_way
; k
++) {
1848 pci_read_config_dword(pvt
->pci_tad
[i
],
1851 tmp_mb
= RIR_OFFSET(pvt
->info
.type
, reg
) << 6;
1853 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1854 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1857 ((u64
)tmp_mb
) << 20L,
1858 (u32
)RIR_RNK_TGT(pvt
->info
.type
, reg
),
1865 static struct mem_ctl_info
*get_mci_for_node_id(u8 node_id
, u8 ha
)
1867 struct sbridge_dev
*sbridge_dev
;
1869 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
1870 if (sbridge_dev
->node_id
== node_id
&& sbridge_dev
->dom
== ha
)
1871 return sbridge_dev
->mci
;
1876 static int get_memory_error_data(struct mem_ctl_info
*mci
,
1881 char **area_type
, char *msg
)
1883 struct mem_ctl_info
*new_mci
;
1884 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1885 struct pci_dev
*pci_ha
;
1886 int n_rir
, n_sads
, n_tads
, sad_way
, sck_xch
;
1887 int sad_interl
, idx
, base_ch
;
1888 int interleave_mode
, shiftup
= 0;
1889 unsigned sad_interleave
[pvt
->info
.max_interleave
];
1891 u8 ch_way
, sck_way
, pkg
, sad_ha
= 0;
1895 u64 ch_addr
, offset
, limit
= 0, prv
= 0;
1899 * Step 0) Check if the address is at special memory ranges
1900 * The check bellow is probably enough to fill all cases where
1901 * the error is not inside a memory, except for the legacy
1902 * range (e. g. VGA addresses). It is unlikely, however, that the
1903 * memory controller would generate an error on that range.
1905 if ((addr
> (u64
) pvt
->tolm
) && (addr
< (1LL << 32))) {
1906 sprintf(msg
, "Error at TOLM area, on addr 0x%08Lx", addr
);
1909 if (addr
>= (u64
)pvt
->tohm
) {
1910 sprintf(msg
, "Error at MMIOH area, on addr 0x%016Lx", addr
);
1915 * Step 1) Get socket
1917 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
1918 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
1921 if (!DRAM_RULE_ENABLE(reg
))
1924 limit
= pvt
->info
.sad_limit(reg
);
1926 sprintf(msg
, "Can't discover the memory socket");
1933 if (n_sads
== pvt
->info
.max_sad
) {
1934 sprintf(msg
, "Can't discover the memory socket");
1938 *area_type
= show_dram_attr(pvt
->info
.dram_attr(dram_rule
));
1939 interleave_mode
= pvt
->info
.interleave_mode(dram_rule
);
1941 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
1944 if (pvt
->info
.type
== SANDY_BRIDGE
) {
1945 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
1946 for (sad_way
= 0; sad_way
< 8; sad_way
++) {
1947 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, sad_way
);
1948 if (sad_way
> 0 && sad_interl
== pkg
)
1950 sad_interleave
[sad_way
] = pkg
;
1951 edac_dbg(0, "SAD interleave #%d: %d\n",
1952 sad_way
, sad_interleave
[sad_way
]);
1954 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1955 pvt
->sbridge_dev
->mc
,
1960 !interleave_mode
? "" : "XOR[18:16]");
1961 if (interleave_mode
)
1962 idx
= ((addr
>> 6) ^ (addr
>> 16)) & 7;
1964 idx
= (addr
>> 6) & 7;
1978 sprintf(msg
, "Can't discover socket interleave");
1981 *socket
= sad_interleave
[idx
];
1982 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1983 idx
, sad_way
, *socket
);
1984 } else if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
) {
1985 int bits
, a7mode
= A7MODE(dram_rule
);
1988 /* A7 mode swaps P9 with P6 */
1989 bits
= GET_BITFIELD(addr
, 7, 8) << 1;
1990 bits
|= GET_BITFIELD(addr
, 9, 9);
1992 bits
= GET_BITFIELD(addr
, 6, 8);
1994 if (interleave_mode
== 0) {
1995 /* interleave mode will XOR {8,7,6} with {18,17,16} */
1996 idx
= GET_BITFIELD(addr
, 16, 18);
2001 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
2002 *socket
= sad_pkg_socket(pkg
);
2003 sad_ha
= sad_pkg_ha(pkg
);
2006 /* MCChanShiftUpEnable */
2007 pci_read_config_dword(pvt
->pci_ha
, HASWELL_HASYSDEFEATURE2
, ®
);
2008 shiftup
= GET_BITFIELD(reg
, 22, 22);
2011 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2012 idx
, *socket
, sad_ha
, shiftup
);
2014 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2015 idx
= (addr
>> 6) & 7;
2016 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
2017 *socket
= sad_pkg_socket(pkg
);
2018 sad_ha
= sad_pkg_ha(pkg
);
2019 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2020 idx
, *socket
, sad_ha
);
2026 * Move to the proper node structure, in order to access the
2027 * right PCI registers
2029 new_mci
= get_mci_for_node_id(*socket
, sad_ha
);
2031 sprintf(msg
, "Struct for socket #%u wasn't initialized",
2036 pvt
= mci
->pvt_info
;
2039 * Step 2) Get memory channel
2042 pci_ha
= pvt
->pci_ha
;
2043 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
2044 pci_read_config_dword(pci_ha
, tad_dram_rule
[n_tads
], ®
);
2045 limit
= TAD_LIMIT(reg
);
2047 sprintf(msg
, "Can't discover the memory channel");
2054 if (n_tads
== MAX_TAD
) {
2055 sprintf(msg
, "Can't discover the memory channel");
2059 ch_way
= TAD_CH(reg
) + 1;
2060 sck_way
= TAD_SOCK(reg
);
2065 idx
= (addr
>> (6 + sck_way
+ shiftup
)) & 0x3;
2066 if (pvt
->is_chan_hash
)
2067 idx
= haswell_chan_hash(idx
, addr
);
2072 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2076 base_ch
= TAD_TGT0(reg
);
2079 base_ch
= TAD_TGT1(reg
);
2082 base_ch
= TAD_TGT2(reg
);
2085 base_ch
= TAD_TGT3(reg
);
2088 sprintf(msg
, "Can't discover the TAD target");
2091 *channel_mask
= 1 << base_ch
;
2093 pci_read_config_dword(pvt
->pci_tad
[base_ch
], tad_ch_nilv_offset
[n_tads
], &tad_offset
);
2095 if (pvt
->is_mirrored
) {
2096 *channel_mask
|= 1 << ((base_ch
+ 2) % 4);
2100 sck_xch
= (1 << sck_way
) * (ch_way
>> 1);
2103 sprintf(msg
, "Invalid mirror set. Can't decode addr");
2107 sck_xch
= (1 << sck_way
) * ch_way
;
2109 if (pvt
->is_lockstep
)
2110 *channel_mask
|= 1 << ((base_ch
+ 1) % 4);
2112 offset
= TAD_OFFSET(tad_offset
);
2114 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2125 /* Calculate channel address */
2126 /* Remove the TAD offset */
2128 if (offset
> addr
) {
2129 sprintf(msg
, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2134 ch_addr
= addr
- offset
;
2135 ch_addr
>>= (6 + shiftup
);
2137 ch_addr
<<= (6 + shiftup
);
2138 ch_addr
|= addr
& ((1 << (6 + shiftup
)) - 1);
2141 * Step 3) Decode rank
2143 for (n_rir
= 0; n_rir
< MAX_RIR_RANGES
; n_rir
++) {
2144 pci_read_config_dword(pvt
->pci_tad
[base_ch
], rir_way_limit
[n_rir
], ®
);
2146 if (!IS_RIR_VALID(reg
))
2149 limit
= pvt
->info
.rir_limit(reg
);
2150 gb
= div_u64_rem(limit
>> 20, 1024, &mb
);
2151 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2156 if (ch_addr
<= limit
)
2159 if (n_rir
== MAX_RIR_RANGES
) {
2160 sprintf(msg
, "Can't discover the memory rank for ch addr 0x%08Lx",
2164 rir_way
= RIR_WAY(reg
);
2166 if (pvt
->is_close_pg
)
2167 idx
= (ch_addr
>> 6);
2169 idx
= (ch_addr
>> 13); /* FIXME: Datasheet says to shift by 15 */
2170 idx
%= 1 << rir_way
;
2172 pci_read_config_dword(pvt
->pci_tad
[base_ch
], rir_offset
[n_rir
][idx
], ®
);
2173 *rank
= RIR_RNK_TGT(pvt
->info
.type
, reg
);
2175 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2185 /****************************************************************************
2186 Device initialization routines: put/get, init/exit
2187 ****************************************************************************/
2190 * sbridge_put_all_devices 'put' all the devices that we have
2191 * reserved via 'get'
2193 static void sbridge_put_devices(struct sbridge_dev
*sbridge_dev
)
2198 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2199 struct pci_dev
*pdev
= sbridge_dev
->pdev
[i
];
2202 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2204 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
));
2209 static void sbridge_put_all_devices(void)
2211 struct sbridge_dev
*sbridge_dev
, *tmp
;
2213 list_for_each_entry_safe(sbridge_dev
, tmp
, &sbridge_edac_list
, list
) {
2214 sbridge_put_devices(sbridge_dev
);
2215 free_sbridge_dev(sbridge_dev
);
2219 static int sbridge_get_onedevice(struct pci_dev
**prev
,
2221 const struct pci_id_table
*table
,
2222 const unsigned devno
,
2223 const int multi_bus
)
2225 struct sbridge_dev
*sbridge_dev
= NULL
;
2226 const struct pci_id_descr
*dev_descr
= &table
->descr
[devno
];
2227 struct pci_dev
*pdev
= NULL
;
2231 sbridge_printk(KERN_DEBUG
,
2232 "Seeking for: PCI ID %04x:%04x\n",
2233 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2235 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2236 dev_descr
->dev_id
, *prev
);
2244 if (dev_descr
->optional
)
2247 /* if the HA wasn't found */
2251 sbridge_printk(KERN_INFO
,
2252 "Device not found: %04x:%04x\n",
2253 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2255 /* End of list, leave */
2258 bus
= pdev
->bus
->number
;
2261 sbridge_dev
= get_sbridge_dev(bus
, dev_descr
->dom
, multi_bus
, sbridge_dev
);
2264 if (dev_descr
->dom
== SOCK
)
2267 sbridge_dev
= alloc_sbridge_dev(bus
, dev_descr
->dom
, table
);
2275 if (sbridge_dev
->pdev
[sbridge_dev
->i_devs
]) {
2276 sbridge_printk(KERN_ERR
,
2277 "Duplicated device for %04x:%04x\n",
2278 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2283 sbridge_dev
->pdev
[sbridge_dev
->i_devs
++] = pdev
;
2285 /* pdev belongs to more than one IMC, do extra gets */
2289 if (dev_descr
->dom
== SOCK
&& i
< table
->n_imcs_per_sock
)
2293 /* Be sure that the device is enabled */
2294 if (unlikely(pci_enable_device(pdev
) < 0)) {
2295 sbridge_printk(KERN_ERR
,
2296 "Couldn't enable %04x:%04x\n",
2297 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2301 edac_dbg(0, "Detected %04x:%04x\n",
2302 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2305 * As stated on drivers/pci/search.c, the reference count for
2306 * @from is always decremented if it is not %NULL. So, as we need
2307 * to get all devices up to null, we need to do a get for the device
2317 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2318 * devices we want to reference for this driver.
2319 * @num_mc: pointer to the memory controllers count, to be incremented in case
2321 * @table: model specific table
2323 * returns 0 in case of success or error code
2325 static int sbridge_get_all_devices(u8
*num_mc
,
2326 const struct pci_id_table
*table
)
2329 struct pci_dev
*pdev
= NULL
;
2333 if (table
->type
== KNIGHTS_LANDING
)
2334 allow_dups
= multi_bus
= 1;
2335 while (table
&& table
->descr
) {
2336 for (i
= 0; i
< table
->n_devs_per_sock
; i
++) {
2337 if (!allow_dups
|| i
== 0 ||
2338 table
->descr
[i
].dev_id
!=
2339 table
->descr
[i
-1].dev_id
) {
2343 rc
= sbridge_get_onedevice(&pdev
, num_mc
,
2344 table
, i
, multi_bus
);
2347 i
= table
->n_devs_per_sock
;
2350 sbridge_put_all_devices();
2353 } while (pdev
&& !allow_dups
);
2362 * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2363 * the format: XXXa. So we can convert from a device to the corresponding
2366 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2368 static int sbridge_mci_bind_devs(struct mem_ctl_info
*mci
,
2369 struct sbridge_dev
*sbridge_dev
)
2371 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2372 struct pci_dev
*pdev
;
2373 u8 saw_chan_mask
= 0;
2376 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2377 pdev
= sbridge_dev
->pdev
[i
];
2381 switch (pdev
->device
) {
2382 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
:
2383 pvt
->pci_sad0
= pdev
;
2385 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
:
2386 pvt
->pci_sad1
= pdev
;
2388 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR
:
2389 pvt
->pci_br0
= pdev
;
2391 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
:
2394 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
:
2397 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
:
2398 pvt
->pci_ras
= pdev
;
2400 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
:
2401 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
:
2402 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
:
2403 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
:
2405 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2406 pvt
->pci_tad
[id
] = pdev
;
2407 saw_chan_mask
|= 1 << id
;
2410 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
:
2411 pvt
->pci_ddrio
= pdev
;
2417 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2418 pdev
->vendor
, pdev
->device
,
2423 /* Check if everything were registered */
2424 if (!pvt
->pci_sad0
|| !pvt
->pci_sad1
|| !pvt
->pci_ha
||
2425 !pvt
->pci_ras
|| !pvt
->pci_ta
)
2428 if (saw_chan_mask
!= 0x0f)
2433 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2437 sbridge_printk(KERN_ERR
, "Unexpected device %02x:%02x\n",
2438 PCI_VENDOR_ID_INTEL
, pdev
->device
);
2442 static int ibridge_mci_bind_devs(struct mem_ctl_info
*mci
,
2443 struct sbridge_dev
*sbridge_dev
)
2445 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2446 struct pci_dev
*pdev
;
2447 u8 saw_chan_mask
= 0;
2450 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2451 pdev
= sbridge_dev
->pdev
[i
];
2455 switch (pdev
->device
) {
2456 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
:
2457 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
:
2460 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
:
2461 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA
:
2463 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
:
2464 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS
:
2465 pvt
->pci_ras
= pdev
;
2467 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
:
2468 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
:
2469 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
:
2470 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
:
2471 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
:
2472 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
:
2473 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2
:
2474 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3
:
2476 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2477 pvt
->pci_tad
[id
] = pdev
;
2478 saw_chan_mask
|= 1 << id
;
2481 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
:
2482 pvt
->pci_ddrio
= pdev
;
2484 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
:
2485 pvt
->pci_ddrio
= pdev
;
2487 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
:
2488 pvt
->pci_sad0
= pdev
;
2490 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
:
2491 pvt
->pci_br0
= pdev
;
2493 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
:
2494 pvt
->pci_br1
= pdev
;
2500 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2502 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2506 /* Check if everything were registered */
2507 if (!pvt
->pci_sad0
|| !pvt
->pci_ha
|| !pvt
->pci_br0
||
2508 !pvt
->pci_br1
|| !pvt
->pci_ras
|| !pvt
->pci_ta
)
2511 if (saw_chan_mask
!= 0x0f && /* -EN/-EX */
2512 saw_chan_mask
!= 0x03) /* -EP */
2517 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2521 sbridge_printk(KERN_ERR
,
2522 "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL
,
2527 static int haswell_mci_bind_devs(struct mem_ctl_info
*mci
,
2528 struct sbridge_dev
*sbridge_dev
)
2530 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2531 struct pci_dev
*pdev
;
2532 u8 saw_chan_mask
= 0;
2535 /* there's only one device per system; not tied to any bus */
2536 if (pvt
->info
.pci_vtd
== NULL
)
2537 /* result will be checked later */
2538 pvt
->info
.pci_vtd
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2539 PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC
,
2542 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2543 pdev
= sbridge_dev
->pdev
[i
];
2547 switch (pdev
->device
) {
2548 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
:
2549 pvt
->pci_sad0
= pdev
;
2551 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
:
2552 pvt
->pci_sad1
= pdev
;
2554 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
:
2555 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
:
2558 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
:
2559 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
:
2562 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM
:
2563 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM
:
2564 pvt
->pci_ras
= pdev
;
2566 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
:
2567 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
:
2568 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
:
2569 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
:
2570 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
:
2571 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
:
2572 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2
:
2573 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3
:
2575 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2576 pvt
->pci_tad
[id
] = pdev
;
2577 saw_chan_mask
|= 1 << id
;
2580 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
:
2581 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1
:
2582 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2
:
2583 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3
:
2584 if (!pvt
->pci_ddrio
)
2585 pvt
->pci_ddrio
= pdev
;
2591 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2593 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2597 /* Check if everything were registered */
2598 if (!pvt
->pci_sad0
|| !pvt
->pci_ha
|| !pvt
->pci_sad1
||
2599 !pvt
->pci_ras
|| !pvt
->pci_ta
|| !pvt
->info
.pci_vtd
)
2602 if (saw_chan_mask
!= 0x0f && /* -EN/-EX */
2603 saw_chan_mask
!= 0x03) /* -EP */
2608 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2612 static int broadwell_mci_bind_devs(struct mem_ctl_info
*mci
,
2613 struct sbridge_dev
*sbridge_dev
)
2615 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2616 struct pci_dev
*pdev
;
2617 u8 saw_chan_mask
= 0;
2620 /* there's only one device per system; not tied to any bus */
2621 if (pvt
->info
.pci_vtd
== NULL
)
2622 /* result will be checked later */
2623 pvt
->info
.pci_vtd
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2624 PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC
,
2627 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2628 pdev
= sbridge_dev
->pdev
[i
];
2632 switch (pdev
->device
) {
2633 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0
:
2634 pvt
->pci_sad0
= pdev
;
2636 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1
:
2637 pvt
->pci_sad1
= pdev
;
2639 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
:
2640 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1
:
2643 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
:
2644 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA
:
2647 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM
:
2648 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM
:
2649 pvt
->pci_ras
= pdev
;
2651 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
:
2652 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1
:
2653 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2
:
2654 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3
:
2655 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
:
2656 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1
:
2657 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2
:
2658 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3
:
2660 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2661 pvt
->pci_tad
[id
] = pdev
;
2662 saw_chan_mask
|= 1 << id
;
2665 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0
:
2666 pvt
->pci_ddrio
= pdev
;
2672 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2674 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2678 /* Check if everything were registered */
2679 if (!pvt
->pci_sad0
|| !pvt
->pci_ha
|| !pvt
->pci_sad1
||
2680 !pvt
->pci_ras
|| !pvt
->pci_ta
|| !pvt
->info
.pci_vtd
)
2683 if (saw_chan_mask
!= 0x0f && /* -EN/-EX */
2684 saw_chan_mask
!= 0x03) /* -EP */
2689 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2693 static int knl_mci_bind_devs(struct mem_ctl_info
*mci
,
2694 struct sbridge_dev
*sbridge_dev
)
2696 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2697 struct pci_dev
*pdev
;
2703 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2704 pdev
= sbridge_dev
->pdev
[i
];
2708 /* Extract PCI device and function. */
2709 dev
= (pdev
->devfn
>> 3) & 0x1f;
2710 func
= pdev
->devfn
& 0x7;
2712 switch (pdev
->device
) {
2713 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC
:
2715 pvt
->knl
.pci_mc0
= pdev
;
2717 pvt
->knl
.pci_mc1
= pdev
;
2719 sbridge_printk(KERN_ERR
,
2720 "Memory controller in unexpected place! (dev %d, fn %d)\n",
2726 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0
:
2727 pvt
->pci_sad0
= pdev
;
2730 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1
:
2731 pvt
->pci_sad1
= pdev
;
2734 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA
:
2735 /* There are one of these per tile, and range from
2738 devidx
= ((dev
-14)*8)+func
;
2740 if (devidx
< 0 || devidx
>= KNL_MAX_CHAS
) {
2741 sbridge_printk(KERN_ERR
,
2742 "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2747 WARN_ON(pvt
->knl
.pci_cha
[devidx
] != NULL
);
2749 pvt
->knl
.pci_cha
[devidx
] = pdev
;
2752 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN
:
2756 * MC0 channels 0-2 are device 9 function 2-4,
2757 * MC1 channels 3-5 are device 8 function 2-4.
2763 devidx
= 3 + (func
-2);
2765 if (devidx
< 0 || devidx
>= KNL_MAX_CHANNELS
) {
2766 sbridge_printk(KERN_ERR
,
2767 "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2772 WARN_ON(pvt
->knl
.pci_channel
[devidx
] != NULL
);
2773 pvt
->knl
.pci_channel
[devidx
] = pdev
;
2776 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM
:
2777 pvt
->knl
.pci_mc_info
= pdev
;
2780 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA
:
2785 sbridge_printk(KERN_ERR
, "Unexpected device %d\n",
2791 if (!pvt
->knl
.pci_mc0
|| !pvt
->knl
.pci_mc1
||
2792 !pvt
->pci_sad0
|| !pvt
->pci_sad1
||
2797 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++) {
2798 if (!pvt
->knl
.pci_channel
[i
]) {
2799 sbridge_printk(KERN_ERR
, "Missing channel %d\n", i
);
2804 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
2805 if (!pvt
->knl
.pci_cha
[i
]) {
2806 sbridge_printk(KERN_ERR
, "Missing CHA %d\n", i
);
2814 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2818 /****************************************************************************
2819 Error check routines
2820 ****************************************************************************/
2823 * While Sandy Bridge has error count registers, SMI BIOS read values from
2824 * and resets the counters. So, they are not reliable for the OS to read
2825 * from them. So, we have no option but to just trust on whatever MCE is
2826 * telling us about the errors.
2828 static void sbridge_mce_output_error(struct mem_ctl_info
*mci
,
2829 const struct mce
*m
)
2831 struct mem_ctl_info
*new_mci
;
2832 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2833 enum hw_event_mc_err_type tp_event
;
2834 char *type
, *optype
, msg
[256];
2835 bool ripv
= GET_BITFIELD(m
->mcgstatus
, 0, 0);
2836 bool overflow
= GET_BITFIELD(m
->status
, 62, 62);
2837 bool uncorrected_error
= GET_BITFIELD(m
->status
, 61, 61);
2839 u32 core_err_cnt
= GET_BITFIELD(m
->status
, 38, 52);
2840 u32 mscod
= GET_BITFIELD(m
->status
, 16, 31);
2841 u32 errcode
= GET_BITFIELD(m
->status
, 0, 15);
2842 u32 channel
= GET_BITFIELD(m
->status
, 0, 3);
2843 u32 optypenum
= GET_BITFIELD(m
->status
, 4, 6);
2844 long channel_mask
, first_channel
;
2845 u8 rank
, socket
, ha
;
2847 char *area_type
= NULL
;
2849 if (pvt
->info
.type
!= SANDY_BRIDGE
)
2852 recoverable
= GET_BITFIELD(m
->status
, 56, 56);
2854 if (uncorrected_error
) {
2857 tp_event
= HW_EVENT_ERR_FATAL
;
2860 tp_event
= HW_EVENT_ERR_UNCORRECTED
;
2864 tp_event
= HW_EVENT_ERR_CORRECTED
;
2868 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2869 * memory errors should fit in this mask:
2870 * 000f 0000 1mmm cccc (binary)
2872 * f = Correction Report Filtering Bit. If 1, subsequent errors
2876 * If the mask doesn't match, report an error to the parsing logic
2878 if (! ((errcode
& 0xef80) == 0x80)) {
2879 optype
= "Can't parse: it is not a mem";
2881 switch (optypenum
) {
2883 optype
= "generic undef request error";
2886 optype
= "memory read error";
2889 optype
= "memory write error";
2892 optype
= "addr/cmd error";
2895 optype
= "memory scrubbing error";
2898 optype
= "reserved";
2903 /* Only decode errors with an valid address (ADDRV) */
2904 if (!GET_BITFIELD(m
->status
, 58, 58))
2907 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
2908 if (channel
== 14) {
2909 edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
2910 overflow
? " OVERFLOW" : "",
2911 (uncorrected_error
&& recoverable
)
2912 ? " recoverable" : "",
2919 * Reported channel is in range 0-2, so we can't map it
2920 * back to mc. To figure out mc we check machine check
2921 * bank register that reported this error.
2922 * bank15 means mc0 and bank16 means mc1.
2924 channel
= knl_channel_remap(m
->bank
== 16, channel
);
2925 channel_mask
= 1 << channel
;
2927 snprintf(msg
, sizeof(msg
),
2928 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
2929 overflow
? " OVERFLOW" : "",
2930 (uncorrected_error
&& recoverable
)
2931 ? " recoverable" : " ",
2932 mscod
, errcode
, channel
, A
+ channel
);
2933 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
2934 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
2940 rc
= get_memory_error_data(mci
, m
->addr
, &socket
, &ha
,
2941 &channel_mask
, &rank
, &area_type
, msg
);
2946 new_mci
= get_mci_for_node_id(socket
, ha
);
2948 strcpy(msg
, "Error: socket got corrupted!");
2952 pvt
= mci
->pvt_info
;
2954 first_channel
= find_first_bit(&channel_mask
, NUM_CHANNELS
);
2965 * FIXME: On some memory configurations (mirror, lockstep), the
2966 * Memory Controller can't point the error to a single DIMM. The
2967 * EDAC core should be handling the channel mask, in order to point
2968 * to the group of dimm's where the error may be happening.
2970 if (!pvt
->is_lockstep
&& !pvt
->is_mirrored
&& !pvt
->is_close_pg
)
2971 channel
= first_channel
;
2973 snprintf(msg
, sizeof(msg
),
2974 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
2975 overflow
? " OVERFLOW" : "",
2976 (uncorrected_error
&& recoverable
) ? " recoverable" : "",
2983 edac_dbg(0, "%s\n", msg
);
2985 /* FIXME: need support for channel mask */
2987 if (channel
== CHANNEL_UNSPECIFIED
)
2990 /* Call the helper to output message */
2991 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
2992 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
2997 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
, 0, 0, 0,
3004 * Check that logging is enabled and that this is the right type
3005 * of error for us to handle.
3007 static int sbridge_mce_check_error(struct notifier_block
*nb
, unsigned long val
,
3010 struct mce
*mce
= (struct mce
*)data
;
3011 struct mem_ctl_info
*mci
;
3012 struct sbridge_pvt
*pvt
;
3015 if (edac_get_report_status() == EDAC_REPORTING_DISABLED
)
3018 mci
= get_mci_for_node_id(mce
->socketid
, IMC0
);
3021 pvt
= mci
->pvt_info
;
3024 * Just let mcelog handle it if the error is
3025 * outside the memory controller. A memory error
3026 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3027 * bit 12 has an special meaning.
3029 if ((mce
->status
& 0xefff) >> 7 != 1)
3032 if (mce
->mcgstatus
& MCG_STATUS_MCIP
)
3037 sbridge_mc_printk(mci
, KERN_DEBUG
, "HANDLING MCE MEMORY ERROR\n");
3039 sbridge_mc_printk(mci
, KERN_DEBUG
, "CPU %d: Machine Check %s: %Lx "
3040 "Bank %d: %016Lx\n", mce
->extcpu
, type
,
3041 mce
->mcgstatus
, mce
->bank
, mce
->status
);
3042 sbridge_mc_printk(mci
, KERN_DEBUG
, "TSC %llx ", mce
->tsc
);
3043 sbridge_mc_printk(mci
, KERN_DEBUG
, "ADDR %llx ", mce
->addr
);
3044 sbridge_mc_printk(mci
, KERN_DEBUG
, "MISC %llx ", mce
->misc
);
3046 sbridge_mc_printk(mci
, KERN_DEBUG
, "PROCESSOR %u:%x TIME %llu SOCKET "
3047 "%u APIC %x\n", mce
->cpuvendor
, mce
->cpuid
,
3048 mce
->time
, mce
->socketid
, mce
->apicid
);
3050 sbridge_mce_output_error(mci
, mce
);
3052 /* Advice mcelog that the error were handled */
3056 static struct notifier_block sbridge_mce_dec
= {
3057 .notifier_call
= sbridge_mce_check_error
,
3058 .priority
= MCE_PRIO_EDAC
,
3061 /****************************************************************************
3062 EDAC register/unregister logic
3063 ****************************************************************************/
3065 static void sbridge_unregister_mci(struct sbridge_dev
*sbridge_dev
)
3067 struct mem_ctl_info
*mci
= sbridge_dev
->mci
;
3068 struct sbridge_pvt
*pvt
;
3070 if (unlikely(!mci
|| !mci
->pvt_info
)) {
3071 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev
->pdev
[0]->dev
);
3073 sbridge_printk(KERN_ERR
, "Couldn't find mci handler\n");
3077 pvt
= mci
->pvt_info
;
3079 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3080 mci
, &sbridge_dev
->pdev
[0]->dev
);
3082 /* Remove MC sysfs nodes */
3083 edac_mc_del_mc(mci
->pdev
);
3085 edac_dbg(1, "%s: free mci struct\n", mci
->ctl_name
);
3086 kfree(mci
->ctl_name
);
3088 sbridge_dev
->mci
= NULL
;
3091 static int sbridge_register_mci(struct sbridge_dev
*sbridge_dev
, enum type type
)
3093 struct mem_ctl_info
*mci
;
3094 struct edac_mc_layer layers
[2];
3095 struct sbridge_pvt
*pvt
;
3096 struct pci_dev
*pdev
= sbridge_dev
->pdev
[0];
3099 /* allocate a new MC control structure */
3100 layers
[0].type
= EDAC_MC_LAYER_CHANNEL
;
3101 layers
[0].size
= type
== KNIGHTS_LANDING
?
3102 KNL_MAX_CHANNELS
: NUM_CHANNELS
;
3103 layers
[0].is_virt_csrow
= false;
3104 layers
[1].type
= EDAC_MC_LAYER_SLOT
;
3105 layers
[1].size
= type
== KNIGHTS_LANDING
? 1 : MAX_DIMMS
;
3106 layers
[1].is_virt_csrow
= true;
3107 mci
= edac_mc_alloc(sbridge_dev
->mc
, ARRAY_SIZE(layers
), layers
,
3113 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3116 pvt
= mci
->pvt_info
;
3117 memset(pvt
, 0, sizeof(*pvt
));
3119 /* Associate sbridge_dev and mci for future usage */
3120 pvt
->sbridge_dev
= sbridge_dev
;
3121 sbridge_dev
->mci
= mci
;
3123 mci
->mtype_cap
= type
== KNIGHTS_LANDING
?
3124 MEM_FLAG_DDR4
: MEM_FLAG_DDR3
;
3125 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
3126 mci
->edac_cap
= EDAC_FLAG_NONE
;
3127 mci
->mod_name
= "sb_edac.c";
3128 mci
->mod_ver
= SBRIDGE_REVISION
;
3129 mci
->dev_name
= pci_name(pdev
);
3130 mci
->ctl_page_to_phys
= NULL
;
3132 pvt
->info
.type
= type
;
3135 pvt
->info
.rankcfgr
= IB_RANK_CFG_A
;
3136 pvt
->info
.get_tolm
= ibridge_get_tolm
;
3137 pvt
->info
.get_tohm
= ibridge_get_tohm
;
3138 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3139 pvt
->info
.get_memory_type
= get_memory_type
;
3140 pvt
->info
.get_node_id
= get_node_id
;
3141 pvt
->info
.rir_limit
= rir_limit
;
3142 pvt
->info
.sad_limit
= sad_limit
;
3143 pvt
->info
.interleave_mode
= interleave_mode
;
3144 pvt
->info
.dram_attr
= dram_attr
;
3145 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3146 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3147 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
3148 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3149 pvt
->info
.get_width
= ibridge_get_width
;
3151 /* Store pci devices at mci for faster access */
3152 rc
= ibridge_mci_bind_devs(mci
, sbridge_dev
);
3153 if (unlikely(rc
< 0))
3156 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Ivy Bridge SrcID#%d_Ha#%d",
3157 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3160 pvt
->info
.rankcfgr
= SB_RANK_CFG_A
;
3161 pvt
->info
.get_tolm
= sbridge_get_tolm
;
3162 pvt
->info
.get_tohm
= sbridge_get_tohm
;
3163 pvt
->info
.dram_rule
= sbridge_dram_rule
;
3164 pvt
->info
.get_memory_type
= get_memory_type
;
3165 pvt
->info
.get_node_id
= get_node_id
;
3166 pvt
->info
.rir_limit
= rir_limit
;
3167 pvt
->info
.sad_limit
= sad_limit
;
3168 pvt
->info
.interleave_mode
= interleave_mode
;
3169 pvt
->info
.dram_attr
= dram_attr
;
3170 pvt
->info
.max_sad
= ARRAY_SIZE(sbridge_dram_rule
);
3171 pvt
->info
.interleave_list
= sbridge_interleave_list
;
3172 pvt
->info
.max_interleave
= ARRAY_SIZE(sbridge_interleave_list
);
3173 pvt
->info
.interleave_pkg
= sbridge_interleave_pkg
;
3174 pvt
->info
.get_width
= sbridge_get_width
;
3176 /* Store pci devices at mci for faster access */
3177 rc
= sbridge_mci_bind_devs(mci
, sbridge_dev
);
3178 if (unlikely(rc
< 0))
3181 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Sandy Bridge SrcID#%d_Ha#%d",
3182 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3185 /* rankcfgr isn't used */
3186 pvt
->info
.get_tolm
= haswell_get_tolm
;
3187 pvt
->info
.get_tohm
= haswell_get_tohm
;
3188 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3189 pvt
->info
.get_memory_type
= haswell_get_memory_type
;
3190 pvt
->info
.get_node_id
= haswell_get_node_id
;
3191 pvt
->info
.rir_limit
= haswell_rir_limit
;
3192 pvt
->info
.sad_limit
= sad_limit
;
3193 pvt
->info
.interleave_mode
= interleave_mode
;
3194 pvt
->info
.dram_attr
= dram_attr
;
3195 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3196 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3197 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
3198 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3199 pvt
->info
.get_width
= ibridge_get_width
;
3201 /* Store pci devices at mci for faster access */
3202 rc
= haswell_mci_bind_devs(mci
, sbridge_dev
);
3203 if (unlikely(rc
< 0))
3206 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Haswell SrcID#%d_Ha#%d",
3207 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3210 /* rankcfgr isn't used */
3211 pvt
->info
.get_tolm
= haswell_get_tolm
;
3212 pvt
->info
.get_tohm
= haswell_get_tohm
;
3213 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3214 pvt
->info
.get_memory_type
= haswell_get_memory_type
;
3215 pvt
->info
.get_node_id
= haswell_get_node_id
;
3216 pvt
->info
.rir_limit
= haswell_rir_limit
;
3217 pvt
->info
.sad_limit
= sad_limit
;
3218 pvt
->info
.interleave_mode
= interleave_mode
;
3219 pvt
->info
.dram_attr
= dram_attr
;
3220 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3221 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3222 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
3223 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3224 pvt
->info
.get_width
= broadwell_get_width
;
3226 /* Store pci devices at mci for faster access */
3227 rc
= broadwell_mci_bind_devs(mci
, sbridge_dev
);
3228 if (unlikely(rc
< 0))
3231 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Broadwell SrcID#%d_Ha#%d",
3232 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3234 case KNIGHTS_LANDING
:
3235 /* pvt->info.rankcfgr == ??? */
3236 pvt
->info
.get_tolm
= knl_get_tolm
;
3237 pvt
->info
.get_tohm
= knl_get_tohm
;
3238 pvt
->info
.dram_rule
= knl_dram_rule
;
3239 pvt
->info
.get_memory_type
= knl_get_memory_type
;
3240 pvt
->info
.get_node_id
= knl_get_node_id
;
3241 pvt
->info
.rir_limit
= NULL
;
3242 pvt
->info
.sad_limit
= knl_sad_limit
;
3243 pvt
->info
.interleave_mode
= knl_interleave_mode
;
3244 pvt
->info
.dram_attr
= dram_attr_knl
;
3245 pvt
->info
.max_sad
= ARRAY_SIZE(knl_dram_rule
);
3246 pvt
->info
.interleave_list
= knl_interleave_list
;
3247 pvt
->info
.max_interleave
= ARRAY_SIZE(knl_interleave_list
);
3248 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3249 pvt
->info
.get_width
= knl_get_width
;
3251 rc
= knl_mci_bind_devs(mci
, sbridge_dev
);
3252 if (unlikely(rc
< 0))
3255 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Knights Landing SrcID#%d_Ha#%d",
3256 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3260 /* Get dimm basic config and the memory layout */
3261 rc
= get_dimm_config(mci
);
3263 edac_dbg(0, "MC: failed to get_dimm_config()\n");
3266 get_memory_layout(mci
);
3268 /* record ptr to the generic device */
3269 mci
->pdev
= &pdev
->dev
;
3271 /* add this new MC control structure to EDAC's list of MCs */
3272 if (unlikely(edac_mc_add_mc(mci
))) {
3273 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3281 kfree(mci
->ctl_name
);
3284 sbridge_dev
->mci
= NULL
;
3288 #define ICPU(model, table) \
3289 { X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table }
3291 static const struct x86_cpu_id sbridge_cpuids
[] = {
3292 ICPU(INTEL_FAM6_SANDYBRIDGE_X
, pci_dev_descr_sbridge_table
),
3293 ICPU(INTEL_FAM6_IVYBRIDGE_X
, pci_dev_descr_ibridge_table
),
3294 ICPU(INTEL_FAM6_HASWELL_X
, pci_dev_descr_haswell_table
),
3295 ICPU(INTEL_FAM6_BROADWELL_X
, pci_dev_descr_broadwell_table
),
3296 ICPU(INTEL_FAM6_BROADWELL_XEON_D
, pci_dev_descr_broadwell_table
),
3297 ICPU(INTEL_FAM6_XEON_PHI_KNL
, pci_dev_descr_knl_table
),
3298 ICPU(INTEL_FAM6_XEON_PHI_KNM
, pci_dev_descr_knl_table
),
3301 MODULE_DEVICE_TABLE(x86cpu
, sbridge_cpuids
);
3304 * sbridge_probe Get all devices and register memory controllers
3307 * 0 for FOUND a device
3308 * < 0 for error code
3311 static int sbridge_probe(const struct x86_cpu_id
*id
)
3315 struct sbridge_dev
*sbridge_dev
;
3316 struct pci_id_table
*ptable
= (struct pci_id_table
*)id
->driver_data
;
3318 /* get the pci devices we want to reserve for our use */
3319 rc
= sbridge_get_all_devices(&num_mc
, ptable
);
3321 if (unlikely(rc
< 0)) {
3322 edac_dbg(0, "couldn't get all devices\n");
3328 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
3329 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3330 mc
, mc
+ 1, num_mc
);
3332 sbridge_dev
->mc
= mc
++;
3333 rc
= sbridge_register_mci(sbridge_dev
, ptable
->type
);
3334 if (unlikely(rc
< 0))
3338 sbridge_printk(KERN_INFO
, "%s\n", SBRIDGE_REVISION
);
3343 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
3344 sbridge_unregister_mci(sbridge_dev
);
3346 sbridge_put_all_devices();
3352 * sbridge_remove cleanup
3355 static void sbridge_remove(void)
3357 struct sbridge_dev
*sbridge_dev
;
3361 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
3362 sbridge_unregister_mci(sbridge_dev
);
3364 /* Release PCI resources */
3365 sbridge_put_all_devices();
3369 * sbridge_init Module entry function
3370 * Try to initialize this module for its devices
3372 static int __init
sbridge_init(void)
3374 const struct x86_cpu_id
*id
;
3379 id
= x86_match_cpu(sbridge_cpuids
);
3383 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3386 rc
= sbridge_probe(id
);
3389 mce_register_decode_chain(&sbridge_mce_dec
);
3390 if (edac_get_report_status() == EDAC_REPORTING_DISABLED
)
3391 sbridge_printk(KERN_WARNING
, "Loading driver, error reporting disabled.\n");
3395 sbridge_printk(KERN_ERR
, "Failed to register device with error %d.\n",
3402 * sbridge_exit() Module exit function
3403 * Unregister the driver
3405 static void __exit
sbridge_exit(void)
3409 mce_unregister_decode_chain(&sbridge_mce_dec
);
3412 module_init(sbridge_init
);
3413 module_exit(sbridge_exit
);
3415 module_param(edac_op_state
, int, 0444);
3416 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");
3418 MODULE_LICENSE("GPL");
3419 MODULE_AUTHOR("Mauro Carvalho Chehab");
3420 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3421 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "