Merge tag 'ceph-for-4.13-rc8' of git://github.com/ceph/ceph-client
[linux/fpc-iii.git] / mm / util.c
blob9ecddf568fe30e5cf1fba6db8eda3b7abe96d379
1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
6 #include <linux/err.h>
7 #include <linux/sched.h>
8 #include <linux/sched/mm.h>
9 #include <linux/sched/task_stack.h>
10 #include <linux/security.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/mman.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/userfaultfd_k.h>
18 #include <asm/sections.h>
19 #include <linux/uaccess.h>
21 #include "internal.h"
23 static inline int is_kernel_rodata(unsigned long addr)
25 return addr >= (unsigned long)__start_rodata &&
26 addr < (unsigned long)__end_rodata;
29 /**
30 * kfree_const - conditionally free memory
31 * @x: pointer to the memory
33 * Function calls kfree only if @x is not in .rodata section.
35 void kfree_const(const void *x)
37 if (!is_kernel_rodata((unsigned long)x))
38 kfree(x);
40 EXPORT_SYMBOL(kfree_const);
42 /**
43 * kstrdup - allocate space for and copy an existing string
44 * @s: the string to duplicate
45 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
47 char *kstrdup(const char *s, gfp_t gfp)
49 size_t len;
50 char *buf;
52 if (!s)
53 return NULL;
55 len = strlen(s) + 1;
56 buf = kmalloc_track_caller(len, gfp);
57 if (buf)
58 memcpy(buf, s, len);
59 return buf;
61 EXPORT_SYMBOL(kstrdup);
63 /**
64 * kstrdup_const - conditionally duplicate an existing const string
65 * @s: the string to duplicate
66 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
68 * Function returns source string if it is in .rodata section otherwise it
69 * fallbacks to kstrdup.
70 * Strings allocated by kstrdup_const should be freed by kfree_const.
72 const char *kstrdup_const(const char *s, gfp_t gfp)
74 if (is_kernel_rodata((unsigned long)s))
75 return s;
77 return kstrdup(s, gfp);
79 EXPORT_SYMBOL(kstrdup_const);
81 /**
82 * kstrndup - allocate space for and copy an existing string
83 * @s: the string to duplicate
84 * @max: read at most @max chars from @s
85 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
87 * Note: Use kmemdup_nul() instead if the size is known exactly.
89 char *kstrndup(const char *s, size_t max, gfp_t gfp)
91 size_t len;
92 char *buf;
94 if (!s)
95 return NULL;
97 len = strnlen(s, max);
98 buf = kmalloc_track_caller(len+1, gfp);
99 if (buf) {
100 memcpy(buf, s, len);
101 buf[len] = '\0';
103 return buf;
105 EXPORT_SYMBOL(kstrndup);
108 * kmemdup - duplicate region of memory
110 * @src: memory region to duplicate
111 * @len: memory region length
112 * @gfp: GFP mask to use
114 void *kmemdup(const void *src, size_t len, gfp_t gfp)
116 void *p;
118 p = kmalloc_track_caller(len, gfp);
119 if (p)
120 memcpy(p, src, len);
121 return p;
123 EXPORT_SYMBOL(kmemdup);
126 * kmemdup_nul - Create a NUL-terminated string from unterminated data
127 * @s: The data to stringify
128 * @len: The size of the data
129 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
131 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
133 char *buf;
135 if (!s)
136 return NULL;
138 buf = kmalloc_track_caller(len + 1, gfp);
139 if (buf) {
140 memcpy(buf, s, len);
141 buf[len] = '\0';
143 return buf;
145 EXPORT_SYMBOL(kmemdup_nul);
148 * memdup_user - duplicate memory region from user space
150 * @src: source address in user space
151 * @len: number of bytes to copy
153 * Returns an ERR_PTR() on failure.
155 void *memdup_user(const void __user *src, size_t len)
157 void *p;
160 * Always use GFP_KERNEL, since copy_from_user() can sleep and
161 * cause pagefault, which makes it pointless to use GFP_NOFS
162 * or GFP_ATOMIC.
164 p = kmalloc_track_caller(len, GFP_KERNEL);
165 if (!p)
166 return ERR_PTR(-ENOMEM);
168 if (copy_from_user(p, src, len)) {
169 kfree(p);
170 return ERR_PTR(-EFAULT);
173 return p;
175 EXPORT_SYMBOL(memdup_user);
178 * strndup_user - duplicate an existing string from user space
179 * @s: The string to duplicate
180 * @n: Maximum number of bytes to copy, including the trailing NUL.
182 char *strndup_user(const char __user *s, long n)
184 char *p;
185 long length;
187 length = strnlen_user(s, n);
189 if (!length)
190 return ERR_PTR(-EFAULT);
192 if (length > n)
193 return ERR_PTR(-EINVAL);
195 p = memdup_user(s, length);
197 if (IS_ERR(p))
198 return p;
200 p[length - 1] = '\0';
202 return p;
204 EXPORT_SYMBOL(strndup_user);
207 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
209 * @src: source address in user space
210 * @len: number of bytes to copy
212 * Returns an ERR_PTR() on failure.
214 void *memdup_user_nul(const void __user *src, size_t len)
216 char *p;
219 * Always use GFP_KERNEL, since copy_from_user() can sleep and
220 * cause pagefault, which makes it pointless to use GFP_NOFS
221 * or GFP_ATOMIC.
223 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
224 if (!p)
225 return ERR_PTR(-ENOMEM);
227 if (copy_from_user(p, src, len)) {
228 kfree(p);
229 return ERR_PTR(-EFAULT);
231 p[len] = '\0';
233 return p;
235 EXPORT_SYMBOL(memdup_user_nul);
237 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
238 struct vm_area_struct *prev, struct rb_node *rb_parent)
240 struct vm_area_struct *next;
242 vma->vm_prev = prev;
243 if (prev) {
244 next = prev->vm_next;
245 prev->vm_next = vma;
246 } else {
247 mm->mmap = vma;
248 if (rb_parent)
249 next = rb_entry(rb_parent,
250 struct vm_area_struct, vm_rb);
251 else
252 next = NULL;
254 vma->vm_next = next;
255 if (next)
256 next->vm_prev = vma;
259 /* Check if the vma is being used as a stack by this task */
260 int vma_is_stack_for_current(struct vm_area_struct *vma)
262 struct task_struct * __maybe_unused t = current;
264 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
267 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
268 void arch_pick_mmap_layout(struct mm_struct *mm)
270 mm->mmap_base = TASK_UNMAPPED_BASE;
271 mm->get_unmapped_area = arch_get_unmapped_area;
273 #endif
276 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
277 * back to the regular GUP.
278 * If the architecture not support this function, simply return with no
279 * page pinned
281 int __weak __get_user_pages_fast(unsigned long start,
282 int nr_pages, int write, struct page **pages)
284 return 0;
286 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
289 * get_user_pages_fast() - pin user pages in memory
290 * @start: starting user address
291 * @nr_pages: number of pages from start to pin
292 * @write: whether pages will be written to
293 * @pages: array that receives pointers to the pages pinned.
294 * Should be at least nr_pages long.
296 * Returns number of pages pinned. This may be fewer than the number
297 * requested. If nr_pages is 0 or negative, returns 0. If no pages
298 * were pinned, returns -errno.
300 * get_user_pages_fast provides equivalent functionality to get_user_pages,
301 * operating on current and current->mm, with force=0 and vma=NULL. However
302 * unlike get_user_pages, it must be called without mmap_sem held.
304 * get_user_pages_fast may take mmap_sem and page table locks, so no
305 * assumptions can be made about lack of locking. get_user_pages_fast is to be
306 * implemented in a way that is advantageous (vs get_user_pages()) when the
307 * user memory area is already faulted in and present in ptes. However if the
308 * pages have to be faulted in, it may turn out to be slightly slower so
309 * callers need to carefully consider what to use. On many architectures,
310 * get_user_pages_fast simply falls back to get_user_pages.
312 int __weak get_user_pages_fast(unsigned long start,
313 int nr_pages, int write, struct page **pages)
315 return get_user_pages_unlocked(start, nr_pages, pages,
316 write ? FOLL_WRITE : 0);
318 EXPORT_SYMBOL_GPL(get_user_pages_fast);
320 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
321 unsigned long len, unsigned long prot,
322 unsigned long flag, unsigned long pgoff)
324 unsigned long ret;
325 struct mm_struct *mm = current->mm;
326 unsigned long populate;
327 LIST_HEAD(uf);
329 ret = security_mmap_file(file, prot, flag);
330 if (!ret) {
331 if (down_write_killable(&mm->mmap_sem))
332 return -EINTR;
333 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
334 &populate, &uf);
335 up_write(&mm->mmap_sem);
336 userfaultfd_unmap_complete(mm, &uf);
337 if (populate)
338 mm_populate(ret, populate);
340 return ret;
343 unsigned long vm_mmap(struct file *file, unsigned long addr,
344 unsigned long len, unsigned long prot,
345 unsigned long flag, unsigned long offset)
347 if (unlikely(offset + PAGE_ALIGN(len) < offset))
348 return -EINVAL;
349 if (unlikely(offset_in_page(offset)))
350 return -EINVAL;
352 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
354 EXPORT_SYMBOL(vm_mmap);
357 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
358 * failure, fall back to non-contiguous (vmalloc) allocation.
359 * @size: size of the request.
360 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
361 * @node: numa node to allocate from
363 * Uses kmalloc to get the memory but if the allocation fails then falls back
364 * to the vmalloc allocator. Use kvfree for freeing the memory.
366 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
367 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
368 * preferable to the vmalloc fallback, due to visible performance drawbacks.
370 * Any use of gfp flags outside of GFP_KERNEL should be consulted with mm people.
372 void *kvmalloc_node(size_t size, gfp_t flags, int node)
374 gfp_t kmalloc_flags = flags;
375 void *ret;
378 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
379 * so the given set of flags has to be compatible.
381 WARN_ON_ONCE((flags & GFP_KERNEL) != GFP_KERNEL);
384 * We want to attempt a large physically contiguous block first because
385 * it is less likely to fragment multiple larger blocks and therefore
386 * contribute to a long term fragmentation less than vmalloc fallback.
387 * However make sure that larger requests are not too disruptive - no
388 * OOM killer and no allocation failure warnings as we have a fallback.
390 if (size > PAGE_SIZE) {
391 kmalloc_flags |= __GFP_NOWARN;
393 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
394 kmalloc_flags |= __GFP_NORETRY;
397 ret = kmalloc_node(size, kmalloc_flags, node);
400 * It doesn't really make sense to fallback to vmalloc for sub page
401 * requests
403 if (ret || size <= PAGE_SIZE)
404 return ret;
406 return __vmalloc_node_flags_caller(size, node, flags,
407 __builtin_return_address(0));
409 EXPORT_SYMBOL(kvmalloc_node);
411 void kvfree(const void *addr)
413 if (is_vmalloc_addr(addr))
414 vfree(addr);
415 else
416 kfree(addr);
418 EXPORT_SYMBOL(kvfree);
420 static inline void *__page_rmapping(struct page *page)
422 unsigned long mapping;
424 mapping = (unsigned long)page->mapping;
425 mapping &= ~PAGE_MAPPING_FLAGS;
427 return (void *)mapping;
430 /* Neutral page->mapping pointer to address_space or anon_vma or other */
431 void *page_rmapping(struct page *page)
433 page = compound_head(page);
434 return __page_rmapping(page);
438 * Return true if this page is mapped into pagetables.
439 * For compound page it returns true if any subpage of compound page is mapped.
441 bool page_mapped(struct page *page)
443 int i;
445 if (likely(!PageCompound(page)))
446 return atomic_read(&page->_mapcount) >= 0;
447 page = compound_head(page);
448 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
449 return true;
450 if (PageHuge(page))
451 return false;
452 for (i = 0; i < hpage_nr_pages(page); i++) {
453 if (atomic_read(&page[i]._mapcount) >= 0)
454 return true;
456 return false;
458 EXPORT_SYMBOL(page_mapped);
460 struct anon_vma *page_anon_vma(struct page *page)
462 unsigned long mapping;
464 page = compound_head(page);
465 mapping = (unsigned long)page->mapping;
466 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
467 return NULL;
468 return __page_rmapping(page);
471 struct address_space *page_mapping(struct page *page)
473 struct address_space *mapping;
475 page = compound_head(page);
477 /* This happens if someone calls flush_dcache_page on slab page */
478 if (unlikely(PageSlab(page)))
479 return NULL;
481 if (unlikely(PageSwapCache(page))) {
482 swp_entry_t entry;
484 entry.val = page_private(page);
485 return swap_address_space(entry);
488 mapping = page->mapping;
489 if ((unsigned long)mapping & PAGE_MAPPING_ANON)
490 return NULL;
492 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
494 EXPORT_SYMBOL(page_mapping);
496 /* Slow path of page_mapcount() for compound pages */
497 int __page_mapcount(struct page *page)
499 int ret;
501 ret = atomic_read(&page->_mapcount) + 1;
503 * For file THP page->_mapcount contains total number of mapping
504 * of the page: no need to look into compound_mapcount.
506 if (!PageAnon(page) && !PageHuge(page))
507 return ret;
508 page = compound_head(page);
509 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
510 if (PageDoubleMap(page))
511 ret--;
512 return ret;
514 EXPORT_SYMBOL_GPL(__page_mapcount);
516 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
517 int sysctl_overcommit_ratio __read_mostly = 50;
518 unsigned long sysctl_overcommit_kbytes __read_mostly;
519 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
520 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
521 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
523 int overcommit_ratio_handler(struct ctl_table *table, int write,
524 void __user *buffer, size_t *lenp,
525 loff_t *ppos)
527 int ret;
529 ret = proc_dointvec(table, write, buffer, lenp, ppos);
530 if (ret == 0 && write)
531 sysctl_overcommit_kbytes = 0;
532 return ret;
535 int overcommit_kbytes_handler(struct ctl_table *table, int write,
536 void __user *buffer, size_t *lenp,
537 loff_t *ppos)
539 int ret;
541 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
542 if (ret == 0 && write)
543 sysctl_overcommit_ratio = 0;
544 return ret;
548 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
550 unsigned long vm_commit_limit(void)
552 unsigned long allowed;
554 if (sysctl_overcommit_kbytes)
555 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
556 else
557 allowed = ((totalram_pages - hugetlb_total_pages())
558 * sysctl_overcommit_ratio / 100);
559 allowed += total_swap_pages;
561 return allowed;
565 * Make sure vm_committed_as in one cacheline and not cacheline shared with
566 * other variables. It can be updated by several CPUs frequently.
568 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
571 * The global memory commitment made in the system can be a metric
572 * that can be used to drive ballooning decisions when Linux is hosted
573 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
574 * balancing memory across competing virtual machines that are hosted.
575 * Several metrics drive this policy engine including the guest reported
576 * memory commitment.
578 unsigned long vm_memory_committed(void)
580 return percpu_counter_read_positive(&vm_committed_as);
582 EXPORT_SYMBOL_GPL(vm_memory_committed);
585 * Check that a process has enough memory to allocate a new virtual
586 * mapping. 0 means there is enough memory for the allocation to
587 * succeed and -ENOMEM implies there is not.
589 * We currently support three overcommit policies, which are set via the
590 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
592 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
593 * Additional code 2002 Jul 20 by Robert Love.
595 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
597 * Note this is a helper function intended to be used by LSMs which
598 * wish to use this logic.
600 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
602 long free, allowed, reserve;
604 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
605 -(s64)vm_committed_as_batch * num_online_cpus(),
606 "memory commitment underflow");
608 vm_acct_memory(pages);
611 * Sometimes we want to use more memory than we have
613 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
614 return 0;
616 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
617 free = global_page_state(NR_FREE_PAGES);
618 free += global_node_page_state(NR_FILE_PAGES);
621 * shmem pages shouldn't be counted as free in this
622 * case, they can't be purged, only swapped out, and
623 * that won't affect the overall amount of available
624 * memory in the system.
626 free -= global_node_page_state(NR_SHMEM);
628 free += get_nr_swap_pages();
631 * Any slabs which are created with the
632 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
633 * which are reclaimable, under pressure. The dentry
634 * cache and most inode caches should fall into this
636 free += global_node_page_state(NR_SLAB_RECLAIMABLE);
639 * Leave reserved pages. The pages are not for anonymous pages.
641 if (free <= totalreserve_pages)
642 goto error;
643 else
644 free -= totalreserve_pages;
647 * Reserve some for root
649 if (!cap_sys_admin)
650 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
652 if (free > pages)
653 return 0;
655 goto error;
658 allowed = vm_commit_limit();
660 * Reserve some for root
662 if (!cap_sys_admin)
663 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
666 * Don't let a single process grow so big a user can't recover
668 if (mm) {
669 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
670 allowed -= min_t(long, mm->total_vm / 32, reserve);
673 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
674 return 0;
675 error:
676 vm_unacct_memory(pages);
678 return -ENOMEM;
682 * get_cmdline() - copy the cmdline value to a buffer.
683 * @task: the task whose cmdline value to copy.
684 * @buffer: the buffer to copy to.
685 * @buflen: the length of the buffer. Larger cmdline values are truncated
686 * to this length.
687 * Returns the size of the cmdline field copied. Note that the copy does
688 * not guarantee an ending NULL byte.
690 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
692 int res = 0;
693 unsigned int len;
694 struct mm_struct *mm = get_task_mm(task);
695 unsigned long arg_start, arg_end, env_start, env_end;
696 if (!mm)
697 goto out;
698 if (!mm->arg_end)
699 goto out_mm; /* Shh! No looking before we're done */
701 down_read(&mm->mmap_sem);
702 arg_start = mm->arg_start;
703 arg_end = mm->arg_end;
704 env_start = mm->env_start;
705 env_end = mm->env_end;
706 up_read(&mm->mmap_sem);
708 len = arg_end - arg_start;
710 if (len > buflen)
711 len = buflen;
713 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
716 * If the nul at the end of args has been overwritten, then
717 * assume application is using setproctitle(3).
719 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
720 len = strnlen(buffer, res);
721 if (len < res) {
722 res = len;
723 } else {
724 len = env_end - env_start;
725 if (len > buflen - res)
726 len = buflen - res;
727 res += access_process_vm(task, env_start,
728 buffer+res, len,
729 FOLL_FORCE);
730 res = strnlen(buffer, res);
733 out_mm:
734 mmput(mm);
735 out:
736 return res;