2 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
3 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5 * Copyright (C) 2005, Intec Automation Inc.
6 * Copyright (C) 2014, Freescale Semiconductor, Inc.
8 * This code is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/device.h>
17 #include <linux/mutex.h>
18 #include <linux/math64.h>
19 #include <linux/sizes.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/of_platform.h>
23 #include <linux/spi/flash.h>
24 #include <linux/mtd/spi-nor.h>
26 /* Define max times to check status register before we give up. */
29 * For everything but full-chip erase; probably could be much smaller, but kept
30 * around for safety for now
32 #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
35 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
38 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
40 #define SPI_NOR_MAX_ID_LEN 6
41 #define SPI_NOR_MAX_ADDR_WIDTH 4
47 * This array stores the ID bytes.
48 * The first three bytes are the JEDIC ID.
49 * JEDEC ID zero means "no ID" (mostly older chips).
51 u8 id
[SPI_NOR_MAX_ID_LEN
];
54 /* The size listed here is what works with SPINOR_OP_SE, which isn't
55 * necessarily called a "sector" by the vendor.
64 #define SECT_4K BIT(0) /* SPINOR_OP_BE_4K works uniformly */
65 #define SPI_NOR_NO_ERASE BIT(1) /* No erase command needed */
66 #define SST_WRITE BIT(2) /* use SST byte programming */
67 #define SPI_NOR_NO_FR BIT(3) /* Can't do fastread */
68 #define SECT_4K_PMC BIT(4) /* SPINOR_OP_BE_4K_PMC works uniformly */
69 #define SPI_NOR_DUAL_READ BIT(5) /* Flash supports Dual Read */
70 #define SPI_NOR_QUAD_READ BIT(6) /* Flash supports Quad Read */
71 #define USE_FSR BIT(7) /* use flag status register */
72 #define SPI_NOR_HAS_LOCK BIT(8) /* Flash supports lock/unlock via SR */
73 #define SPI_NOR_HAS_TB BIT(9) /*
74 * Flash SR has Top/Bottom (TB) protect
75 * bit. Must be used with
78 #define SPI_S3AN BIT(10) /*
79 * Xilinx Spartan 3AN In-System Flash
80 * (MFR cannot be used for probing
81 * because it has the same value as
84 #define SPI_NOR_4B_OPCODES BIT(11) /*
85 * Use dedicated 4byte address op codes
86 * to support memory size above 128Mib.
88 #define NO_CHIP_ERASE BIT(12) /* Chip does not support chip erase */
91 #define JEDEC_MFR(info) ((info)->id[0])
93 static const struct flash_info
*spi_nor_match_id(const char *name
);
96 * Read the status register, returning its value in the location
97 * Return the status register value.
98 * Returns negative if error occurred.
100 static int read_sr(struct spi_nor
*nor
)
105 ret
= nor
->read_reg(nor
, SPINOR_OP_RDSR
, &val
, 1);
107 pr_err("error %d reading SR\n", (int) ret
);
115 * Read the flag status register, returning its value in the location
116 * Return the status register value.
117 * Returns negative if error occurred.
119 static int read_fsr(struct spi_nor
*nor
)
124 ret
= nor
->read_reg(nor
, SPINOR_OP_RDFSR
, &val
, 1);
126 pr_err("error %d reading FSR\n", ret
);
134 * Read configuration register, returning its value in the
135 * location. Return the configuration register value.
136 * Returns negative if error occurred.
138 static int read_cr(struct spi_nor
*nor
)
143 ret
= nor
->read_reg(nor
, SPINOR_OP_RDCR
, &val
, 1);
145 dev_err(nor
->dev
, "error %d reading CR\n", ret
);
153 * Write status register 1 byte
154 * Returns negative if error occurred.
156 static inline int write_sr(struct spi_nor
*nor
, u8 val
)
158 nor
->cmd_buf
[0] = val
;
159 return nor
->write_reg(nor
, SPINOR_OP_WRSR
, nor
->cmd_buf
, 1);
163 * Set write enable latch with Write Enable command.
164 * Returns negative if error occurred.
166 static inline int write_enable(struct spi_nor
*nor
)
168 return nor
->write_reg(nor
, SPINOR_OP_WREN
, NULL
, 0);
172 * Send write disable instruction to the chip.
174 static inline int write_disable(struct spi_nor
*nor
)
176 return nor
->write_reg(nor
, SPINOR_OP_WRDI
, NULL
, 0);
179 static inline struct spi_nor
*mtd_to_spi_nor(struct mtd_info
*mtd
)
185 static u8
spi_nor_convert_opcode(u8 opcode
, const u8 table
[][2], size_t size
)
189 for (i
= 0; i
< size
; i
++)
190 if (table
[i
][0] == opcode
)
193 /* No conversion found, keep input op code. */
197 static inline u8
spi_nor_convert_3to4_read(u8 opcode
)
199 static const u8 spi_nor_3to4_read
[][2] = {
200 { SPINOR_OP_READ
, SPINOR_OP_READ_4B
},
201 { SPINOR_OP_READ_FAST
, SPINOR_OP_READ_FAST_4B
},
202 { SPINOR_OP_READ_1_1_2
, SPINOR_OP_READ_1_1_2_4B
},
203 { SPINOR_OP_READ_1_2_2
, SPINOR_OP_READ_1_2_2_4B
},
204 { SPINOR_OP_READ_1_1_4
, SPINOR_OP_READ_1_1_4_4B
},
205 { SPINOR_OP_READ_1_4_4
, SPINOR_OP_READ_1_4_4_4B
},
207 { SPINOR_OP_READ_1_1_1_DTR
, SPINOR_OP_READ_1_1_1_DTR_4B
},
208 { SPINOR_OP_READ_1_2_2_DTR
, SPINOR_OP_READ_1_2_2_DTR_4B
},
209 { SPINOR_OP_READ_1_4_4_DTR
, SPINOR_OP_READ_1_4_4_DTR_4B
},
212 return spi_nor_convert_opcode(opcode
, spi_nor_3to4_read
,
213 ARRAY_SIZE(spi_nor_3to4_read
));
216 static inline u8
spi_nor_convert_3to4_program(u8 opcode
)
218 static const u8 spi_nor_3to4_program
[][2] = {
219 { SPINOR_OP_PP
, SPINOR_OP_PP_4B
},
220 { SPINOR_OP_PP_1_1_4
, SPINOR_OP_PP_1_1_4_4B
},
221 { SPINOR_OP_PP_1_4_4
, SPINOR_OP_PP_1_4_4_4B
},
224 return spi_nor_convert_opcode(opcode
, spi_nor_3to4_program
,
225 ARRAY_SIZE(spi_nor_3to4_program
));
228 static inline u8
spi_nor_convert_3to4_erase(u8 opcode
)
230 static const u8 spi_nor_3to4_erase
[][2] = {
231 { SPINOR_OP_BE_4K
, SPINOR_OP_BE_4K_4B
},
232 { SPINOR_OP_BE_32K
, SPINOR_OP_BE_32K_4B
},
233 { SPINOR_OP_SE
, SPINOR_OP_SE_4B
},
236 return spi_nor_convert_opcode(opcode
, spi_nor_3to4_erase
,
237 ARRAY_SIZE(spi_nor_3to4_erase
));
240 static void spi_nor_set_4byte_opcodes(struct spi_nor
*nor
,
241 const struct flash_info
*info
)
243 /* Do some manufacturer fixups first */
244 switch (JEDEC_MFR(info
)) {
245 case SNOR_MFR_SPANSION
:
246 /* No small sector erase for 4-byte command set */
247 nor
->erase_opcode
= SPINOR_OP_SE
;
248 nor
->mtd
.erasesize
= info
->sector_size
;
255 nor
->read_opcode
= spi_nor_convert_3to4_read(nor
->read_opcode
);
256 nor
->program_opcode
= spi_nor_convert_3to4_program(nor
->program_opcode
);
257 nor
->erase_opcode
= spi_nor_convert_3to4_erase(nor
->erase_opcode
);
260 /* Enable/disable 4-byte addressing mode. */
261 static inline int set_4byte(struct spi_nor
*nor
, const struct flash_info
*info
,
265 bool need_wren
= false;
268 switch (JEDEC_MFR(info
)) {
269 case SNOR_MFR_MICRON
:
270 /* Some Micron need WREN command; all will accept it */
272 case SNOR_MFR_MACRONIX
:
273 case SNOR_MFR_WINBOND
:
277 cmd
= enable
? SPINOR_OP_EN4B
: SPINOR_OP_EX4B
;
278 status
= nor
->write_reg(nor
, cmd
, NULL
, 0);
285 nor
->cmd_buf
[0] = enable
<< 7;
286 return nor
->write_reg(nor
, SPINOR_OP_BRWR
, nor
->cmd_buf
, 1);
290 static int s3an_sr_ready(struct spi_nor
*nor
)
295 ret
= nor
->read_reg(nor
, SPINOR_OP_XRDSR
, &val
, 1);
297 dev_err(nor
->dev
, "error %d reading XRDSR\n", (int) ret
);
301 return !!(val
& XSR_RDY
);
304 static inline int spi_nor_sr_ready(struct spi_nor
*nor
)
306 int sr
= read_sr(nor
);
310 return !(sr
& SR_WIP
);
313 static inline int spi_nor_fsr_ready(struct spi_nor
*nor
)
315 int fsr
= read_fsr(nor
);
319 return fsr
& FSR_READY
;
322 static int spi_nor_ready(struct spi_nor
*nor
)
326 if (nor
->flags
& SNOR_F_READY_XSR_RDY
)
327 sr
= s3an_sr_ready(nor
);
329 sr
= spi_nor_sr_ready(nor
);
332 fsr
= nor
->flags
& SNOR_F_USE_FSR
? spi_nor_fsr_ready(nor
) : 1;
339 * Service routine to read status register until ready, or timeout occurs.
340 * Returns non-zero if error.
342 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor
*nor
,
343 unsigned long timeout_jiffies
)
345 unsigned long deadline
;
346 int timeout
= 0, ret
;
348 deadline
= jiffies
+ timeout_jiffies
;
351 if (time_after_eq(jiffies
, deadline
))
354 ret
= spi_nor_ready(nor
);
363 dev_err(nor
->dev
, "flash operation timed out\n");
368 static int spi_nor_wait_till_ready(struct spi_nor
*nor
)
370 return spi_nor_wait_till_ready_with_timeout(nor
,
371 DEFAULT_READY_WAIT_JIFFIES
);
375 * Erase the whole flash memory
377 * Returns 0 if successful, non-zero otherwise.
379 static int erase_chip(struct spi_nor
*nor
)
381 dev_dbg(nor
->dev
, " %lldKiB\n", (long long)(nor
->mtd
.size
>> 10));
383 return nor
->write_reg(nor
, SPINOR_OP_CHIP_ERASE
, NULL
, 0);
386 static int spi_nor_lock_and_prep(struct spi_nor
*nor
, enum spi_nor_ops ops
)
390 mutex_lock(&nor
->lock
);
393 ret
= nor
->prepare(nor
, ops
);
395 dev_err(nor
->dev
, "failed in the preparation.\n");
396 mutex_unlock(&nor
->lock
);
403 static void spi_nor_unlock_and_unprep(struct spi_nor
*nor
, enum spi_nor_ops ops
)
406 nor
->unprepare(nor
, ops
);
407 mutex_unlock(&nor
->lock
);
411 * This code converts an address to the Default Address Mode, that has non
412 * power of two page sizes. We must support this mode because it is the default
413 * mode supported by Xilinx tools, it can access the whole flash area and
414 * changing over to the Power-of-two mode is irreversible and corrupts the
416 * Addr can safely be unsigned int, the biggest S3AN device is smaller than
419 static loff_t
spi_nor_s3an_addr_convert(struct spi_nor
*nor
, unsigned int addr
)
424 offset
= addr
% nor
->page_size
;
425 page
= addr
/ nor
->page_size
;
426 page
<<= (nor
->page_size
> 512) ? 10 : 9;
428 return page
| offset
;
432 * Initiate the erasure of a single sector
434 static int spi_nor_erase_sector(struct spi_nor
*nor
, u32 addr
)
436 u8 buf
[SPI_NOR_MAX_ADDR_WIDTH
];
439 if (nor
->flags
& SNOR_F_S3AN_ADDR_DEFAULT
)
440 addr
= spi_nor_s3an_addr_convert(nor
, addr
);
443 return nor
->erase(nor
, addr
);
446 * Default implementation, if driver doesn't have a specialized HW
449 for (i
= nor
->addr_width
- 1; i
>= 0; i
--) {
450 buf
[i
] = addr
& 0xff;
454 return nor
->write_reg(nor
, nor
->erase_opcode
, buf
, nor
->addr_width
);
458 * Erase an address range on the nor chip. The address range may extend
459 * one or more erase sectors. Return an error is there is a problem erasing.
461 static int spi_nor_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
463 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
468 dev_dbg(nor
->dev
, "at 0x%llx, len %lld\n", (long long)instr
->addr
,
469 (long long)instr
->len
);
471 div_u64_rem(instr
->len
, mtd
->erasesize
, &rem
);
478 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_ERASE
);
482 /* whole-chip erase? */
483 if (len
== mtd
->size
&& !(nor
->flags
& SNOR_F_NO_OP_CHIP_ERASE
)) {
484 unsigned long timeout
;
488 if (erase_chip(nor
)) {
494 * Scale the timeout linearly with the size of the flash, with
495 * a minimum calibrated to an old 2MB flash. We could try to
496 * pull these from CFI/SFDP, but these values should be good
499 timeout
= max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES
,
500 CHIP_ERASE_2MB_READY_WAIT_JIFFIES
*
501 (unsigned long)(mtd
->size
/ SZ_2M
));
502 ret
= spi_nor_wait_till_ready_with_timeout(nor
, timeout
);
506 /* REVISIT in some cases we could speed up erasing large regions
507 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
508 * to use "small sector erase", but that's not always optimal.
511 /* "sector"-at-a-time erase */
516 ret
= spi_nor_erase_sector(nor
, addr
);
520 addr
+= mtd
->erasesize
;
521 len
-= mtd
->erasesize
;
523 ret
= spi_nor_wait_till_ready(nor
);
532 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_ERASE
);
534 instr
->state
= ret
? MTD_ERASE_FAILED
: MTD_ERASE_DONE
;
535 mtd_erase_callback(instr
);
540 static void stm_get_locked_range(struct spi_nor
*nor
, u8 sr
, loff_t
*ofs
,
543 struct mtd_info
*mtd
= &nor
->mtd
;
544 u8 mask
= SR_BP2
| SR_BP1
| SR_BP0
;
545 int shift
= ffs(mask
) - 1;
553 pow
= ((sr
& mask
) ^ mask
) >> shift
;
554 *len
= mtd
->size
>> pow
;
555 if (nor
->flags
& SNOR_F_HAS_SR_TB
&& sr
& SR_TB
)
558 *ofs
= mtd
->size
- *len
;
563 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
564 * @locked is false); 0 otherwise
566 static int stm_check_lock_status_sr(struct spi_nor
*nor
, loff_t ofs
, uint64_t len
,
575 stm_get_locked_range(nor
, sr
, &lock_offs
, &lock_len
);
578 /* Requested range is a sub-range of locked range */
579 return (ofs
+ len
<= lock_offs
+ lock_len
) && (ofs
>= lock_offs
);
581 /* Requested range does not overlap with locked range */
582 return (ofs
>= lock_offs
+ lock_len
) || (ofs
+ len
<= lock_offs
);
585 static int stm_is_locked_sr(struct spi_nor
*nor
, loff_t ofs
, uint64_t len
,
588 return stm_check_lock_status_sr(nor
, ofs
, len
, sr
, true);
591 static int stm_is_unlocked_sr(struct spi_nor
*nor
, loff_t ofs
, uint64_t len
,
594 return stm_check_lock_status_sr(nor
, ofs
, len
, sr
, false);
598 * Lock a region of the flash. Compatible with ST Micro and similar flash.
599 * Supports the block protection bits BP{0,1,2} in the status register
600 * (SR). Does not support these features found in newer SR bitfields:
601 * - SEC: sector/block protect - only handle SEC=0 (block protect)
602 * - CMP: complement protect - only support CMP=0 (range is not complemented)
604 * Support for the following is provided conditionally for some flash:
605 * - TB: top/bottom protect
607 * Sample table portion for 8MB flash (Winbond w25q64fw):
609 * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
610 * --------------------------------------------------------------------------
611 * X | X | 0 | 0 | 0 | NONE | NONE
612 * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
613 * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
614 * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
615 * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
616 * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
617 * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
618 * X | X | 1 | 1 | 1 | 8 MB | ALL
619 * ------|-------|-------|-------|-------|---------------|-------------------
620 * 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64
621 * 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32
622 * 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16
623 * 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8
624 * 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4
625 * 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2
627 * Returns negative on errors, 0 on success.
629 static int stm_lock(struct spi_nor
*nor
, loff_t ofs
, uint64_t len
)
631 struct mtd_info
*mtd
= &nor
->mtd
;
632 int status_old
, status_new
;
633 u8 mask
= SR_BP2
| SR_BP1
| SR_BP0
;
634 u8 shift
= ffs(mask
) - 1, pow
, val
;
636 bool can_be_top
= true, can_be_bottom
= nor
->flags
& SNOR_F_HAS_SR_TB
;
640 status_old
= read_sr(nor
);
644 /* If nothing in our range is unlocked, we don't need to do anything */
645 if (stm_is_locked_sr(nor
, ofs
, len
, status_old
))
648 /* If anything below us is unlocked, we can't use 'bottom' protection */
649 if (!stm_is_locked_sr(nor
, 0, ofs
, status_old
))
650 can_be_bottom
= false;
652 /* If anything above us is unlocked, we can't use 'top' protection */
653 if (!stm_is_locked_sr(nor
, ofs
+ len
, mtd
->size
- (ofs
+ len
),
657 if (!can_be_bottom
&& !can_be_top
)
660 /* Prefer top, if both are valid */
661 use_top
= can_be_top
;
663 /* lock_len: length of region that should end up locked */
665 lock_len
= mtd
->size
- ofs
;
667 lock_len
= ofs
+ len
;
670 * Need smallest pow such that:
672 * 1 / (2^pow) <= (len / size)
674 * so (assuming power-of-2 size) we do:
676 * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
678 pow
= ilog2(mtd
->size
) - ilog2(lock_len
);
679 val
= mask
- (pow
<< shift
);
682 /* Don't "lock" with no region! */
686 status_new
= (status_old
& ~mask
& ~SR_TB
) | val
;
688 /* Disallow further writes if WP pin is asserted */
689 status_new
|= SR_SRWD
;
694 /* Don't bother if they're the same */
695 if (status_new
== status_old
)
698 /* Only modify protection if it will not unlock other areas */
699 if ((status_new
& mask
) < (status_old
& mask
))
703 ret
= write_sr(nor
, status_new
);
706 return spi_nor_wait_till_ready(nor
);
710 * Unlock a region of the flash. See stm_lock() for more info
712 * Returns negative on errors, 0 on success.
714 static int stm_unlock(struct spi_nor
*nor
, loff_t ofs
, uint64_t len
)
716 struct mtd_info
*mtd
= &nor
->mtd
;
717 int status_old
, status_new
;
718 u8 mask
= SR_BP2
| SR_BP1
| SR_BP0
;
719 u8 shift
= ffs(mask
) - 1, pow
, val
;
721 bool can_be_top
= true, can_be_bottom
= nor
->flags
& SNOR_F_HAS_SR_TB
;
725 status_old
= read_sr(nor
);
729 /* If nothing in our range is locked, we don't need to do anything */
730 if (stm_is_unlocked_sr(nor
, ofs
, len
, status_old
))
733 /* If anything below us is locked, we can't use 'top' protection */
734 if (!stm_is_unlocked_sr(nor
, 0, ofs
, status_old
))
737 /* If anything above us is locked, we can't use 'bottom' protection */
738 if (!stm_is_unlocked_sr(nor
, ofs
+ len
, mtd
->size
- (ofs
+ len
),
740 can_be_bottom
= false;
742 if (!can_be_bottom
&& !can_be_top
)
745 /* Prefer top, if both are valid */
746 use_top
= can_be_top
;
748 /* lock_len: length of region that should remain locked */
750 lock_len
= mtd
->size
- (ofs
+ len
);
755 * Need largest pow such that:
757 * 1 / (2^pow) >= (len / size)
759 * so (assuming power-of-2 size) we do:
761 * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
763 pow
= ilog2(mtd
->size
) - order_base_2(lock_len
);
765 val
= 0; /* fully unlocked */
767 val
= mask
- (pow
<< shift
);
768 /* Some power-of-two sizes are not supported */
773 status_new
= (status_old
& ~mask
& ~SR_TB
) | val
;
775 /* Don't protect status register if we're fully unlocked */
777 status_new
&= ~SR_SRWD
;
782 /* Don't bother if they're the same */
783 if (status_new
== status_old
)
786 /* Only modify protection if it will not lock other areas */
787 if ((status_new
& mask
) > (status_old
& mask
))
791 ret
= write_sr(nor
, status_new
);
794 return spi_nor_wait_till_ready(nor
);
798 * Check if a region of the flash is (completely) locked. See stm_lock() for
801 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
802 * negative on errors.
804 static int stm_is_locked(struct spi_nor
*nor
, loff_t ofs
, uint64_t len
)
808 status
= read_sr(nor
);
812 return stm_is_locked_sr(nor
, ofs
, len
, status
);
815 static int spi_nor_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
817 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
820 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_LOCK
);
824 ret
= nor
->flash_lock(nor
, ofs
, len
);
826 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_UNLOCK
);
830 static int spi_nor_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
832 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
835 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_UNLOCK
);
839 ret
= nor
->flash_unlock(nor
, ofs
, len
);
841 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_LOCK
);
845 static int spi_nor_is_locked(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
847 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
850 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_UNLOCK
);
854 ret
= nor
->flash_is_locked(nor
, ofs
, len
);
856 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_LOCK
);
860 /* Used when the "_ext_id" is two bytes at most */
861 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
863 ((_jedec_id) >> 16) & 0xff, \
864 ((_jedec_id) >> 8) & 0xff, \
865 (_jedec_id) & 0xff, \
866 ((_ext_id) >> 8) & 0xff, \
869 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \
870 .sector_size = (_sector_size), \
871 .n_sectors = (_n_sectors), \
875 #define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
877 ((_jedec_id) >> 16) & 0xff, \
878 ((_jedec_id) >> 8) & 0xff, \
879 (_jedec_id) & 0xff, \
880 ((_ext_id) >> 16) & 0xff, \
881 ((_ext_id) >> 8) & 0xff, \
885 .sector_size = (_sector_size), \
886 .n_sectors = (_n_sectors), \
890 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
891 .sector_size = (_sector_size), \
892 .n_sectors = (_n_sectors), \
893 .page_size = (_page_size), \
894 .addr_width = (_addr_width), \
897 #define S3AN_INFO(_jedec_id, _n_sectors, _page_size) \
899 ((_jedec_id) >> 16) & 0xff, \
900 ((_jedec_id) >> 8) & 0xff, \
904 .sector_size = (8*_page_size), \
905 .n_sectors = (_n_sectors), \
906 .page_size = _page_size, \
908 .flags = SPI_NOR_NO_FR | SPI_S3AN,
910 /* NOTE: double check command sets and memory organization when you add
911 * more nor chips. This current list focusses on newer chips, which
912 * have been converging on command sets which including JEDEC ID.
914 * All newly added entries should describe *hardware* and should use SECT_4K
915 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
916 * scenarios excluding small sectors there is config option that can be
917 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
918 * For historical (and compatibility) reasons (before we got above config) some
919 * old entries may be missing 4K flag.
921 static const struct flash_info spi_nor_ids
[] = {
922 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
923 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K
) },
924 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K
) },
926 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K
) },
927 { "at25df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K
) },
928 { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K
) },
929 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K
) },
931 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K
) },
932 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K
) },
933 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K
) },
934 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K
) },
936 { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K
) },
939 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K
) },
940 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
941 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
942 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
943 { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K
) },
944 { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
945 { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
946 { "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K
) },
949 { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K
| SPI_NOR_HAS_LOCK
) },
950 { "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64, SECT_4K
| SPI_NOR_HAS_LOCK
) },
951 { "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128, SECT_4K
| SPI_NOR_HAS_LOCK
) },
954 { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
955 { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
956 { "mr25h40", CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
959 { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE
) },
963 "gd25q16", INFO(0xc84015, 0, 64 * 1024, 32,
964 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
965 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
968 "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64,
969 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
970 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
973 "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128,
974 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
975 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
978 "gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128,
979 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
980 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
983 "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256,
984 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
985 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
988 /* Intel/Numonyx -- xxxs33b */
989 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
990 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
991 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
994 { "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2, SECT_4K
) },
997 { "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K
) },
998 { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K
) },
999 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K
) },
1000 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
1001 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K
) },
1002 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, SECT_4K
) },
1003 { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K
) },
1004 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K
) },
1005 { "mx25u2033e", INFO(0xc22532, 0, 64 * 1024, 4, SECT_4K
) },
1006 { "mx25u4035", INFO(0xc22533, 0, 64 * 1024, 8, SECT_4K
) },
1007 { "mx25u8035", INFO(0xc22534, 0, 64 * 1024, 16, SECT_4K
) },
1008 { "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K
) },
1009 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
1010 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
1011 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1012 { "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K
| SPI_NOR_4B_OPCODES
) },
1013 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
1014 { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1015 { "mx66u51235f", INFO(0xc2253a, 0, 64 * 1024, 1024, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| SPI_NOR_4B_OPCODES
) },
1016 { "mx66l1g45g", INFO(0xc2201b, 0, 64 * 1024, 2048, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1017 { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ
) },
1020 { "n25q016a", INFO(0x20bb15, 0, 64 * 1024, 32, SECT_4K
| SPI_NOR_QUAD_READ
) },
1021 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ
) },
1022 { "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ
) },
1023 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SECT_4K
| SPI_NOR_QUAD_READ
) },
1024 { "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128, SECT_4K
| SPI_NOR_QUAD_READ
) },
1025 { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SECT_4K
| SPI_NOR_QUAD_READ
) },
1026 { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SECT_4K
| SPI_NOR_QUAD_READ
) },
1027 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1028 { "n25q256ax1", INFO(0x20bb19, 0, 64 * 1024, 512, SECT_4K
| SPI_NOR_QUAD_READ
) },
1029 { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K
| USE_FSR
| SPI_NOR_QUAD_READ
) },
1030 { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K
| USE_FSR
| SPI_NOR_QUAD_READ
) },
1031 { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K
| USE_FSR
| SPI_NOR_QUAD_READ
| NO_CHIP_ERASE
) },
1032 { "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K
| USE_FSR
| SPI_NOR_QUAD_READ
| NO_CHIP_ERASE
) },
1035 { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC
) },
1036 { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC
) },
1037 { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K
) },
1039 /* Spansion -- single (large) sector size only, at least
1040 * for the chips listed here (without boot sectors).
1042 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1043 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1044 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
1045 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1046 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1047 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
1048 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
1049 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
1050 { "s25fl128s", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1051 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1052 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1053 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
1054 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
1055 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
1056 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
1057 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
1058 { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1059 { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1060 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1061 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
1062 { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1063 { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K
) },
1064 { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K
) },
1065 { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8, SECT_4K
| SPI_NOR_DUAL_READ
) },
1066 { "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16, SECT_4K
| SPI_NOR_DUAL_READ
) },
1067 { "s25fl064l", INFO(0x016017, 0, 64 * 1024, 128, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| SPI_NOR_4B_OPCODES
) },
1069 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
1070 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K
| SST_WRITE
) },
1071 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K
| SST_WRITE
) },
1072 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K
| SST_WRITE
) },
1073 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K
| SST_WRITE
) },
1074 { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K
) },
1075 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K
| SST_WRITE
) },
1076 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K
| SST_WRITE
) },
1077 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K
| SST_WRITE
) },
1078 { "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K
) },
1079 { "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K
) },
1080 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K
| SST_WRITE
) },
1081 { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K
| SST_WRITE
) },
1083 /* ST Microelectronics -- newer production may have feature updates */
1084 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
1085 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
1086 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
1087 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
1088 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
1089 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
1090 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
1091 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
1092 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
1094 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
1095 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
1096 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
1097 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
1098 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
1099 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
1100 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
1101 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
1102 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
1104 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
1105 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
1106 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
1108 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
1109 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
1110 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K
) },
1112 { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K
) },
1113 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K
) },
1114 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K
) },
1115 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K
) },
1116 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
1117 { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
1119 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
1120 { "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K
) },
1121 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K
) },
1122 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K
) },
1123 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K
) },
1124 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K
) },
1125 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K
) },
1126 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K
) },
1127 { "w25q20cl", INFO(0xef4012, 0, 64 * 1024, 4, SECT_4K
) },
1128 { "w25q20bw", INFO(0xef5012, 0, 64 * 1024, 4, SECT_4K
) },
1129 { "w25q20ew", INFO(0xef6012, 0, 64 * 1024, 4, SECT_4K
) },
1130 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K
) },
1132 "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64,
1133 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
1134 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
1136 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K
) },
1137 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
1139 "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
1140 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
1141 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
1144 "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
1145 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
1146 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
1148 { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K
) },
1149 { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K
) },
1150 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K
) },
1151 { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
1152 { "w25m512jv", INFO(0xef7119, 0, 64 * 1024, 1024,
1153 SECT_4K
| SPI_NOR_QUAD_READ
| SPI_NOR_DUAL_READ
) },
1155 /* Catalyst / On Semiconductor -- non-JEDEC */
1156 { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
1157 { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
1158 { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
1159 { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
1160 { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
1162 /* Xilinx S3AN Internal Flash */
1163 { "3S50AN", S3AN_INFO(0x1f2200, 64, 264) },
1164 { "3S200AN", S3AN_INFO(0x1f2400, 256, 264) },
1165 { "3S400AN", S3AN_INFO(0x1f2400, 256, 264) },
1166 { "3S700AN", S3AN_INFO(0x1f2500, 512, 264) },
1167 { "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) },
1171 static const struct flash_info
*spi_nor_read_id(struct spi_nor
*nor
)
1174 u8 id
[SPI_NOR_MAX_ID_LEN
];
1175 const struct flash_info
*info
;
1177 tmp
= nor
->read_reg(nor
, SPINOR_OP_RDID
, id
, SPI_NOR_MAX_ID_LEN
);
1179 dev_dbg(nor
->dev
, "error %d reading JEDEC ID\n", tmp
);
1180 return ERR_PTR(tmp
);
1183 for (tmp
= 0; tmp
< ARRAY_SIZE(spi_nor_ids
) - 1; tmp
++) {
1184 info
= &spi_nor_ids
[tmp
];
1186 if (!memcmp(info
->id
, id
, info
->id_len
))
1187 return &spi_nor_ids
[tmp
];
1190 dev_err(nor
->dev
, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
1191 id
[0], id
[1], id
[2]);
1192 return ERR_PTR(-ENODEV
);
1195 static int spi_nor_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1196 size_t *retlen
, u_char
*buf
)
1198 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
1201 dev_dbg(nor
->dev
, "from 0x%08x, len %zd\n", (u32
)from
, len
);
1203 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_READ
);
1210 if (nor
->flags
& SNOR_F_S3AN_ADDR_DEFAULT
)
1211 addr
= spi_nor_s3an_addr_convert(nor
, addr
);
1213 ret
= nor
->read(nor
, addr
, len
, buf
);
1215 /* We shouldn't see 0-length reads */
1231 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_READ
);
1235 static int sst_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1236 size_t *retlen
, const u_char
*buf
)
1238 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
1242 dev_dbg(nor
->dev
, "to 0x%08x, len %zd\n", (u32
)to
, len
);
1244 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_WRITE
);
1250 nor
->sst_write_second
= false;
1253 /* Start write from odd address. */
1255 nor
->program_opcode
= SPINOR_OP_BP
;
1257 /* write one byte. */
1258 ret
= nor
->write(nor
, to
, 1, buf
);
1261 WARN(ret
!= 1, "While writing 1 byte written %i bytes\n",
1263 ret
= spi_nor_wait_till_ready(nor
);
1269 /* Write out most of the data here. */
1270 for (; actual
< len
- 1; actual
+= 2) {
1271 nor
->program_opcode
= SPINOR_OP_AAI_WP
;
1273 /* write two bytes. */
1274 ret
= nor
->write(nor
, to
, 2, buf
+ actual
);
1277 WARN(ret
!= 2, "While writing 2 bytes written %i bytes\n",
1279 ret
= spi_nor_wait_till_ready(nor
);
1283 nor
->sst_write_second
= true;
1285 nor
->sst_write_second
= false;
1288 ret
= spi_nor_wait_till_ready(nor
);
1292 /* Write out trailing byte if it exists. */
1293 if (actual
!= len
) {
1296 nor
->program_opcode
= SPINOR_OP_BP
;
1297 ret
= nor
->write(nor
, to
, 1, buf
+ actual
);
1300 WARN(ret
!= 1, "While writing 1 byte written %i bytes\n",
1302 ret
= spi_nor_wait_till_ready(nor
);
1310 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_WRITE
);
1315 * Write an address range to the nor chip. Data must be written in
1316 * FLASH_PAGESIZE chunks. The address range may be any size provided
1317 * it is within the physical boundaries.
1319 static int spi_nor_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1320 size_t *retlen
, const u_char
*buf
)
1322 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
1323 size_t page_offset
, page_remain
, i
;
1326 dev_dbg(nor
->dev
, "to 0x%08x, len %zd\n", (u32
)to
, len
);
1328 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_WRITE
);
1332 for (i
= 0; i
< len
; ) {
1334 loff_t addr
= to
+ i
;
1337 * If page_size is a power of two, the offset can be quickly
1338 * calculated with an AND operation. On the other cases we
1339 * need to do a modulus operation (more expensive).
1340 * Power of two numbers have only one bit set and we can use
1341 * the instruction hweight32 to detect if we need to do a
1342 * modulus (do_div()) or not.
1344 if (hweight32(nor
->page_size
) == 1) {
1345 page_offset
= addr
& (nor
->page_size
- 1);
1347 uint64_t aux
= addr
;
1349 page_offset
= do_div(aux
, nor
->page_size
);
1351 /* the size of data remaining on the first page */
1352 page_remain
= min_t(size_t,
1353 nor
->page_size
- page_offset
, len
- i
);
1355 if (nor
->flags
& SNOR_F_S3AN_ADDR_DEFAULT
)
1356 addr
= spi_nor_s3an_addr_convert(nor
, addr
);
1359 ret
= nor
->write(nor
, addr
, page_remain
, buf
+ i
);
1364 ret
= spi_nor_wait_till_ready(nor
);
1369 if (written
!= page_remain
) {
1371 "While writing %zu bytes written %zd bytes\n",
1372 page_remain
, written
);
1379 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_WRITE
);
1383 static int macronix_quad_enable(struct spi_nor
*nor
)
1390 if (val
& SR_QUAD_EN_MX
)
1395 write_sr(nor
, val
| SR_QUAD_EN_MX
);
1397 ret
= spi_nor_wait_till_ready(nor
);
1402 if (!(ret
> 0 && (ret
& SR_QUAD_EN_MX
))) {
1403 dev_err(nor
->dev
, "Macronix Quad bit not set\n");
1411 * Write status Register and configuration register with 2 bytes
1412 * The first byte will be written to the status register, while the
1413 * second byte will be written to the configuration register.
1414 * Return negative if error occurred.
1416 static int write_sr_cr(struct spi_nor
*nor
, u16 val
)
1418 nor
->cmd_buf
[0] = val
& 0xff;
1419 nor
->cmd_buf
[1] = (val
>> 8);
1421 return nor
->write_reg(nor
, SPINOR_OP_WRSR
, nor
->cmd_buf
, 2);
1424 static int spansion_quad_enable(struct spi_nor
*nor
)
1427 int quad_en
= CR_QUAD_EN_SPAN
<< 8;
1431 ret
= write_sr_cr(nor
, quad_en
);
1434 "error while writing configuration register\n");
1438 ret
= spi_nor_wait_till_ready(nor
);
1441 "timeout while writing configuration register\n");
1445 /* read back and check it */
1447 if (!(ret
> 0 && (ret
& CR_QUAD_EN_SPAN
))) {
1448 dev_err(nor
->dev
, "Spansion Quad bit not set\n");
1455 static int spi_nor_check(struct spi_nor
*nor
)
1457 if (!nor
->dev
|| !nor
->read
|| !nor
->write
||
1458 !nor
->read_reg
|| !nor
->write_reg
) {
1459 pr_err("spi-nor: please fill all the necessary fields!\n");
1466 static int s3an_nor_scan(const struct flash_info
*info
, struct spi_nor
*nor
)
1471 ret
= nor
->read_reg(nor
, SPINOR_OP_XRDSR
, &val
, 1);
1473 dev_err(nor
->dev
, "error %d reading XRDSR\n", (int) ret
);
1477 nor
->erase_opcode
= SPINOR_OP_XSE
;
1478 nor
->program_opcode
= SPINOR_OP_XPP
;
1479 nor
->read_opcode
= SPINOR_OP_READ
;
1480 nor
->flags
|= SNOR_F_NO_OP_CHIP_ERASE
;
1483 * This flashes have a page size of 264 or 528 bytes (known as
1484 * Default addressing mode). It can be changed to a more standard
1485 * Power of two mode where the page size is 256/512. This comes
1486 * with a price: there is 3% less of space, the data is corrupted
1487 * and the page size cannot be changed back to default addressing
1490 * The current addressing mode can be read from the XRDSR register
1491 * and should not be changed, because is a destructive operation.
1493 if (val
& XSR_PAGESIZE
) {
1494 /* Flash in Power of 2 mode */
1495 nor
->page_size
= (nor
->page_size
== 264) ? 256 : 512;
1496 nor
->mtd
.writebufsize
= nor
->page_size
;
1497 nor
->mtd
.size
= 8 * nor
->page_size
* info
->n_sectors
;
1498 nor
->mtd
.erasesize
= 8 * nor
->page_size
;
1500 /* Flash in Default addressing mode */
1501 nor
->flags
|= SNOR_F_S3AN_ADDR_DEFAULT
;
1507 struct spi_nor_read_command
{
1511 enum spi_nor_protocol proto
;
1514 struct spi_nor_pp_command
{
1516 enum spi_nor_protocol proto
;
1519 enum spi_nor_read_command_index
{
1522 SNOR_CMD_READ_1_1_1_DTR
,
1525 SNOR_CMD_READ_1_1_2
,
1526 SNOR_CMD_READ_1_2_2
,
1527 SNOR_CMD_READ_2_2_2
,
1528 SNOR_CMD_READ_1_2_2_DTR
,
1531 SNOR_CMD_READ_1_1_4
,
1532 SNOR_CMD_READ_1_4_4
,
1533 SNOR_CMD_READ_4_4_4
,
1534 SNOR_CMD_READ_1_4_4_DTR
,
1537 SNOR_CMD_READ_1_1_8
,
1538 SNOR_CMD_READ_1_8_8
,
1539 SNOR_CMD_READ_8_8_8
,
1540 SNOR_CMD_READ_1_8_8_DTR
,
1545 enum spi_nor_pp_command_index
{
1561 struct spi_nor_flash_parameter
{
1565 struct spi_nor_hwcaps hwcaps
;
1566 struct spi_nor_read_command reads
[SNOR_CMD_READ_MAX
];
1567 struct spi_nor_pp_command page_programs
[SNOR_CMD_PP_MAX
];
1569 int (*quad_enable
)(struct spi_nor
*nor
);
1573 spi_nor_set_read_settings(struct spi_nor_read_command
*read
,
1577 enum spi_nor_protocol proto
)
1579 read
->num_mode_clocks
= num_mode_clocks
;
1580 read
->num_wait_states
= num_wait_states
;
1581 read
->opcode
= opcode
;
1582 read
->proto
= proto
;
1586 spi_nor_set_pp_settings(struct spi_nor_pp_command
*pp
,
1588 enum spi_nor_protocol proto
)
1590 pp
->opcode
= opcode
;
1594 static int spi_nor_init_params(struct spi_nor
*nor
,
1595 const struct flash_info
*info
,
1596 struct spi_nor_flash_parameter
*params
)
1598 /* Set legacy flash parameters as default. */
1599 memset(params
, 0, sizeof(*params
));
1601 /* Set SPI NOR sizes. */
1602 params
->size
= info
->sector_size
* info
->n_sectors
;
1603 params
->page_size
= info
->page_size
;
1605 /* (Fast) Read settings. */
1606 params
->hwcaps
.mask
|= SNOR_HWCAPS_READ
;
1607 spi_nor_set_read_settings(¶ms
->reads
[SNOR_CMD_READ
],
1608 0, 0, SPINOR_OP_READ
,
1611 if (!(info
->flags
& SPI_NOR_NO_FR
)) {
1612 params
->hwcaps
.mask
|= SNOR_HWCAPS_READ_FAST
;
1613 spi_nor_set_read_settings(¶ms
->reads
[SNOR_CMD_READ_FAST
],
1614 0, 8, SPINOR_OP_READ_FAST
,
1618 if (info
->flags
& SPI_NOR_DUAL_READ
) {
1619 params
->hwcaps
.mask
|= SNOR_HWCAPS_READ_1_1_2
;
1620 spi_nor_set_read_settings(¶ms
->reads
[SNOR_CMD_READ_1_1_2
],
1621 0, 8, SPINOR_OP_READ_1_1_2
,
1625 if (info
->flags
& SPI_NOR_QUAD_READ
) {
1626 params
->hwcaps
.mask
|= SNOR_HWCAPS_READ_1_1_4
;
1627 spi_nor_set_read_settings(¶ms
->reads
[SNOR_CMD_READ_1_1_4
],
1628 0, 8, SPINOR_OP_READ_1_1_4
,
1632 /* Page Program settings. */
1633 params
->hwcaps
.mask
|= SNOR_HWCAPS_PP
;
1634 spi_nor_set_pp_settings(¶ms
->page_programs
[SNOR_CMD_PP
],
1635 SPINOR_OP_PP
, SNOR_PROTO_1_1_1
);
1637 /* Select the procedure to set the Quad Enable bit. */
1638 if (params
->hwcaps
.mask
& (SNOR_HWCAPS_READ_QUAD
|
1639 SNOR_HWCAPS_PP_QUAD
)) {
1640 switch (JEDEC_MFR(info
)) {
1641 case SNOR_MFR_MACRONIX
:
1642 params
->quad_enable
= macronix_quad_enable
;
1645 case SNOR_MFR_MICRON
:
1649 params
->quad_enable
= spansion_quad_enable
;
1657 static int spi_nor_hwcaps2cmd(u32 hwcaps
, const int table
[][2], size_t size
)
1661 for (i
= 0; i
< size
; i
++)
1662 if (table
[i
][0] == (int)hwcaps
)
1668 static int spi_nor_hwcaps_read2cmd(u32 hwcaps
)
1670 static const int hwcaps_read2cmd
[][2] = {
1671 { SNOR_HWCAPS_READ
, SNOR_CMD_READ
},
1672 { SNOR_HWCAPS_READ_FAST
, SNOR_CMD_READ_FAST
},
1673 { SNOR_HWCAPS_READ_1_1_1_DTR
, SNOR_CMD_READ_1_1_1_DTR
},
1674 { SNOR_HWCAPS_READ_1_1_2
, SNOR_CMD_READ_1_1_2
},
1675 { SNOR_HWCAPS_READ_1_2_2
, SNOR_CMD_READ_1_2_2
},
1676 { SNOR_HWCAPS_READ_2_2_2
, SNOR_CMD_READ_2_2_2
},
1677 { SNOR_HWCAPS_READ_1_2_2_DTR
, SNOR_CMD_READ_1_2_2_DTR
},
1678 { SNOR_HWCAPS_READ_1_1_4
, SNOR_CMD_READ_1_1_4
},
1679 { SNOR_HWCAPS_READ_1_4_4
, SNOR_CMD_READ_1_4_4
},
1680 { SNOR_HWCAPS_READ_4_4_4
, SNOR_CMD_READ_4_4_4
},
1681 { SNOR_HWCAPS_READ_1_4_4_DTR
, SNOR_CMD_READ_1_4_4_DTR
},
1682 { SNOR_HWCAPS_READ_1_1_8
, SNOR_CMD_READ_1_1_8
},
1683 { SNOR_HWCAPS_READ_1_8_8
, SNOR_CMD_READ_1_8_8
},
1684 { SNOR_HWCAPS_READ_8_8_8
, SNOR_CMD_READ_8_8_8
},
1685 { SNOR_HWCAPS_READ_1_8_8_DTR
, SNOR_CMD_READ_1_8_8_DTR
},
1688 return spi_nor_hwcaps2cmd(hwcaps
, hwcaps_read2cmd
,
1689 ARRAY_SIZE(hwcaps_read2cmd
));
1692 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps
)
1694 static const int hwcaps_pp2cmd
[][2] = {
1695 { SNOR_HWCAPS_PP
, SNOR_CMD_PP
},
1696 { SNOR_HWCAPS_PP_1_1_4
, SNOR_CMD_PP_1_1_4
},
1697 { SNOR_HWCAPS_PP_1_4_4
, SNOR_CMD_PP_1_4_4
},
1698 { SNOR_HWCAPS_PP_4_4_4
, SNOR_CMD_PP_4_4_4
},
1699 { SNOR_HWCAPS_PP_1_1_8
, SNOR_CMD_PP_1_1_8
},
1700 { SNOR_HWCAPS_PP_1_8_8
, SNOR_CMD_PP_1_8_8
},
1701 { SNOR_HWCAPS_PP_8_8_8
, SNOR_CMD_PP_8_8_8
},
1704 return spi_nor_hwcaps2cmd(hwcaps
, hwcaps_pp2cmd
,
1705 ARRAY_SIZE(hwcaps_pp2cmd
));
1708 static int spi_nor_select_read(struct spi_nor
*nor
,
1709 const struct spi_nor_flash_parameter
*params
,
1712 int cmd
, best_match
= fls(shared_hwcaps
& SNOR_HWCAPS_READ_MASK
) - 1;
1713 const struct spi_nor_read_command
*read
;
1718 cmd
= spi_nor_hwcaps_read2cmd(BIT(best_match
));
1722 read
= ¶ms
->reads
[cmd
];
1723 nor
->read_opcode
= read
->opcode
;
1724 nor
->read_proto
= read
->proto
;
1727 * In the spi-nor framework, we don't need to make the difference
1728 * between mode clock cycles and wait state clock cycles.
1729 * Indeed, the value of the mode clock cycles is used by a QSPI
1730 * flash memory to know whether it should enter or leave its 0-4-4
1731 * (Continuous Read / XIP) mode.
1732 * eXecution In Place is out of the scope of the mtd sub-system.
1733 * Hence we choose to merge both mode and wait state clock cycles
1734 * into the so called dummy clock cycles.
1736 nor
->read_dummy
= read
->num_mode_clocks
+ read
->num_wait_states
;
1740 static int spi_nor_select_pp(struct spi_nor
*nor
,
1741 const struct spi_nor_flash_parameter
*params
,
1744 int cmd
, best_match
= fls(shared_hwcaps
& SNOR_HWCAPS_PP_MASK
) - 1;
1745 const struct spi_nor_pp_command
*pp
;
1750 cmd
= spi_nor_hwcaps_pp2cmd(BIT(best_match
));
1754 pp
= ¶ms
->page_programs
[cmd
];
1755 nor
->program_opcode
= pp
->opcode
;
1756 nor
->write_proto
= pp
->proto
;
1760 static int spi_nor_select_erase(struct spi_nor
*nor
,
1761 const struct flash_info
*info
)
1763 struct mtd_info
*mtd
= &nor
->mtd
;
1765 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
1766 /* prefer "small sector" erase if possible */
1767 if (info
->flags
& SECT_4K
) {
1768 nor
->erase_opcode
= SPINOR_OP_BE_4K
;
1769 mtd
->erasesize
= 4096;
1770 } else if (info
->flags
& SECT_4K_PMC
) {
1771 nor
->erase_opcode
= SPINOR_OP_BE_4K_PMC
;
1772 mtd
->erasesize
= 4096;
1776 nor
->erase_opcode
= SPINOR_OP_SE
;
1777 mtd
->erasesize
= info
->sector_size
;
1782 static int spi_nor_setup(struct spi_nor
*nor
, const struct flash_info
*info
,
1783 const struct spi_nor_flash_parameter
*params
,
1784 const struct spi_nor_hwcaps
*hwcaps
)
1786 u32 ignored_mask
, shared_mask
;
1787 bool enable_quad_io
;
1791 * Keep only the hardware capabilities supported by both the SPI
1792 * controller and the SPI flash memory.
1794 shared_mask
= hwcaps
->mask
& params
->hwcaps
.mask
;
1796 /* SPI n-n-n protocols are not supported yet. */
1797 ignored_mask
= (SNOR_HWCAPS_READ_2_2_2
|
1798 SNOR_HWCAPS_READ_4_4_4
|
1799 SNOR_HWCAPS_READ_8_8_8
|
1800 SNOR_HWCAPS_PP_4_4_4
|
1801 SNOR_HWCAPS_PP_8_8_8
);
1802 if (shared_mask
& ignored_mask
) {
1804 "SPI n-n-n protocols are not supported yet.\n");
1805 shared_mask
&= ~ignored_mask
;
1808 /* Select the (Fast) Read command. */
1809 err
= spi_nor_select_read(nor
, params
, shared_mask
);
1812 "can't select read settings supported by both the SPI controller and memory.\n");
1816 /* Select the Page Program command. */
1817 err
= spi_nor_select_pp(nor
, params
, shared_mask
);
1820 "can't select write settings supported by both the SPI controller and memory.\n");
1824 /* Select the Sector Erase command. */
1825 err
= spi_nor_select_erase(nor
, info
);
1828 "can't select erase settings supported by both the SPI controller and memory.\n");
1832 /* Enable Quad I/O if needed. */
1833 enable_quad_io
= (spi_nor_get_protocol_width(nor
->read_proto
) == 4 ||
1834 spi_nor_get_protocol_width(nor
->write_proto
) == 4);
1835 if (enable_quad_io
&& params
->quad_enable
) {
1836 err
= params
->quad_enable(nor
);
1838 dev_err(nor
->dev
, "quad mode not supported\n");
1846 int spi_nor_scan(struct spi_nor
*nor
, const char *name
,
1847 const struct spi_nor_hwcaps
*hwcaps
)
1849 struct spi_nor_flash_parameter params
;
1850 const struct flash_info
*info
= NULL
;
1851 struct device
*dev
= nor
->dev
;
1852 struct mtd_info
*mtd
= &nor
->mtd
;
1853 struct device_node
*np
= spi_nor_get_flash_node(nor
);
1857 ret
= spi_nor_check(nor
);
1861 /* Reset SPI protocol for all commands. */
1862 nor
->reg_proto
= SNOR_PROTO_1_1_1
;
1863 nor
->read_proto
= SNOR_PROTO_1_1_1
;
1864 nor
->write_proto
= SNOR_PROTO_1_1_1
;
1867 info
= spi_nor_match_id(name
);
1868 /* Try to auto-detect if chip name wasn't specified or not found */
1870 info
= spi_nor_read_id(nor
);
1871 if (IS_ERR_OR_NULL(info
))
1875 * If caller has specified name of flash model that can normally be
1876 * detected using JEDEC, let's verify it.
1878 if (name
&& info
->id_len
) {
1879 const struct flash_info
*jinfo
;
1881 jinfo
= spi_nor_read_id(nor
);
1882 if (IS_ERR(jinfo
)) {
1883 return PTR_ERR(jinfo
);
1884 } else if (jinfo
!= info
) {
1886 * JEDEC knows better, so overwrite platform ID. We
1887 * can't trust partitions any longer, but we'll let
1888 * mtd apply them anyway, since some partitions may be
1889 * marked read-only, and we don't want to lose that
1890 * information, even if it's not 100% accurate.
1892 dev_warn(dev
, "found %s, expected %s\n",
1893 jinfo
->name
, info
->name
);
1898 mutex_init(&nor
->lock
);
1901 * Make sure the XSR_RDY flag is set before calling
1902 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
1903 * with Atmel spi-nor
1905 if (info
->flags
& SPI_S3AN
)
1906 nor
->flags
|= SNOR_F_READY_XSR_RDY
;
1908 /* Parse the Serial Flash Discoverable Parameters table. */
1909 ret
= spi_nor_init_params(nor
, info
, ¶ms
);
1914 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
1915 * with the software protection bits set
1918 if (JEDEC_MFR(info
) == SNOR_MFR_ATMEL
||
1919 JEDEC_MFR(info
) == SNOR_MFR_INTEL
||
1920 JEDEC_MFR(info
) == SNOR_MFR_SST
||
1921 info
->flags
& SPI_NOR_HAS_LOCK
) {
1924 spi_nor_wait_till_ready(nor
);
1928 mtd
->name
= dev_name(dev
);
1930 mtd
->type
= MTD_NORFLASH
;
1932 mtd
->flags
= MTD_CAP_NORFLASH
;
1933 mtd
->size
= params
.size
;
1934 mtd
->_erase
= spi_nor_erase
;
1935 mtd
->_read
= spi_nor_read
;
1937 /* NOR protection support for STmicro/Micron chips and similar */
1938 if (JEDEC_MFR(info
) == SNOR_MFR_MICRON
||
1939 info
->flags
& SPI_NOR_HAS_LOCK
) {
1940 nor
->flash_lock
= stm_lock
;
1941 nor
->flash_unlock
= stm_unlock
;
1942 nor
->flash_is_locked
= stm_is_locked
;
1945 if (nor
->flash_lock
&& nor
->flash_unlock
&& nor
->flash_is_locked
) {
1946 mtd
->_lock
= spi_nor_lock
;
1947 mtd
->_unlock
= spi_nor_unlock
;
1948 mtd
->_is_locked
= spi_nor_is_locked
;
1951 /* sst nor chips use AAI word program */
1952 if (info
->flags
& SST_WRITE
)
1953 mtd
->_write
= sst_write
;
1955 mtd
->_write
= spi_nor_write
;
1957 if (info
->flags
& USE_FSR
)
1958 nor
->flags
|= SNOR_F_USE_FSR
;
1959 if (info
->flags
& SPI_NOR_HAS_TB
)
1960 nor
->flags
|= SNOR_F_HAS_SR_TB
;
1961 if (info
->flags
& NO_CHIP_ERASE
)
1962 nor
->flags
|= SNOR_F_NO_OP_CHIP_ERASE
;
1964 if (info
->flags
& SPI_NOR_NO_ERASE
)
1965 mtd
->flags
|= MTD_NO_ERASE
;
1967 mtd
->dev
.parent
= dev
;
1968 nor
->page_size
= params
.page_size
;
1969 mtd
->writebufsize
= nor
->page_size
;
1972 /* If we were instantiated by DT, use it */
1973 if (of_property_read_bool(np
, "m25p,fast-read"))
1974 params
.hwcaps
.mask
|= SNOR_HWCAPS_READ_FAST
;
1976 params
.hwcaps
.mask
&= ~SNOR_HWCAPS_READ_FAST
;
1978 /* If we weren't instantiated by DT, default to fast-read */
1979 params
.hwcaps
.mask
|= SNOR_HWCAPS_READ_FAST
;
1982 /* Some devices cannot do fast-read, no matter what DT tells us */
1983 if (info
->flags
& SPI_NOR_NO_FR
)
1984 params
.hwcaps
.mask
&= ~SNOR_HWCAPS_READ_FAST
;
1987 * Configure the SPI memory:
1988 * - select op codes for (Fast) Read, Page Program and Sector Erase.
1989 * - set the number of dummy cycles (mode cycles + wait states).
1990 * - set the SPI protocols for register and memory accesses.
1991 * - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
1993 ret
= spi_nor_setup(nor
, info
, ¶ms
, hwcaps
);
1997 if (info
->addr_width
)
1998 nor
->addr_width
= info
->addr_width
;
1999 else if (mtd
->size
> 0x1000000) {
2000 /* enable 4-byte addressing if the device exceeds 16MiB */
2001 nor
->addr_width
= 4;
2002 if (JEDEC_MFR(info
) == SNOR_MFR_SPANSION
||
2003 info
->flags
& SPI_NOR_4B_OPCODES
)
2004 spi_nor_set_4byte_opcodes(nor
, info
);
2006 set_4byte(nor
, info
, 1);
2008 nor
->addr_width
= 3;
2011 if (nor
->addr_width
> SPI_NOR_MAX_ADDR_WIDTH
) {
2012 dev_err(dev
, "address width is too large: %u\n",
2017 if (info
->flags
& SPI_S3AN
) {
2018 ret
= s3an_nor_scan(info
, nor
);
2023 dev_info(dev
, "%s (%lld Kbytes)\n", info
->name
,
2024 (long long)mtd
->size
>> 10);
2027 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
2028 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
2029 mtd
->name
, (long long)mtd
->size
, (long long)(mtd
->size
>> 20),
2030 mtd
->erasesize
, mtd
->erasesize
/ 1024, mtd
->numeraseregions
);
2032 if (mtd
->numeraseregions
)
2033 for (i
= 0; i
< mtd
->numeraseregions
; i
++)
2035 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
2036 ".erasesize = 0x%.8x (%uKiB), "
2037 ".numblocks = %d }\n",
2038 i
, (long long)mtd
->eraseregions
[i
].offset
,
2039 mtd
->eraseregions
[i
].erasesize
,
2040 mtd
->eraseregions
[i
].erasesize
/ 1024,
2041 mtd
->eraseregions
[i
].numblocks
);
2044 EXPORT_SYMBOL_GPL(spi_nor_scan
);
2046 static const struct flash_info
*spi_nor_match_id(const char *name
)
2048 const struct flash_info
*id
= spi_nor_ids
;
2051 if (!strcmp(name
, id
->name
))
2058 MODULE_LICENSE("GPL");
2059 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
2060 MODULE_AUTHOR("Mike Lavender");
2061 MODULE_DESCRIPTION("framework for SPI NOR");