Merge tag 'ceph-for-4.13-rc8' of git://github.com/ceph/ceph-client
[linux/fpc-iii.git] / drivers / mtd / spi-nor / aspeed-smc.c
blob0106357421bd3cd27186937c94a044ce403fbf56
1 /*
2 * ASPEED Static Memory Controller driver
4 * Copyright (c) 2015-2016, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #include <linux/bug.h>
13 #include <linux/device.h>
14 #include <linux/io.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/partitions.h>
19 #include <linux/mtd/spi-nor.h>
20 #include <linux/of.h>
21 #include <linux/of_platform.h>
22 #include <linux/sizes.h>
23 #include <linux/sysfs.h>
25 #define DEVICE_NAME "aspeed-smc"
28 * The driver only support SPI flash
30 enum aspeed_smc_flash_type {
31 smc_type_nor = 0,
32 smc_type_nand = 1,
33 smc_type_spi = 2,
36 struct aspeed_smc_chip;
38 struct aspeed_smc_info {
39 u32 maxsize; /* maximum size of chip window */
40 u8 nce; /* number of chip enables */
41 bool hastype; /* flash type field exists in config reg */
42 u8 we0; /* shift for write enable bit for CE0 */
43 u8 ctl0; /* offset in regs of ctl for CE0 */
45 void (*set_4b)(struct aspeed_smc_chip *chip);
48 static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip);
49 static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip);
51 static const struct aspeed_smc_info fmc_2400_info = {
52 .maxsize = 64 * 1024 * 1024,
53 .nce = 5,
54 .hastype = true,
55 .we0 = 16,
56 .ctl0 = 0x10,
57 .set_4b = aspeed_smc_chip_set_4b,
60 static const struct aspeed_smc_info spi_2400_info = {
61 .maxsize = 64 * 1024 * 1024,
62 .nce = 1,
63 .hastype = false,
64 .we0 = 0,
65 .ctl0 = 0x04,
66 .set_4b = aspeed_smc_chip_set_4b_spi_2400,
69 static const struct aspeed_smc_info fmc_2500_info = {
70 .maxsize = 256 * 1024 * 1024,
71 .nce = 3,
72 .hastype = true,
73 .we0 = 16,
74 .ctl0 = 0x10,
75 .set_4b = aspeed_smc_chip_set_4b,
78 static const struct aspeed_smc_info spi_2500_info = {
79 .maxsize = 128 * 1024 * 1024,
80 .nce = 2,
81 .hastype = false,
82 .we0 = 16,
83 .ctl0 = 0x10,
84 .set_4b = aspeed_smc_chip_set_4b,
87 enum aspeed_smc_ctl_reg_value {
88 smc_base, /* base value without mode for other commands */
89 smc_read, /* command reg for (maybe fast) reads */
90 smc_write, /* command reg for writes */
91 smc_max,
94 struct aspeed_smc_controller;
96 struct aspeed_smc_chip {
97 int cs;
98 struct aspeed_smc_controller *controller;
99 void __iomem *ctl; /* control register */
100 void __iomem *ahb_base; /* base of chip window */
101 u32 ahb_window_size; /* chip mapping window size */
102 u32 ctl_val[smc_max]; /* control settings */
103 enum aspeed_smc_flash_type type; /* what type of flash */
104 struct spi_nor nor;
107 struct aspeed_smc_controller {
108 struct device *dev;
110 struct mutex mutex; /* controller access mutex */
111 const struct aspeed_smc_info *info; /* type info of controller */
112 void __iomem *regs; /* controller registers */
113 void __iomem *ahb_base; /* per-chip windows resource */
114 u32 ahb_window_size; /* full mapping window size */
116 struct aspeed_smc_chip *chips[0]; /* pointers to attached chips */
120 * SPI Flash Configuration Register (AST2500 SPI)
121 * or
122 * Type setting Register (AST2500 FMC).
123 * CE0 and CE1 can only be of type SPI. CE2 can be of type NOR but the
124 * driver does not support it.
126 #define CONFIG_REG 0x0
127 #define CONFIG_DISABLE_LEGACY BIT(31) /* 1 */
129 #define CONFIG_CE2_WRITE BIT(18)
130 #define CONFIG_CE1_WRITE BIT(17)
131 #define CONFIG_CE0_WRITE BIT(16)
133 #define CONFIG_CE2_TYPE BIT(4) /* AST2500 FMC only */
134 #define CONFIG_CE1_TYPE BIT(2) /* AST2500 FMC only */
135 #define CONFIG_CE0_TYPE BIT(0) /* AST2500 FMC only */
138 * CE Control Register
140 #define CE_CONTROL_REG 0x4
143 * CEx Control Register
145 #define CONTROL_AAF_MODE BIT(31)
146 #define CONTROL_IO_MODE_MASK GENMASK(30, 28)
147 #define CONTROL_IO_DUAL_DATA BIT(29)
148 #define CONTROL_IO_DUAL_ADDR_DATA (BIT(29) | BIT(28))
149 #define CONTROL_IO_QUAD_DATA BIT(30)
150 #define CONTROL_IO_QUAD_ADDR_DATA (BIT(30) | BIT(28))
151 #define CONTROL_CE_INACTIVE_SHIFT 24
152 #define CONTROL_CE_INACTIVE_MASK GENMASK(27, \
153 CONTROL_CE_INACTIVE_SHIFT)
154 /* 0 = 16T ... 15 = 1T T=HCLK */
155 #define CONTROL_COMMAND_SHIFT 16
156 #define CONTROL_DUMMY_COMMAND_OUT BIT(15)
157 #define CONTROL_IO_DUMMY_HI BIT(14)
158 #define CONTROL_IO_DUMMY_HI_SHIFT 14
159 #define CONTROL_CLK_DIV4 BIT(13) /* others */
160 #define CONTROL_IO_ADDRESS_4B BIT(13) /* AST2400 SPI */
161 #define CONTROL_RW_MERGE BIT(12)
162 #define CONTROL_IO_DUMMY_LO_SHIFT 6
163 #define CONTROL_IO_DUMMY_LO GENMASK(7, \
164 CONTROL_IO_DUMMY_LO_SHIFT)
165 #define CONTROL_IO_DUMMY_MASK (CONTROL_IO_DUMMY_HI | \
166 CONTROL_IO_DUMMY_LO)
167 #define CONTROL_IO_DUMMY_SET(dummy) \
168 (((((dummy) >> 2) & 0x1) << CONTROL_IO_DUMMY_HI_SHIFT) | \
169 (((dummy) & 0x3) << CONTROL_IO_DUMMY_LO_SHIFT))
171 #define CONTROL_CLOCK_FREQ_SEL_SHIFT 8
172 #define CONTROL_CLOCK_FREQ_SEL_MASK GENMASK(11, \
173 CONTROL_CLOCK_FREQ_SEL_SHIFT)
174 #define CONTROL_LSB_FIRST BIT(5)
175 #define CONTROL_CLOCK_MODE_3 BIT(4)
176 #define CONTROL_IN_DUAL_DATA BIT(3)
177 #define CONTROL_CE_STOP_ACTIVE_CONTROL BIT(2)
178 #define CONTROL_COMMAND_MODE_MASK GENMASK(1, 0)
179 #define CONTROL_COMMAND_MODE_NORMAL 0
180 #define CONTROL_COMMAND_MODE_FREAD 1
181 #define CONTROL_COMMAND_MODE_WRITE 2
182 #define CONTROL_COMMAND_MODE_USER 3
184 #define CONTROL_KEEP_MASK \
185 (CONTROL_AAF_MODE | CONTROL_CE_INACTIVE_MASK | CONTROL_CLK_DIV4 | \
186 CONTROL_CLOCK_FREQ_SEL_MASK | CONTROL_LSB_FIRST | CONTROL_CLOCK_MODE_3)
189 * The Segment Register uses a 8MB unit to encode the start address
190 * and the end address of the mapping window of a flash SPI slave :
192 * | byte 1 | byte 2 | byte 3 | byte 4 |
193 * +--------+--------+--------+--------+
194 * | end | start | 0 | 0 |
196 #define SEGMENT_ADDR_REG0 0x30
197 #define SEGMENT_ADDR_START(_r) ((((_r) >> 16) & 0xFF) << 23)
198 #define SEGMENT_ADDR_END(_r) ((((_r) >> 24) & 0xFF) << 23)
199 #define SEGMENT_ADDR_VALUE(start, end) \
200 (((((start) >> 23) & 0xFF) << 16) | ((((end) >> 23) & 0xFF) << 24))
201 #define SEGMENT_ADDR_REG(controller, cs) \
202 ((controller)->regs + SEGMENT_ADDR_REG0 + (cs) * 4)
205 * In user mode all data bytes read or written to the chip decode address
206 * range are transferred to or from the SPI bus. The range is treated as a
207 * fifo of arbitratry 1, 2, or 4 byte width but each write has to be aligned
208 * to its size. The address within the multiple 8kB range is ignored when
209 * sending bytes to the SPI bus.
211 * On the arm architecture, as of Linux version 4.3, memcpy_fromio and
212 * memcpy_toio on little endian targets use the optimized memcpy routines
213 * that were designed for well behavied memory storage. These routines
214 * have a stutter if the source and destination are not both word aligned,
215 * once with a duplicate access to the source after aligning to the
216 * destination to a word boundary, and again with a duplicate access to
217 * the source when the final byte count is not word aligned.
219 * When writing or reading the fifo this stutter discards data or sends
220 * too much data to the fifo and can not be used by this driver.
222 * While the low level io string routines that implement the insl family do
223 * the desired accesses and memory increments, the cross architecture io
224 * macros make them essentially impossible to use on a memory mapped address
225 * instead of a a token from the call to iomap of an io port.
227 * These fifo routines use readl and friends to a constant io port and update
228 * the memory buffer pointer and count via explicit code. The final updates
229 * to len are optimistically suppressed.
231 static int aspeed_smc_read_from_ahb(void *buf, void __iomem *src, size_t len)
233 size_t offset = 0;
235 if (IS_ALIGNED((uintptr_t)src, sizeof(uintptr_t)) &&
236 IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
237 ioread32_rep(src, buf, len >> 2);
238 offset = len & ~0x3;
239 len -= offset;
241 ioread8_rep(src, (u8 *)buf + offset, len);
242 return 0;
245 static int aspeed_smc_write_to_ahb(void __iomem *dst, const void *buf,
246 size_t len)
248 size_t offset = 0;
250 if (IS_ALIGNED((uintptr_t)dst, sizeof(uintptr_t)) &&
251 IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
252 iowrite32_rep(dst, buf, len >> 2);
253 offset = len & ~0x3;
254 len -= offset;
256 iowrite8_rep(dst, (const u8 *)buf + offset, len);
257 return 0;
260 static inline u32 aspeed_smc_chip_write_bit(struct aspeed_smc_chip *chip)
262 return BIT(chip->controller->info->we0 + chip->cs);
265 static void aspeed_smc_chip_check_config(struct aspeed_smc_chip *chip)
267 struct aspeed_smc_controller *controller = chip->controller;
268 u32 reg;
270 reg = readl(controller->regs + CONFIG_REG);
272 if (reg & aspeed_smc_chip_write_bit(chip))
273 return;
275 dev_dbg(controller->dev, "config write is not set ! @%p: 0x%08x\n",
276 controller->regs + CONFIG_REG, reg);
277 reg |= aspeed_smc_chip_write_bit(chip);
278 writel(reg, controller->regs + CONFIG_REG);
281 static void aspeed_smc_start_user(struct spi_nor *nor)
283 struct aspeed_smc_chip *chip = nor->priv;
284 u32 ctl = chip->ctl_val[smc_base];
287 * When the chip is controlled in user mode, we need write
288 * access to send the opcodes to it. So check the config.
290 aspeed_smc_chip_check_config(chip);
292 ctl |= CONTROL_COMMAND_MODE_USER |
293 CONTROL_CE_STOP_ACTIVE_CONTROL;
294 writel(ctl, chip->ctl);
296 ctl &= ~CONTROL_CE_STOP_ACTIVE_CONTROL;
297 writel(ctl, chip->ctl);
300 static void aspeed_smc_stop_user(struct spi_nor *nor)
302 struct aspeed_smc_chip *chip = nor->priv;
304 u32 ctl = chip->ctl_val[smc_read];
305 u32 ctl2 = ctl | CONTROL_COMMAND_MODE_USER |
306 CONTROL_CE_STOP_ACTIVE_CONTROL;
308 writel(ctl2, chip->ctl); /* stop user CE control */
309 writel(ctl, chip->ctl); /* default to fread or read mode */
312 static int aspeed_smc_prep(struct spi_nor *nor, enum spi_nor_ops ops)
314 struct aspeed_smc_chip *chip = nor->priv;
316 mutex_lock(&chip->controller->mutex);
317 return 0;
320 static void aspeed_smc_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
322 struct aspeed_smc_chip *chip = nor->priv;
324 mutex_unlock(&chip->controller->mutex);
327 static int aspeed_smc_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
329 struct aspeed_smc_chip *chip = nor->priv;
331 aspeed_smc_start_user(nor);
332 aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
333 aspeed_smc_read_from_ahb(buf, chip->ahb_base, len);
334 aspeed_smc_stop_user(nor);
335 return 0;
338 static int aspeed_smc_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
339 int len)
341 struct aspeed_smc_chip *chip = nor->priv;
343 aspeed_smc_start_user(nor);
344 aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
345 aspeed_smc_write_to_ahb(chip->ahb_base, buf, len);
346 aspeed_smc_stop_user(nor);
347 return 0;
350 static void aspeed_smc_send_cmd_addr(struct spi_nor *nor, u8 cmd, u32 addr)
352 struct aspeed_smc_chip *chip = nor->priv;
353 __be32 temp;
354 u32 cmdaddr;
356 switch (nor->addr_width) {
357 default:
358 WARN_ONCE(1, "Unexpected address width %u, defaulting to 3\n",
359 nor->addr_width);
360 /* FALLTHROUGH */
361 case 3:
362 cmdaddr = addr & 0xFFFFFF;
363 cmdaddr |= cmd << 24;
365 temp = cpu_to_be32(cmdaddr);
366 aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
367 break;
368 case 4:
369 temp = cpu_to_be32(addr);
370 aspeed_smc_write_to_ahb(chip->ahb_base, &cmd, 1);
371 aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
372 break;
376 static ssize_t aspeed_smc_read_user(struct spi_nor *nor, loff_t from,
377 size_t len, u_char *read_buf)
379 struct aspeed_smc_chip *chip = nor->priv;
380 int i;
381 u8 dummy = 0xFF;
383 aspeed_smc_start_user(nor);
384 aspeed_smc_send_cmd_addr(nor, nor->read_opcode, from);
385 for (i = 0; i < chip->nor.read_dummy / 8; i++)
386 aspeed_smc_write_to_ahb(chip->ahb_base, &dummy, sizeof(dummy));
388 aspeed_smc_read_from_ahb(read_buf, chip->ahb_base, len);
389 aspeed_smc_stop_user(nor);
390 return len;
393 static ssize_t aspeed_smc_write_user(struct spi_nor *nor, loff_t to,
394 size_t len, const u_char *write_buf)
396 struct aspeed_smc_chip *chip = nor->priv;
398 aspeed_smc_start_user(nor);
399 aspeed_smc_send_cmd_addr(nor, nor->program_opcode, to);
400 aspeed_smc_write_to_ahb(chip->ahb_base, write_buf, len);
401 aspeed_smc_stop_user(nor);
402 return len;
405 static int aspeed_smc_unregister(struct aspeed_smc_controller *controller)
407 struct aspeed_smc_chip *chip;
408 int n;
410 for (n = 0; n < controller->info->nce; n++) {
411 chip = controller->chips[n];
412 if (chip)
413 mtd_device_unregister(&chip->nor.mtd);
416 return 0;
419 static int aspeed_smc_remove(struct platform_device *dev)
421 return aspeed_smc_unregister(platform_get_drvdata(dev));
424 static const struct of_device_id aspeed_smc_matches[] = {
425 { .compatible = "aspeed,ast2400-fmc", .data = &fmc_2400_info },
426 { .compatible = "aspeed,ast2400-spi", .data = &spi_2400_info },
427 { .compatible = "aspeed,ast2500-fmc", .data = &fmc_2500_info },
428 { .compatible = "aspeed,ast2500-spi", .data = &spi_2500_info },
431 MODULE_DEVICE_TABLE(of, aspeed_smc_matches);
434 * Each chip has a mapping window defined by a segment address
435 * register defining a start and an end address on the AHB bus. These
436 * addresses can be configured to fit the chip size and offer a
437 * contiguous memory region across chips. For the moment, we only
438 * check that each chip segment is valid.
440 static void __iomem *aspeed_smc_chip_base(struct aspeed_smc_chip *chip,
441 struct resource *res)
443 struct aspeed_smc_controller *controller = chip->controller;
444 u32 offset = 0;
445 u32 reg;
447 if (controller->info->nce > 1) {
448 reg = readl(SEGMENT_ADDR_REG(controller, chip->cs));
450 if (SEGMENT_ADDR_START(reg) >= SEGMENT_ADDR_END(reg))
451 return NULL;
453 offset = SEGMENT_ADDR_START(reg) - res->start;
456 return controller->ahb_base + offset;
459 static u32 aspeed_smc_ahb_base_phy(struct aspeed_smc_controller *controller)
461 u32 seg0_val = readl(SEGMENT_ADDR_REG(controller, 0));
463 return SEGMENT_ADDR_START(seg0_val);
466 static u32 chip_set_segment(struct aspeed_smc_chip *chip, u32 cs, u32 start,
467 u32 size)
469 struct aspeed_smc_controller *controller = chip->controller;
470 void __iomem *seg_reg;
471 u32 seg_oldval, seg_newval, ahb_base_phy, end;
473 ahb_base_phy = aspeed_smc_ahb_base_phy(controller);
475 seg_reg = SEGMENT_ADDR_REG(controller, cs);
476 seg_oldval = readl(seg_reg);
479 * If the chip size is not specified, use the default segment
480 * size, but take into account the possible overlap with the
481 * previous segment
483 if (!size)
484 size = SEGMENT_ADDR_END(seg_oldval) - start;
487 * The segment cannot exceed the maximum window size of the
488 * controller.
490 if (start + size > ahb_base_phy + controller->ahb_window_size) {
491 size = ahb_base_phy + controller->ahb_window_size - start;
492 dev_warn(chip->nor.dev, "CE%d window resized to %dMB",
493 cs, size >> 20);
496 end = start + size;
497 seg_newval = SEGMENT_ADDR_VALUE(start, end);
498 writel(seg_newval, seg_reg);
501 * Restore default value if something goes wrong. The chip
502 * might have set some bogus value and we would loose access
503 * to the chip.
505 if (seg_newval != readl(seg_reg)) {
506 dev_err(chip->nor.dev, "CE%d window invalid", cs);
507 writel(seg_oldval, seg_reg);
508 start = SEGMENT_ADDR_START(seg_oldval);
509 end = SEGMENT_ADDR_END(seg_oldval);
510 size = end - start;
513 dev_info(chip->nor.dev, "CE%d window [ 0x%.8x - 0x%.8x ] %dMB",
514 cs, start, end, size >> 20);
516 return size;
520 * The segment register defines the mapping window on the AHB bus and
521 * it needs to be configured depending on the chip size. The segment
522 * register of the following CE also needs to be tuned in order to
523 * provide a contiguous window across multiple chips.
525 * This is expected to be called in increasing CE order
527 static u32 aspeed_smc_chip_set_segment(struct aspeed_smc_chip *chip)
529 struct aspeed_smc_controller *controller = chip->controller;
530 u32 ahb_base_phy, start;
531 u32 size = chip->nor.mtd.size;
534 * Each controller has a chip size limit for direct memory
535 * access
537 if (size > controller->info->maxsize)
538 size = controller->info->maxsize;
541 * The AST2400 SPI controller only handles one chip and does
542 * not have segment registers. Let's use the chip size for the
543 * AHB window.
545 if (controller->info == &spi_2400_info)
546 goto out;
549 * The AST2500 SPI controller has a HW bug when the CE0 chip
550 * size reaches 128MB. Enforce a size limit of 120MB to
551 * prevent the controller from using bogus settings in the
552 * segment register.
554 if (chip->cs == 0 && controller->info == &spi_2500_info &&
555 size == SZ_128M) {
556 size = 120 << 20;
557 dev_info(chip->nor.dev,
558 "CE%d window resized to %dMB (AST2500 HW quirk)",
559 chip->cs, size >> 20);
562 ahb_base_phy = aspeed_smc_ahb_base_phy(controller);
565 * As a start address for the current segment, use the default
566 * start address if we are handling CE0 or use the previous
567 * segment ending address
569 if (chip->cs) {
570 u32 prev = readl(SEGMENT_ADDR_REG(controller, chip->cs - 1));
572 start = SEGMENT_ADDR_END(prev);
573 } else {
574 start = ahb_base_phy;
577 size = chip_set_segment(chip, chip->cs, start, size);
579 /* Update chip base address on the AHB bus */
580 chip->ahb_base = controller->ahb_base + (start - ahb_base_phy);
583 * Now, make sure the next segment does not overlap with the
584 * current one we just configured, even if there is no
585 * available chip. That could break access in Command Mode.
587 if (chip->cs < controller->info->nce - 1)
588 chip_set_segment(chip, chip->cs + 1, start + size, 0);
590 out:
591 if (size < chip->nor.mtd.size)
592 dev_warn(chip->nor.dev,
593 "CE%d window too small for chip %dMB",
594 chip->cs, (u32)chip->nor.mtd.size >> 20);
596 return size;
599 static void aspeed_smc_chip_enable_write(struct aspeed_smc_chip *chip)
601 struct aspeed_smc_controller *controller = chip->controller;
602 u32 reg;
604 reg = readl(controller->regs + CONFIG_REG);
606 reg |= aspeed_smc_chip_write_bit(chip);
607 writel(reg, controller->regs + CONFIG_REG);
610 static void aspeed_smc_chip_set_type(struct aspeed_smc_chip *chip, int type)
612 struct aspeed_smc_controller *controller = chip->controller;
613 u32 reg;
615 chip->type = type;
617 reg = readl(controller->regs + CONFIG_REG);
618 reg &= ~(3 << (chip->cs * 2));
619 reg |= chip->type << (chip->cs * 2);
620 writel(reg, controller->regs + CONFIG_REG);
624 * The AST2500 FMC flash controller should be strapped by hardware, or
625 * autodetected, but the AST2500 SPI flash needs to be set.
627 static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip)
629 struct aspeed_smc_controller *controller = chip->controller;
630 u32 reg;
632 if (chip->controller->info == &spi_2500_info) {
633 reg = readl(controller->regs + CE_CONTROL_REG);
634 reg |= 1 << chip->cs;
635 writel(reg, controller->regs + CE_CONTROL_REG);
640 * The AST2400 SPI flash controller does not have a CE Control
641 * register. It uses the CE0 control register to set 4Byte mode at the
642 * controller level.
644 static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip)
646 chip->ctl_val[smc_base] |= CONTROL_IO_ADDRESS_4B;
647 chip->ctl_val[smc_read] |= CONTROL_IO_ADDRESS_4B;
650 static int aspeed_smc_chip_setup_init(struct aspeed_smc_chip *chip,
651 struct resource *res)
653 struct aspeed_smc_controller *controller = chip->controller;
654 const struct aspeed_smc_info *info = controller->info;
655 u32 reg, base_reg;
658 * Always turn on the write enable bit to allow opcodes to be
659 * sent in user mode.
661 aspeed_smc_chip_enable_write(chip);
663 /* The driver only supports SPI type flash */
664 if (info->hastype)
665 aspeed_smc_chip_set_type(chip, smc_type_spi);
668 * Configure chip base address in memory
670 chip->ahb_base = aspeed_smc_chip_base(chip, res);
671 if (!chip->ahb_base) {
672 dev_warn(chip->nor.dev, "CE%d window closed", chip->cs);
673 return -EINVAL;
677 * Get value of the inherited control register. U-Boot usually
678 * does some timing calibration on the FMC chip, so it's good
679 * to keep them. In the future, we should handle calibration
680 * from Linux.
682 reg = readl(chip->ctl);
683 dev_dbg(controller->dev, "control register: %08x\n", reg);
685 base_reg = reg & CONTROL_KEEP_MASK;
686 if (base_reg != reg) {
687 dev_dbg(controller->dev,
688 "control register changed to: %08x\n",
689 base_reg);
691 chip->ctl_val[smc_base] = base_reg;
694 * Retain the prior value of the control register as the
695 * default if it was normal access mode. Otherwise start with
696 * the sanitized base value set to read mode.
698 if ((reg & CONTROL_COMMAND_MODE_MASK) ==
699 CONTROL_COMMAND_MODE_NORMAL)
700 chip->ctl_val[smc_read] = reg;
701 else
702 chip->ctl_val[smc_read] = chip->ctl_val[smc_base] |
703 CONTROL_COMMAND_MODE_NORMAL;
705 dev_dbg(controller->dev, "default control register: %08x\n",
706 chip->ctl_val[smc_read]);
707 return 0;
710 static int aspeed_smc_chip_setup_finish(struct aspeed_smc_chip *chip)
712 struct aspeed_smc_controller *controller = chip->controller;
713 const struct aspeed_smc_info *info = controller->info;
714 u32 cmd;
716 if (chip->nor.addr_width == 4 && info->set_4b)
717 info->set_4b(chip);
719 /* This is for direct AHB access when using Command Mode. */
720 chip->ahb_window_size = aspeed_smc_chip_set_segment(chip);
723 * base mode has not been optimized yet. use it for writes.
725 chip->ctl_val[smc_write] = chip->ctl_val[smc_base] |
726 chip->nor.program_opcode << CONTROL_COMMAND_SHIFT |
727 CONTROL_COMMAND_MODE_WRITE;
729 dev_dbg(controller->dev, "write control register: %08x\n",
730 chip->ctl_val[smc_write]);
733 * TODO: Adjust clocks if fast read is supported and interpret
734 * SPI-NOR flags to adjust controller settings.
736 if (chip->nor.read_proto == SNOR_PROTO_1_1_1) {
737 if (chip->nor.read_dummy == 0)
738 cmd = CONTROL_COMMAND_MODE_NORMAL;
739 else
740 cmd = CONTROL_COMMAND_MODE_FREAD;
741 } else {
742 dev_err(chip->nor.dev, "unsupported SPI read mode\n");
743 return -EINVAL;
746 chip->ctl_val[smc_read] |= cmd |
747 CONTROL_IO_DUMMY_SET(chip->nor.read_dummy / 8);
749 dev_dbg(controller->dev, "base control register: %08x\n",
750 chip->ctl_val[smc_read]);
751 return 0;
754 static int aspeed_smc_setup_flash(struct aspeed_smc_controller *controller,
755 struct device_node *np, struct resource *r)
757 const struct spi_nor_hwcaps hwcaps = {
758 .mask = SNOR_HWCAPS_READ |
759 SNOR_HWCAPS_READ_FAST |
760 SNOR_HWCAPS_PP,
762 const struct aspeed_smc_info *info = controller->info;
763 struct device *dev = controller->dev;
764 struct device_node *child;
765 unsigned int cs;
766 int ret = -ENODEV;
768 for_each_available_child_of_node(np, child) {
769 struct aspeed_smc_chip *chip;
770 struct spi_nor *nor;
771 struct mtd_info *mtd;
773 /* This driver does not support NAND or NOR flash devices. */
774 if (!of_device_is_compatible(child, "jedec,spi-nor"))
775 continue;
777 ret = of_property_read_u32(child, "reg", &cs);
778 if (ret) {
779 dev_err(dev, "Couldn't not read chip select.\n");
780 break;
783 if (cs >= info->nce) {
784 dev_err(dev, "Chip select %d out of range.\n",
785 cs);
786 ret = -ERANGE;
787 break;
790 if (controller->chips[cs]) {
791 dev_err(dev, "Chip select %d already in use by %s\n",
792 cs, dev_name(controller->chips[cs]->nor.dev));
793 ret = -EBUSY;
794 break;
797 chip = devm_kzalloc(controller->dev, sizeof(*chip), GFP_KERNEL);
798 if (!chip) {
799 ret = -ENOMEM;
800 break;
803 chip->controller = controller;
804 chip->ctl = controller->regs + info->ctl0 + cs * 4;
805 chip->cs = cs;
807 nor = &chip->nor;
808 mtd = &nor->mtd;
810 nor->dev = dev;
811 nor->priv = chip;
812 spi_nor_set_flash_node(nor, child);
813 nor->read = aspeed_smc_read_user;
814 nor->write = aspeed_smc_write_user;
815 nor->read_reg = aspeed_smc_read_reg;
816 nor->write_reg = aspeed_smc_write_reg;
817 nor->prepare = aspeed_smc_prep;
818 nor->unprepare = aspeed_smc_unprep;
820 ret = aspeed_smc_chip_setup_init(chip, r);
821 if (ret)
822 break;
825 * TODO: Add support for Dual and Quad SPI protocols
826 * attach when board support is present as determined
827 * by of property.
829 ret = spi_nor_scan(nor, NULL, &hwcaps);
830 if (ret)
831 break;
833 ret = aspeed_smc_chip_setup_finish(chip);
834 if (ret)
835 break;
837 ret = mtd_device_register(mtd, NULL, 0);
838 if (ret)
839 break;
841 controller->chips[cs] = chip;
844 if (ret)
845 aspeed_smc_unregister(controller);
847 return ret;
850 static int aspeed_smc_probe(struct platform_device *pdev)
852 struct device_node *np = pdev->dev.of_node;
853 struct device *dev = &pdev->dev;
854 struct aspeed_smc_controller *controller;
855 const struct of_device_id *match;
856 const struct aspeed_smc_info *info;
857 struct resource *res;
858 int ret;
860 match = of_match_device(aspeed_smc_matches, &pdev->dev);
861 if (!match || !match->data)
862 return -ENODEV;
863 info = match->data;
865 controller = devm_kzalloc(&pdev->dev, sizeof(*controller) +
866 info->nce * sizeof(controller->chips[0]), GFP_KERNEL);
867 if (!controller)
868 return -ENOMEM;
869 controller->info = info;
870 controller->dev = dev;
872 mutex_init(&controller->mutex);
873 platform_set_drvdata(pdev, controller);
875 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
876 controller->regs = devm_ioremap_resource(dev, res);
877 if (IS_ERR(controller->regs))
878 return PTR_ERR(controller->regs);
880 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
881 controller->ahb_base = devm_ioremap_resource(dev, res);
882 if (IS_ERR(controller->ahb_base))
883 return PTR_ERR(controller->ahb_base);
885 controller->ahb_window_size = resource_size(res);
887 ret = aspeed_smc_setup_flash(controller, np, res);
888 if (ret)
889 dev_err(dev, "Aspeed SMC probe failed %d\n", ret);
891 return ret;
894 static struct platform_driver aspeed_smc_driver = {
895 .probe = aspeed_smc_probe,
896 .remove = aspeed_smc_remove,
897 .driver = {
898 .name = DEVICE_NAME,
899 .of_match_table = aspeed_smc_matches,
903 module_platform_driver(aspeed_smc_driver);
905 MODULE_DESCRIPTION("ASPEED Static Memory Controller Driver");
906 MODULE_AUTHOR("Cedric Le Goater <clg@kaod.org>");
907 MODULE_LICENSE("GPL v2");