2 * Copyright (C) 2006-2010 Freescale Semiconductor, Inc. All rights reserved.
4 * Authors: Shlomi Gridish <gridish@freescale.com>
5 * Li Yang <leoli@freescale.com>
6 * Based on cpm2_common.c from Dan Malek (dmalek@jlc.net)
9 * General Purpose functions for the global management of the
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/param.h>
21 #include <linux/string.h>
22 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
26 #include <linux/delay.h>
27 #include <linux/ioport.h>
28 #include <linux/crc32.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/of_platform.h>
33 #include <asm/pgtable.h>
34 #include <soc/fsl/qe/immap_qe.h>
35 #include <soc/fsl/qe/qe.h>
37 #include <asm/rheap.h>
39 static void qe_snums_init(void);
40 static int qe_sdma_init(void);
42 static DEFINE_SPINLOCK(qe_lock
);
43 DEFINE_SPINLOCK(cmxgcr_lock
);
44 EXPORT_SYMBOL(cmxgcr_lock
);
55 enum qe_snum_state state
;
58 /* We allocate this here because it is used almost exclusively for
59 * the communication processor devices.
61 struct qe_immap __iomem
*qe_immr
;
62 EXPORT_SYMBOL(qe_immr
);
64 static struct qe_snum snums
[QE_NUM_OF_SNUM
]; /* Dynamically allocated SNUMs */
65 static unsigned int qe_num_of_snum
;
67 static phys_addr_t qebase
= -1;
69 phys_addr_t
get_qe_base(void)
71 struct device_node
*qe
;
78 qe
= of_find_compatible_node(NULL
, NULL
, "fsl,qe");
80 qe
= of_find_node_by_type(NULL
, "qe");
85 ret
= of_address_to_resource(qe
, 0, &res
);
93 EXPORT_SYMBOL(get_qe_base
);
98 qe_immr
= ioremap(get_qe_base(), QE_IMMAP_SIZE
);
102 qe_issue_cmd(QE_RESET
, QE_CR_SUBBLOCK_INVALID
,
103 QE_CR_PROTOCOL_UNSPECIFIED
, 0);
105 /* Reclaim the MURAM memory for our use. */
109 panic("sdma init failed!");
112 int qe_issue_cmd(u32 cmd
, u32 device
, u8 mcn_protocol
, u32 cmd_input
)
115 u8 mcn_shift
= 0, dev_shift
= 0;
118 spin_lock_irqsave(&qe_lock
, flags
);
119 if (cmd
== QE_RESET
) {
120 out_be32(&qe_immr
->cp
.cecr
, (u32
) (cmd
| QE_CR_FLG
));
122 if (cmd
== QE_ASSIGN_PAGE
) {
123 /* Here device is the SNUM, not sub-block */
124 dev_shift
= QE_CR_SNUM_SHIFT
;
125 } else if (cmd
== QE_ASSIGN_RISC
) {
126 /* Here device is the SNUM, and mcnProtocol is
127 * e_QeCmdRiscAssignment value */
128 dev_shift
= QE_CR_SNUM_SHIFT
;
129 mcn_shift
= QE_CR_MCN_RISC_ASSIGN_SHIFT
;
131 if (device
== QE_CR_SUBBLOCK_USB
)
132 mcn_shift
= QE_CR_MCN_USB_SHIFT
;
134 mcn_shift
= QE_CR_MCN_NORMAL_SHIFT
;
137 out_be32(&qe_immr
->cp
.cecdr
, cmd_input
);
138 out_be32(&qe_immr
->cp
.cecr
,
139 (cmd
| QE_CR_FLG
| ((u32
) device
<< dev_shift
) | (u32
)
140 mcn_protocol
<< mcn_shift
));
143 /* wait for the QE_CR_FLG to clear */
144 ret
= spin_event_timeout((in_be32(&qe_immr
->cp
.cecr
) & QE_CR_FLG
) == 0,
146 /* On timeout (e.g. failure), the expression will be false (ret == 0),
147 otherwise it will be true (ret == 1). */
148 spin_unlock_irqrestore(&qe_lock
, flags
);
152 EXPORT_SYMBOL(qe_issue_cmd
);
154 /* Set a baud rate generator. This needs lots of work. There are
155 * 16 BRGs, which can be connected to the QE channels or output
156 * as clocks. The BRGs are in two different block of internal
157 * memory mapped space.
158 * The BRG clock is the QE clock divided by 2.
159 * It was set up long ago during the initial boot phase and is
161 * Baud rate clocks are zero-based in the driver code (as that maps
162 * to port numbers). Documentation uses 1-based numbering.
164 static unsigned int brg_clk
= 0;
166 unsigned int qe_get_brg_clk(void)
168 struct device_node
*qe
;
175 qe
= of_find_compatible_node(NULL
, NULL
, "fsl,qe");
177 qe
= of_find_node_by_type(NULL
, "qe");
182 prop
= of_get_property(qe
, "brg-frequency", &size
);
183 if (prop
&& size
== sizeof(*prop
))
190 EXPORT_SYMBOL(qe_get_brg_clk
);
192 /* Program the BRG to the given sampling rate and multiplier
194 * @brg: the BRG, QE_BRG1 - QE_BRG16
195 * @rate: the desired sampling rate
196 * @multiplier: corresponds to the value programmed in GUMR_L[RDCR] or
197 * GUMR_L[TDCR]. E.g., if this BRG is the RX clock, and GUMR_L[RDCR]=01,
198 * then 'multiplier' should be 8.
200 int qe_setbrg(enum qe_clock brg
, unsigned int rate
, unsigned int multiplier
)
202 u32 divisor
, tempval
;
205 if ((brg
< QE_BRG1
) || (brg
> QE_BRG16
))
208 divisor
= qe_get_brg_clk() / (rate
* multiplier
);
210 if (divisor
> QE_BRGC_DIVISOR_MAX
+ 1) {
211 div16
= QE_BRGC_DIV16
;
215 /* Errata QE_General4, which affects some MPC832x and MPC836x SOCs, says
216 that the BRG divisor must be even if you're not using divide-by-16
218 if (!div16
&& (divisor
& 1) && (divisor
> 3))
221 tempval
= ((divisor
- 1) << QE_BRGC_DIVISOR_SHIFT
) |
222 QE_BRGC_ENABLE
| div16
;
224 out_be32(&qe_immr
->brg
.brgc
[brg
- QE_BRG1
], tempval
);
228 EXPORT_SYMBOL(qe_setbrg
);
230 /* Convert a string to a QE clock source enum
232 * This function takes a string, typically from a property in the device
233 * tree, and returns the corresponding "enum qe_clock" value.
235 enum qe_clock
qe_clock_source(const char *source
)
239 if (strcasecmp(source
, "none") == 0)
242 if (strcmp(source
, "tsync_pin") == 0)
245 if (strcmp(source
, "rsync_pin") == 0)
248 if (strncasecmp(source
, "brg", 3) == 0) {
249 i
= simple_strtoul(source
+ 3, NULL
, 10);
250 if ((i
>= 1) && (i
<= 16))
251 return (QE_BRG1
- 1) + i
;
256 if (strncasecmp(source
, "clk", 3) == 0) {
257 i
= simple_strtoul(source
+ 3, NULL
, 10);
258 if ((i
>= 1) && (i
<= 24))
259 return (QE_CLK1
- 1) + i
;
266 EXPORT_SYMBOL(qe_clock_source
);
268 /* Initialize SNUMs (thread serial numbers) according to
269 * QE Module Control chapter, SNUM table
271 static void qe_snums_init(void)
274 static const u8 snum_init_76
[] = {
275 0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D,
276 0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89,
277 0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9,
278 0xD8, 0xD9, 0xE8, 0xE9, 0x44, 0x45, 0x4C, 0x4D,
279 0x54, 0x55, 0x5C, 0x5D, 0x64, 0x65, 0x6C, 0x6D,
280 0x74, 0x75, 0x7C, 0x7D, 0x84, 0x85, 0x8C, 0x8D,
281 0x94, 0x95, 0x9C, 0x9D, 0xA4, 0xA5, 0xAC, 0xAD,
282 0xB4, 0xB5, 0xBC, 0xBD, 0xC4, 0xC5, 0xCC, 0xCD,
283 0xD4, 0xD5, 0xDC, 0xDD, 0xE4, 0xE5, 0xEC, 0xED,
284 0xF4, 0xF5, 0xFC, 0xFD,
286 static const u8 snum_init_46
[] = {
287 0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D,
288 0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89,
289 0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9,
290 0xD8, 0xD9, 0xE8, 0xE9, 0x08, 0x09, 0x18, 0x19,
291 0x28, 0x29, 0x38, 0x39, 0x48, 0x49, 0x58, 0x59,
292 0x68, 0x69, 0x78, 0x79, 0x80, 0x81,
294 static const u8
*snum_init
;
296 qe_num_of_snum
= qe_get_num_of_snums();
298 if (qe_num_of_snum
== 76)
299 snum_init
= snum_init_76
;
301 snum_init
= snum_init_46
;
303 for (i
= 0; i
< qe_num_of_snum
; i
++) {
304 snums
[i
].num
= snum_init
[i
];
305 snums
[i
].state
= QE_SNUM_STATE_FREE
;
309 int qe_get_snum(void)
315 spin_lock_irqsave(&qe_lock
, flags
);
316 for (i
= 0; i
< qe_num_of_snum
; i
++) {
317 if (snums
[i
].state
== QE_SNUM_STATE_FREE
) {
318 snums
[i
].state
= QE_SNUM_STATE_USED
;
323 spin_unlock_irqrestore(&qe_lock
, flags
);
327 EXPORT_SYMBOL(qe_get_snum
);
329 void qe_put_snum(u8 snum
)
333 for (i
= 0; i
< qe_num_of_snum
; i
++) {
334 if (snums
[i
].num
== snum
) {
335 snums
[i
].state
= QE_SNUM_STATE_FREE
;
340 EXPORT_SYMBOL(qe_put_snum
);
342 static int qe_sdma_init(void)
344 struct sdma __iomem
*sdma
= &qe_immr
->sdma
;
345 static unsigned long sdma_buf_offset
= (unsigned long)-ENOMEM
;
350 /* allocate 2 internal temporary buffers (512 bytes size each) for
352 if (IS_ERR_VALUE(sdma_buf_offset
)) {
353 sdma_buf_offset
= qe_muram_alloc(512 * 2, 4096);
354 if (IS_ERR_VALUE(sdma_buf_offset
))
358 out_be32(&sdma
->sdebcr
, (u32
) sdma_buf_offset
& QE_SDEBCR_BA_MASK
);
359 out_be32(&sdma
->sdmr
, (QE_SDMR_GLB_1_MSK
|
360 (0x1 << QE_SDMR_CEN_SHIFT
)));
365 /* The maximum number of RISCs we support */
366 #define MAX_QE_RISC 4
368 /* Firmware information stored here for qe_get_firmware_info() */
369 static struct qe_firmware_info qe_firmware_info
;
372 * Set to 1 if QE firmware has been uploaded, and therefore
373 * qe_firmware_info contains valid data.
375 static int qe_firmware_uploaded
;
378 * Upload a QE microcode
380 * This function is a worker function for qe_upload_firmware(). It does
381 * the actual uploading of the microcode.
383 static void qe_upload_microcode(const void *base
,
384 const struct qe_microcode
*ucode
)
386 const __be32
*code
= base
+ be32_to_cpu(ucode
->code_offset
);
389 if (ucode
->major
|| ucode
->minor
|| ucode
->revision
)
390 printk(KERN_INFO
"qe-firmware: "
391 "uploading microcode '%s' version %u.%u.%u\n",
392 ucode
->id
, ucode
->major
, ucode
->minor
, ucode
->revision
);
394 printk(KERN_INFO
"qe-firmware: "
395 "uploading microcode '%s'\n", ucode
->id
);
397 /* Use auto-increment */
398 out_be32(&qe_immr
->iram
.iadd
, be32_to_cpu(ucode
->iram_offset
) |
399 QE_IRAM_IADD_AIE
| QE_IRAM_IADD_BADDR
);
401 for (i
= 0; i
< be32_to_cpu(ucode
->count
); i
++)
402 out_be32(&qe_immr
->iram
.idata
, be32_to_cpu(code
[i
]));
404 /* Set I-RAM Ready Register */
405 out_be32(&qe_immr
->iram
.iready
, be32_to_cpu(QE_IRAM_READY
));
409 * Upload a microcode to the I-RAM at a specific address.
411 * See Documentation/powerpc/qe_firmware.txt for information on QE microcode
414 * Currently, only version 1 is supported, so the 'version' field must be
417 * The SOC model and revision are not validated, they are only displayed for
418 * informational purposes.
420 * 'calc_size' is the calculated size, in bytes, of the firmware structure and
421 * all of the microcode structures, minus the CRC.
423 * 'length' is the size that the structure says it is, including the CRC.
425 int qe_upload_firmware(const struct qe_firmware
*firmware
)
430 size_t calc_size
= sizeof(struct qe_firmware
);
432 const struct qe_header
*hdr
;
435 printk(KERN_ERR
"qe-firmware: invalid pointer\n");
439 hdr
= &firmware
->header
;
440 length
= be32_to_cpu(hdr
->length
);
442 /* Check the magic */
443 if ((hdr
->magic
[0] != 'Q') || (hdr
->magic
[1] != 'E') ||
444 (hdr
->magic
[2] != 'F')) {
445 printk(KERN_ERR
"qe-firmware: not a microcode\n");
449 /* Check the version */
450 if (hdr
->version
!= 1) {
451 printk(KERN_ERR
"qe-firmware: unsupported version\n");
455 /* Validate some of the fields */
456 if ((firmware
->count
< 1) || (firmware
->count
> MAX_QE_RISC
)) {
457 printk(KERN_ERR
"qe-firmware: invalid data\n");
461 /* Validate the length and check if there's a CRC */
462 calc_size
+= (firmware
->count
- 1) * sizeof(struct qe_microcode
);
464 for (i
= 0; i
< firmware
->count
; i
++)
466 * For situations where the second RISC uses the same microcode
467 * as the first, the 'code_offset' and 'count' fields will be
468 * zero, so it's okay to add those.
470 calc_size
+= sizeof(__be32
) *
471 be32_to_cpu(firmware
->microcode
[i
].count
);
473 /* Validate the length */
474 if (length
!= calc_size
+ sizeof(__be32
)) {
475 printk(KERN_ERR
"qe-firmware: invalid length\n");
479 /* Validate the CRC */
480 crc
= be32_to_cpu(*(__be32
*)((void *)firmware
+ calc_size
));
481 if (crc
!= crc32(0, firmware
, calc_size
)) {
482 printk(KERN_ERR
"qe-firmware: firmware CRC is invalid\n");
487 * If the microcode calls for it, split the I-RAM.
489 if (!firmware
->split
)
490 setbits16(&qe_immr
->cp
.cercr
, QE_CP_CERCR_CIR
);
492 if (firmware
->soc
.model
)
494 "qe-firmware: firmware '%s' for %u V%u.%u\n",
495 firmware
->id
, be16_to_cpu(firmware
->soc
.model
),
496 firmware
->soc
.major
, firmware
->soc
.minor
);
498 printk(KERN_INFO
"qe-firmware: firmware '%s'\n",
502 * The QE only supports one microcode per RISC, so clear out all the
503 * saved microcode information and put in the new.
505 memset(&qe_firmware_info
, 0, sizeof(qe_firmware_info
));
506 strlcpy(qe_firmware_info
.id
, firmware
->id
, sizeof(qe_firmware_info
.id
));
507 qe_firmware_info
.extended_modes
= firmware
->extended_modes
;
508 memcpy(qe_firmware_info
.vtraps
, firmware
->vtraps
,
509 sizeof(firmware
->vtraps
));
511 /* Loop through each microcode. */
512 for (i
= 0; i
< firmware
->count
; i
++) {
513 const struct qe_microcode
*ucode
= &firmware
->microcode
[i
];
515 /* Upload a microcode if it's present */
516 if (ucode
->code_offset
)
517 qe_upload_microcode(firmware
, ucode
);
519 /* Program the traps for this processor */
520 for (j
= 0; j
< 16; j
++) {
521 u32 trap
= be32_to_cpu(ucode
->traps
[j
]);
524 out_be32(&qe_immr
->rsp
[i
].tibcr
[j
], trap
);
528 out_be32(&qe_immr
->rsp
[i
].eccr
, be32_to_cpu(ucode
->eccr
));
531 qe_firmware_uploaded
= 1;
535 EXPORT_SYMBOL(qe_upload_firmware
);
538 * Get info on the currently-loaded firmware
540 * This function also checks the device tree to see if the boot loader has
541 * uploaded a firmware already.
543 struct qe_firmware_info
*qe_get_firmware_info(void)
545 static int initialized
;
546 struct property
*prop
;
547 struct device_node
*qe
;
548 struct device_node
*fw
= NULL
;
553 * If we haven't checked yet, and a driver hasn't uploaded a firmware
554 * yet, then check the device tree for information.
556 if (qe_firmware_uploaded
)
557 return &qe_firmware_info
;
565 * Newer device trees have an "fsl,qe" compatible property for the QE
566 * node, but we still need to support older device trees.
568 qe
= of_find_compatible_node(NULL
, NULL
, "fsl,qe");
570 qe
= of_find_node_by_type(NULL
, "qe");
575 /* Find the 'firmware' child node */
576 for_each_child_of_node(qe
, fw
) {
577 if (strcmp(fw
->name
, "firmware") == 0)
583 /* Did we find the 'firmware' node? */
587 qe_firmware_uploaded
= 1;
589 /* Copy the data into qe_firmware_info*/
590 sprop
= of_get_property(fw
, "id", NULL
);
592 strlcpy(qe_firmware_info
.id
, sprop
,
593 sizeof(qe_firmware_info
.id
));
595 prop
= of_find_property(fw
, "extended-modes", NULL
);
596 if (prop
&& (prop
->length
== sizeof(u64
))) {
597 const u64
*iprop
= prop
->value
;
599 qe_firmware_info
.extended_modes
= *iprop
;
602 prop
= of_find_property(fw
, "virtual-traps", NULL
);
603 if (prop
&& (prop
->length
== 32)) {
604 const u32
*iprop
= prop
->value
;
606 for (i
= 0; i
< ARRAY_SIZE(qe_firmware_info
.vtraps
); i
++)
607 qe_firmware_info
.vtraps
[i
] = iprop
[i
];
612 return &qe_firmware_info
;
614 EXPORT_SYMBOL(qe_get_firmware_info
);
616 unsigned int qe_get_num_of_risc(void)
618 struct device_node
*qe
;
620 unsigned int num_of_risc
= 0;
623 qe
= of_find_compatible_node(NULL
, NULL
, "fsl,qe");
625 /* Older devices trees did not have an "fsl,qe"
626 * compatible property, so we need to look for
627 * the QE node by name.
629 qe
= of_find_node_by_type(NULL
, "qe");
634 prop
= of_get_property(qe
, "fsl,qe-num-riscs", &size
);
635 if (prop
&& size
== sizeof(*prop
))
642 EXPORT_SYMBOL(qe_get_num_of_risc
);
644 unsigned int qe_get_num_of_snums(void)
646 struct device_node
*qe
;
648 unsigned int num_of_snums
;
651 num_of_snums
= 28; /* The default number of snum for threads is 28 */
652 qe
= of_find_compatible_node(NULL
, NULL
, "fsl,qe");
654 /* Older devices trees did not have an "fsl,qe"
655 * compatible property, so we need to look for
656 * the QE node by name.
658 qe
= of_find_node_by_type(NULL
, "qe");
663 prop
= of_get_property(qe
, "fsl,qe-num-snums", &size
);
664 if (prop
&& size
== sizeof(*prop
)) {
665 num_of_snums
= *prop
;
666 if ((num_of_snums
< 28) || (num_of_snums
> QE_NUM_OF_SNUM
)) {
667 /* No QE ever has fewer than 28 SNUMs */
668 pr_err("QE: number of snum is invalid\n");
678 EXPORT_SYMBOL(qe_get_num_of_snums
);
680 static int __init
qe_init(void)
682 struct device_node
*np
;
684 np
= of_find_compatible_node(NULL
, NULL
, "fsl,qe");
691 subsys_initcall(qe_init
);
693 #if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC_85xx)
694 static int qe_resume(struct platform_device
*ofdev
)
696 if (!qe_alive_during_sleep())
701 static int qe_probe(struct platform_device
*ofdev
)
706 static const struct of_device_id qe_ids
[] = {
707 { .compatible
= "fsl,qe", },
711 static struct platform_driver qe_driver
= {
714 .of_match_table
= qe_ids
,
720 builtin_platform_driver(qe_driver
);
721 #endif /* defined(CONFIG_SUSPEND) && defined(CONFIG_PPC_85xx) */