Merge tag 'ceph-for-4.13-rc8' of git://github.com/ceph/ceph-client
[linux/fpc-iii.git] / drivers / edac / skx_edac.c
blob64bef6c9cfb4d3175838ec44cfda7a7aefc6a1a5
1 /*
2 * EDAC driver for Intel(R) Xeon(R) Skylake processors
3 * Copyright (c) 2016, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/pci_ids.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/edac.h>
22 #include <linux/mmzone.h>
23 #include <linux/smp.h>
24 #include <linux/bitmap.h>
25 #include <linux/math64.h>
26 #include <linux/mod_devicetable.h>
27 #include <asm/cpu_device_id.h>
28 #include <asm/intel-family.h>
29 #include <asm/processor.h>
30 #include <asm/mce.h>
32 #include "edac_module.h"
34 #define SKX_REVISION " Ver: 1.0 "
37 * Debug macros
39 #define skx_printk(level, fmt, arg...) \
40 edac_printk(level, "skx", fmt, ##arg)
42 #define skx_mc_printk(mci, level, fmt, arg...) \
43 edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
46 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
48 #define GET_BITFIELD(v, lo, hi) \
49 (((v) & GENMASK_ULL((hi), (lo))) >> (lo))
51 static LIST_HEAD(skx_edac_list);
53 static u64 skx_tolm, skx_tohm;
55 #define NUM_IMC 2 /* memory controllers per socket */
56 #define NUM_CHANNELS 3 /* channels per memory controller */
57 #define NUM_DIMMS 2 /* Max DIMMS per channel */
59 #define MASK26 0x3FFFFFF /* Mask for 2^26 */
60 #define MASK29 0x1FFFFFFF /* Mask for 2^29 */
63 * Each cpu socket contains some pci devices that provide global
64 * information, and also some that are local to each of the two
65 * memory controllers on the die.
67 struct skx_dev {
68 struct list_head list;
69 u8 bus[4];
70 struct pci_dev *sad_all;
71 struct pci_dev *util_all;
72 u32 mcroute;
73 struct skx_imc {
74 struct mem_ctl_info *mci;
75 u8 mc; /* system wide mc# */
76 u8 lmc; /* socket relative mc# */
77 u8 src_id, node_id;
78 struct skx_channel {
79 struct pci_dev *cdev;
80 struct skx_dimm {
81 u8 close_pg;
82 u8 bank_xor_enable;
83 u8 fine_grain_bank;
84 u8 rowbits;
85 u8 colbits;
86 } dimms[NUM_DIMMS];
87 } chan[NUM_CHANNELS];
88 } imc[NUM_IMC];
90 static int skx_num_sockets;
92 struct skx_pvt {
93 struct skx_imc *imc;
96 struct decoded_addr {
97 struct skx_dev *dev;
98 u64 addr;
99 int socket;
100 int imc;
101 int channel;
102 u64 chan_addr;
103 int sktways;
104 int chanways;
105 int dimm;
106 int rank;
107 int channel_rank;
108 u64 rank_address;
109 int row;
110 int column;
111 int bank_address;
112 int bank_group;
115 static struct skx_dev *get_skx_dev(u8 bus, u8 idx)
117 struct skx_dev *d;
119 list_for_each_entry(d, &skx_edac_list, list) {
120 if (d->bus[idx] == bus)
121 return d;
124 return NULL;
127 enum munittype {
128 CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD
131 struct munit {
132 u16 did;
133 u16 devfn[NUM_IMC];
134 u8 busidx;
135 u8 per_socket;
136 enum munittype mtype;
140 * List of PCI device ids that we need together with some device
141 * number and function numbers to tell which memory controller the
142 * device belongs to.
144 static const struct munit skx_all_munits[] = {
145 { 0x2054, { }, 1, 1, SAD_ALL },
146 { 0x2055, { }, 1, 1, UTIL_ALL },
147 { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
148 { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
149 { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
150 { 0x208e, { }, 1, 0, SAD },
155 * We use the per-socket device 0x2016 to count how many sockets are present,
156 * and to detemine which PCI buses are associated with each socket. Allocate
157 * and build the full list of all the skx_dev structures that we need here.
159 static int get_all_bus_mappings(void)
161 struct pci_dev *pdev, *prev;
162 struct skx_dev *d;
163 u32 reg;
164 int ndev = 0;
166 prev = NULL;
167 for (;;) {
168 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2016, prev);
169 if (!pdev)
170 break;
171 ndev++;
172 d = kzalloc(sizeof(*d), GFP_KERNEL);
173 if (!d) {
174 pci_dev_put(pdev);
175 return -ENOMEM;
177 pci_read_config_dword(pdev, 0xCC, &reg);
178 d->bus[0] = GET_BITFIELD(reg, 0, 7);
179 d->bus[1] = GET_BITFIELD(reg, 8, 15);
180 d->bus[2] = GET_BITFIELD(reg, 16, 23);
181 d->bus[3] = GET_BITFIELD(reg, 24, 31);
182 edac_dbg(2, "busses: %x, %x, %x, %x\n",
183 d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
184 list_add_tail(&d->list, &skx_edac_list);
185 skx_num_sockets++;
186 prev = pdev;
189 return ndev;
192 static int get_all_munits(const struct munit *m)
194 struct pci_dev *pdev, *prev;
195 struct skx_dev *d;
196 u32 reg;
197 int i = 0, ndev = 0;
199 prev = NULL;
200 for (;;) {
201 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
202 if (!pdev)
203 break;
204 ndev++;
205 if (m->per_socket == NUM_IMC) {
206 for (i = 0; i < NUM_IMC; i++)
207 if (m->devfn[i] == pdev->devfn)
208 break;
209 if (i == NUM_IMC)
210 goto fail;
212 d = get_skx_dev(pdev->bus->number, m->busidx);
213 if (!d)
214 goto fail;
216 /* Be sure that the device is enabled */
217 if (unlikely(pci_enable_device(pdev) < 0)) {
218 skx_printk(KERN_ERR,
219 "Couldn't enable %04x:%04x\n", PCI_VENDOR_ID_INTEL, m->did);
220 goto fail;
223 switch (m->mtype) {
224 case CHAN0: case CHAN1: case CHAN2:
225 pci_dev_get(pdev);
226 d->imc[i].chan[m->mtype].cdev = pdev;
227 break;
228 case SAD_ALL:
229 pci_dev_get(pdev);
230 d->sad_all = pdev;
231 break;
232 case UTIL_ALL:
233 pci_dev_get(pdev);
234 d->util_all = pdev;
235 break;
236 case SAD:
238 * one of these devices per core, including cores
239 * that don't exist on this SKU. Ignore any that
240 * read a route table of zero, make sure all the
241 * non-zero values match.
243 pci_read_config_dword(pdev, 0xB4, &reg);
244 if (reg != 0) {
245 if (d->mcroute == 0)
246 d->mcroute = reg;
247 else if (d->mcroute != reg) {
248 skx_printk(KERN_ERR,
249 "mcroute mismatch\n");
250 goto fail;
253 ndev--;
254 break;
257 prev = pdev;
260 return ndev;
261 fail:
262 pci_dev_put(pdev);
263 return -ENODEV;
266 static const struct x86_cpu_id skx_cpuids[] = {
267 { X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 },
270 MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);
272 static u8 get_src_id(struct skx_dev *d)
274 u32 reg;
276 pci_read_config_dword(d->util_all, 0xF0, &reg);
278 return GET_BITFIELD(reg, 12, 14);
281 static u8 skx_get_node_id(struct skx_dev *d)
283 u32 reg;
285 pci_read_config_dword(d->util_all, 0xF4, &reg);
287 return GET_BITFIELD(reg, 0, 2);
290 static int get_dimm_attr(u32 reg, int lobit, int hibit, int add, int minval,
291 int maxval, char *name)
293 u32 val = GET_BITFIELD(reg, lobit, hibit);
295 if (val < minval || val > maxval) {
296 edac_dbg(2, "bad %s = %d (raw=%x)\n", name, val, reg);
297 return -EINVAL;
299 return val + add;
302 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD((mtr), 15, 15)
304 #define numrank(reg) get_dimm_attr((reg), 12, 13, 0, 1, 2, "ranks")
305 #define numrow(reg) get_dimm_attr((reg), 2, 4, 12, 1, 6, "rows")
306 #define numcol(reg) get_dimm_attr((reg), 0, 1, 10, 0, 2, "cols")
308 static int get_width(u32 mtr)
310 switch (GET_BITFIELD(mtr, 8, 9)) {
311 case 0:
312 return DEV_X4;
313 case 1:
314 return DEV_X8;
315 case 2:
316 return DEV_X16;
318 return DEV_UNKNOWN;
321 static int skx_get_hi_lo(void)
323 struct pci_dev *pdev;
324 u32 reg;
326 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2034, NULL);
327 if (!pdev) {
328 edac_dbg(0, "Can't get tolm/tohm\n");
329 return -ENODEV;
332 pci_read_config_dword(pdev, 0xD0, &reg);
333 skx_tolm = reg;
334 pci_read_config_dword(pdev, 0xD4, &reg);
335 skx_tohm = reg;
336 pci_read_config_dword(pdev, 0xD8, &reg);
337 skx_tohm |= (u64)reg << 32;
339 pci_dev_put(pdev);
340 edac_dbg(2, "tolm=%llx tohm=%llx\n", skx_tolm, skx_tohm);
342 return 0;
345 static int get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm,
346 struct skx_imc *imc, int chan, int dimmno)
348 int banks = 16, ranks, rows, cols, npages;
349 u64 size;
351 if (!IS_DIMM_PRESENT(mtr))
352 return 0;
353 ranks = numrank(mtr);
354 rows = numrow(mtr);
355 cols = numcol(mtr);
358 * Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
360 size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
361 npages = MiB_TO_PAGES(size);
363 edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
364 imc->mc, chan, dimmno, size, npages,
365 banks, ranks, rows, cols);
367 imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0);
368 imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9);
369 imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
370 imc->chan[chan].dimms[dimmno].rowbits = rows;
371 imc->chan[chan].dimms[dimmno].colbits = cols;
373 dimm->nr_pages = npages;
374 dimm->grain = 32;
375 dimm->dtype = get_width(mtr);
376 dimm->mtype = MEM_DDR4;
377 dimm->edac_mode = EDAC_SECDED; /* likely better than this */
378 snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
379 imc->src_id, imc->lmc, chan, dimmno);
381 return 1;
384 #define SKX_GET_MTMTR(dev, reg) \
385 pci_read_config_dword((dev), 0x87c, &reg)
387 static bool skx_check_ecc(struct pci_dev *pdev)
389 u32 mtmtr;
391 SKX_GET_MTMTR(pdev, mtmtr);
393 return !!GET_BITFIELD(mtmtr, 2, 2);
396 static int skx_get_dimm_config(struct mem_ctl_info *mci)
398 struct skx_pvt *pvt = mci->pvt_info;
399 struct skx_imc *imc = pvt->imc;
400 struct dimm_info *dimm;
401 int i, j;
402 u32 mtr, amap;
403 int ndimms;
405 for (i = 0; i < NUM_CHANNELS; i++) {
406 ndimms = 0;
407 pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
408 for (j = 0; j < NUM_DIMMS; j++) {
409 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
410 mci->n_layers, i, j, 0);
411 pci_read_config_dword(imc->chan[i].cdev,
412 0x80 + 4*j, &mtr);
413 ndimms += get_dimm_info(mtr, amap, dimm, imc, i, j);
415 if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) {
416 skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
417 return -ENODEV;
421 return 0;
424 static void skx_unregister_mci(struct skx_imc *imc)
426 struct mem_ctl_info *mci = imc->mci;
428 if (!mci)
429 return;
431 edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);
433 /* Remove MC sysfs nodes */
434 edac_mc_del_mc(mci->pdev);
436 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
437 kfree(mci->ctl_name);
438 edac_mc_free(mci);
441 static int skx_register_mci(struct skx_imc *imc)
443 struct mem_ctl_info *mci;
444 struct edac_mc_layer layers[2];
445 struct pci_dev *pdev = imc->chan[0].cdev;
446 struct skx_pvt *pvt;
447 int rc;
449 /* allocate a new MC control structure */
450 layers[0].type = EDAC_MC_LAYER_CHANNEL;
451 layers[0].size = NUM_CHANNELS;
452 layers[0].is_virt_csrow = false;
453 layers[1].type = EDAC_MC_LAYER_SLOT;
454 layers[1].size = NUM_DIMMS;
455 layers[1].is_virt_csrow = true;
456 mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
457 sizeof(struct skx_pvt));
459 if (unlikely(!mci))
460 return -ENOMEM;
462 edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);
464 /* Associate skx_dev and mci for future usage */
465 imc->mci = mci;
466 pvt = mci->pvt_info;
467 pvt->imc = imc;
469 mci->ctl_name = kasprintf(GFP_KERNEL, "Skylake Socket#%d IMC#%d",
470 imc->node_id, imc->lmc);
471 mci->mtype_cap = MEM_FLAG_DDR4;
472 mci->edac_ctl_cap = EDAC_FLAG_NONE;
473 mci->edac_cap = EDAC_FLAG_NONE;
474 mci->mod_name = "skx_edac.c";
475 mci->dev_name = pci_name(imc->chan[0].cdev);
476 mci->mod_ver = SKX_REVISION;
477 mci->ctl_page_to_phys = NULL;
479 rc = skx_get_dimm_config(mci);
480 if (rc < 0)
481 goto fail;
483 /* record ptr to the generic device */
484 mci->pdev = &pdev->dev;
486 /* add this new MC control structure to EDAC's list of MCs */
487 if (unlikely(edac_mc_add_mc(mci))) {
488 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
489 rc = -EINVAL;
490 goto fail;
493 return 0;
495 fail:
496 kfree(mci->ctl_name);
497 edac_mc_free(mci);
498 imc->mci = NULL;
499 return rc;
502 #define SKX_MAX_SAD 24
504 #define SKX_GET_SAD(d, i, reg) \
505 pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &reg)
506 #define SKX_GET_ILV(d, i, reg) \
507 pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &reg)
509 #define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31)
510 #define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27)
511 #define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
512 #define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6)
513 #define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4)
514 #define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2)
515 #define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0)
517 #define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0)
518 #define SKX_ILV_TARGET(tgt) ((tgt) & 7)
520 static bool skx_sad_decode(struct decoded_addr *res)
522 struct skx_dev *d = list_first_entry(&skx_edac_list, typeof(*d), list);
523 u64 addr = res->addr;
524 int i, idx, tgt, lchan, shift;
525 u32 sad, ilv;
526 u64 limit, prev_limit;
527 int remote = 0;
529 /* Simple sanity check for I/O space or out of range */
530 if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
531 edac_dbg(0, "Address %llx out of range\n", addr);
532 return false;
535 restart:
536 prev_limit = 0;
537 for (i = 0; i < SKX_MAX_SAD; i++) {
538 SKX_GET_SAD(d, i, sad);
539 limit = SKX_SAD_LIMIT(sad);
540 if (SKX_SAD_ENABLE(sad)) {
541 if (addr >= prev_limit && addr <= limit)
542 goto sad_found;
544 prev_limit = limit + 1;
546 edac_dbg(0, "No SAD entry for %llx\n", addr);
547 return false;
549 sad_found:
550 SKX_GET_ILV(d, i, ilv);
552 switch (SKX_SAD_INTERLEAVE(sad)) {
553 case 0:
554 idx = GET_BITFIELD(addr, 6, 8);
555 break;
556 case 1:
557 idx = GET_BITFIELD(addr, 8, 10);
558 break;
559 case 2:
560 idx = GET_BITFIELD(addr, 12, 14);
561 break;
562 case 3:
563 idx = GET_BITFIELD(addr, 30, 32);
564 break;
567 tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);
569 /* If point to another node, find it and start over */
570 if (SKX_ILV_REMOTE(tgt)) {
571 if (remote) {
572 edac_dbg(0, "Double remote!\n");
573 return false;
575 remote = 1;
576 list_for_each_entry(d, &skx_edac_list, list) {
577 if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
578 goto restart;
580 edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
581 return false;
584 if (SKX_SAD_MOD3(sad) == 0)
585 lchan = SKX_ILV_TARGET(tgt);
586 else {
587 switch (SKX_SAD_MOD3MODE(sad)) {
588 case 0:
589 shift = 6;
590 break;
591 case 1:
592 shift = 8;
593 break;
594 case 2:
595 shift = 12;
596 break;
597 default:
598 edac_dbg(0, "illegal mod3mode\n");
599 return false;
601 switch (SKX_SAD_MOD3ASMOD2(sad)) {
602 case 0:
603 lchan = (addr >> shift) % 3;
604 break;
605 case 1:
606 lchan = (addr >> shift) % 2;
607 break;
608 case 2:
609 lchan = (addr >> shift) % 2;
610 lchan = (lchan << 1) | ~lchan;
611 break;
612 case 3:
613 lchan = ((addr >> shift) % 2) << 1;
614 break;
616 lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
619 res->dev = d;
620 res->socket = d->imc[0].src_id;
621 res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
622 res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);
624 edac_dbg(2, "%llx: socket=%d imc=%d channel=%d\n",
625 res->addr, res->socket, res->imc, res->channel);
626 return true;
629 #define SKX_MAX_TAD 8
631 #define SKX_GET_TADBASE(d, mc, i, reg) \
632 pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &reg)
633 #define SKX_GET_TADWAYNESS(d, mc, i, reg) \
634 pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &reg)
635 #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \
636 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &reg)
638 #define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26)
639 #define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5)
640 #define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7)
641 #define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
642 #define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26)
643 #define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11))
644 #define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1)
646 /* which bit used for both socket and channel interleave */
647 static int skx_granularity[] = { 6, 8, 12, 30 };
649 static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
651 addr >>= shift;
652 addr /= ways;
653 addr <<= shift;
655 return addr | (lowbits & ((1ull << shift) - 1));
658 static bool skx_tad_decode(struct decoded_addr *res)
660 int i;
661 u32 base, wayness, chnilvoffset;
662 int skt_interleave_bit, chn_interleave_bit;
663 u64 channel_addr;
665 for (i = 0; i < SKX_MAX_TAD; i++) {
666 SKX_GET_TADBASE(res->dev, res->imc, i, base);
667 SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
668 if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
669 goto tad_found;
671 edac_dbg(0, "No TAD entry for %llx\n", res->addr);
672 return false;
674 tad_found:
675 res->sktways = SKX_TAD_SKTWAYS(wayness);
676 res->chanways = SKX_TAD_CHNWAYS(wayness);
677 skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
678 chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];
680 SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
681 channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);
683 if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
684 /* Must handle channel first, then socket */
685 channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
686 res->chanways, channel_addr);
687 channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
688 res->sktways, channel_addr);
689 } else {
690 /* Handle socket then channel. Preserve low bits from original address */
691 channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
692 res->sktways, res->addr);
693 channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
694 res->chanways, res->addr);
697 res->chan_addr = channel_addr;
699 edac_dbg(2, "%llx: chan_addr=%llx sktways=%d chanways=%d\n",
700 res->addr, res->chan_addr, res->sktways, res->chanways);
701 return true;
704 #define SKX_MAX_RIR 4
706 #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \
707 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
708 0x108 + 4 * (i), &reg)
709 #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \
710 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
711 0x120 + 16 * idx + 4 * (i), &reg)
713 #define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
714 #define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
715 #define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
716 #define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
717 #define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
719 static bool skx_rir_decode(struct decoded_addr *res)
721 int i, idx, chan_rank;
722 int shift;
723 u32 rirway, rirlv;
724 u64 rank_addr, prev_limit = 0, limit;
726 if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
727 shift = 6;
728 else
729 shift = 13;
731 for (i = 0; i < SKX_MAX_RIR; i++) {
732 SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
733 limit = SKX_RIR_LIMIT(rirway);
734 if (SKX_RIR_VALID(rirway)) {
735 if (prev_limit <= res->chan_addr &&
736 res->chan_addr <= limit)
737 goto rir_found;
739 prev_limit = limit;
741 edac_dbg(0, "No RIR entry for %llx\n", res->addr);
742 return false;
744 rir_found:
745 rank_addr = res->chan_addr >> shift;
746 rank_addr /= SKX_RIR_WAYS(rirway);
747 rank_addr <<= shift;
748 rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);
750 res->rank_address = rank_addr;
751 idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);
753 SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
754 res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
755 chan_rank = SKX_RIR_CHAN_RANK(rirlv);
756 res->channel_rank = chan_rank;
757 res->dimm = chan_rank / 4;
758 res->rank = chan_rank % 4;
760 edac_dbg(2, "%llx: dimm=%d rank=%d chan_rank=%d rank_addr=%llx\n",
761 res->addr, res->dimm, res->rank,
762 res->channel_rank, res->rank_address);
763 return true;
766 static u8 skx_close_row[] = {
767 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
769 static u8 skx_close_column[] = {
770 3, 4, 5, 14, 19, 23, 24, 25, 26, 27
772 static u8 skx_open_row[] = {
773 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
775 static u8 skx_open_column[] = {
776 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
778 static u8 skx_open_fine_column[] = {
779 3, 4, 5, 7, 8, 9, 10, 11, 12, 13
782 static int skx_bits(u64 addr, int nbits, u8 *bits)
784 int i, res = 0;
786 for (i = 0; i < nbits; i++)
787 res |= ((addr >> bits[i]) & 1) << i;
788 return res;
791 static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
793 int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
795 if (do_xor)
796 ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
798 return ret;
801 static bool skx_mad_decode(struct decoded_addr *r)
803 struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
804 int bg0 = dimm->fine_grain_bank ? 6 : 13;
806 if (dimm->close_pg) {
807 r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
808 r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
809 r->column |= 0x400; /* C10 is autoprecharge, always set */
810 r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
811 r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
812 } else {
813 r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
814 if (dimm->fine_grain_bank)
815 r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
816 else
817 r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
818 r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
819 r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
821 r->row &= (1u << dimm->rowbits) - 1;
823 edac_dbg(2, "%llx: row=%x col=%x bank_addr=%d bank_group=%d\n",
824 r->addr, r->row, r->column, r->bank_address,
825 r->bank_group);
826 return true;
829 static bool skx_decode(struct decoded_addr *res)
832 return skx_sad_decode(res) && skx_tad_decode(res) &&
833 skx_rir_decode(res) && skx_mad_decode(res);
836 #ifdef CONFIG_EDAC_DEBUG
838 * Debug feature. Make /sys/kernel/debug/skx_edac_test/addr.
839 * Write an address to this file to exercise the address decode
840 * logic in this driver.
842 static struct dentry *skx_test;
843 static u64 skx_fake_addr;
845 static int debugfs_u64_set(void *data, u64 val)
847 struct decoded_addr res;
849 res.addr = val;
850 skx_decode(&res);
852 return 0;
855 DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
857 static struct dentry *mydebugfs_create(const char *name, umode_t mode,
858 struct dentry *parent, u64 *value)
860 return debugfs_create_file(name, mode, parent, value, &fops_u64_wo);
863 static void setup_skx_debug(void)
865 skx_test = debugfs_create_dir("skx_edac_test", NULL);
866 mydebugfs_create("addr", S_IWUSR, skx_test, &skx_fake_addr);
869 static void teardown_skx_debug(void)
871 debugfs_remove_recursive(skx_test);
873 #else
874 static void setup_skx_debug(void)
878 static void teardown_skx_debug(void)
881 #endif /*CONFIG_EDAC_DEBUG*/
883 static void skx_mce_output_error(struct mem_ctl_info *mci,
884 const struct mce *m,
885 struct decoded_addr *res)
887 enum hw_event_mc_err_type tp_event;
888 char *type, *optype, msg[256];
889 bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
890 bool overflow = GET_BITFIELD(m->status, 62, 62);
891 bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
892 bool recoverable;
893 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
894 u32 mscod = GET_BITFIELD(m->status, 16, 31);
895 u32 errcode = GET_BITFIELD(m->status, 0, 15);
896 u32 optypenum = GET_BITFIELD(m->status, 4, 6);
898 recoverable = GET_BITFIELD(m->status, 56, 56);
900 if (uncorrected_error) {
901 if (ripv) {
902 type = "FATAL";
903 tp_event = HW_EVENT_ERR_FATAL;
904 } else {
905 type = "NON_FATAL";
906 tp_event = HW_EVENT_ERR_UNCORRECTED;
908 } else {
909 type = "CORRECTED";
910 tp_event = HW_EVENT_ERR_CORRECTED;
914 * According with Table 15-9 of the Intel Architecture spec vol 3A,
915 * memory errors should fit in this mask:
916 * 000f 0000 1mmm cccc (binary)
917 * where:
918 * f = Correction Report Filtering Bit. If 1, subsequent errors
919 * won't be shown
920 * mmm = error type
921 * cccc = channel
922 * If the mask doesn't match, report an error to the parsing logic
924 if (!((errcode & 0xef80) == 0x80)) {
925 optype = "Can't parse: it is not a mem";
926 } else {
927 switch (optypenum) {
928 case 0:
929 optype = "generic undef request error";
930 break;
931 case 1:
932 optype = "memory read error";
933 break;
934 case 2:
935 optype = "memory write error";
936 break;
937 case 3:
938 optype = "addr/cmd error";
939 break;
940 case 4:
941 optype = "memory scrubbing error";
942 break;
943 default:
944 optype = "reserved";
945 break;
949 snprintf(msg, sizeof(msg),
950 "%s%s err_code:%04x:%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:%x col:%x",
951 overflow ? " OVERFLOW" : "",
952 (uncorrected_error && recoverable) ? " recoverable" : "",
953 mscod, errcode,
954 res->socket, res->imc, res->rank,
955 res->bank_group, res->bank_address, res->row, res->column);
957 edac_dbg(0, "%s\n", msg);
959 /* Call the helper to output message */
960 edac_mc_handle_error(tp_event, mci, core_err_cnt,
961 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
962 res->channel, res->dimm, -1,
963 optype, msg);
966 static int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
967 void *data)
969 struct mce *mce = (struct mce *)data;
970 struct decoded_addr res;
971 struct mem_ctl_info *mci;
972 char *type;
974 if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
975 return NOTIFY_DONE;
977 /* ignore unless this is memory related with an address */
978 if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV))
979 return NOTIFY_DONE;
981 res.addr = mce->addr;
982 if (!skx_decode(&res))
983 return NOTIFY_DONE;
984 mci = res.dev->imc[res.imc].mci;
986 if (mce->mcgstatus & MCG_STATUS_MCIP)
987 type = "Exception";
988 else
989 type = "Event";
991 skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
993 skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
994 "Bank %d: %016Lx\n", mce->extcpu, type,
995 mce->mcgstatus, mce->bank, mce->status);
996 skx_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
997 skx_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
998 skx_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
1000 skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
1001 "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
1002 mce->time, mce->socketid, mce->apicid);
1004 skx_mce_output_error(mci, mce, &res);
1006 return NOTIFY_DONE;
1009 static struct notifier_block skx_mce_dec = {
1010 .notifier_call = skx_mce_check_error,
1011 .priority = MCE_PRIO_EDAC,
1014 static void skx_remove(void)
1016 int i, j;
1017 struct skx_dev *d, *tmp;
1019 edac_dbg(0, "\n");
1021 list_for_each_entry_safe(d, tmp, &skx_edac_list, list) {
1022 list_del(&d->list);
1023 for (i = 0; i < NUM_IMC; i++) {
1024 skx_unregister_mci(&d->imc[i]);
1025 for (j = 0; j < NUM_CHANNELS; j++)
1026 pci_dev_put(d->imc[i].chan[j].cdev);
1028 pci_dev_put(d->util_all);
1029 pci_dev_put(d->sad_all);
1031 kfree(d);
1036 * skx_init:
1037 * make sure we are running on the correct cpu model
1038 * search for all the devices we need
1039 * check which DIMMs are present.
1041 static int __init skx_init(void)
1043 const struct x86_cpu_id *id;
1044 const struct munit *m;
1045 int rc = 0, i;
1046 u8 mc = 0, src_id, node_id;
1047 struct skx_dev *d;
1049 edac_dbg(2, "\n");
1051 id = x86_match_cpu(skx_cpuids);
1052 if (!id)
1053 return -ENODEV;
1055 rc = skx_get_hi_lo();
1056 if (rc)
1057 return rc;
1059 rc = get_all_bus_mappings();
1060 if (rc < 0)
1061 goto fail;
1062 if (rc == 0) {
1063 edac_dbg(2, "No memory controllers found\n");
1064 return -ENODEV;
1067 for (m = skx_all_munits; m->did; m++) {
1068 rc = get_all_munits(m);
1069 if (rc < 0)
1070 goto fail;
1071 if (rc != m->per_socket * skx_num_sockets) {
1072 edac_dbg(2, "Expected %d, got %d of %x\n",
1073 m->per_socket * skx_num_sockets, rc, m->did);
1074 rc = -ENODEV;
1075 goto fail;
1079 list_for_each_entry(d, &skx_edac_list, list) {
1080 src_id = get_src_id(d);
1081 node_id = skx_get_node_id(d);
1082 edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
1083 for (i = 0; i < NUM_IMC; i++) {
1084 d->imc[i].mc = mc++;
1085 d->imc[i].lmc = i;
1086 d->imc[i].src_id = src_id;
1087 d->imc[i].node_id = node_id;
1088 rc = skx_register_mci(&d->imc[i]);
1089 if (rc < 0)
1090 goto fail;
1094 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1095 opstate_init();
1097 setup_skx_debug();
1099 mce_register_decode_chain(&skx_mce_dec);
1101 return 0;
1102 fail:
1103 skx_remove();
1104 return rc;
1107 static void __exit skx_exit(void)
1109 edac_dbg(2, "\n");
1110 mce_unregister_decode_chain(&skx_mce_dec);
1111 skx_remove();
1112 teardown_skx_debug();
1115 module_init(skx_init);
1116 module_exit(skx_exit);
1118 module_param(edac_op_state, int, 0444);
1119 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1121 MODULE_LICENSE("GPL v2");
1122 MODULE_AUTHOR("Tony Luck");
1123 MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");