2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally described in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
26 * Code from fib_hash has been reused which includes the following header:
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
33 * IPv4 FIB: lookup engine and maintenance routines.
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
43 * Substantial contributions to this work comes from:
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
51 #define VERSION "0.409"
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <net/net_namespace.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
82 #include <net/ip_fib.h>
83 #include <net/switchdev.h>
84 #include <trace/events/fib.h>
85 #include "fib_lookup.h"
87 #define MAX_STAT_DEPTH 32
89 #define KEYLENGTH (8*sizeof(t_key))
90 #define KEY_MAX ((t_key)~0)
92 typedef unsigned int t_key
;
94 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
95 #define IS_TNODE(n) ((n)->bits)
96 #define IS_LEAF(n) (!(n)->bits)
100 unsigned char pos
; /* 2log(KEYLENGTH) bits needed */
101 unsigned char bits
; /* 2log(KEYLENGTH) bits needed */
104 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
105 struct hlist_head leaf
;
106 /* This array is valid if (pos | bits) > 0 (TNODE) */
107 struct key_vector __rcu
*tnode
[0];
113 t_key empty_children
; /* KEYLENGTH bits needed */
114 t_key full_children
; /* KEYLENGTH bits needed */
115 struct key_vector __rcu
*parent
;
116 struct key_vector kv
[1];
117 #define tn_bits kv[0].bits
120 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
121 #define LEAF_SIZE TNODE_SIZE(1)
123 #ifdef CONFIG_IP_FIB_TRIE_STATS
124 struct trie_use_stats
{
126 unsigned int backtrack
;
127 unsigned int semantic_match_passed
;
128 unsigned int semantic_match_miss
;
129 unsigned int null_node_hit
;
130 unsigned int resize_node_skipped
;
135 unsigned int totdepth
;
136 unsigned int maxdepth
;
139 unsigned int nullpointers
;
140 unsigned int prefixes
;
141 unsigned int nodesizes
[MAX_STAT_DEPTH
];
145 struct key_vector kv
[1];
146 #ifdef CONFIG_IP_FIB_TRIE_STATS
147 struct trie_use_stats __percpu
*stats
;
151 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
);
152 static size_t tnode_free_size
;
155 * synchronize_rcu after call_rcu for that many pages; it should be especially
156 * useful before resizing the root node with PREEMPT_NONE configs; the value was
157 * obtained experimentally, aiming to avoid visible slowdown.
159 static const int sync_pages
= 128;
161 static struct kmem_cache
*fn_alias_kmem __read_mostly
;
162 static struct kmem_cache
*trie_leaf_kmem __read_mostly
;
164 static inline struct tnode
*tn_info(struct key_vector
*kv
)
166 return container_of(kv
, struct tnode
, kv
[0]);
169 /* caller must hold RTNL */
170 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
171 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
173 /* caller must hold RCU read lock or RTNL */
174 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
175 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
177 /* wrapper for rcu_assign_pointer */
178 static inline void node_set_parent(struct key_vector
*n
, struct key_vector
*tp
)
181 rcu_assign_pointer(tn_info(n
)->parent
, tp
);
184 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
186 /* This provides us with the number of children in this node, in the case of a
187 * leaf this will return 0 meaning none of the children are accessible.
189 static inline unsigned long child_length(const struct key_vector
*tn
)
191 return (1ul << tn
->bits
) & ~(1ul);
194 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
196 static inline unsigned long get_index(t_key key
, struct key_vector
*kv
)
198 unsigned long index
= key
^ kv
->key
;
200 if ((BITS_PER_LONG
<= KEYLENGTH
) && (KEYLENGTH
== kv
->pos
))
203 return index
>> kv
->pos
;
206 /* To understand this stuff, an understanding of keys and all their bits is
207 * necessary. Every node in the trie has a key associated with it, but not
208 * all of the bits in that key are significant.
210 * Consider a node 'n' and its parent 'tp'.
212 * If n is a leaf, every bit in its key is significant. Its presence is
213 * necessitated by path compression, since during a tree traversal (when
214 * searching for a leaf - unless we are doing an insertion) we will completely
215 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
216 * a potentially successful search, that we have indeed been walking the
219 * Note that we can never "miss" the correct key in the tree if present by
220 * following the wrong path. Path compression ensures that segments of the key
221 * that are the same for all keys with a given prefix are skipped, but the
222 * skipped part *is* identical for each node in the subtrie below the skipped
223 * bit! trie_insert() in this implementation takes care of that.
225 * if n is an internal node - a 'tnode' here, the various parts of its key
226 * have many different meanings.
229 * _________________________________________________________________
230 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
231 * -----------------------------------------------------------------
232 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
234 * _________________________________________________________________
235 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
236 * -----------------------------------------------------------------
237 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
244 * First, let's just ignore the bits that come before the parent tp, that is
245 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
246 * point we do not use them for anything.
248 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
249 * index into the parent's child array. That is, they will be used to find
250 * 'n' among tp's children.
252 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
255 * All the bits we have seen so far are significant to the node n. The rest
256 * of the bits are really not needed or indeed known in n->key.
258 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
259 * n's child array, and will of course be different for each child.
261 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
265 static const int halve_threshold
= 25;
266 static const int inflate_threshold
= 50;
267 static const int halve_threshold_root
= 15;
268 static const int inflate_threshold_root
= 30;
270 static void __alias_free_mem(struct rcu_head
*head
)
272 struct fib_alias
*fa
= container_of(head
, struct fib_alias
, rcu
);
273 kmem_cache_free(fn_alias_kmem
, fa
);
276 static inline void alias_free_mem_rcu(struct fib_alias
*fa
)
278 call_rcu(&fa
->rcu
, __alias_free_mem
);
281 #define TNODE_KMALLOC_MAX \
282 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
283 #define TNODE_VMALLOC_MAX \
284 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
286 static void __node_free_rcu(struct rcu_head
*head
)
288 struct tnode
*n
= container_of(head
, struct tnode
, rcu
);
291 kmem_cache_free(trie_leaf_kmem
, n
);
292 else if (n
->tn_bits
<= TNODE_KMALLOC_MAX
)
298 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
300 static struct tnode
*tnode_alloc(int bits
)
304 /* verify bits is within bounds */
305 if (bits
> TNODE_VMALLOC_MAX
)
308 /* determine size and verify it is non-zero and didn't overflow */
309 size
= TNODE_SIZE(1ul << bits
);
311 if (size
<= PAGE_SIZE
)
312 return kzalloc(size
, GFP_KERNEL
);
314 return vzalloc(size
);
317 static inline void empty_child_inc(struct key_vector
*n
)
319 ++tn_info(n
)->empty_children
? : ++tn_info(n
)->full_children
;
322 static inline void empty_child_dec(struct key_vector
*n
)
324 tn_info(n
)->empty_children
-- ? : tn_info(n
)->full_children
--;
327 static struct key_vector
*leaf_new(t_key key
, struct fib_alias
*fa
)
329 struct key_vector
*l
;
332 kv
= kmem_cache_alloc(trie_leaf_kmem
, GFP_KERNEL
);
336 /* initialize key vector */
341 l
->slen
= fa
->fa_slen
;
343 /* link leaf to fib alias */
344 INIT_HLIST_HEAD(&l
->leaf
);
345 hlist_add_head(&fa
->fa_list
, &l
->leaf
);
350 static struct key_vector
*tnode_new(t_key key
, int pos
, int bits
)
352 unsigned int shift
= pos
+ bits
;
353 struct key_vector
*tn
;
356 /* verify bits and pos their msb bits clear and values are valid */
357 BUG_ON(!bits
|| (shift
> KEYLENGTH
));
359 tnode
= tnode_alloc(bits
);
363 pr_debug("AT %p s=%zu %zu\n", tnode
, TNODE_SIZE(0),
364 sizeof(struct key_vector
*) << bits
);
366 if (bits
== KEYLENGTH
)
367 tnode
->full_children
= 1;
369 tnode
->empty_children
= 1ul << bits
;
372 tn
->key
= (shift
< KEYLENGTH
) ? (key
>> shift
) << shift
: 0;
380 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
381 * and no bits are skipped. See discussion in dyntree paper p. 6
383 static inline int tnode_full(struct key_vector
*tn
, struct key_vector
*n
)
385 return n
&& ((n
->pos
+ n
->bits
) == tn
->pos
) && IS_TNODE(n
);
388 /* Add a child at position i overwriting the old value.
389 * Update the value of full_children and empty_children.
391 static void put_child(struct key_vector
*tn
, unsigned long i
,
392 struct key_vector
*n
)
394 struct key_vector
*chi
= get_child(tn
, i
);
397 BUG_ON(i
>= child_length(tn
));
399 /* update emptyChildren, overflow into fullChildren */
405 /* update fullChildren */
406 wasfull
= tnode_full(tn
, chi
);
407 isfull
= tnode_full(tn
, n
);
409 if (wasfull
&& !isfull
)
410 tn_info(tn
)->full_children
--;
411 else if (!wasfull
&& isfull
)
412 tn_info(tn
)->full_children
++;
414 if (n
&& (tn
->slen
< n
->slen
))
417 rcu_assign_pointer(tn
->tnode
[i
], n
);
420 static void update_children(struct key_vector
*tn
)
424 /* update all of the child parent pointers */
425 for (i
= child_length(tn
); i
;) {
426 struct key_vector
*inode
= get_child(tn
, --i
);
431 /* Either update the children of a tnode that
432 * already belongs to us or update the child
433 * to point to ourselves.
435 if (node_parent(inode
) == tn
)
436 update_children(inode
);
438 node_set_parent(inode
, tn
);
442 static inline void put_child_root(struct key_vector
*tp
, t_key key
,
443 struct key_vector
*n
)
446 rcu_assign_pointer(tp
->tnode
[0], n
);
448 put_child(tp
, get_index(key
, tp
), n
);
451 static inline void tnode_free_init(struct key_vector
*tn
)
453 tn_info(tn
)->rcu
.next
= NULL
;
456 static inline void tnode_free_append(struct key_vector
*tn
,
457 struct key_vector
*n
)
459 tn_info(n
)->rcu
.next
= tn_info(tn
)->rcu
.next
;
460 tn_info(tn
)->rcu
.next
= &tn_info(n
)->rcu
;
463 static void tnode_free(struct key_vector
*tn
)
465 struct callback_head
*head
= &tn_info(tn
)->rcu
;
469 tnode_free_size
+= TNODE_SIZE(1ul << tn
->bits
);
472 tn
= container_of(head
, struct tnode
, rcu
)->kv
;
475 if (tnode_free_size
>= PAGE_SIZE
* sync_pages
) {
481 static struct key_vector
*replace(struct trie
*t
,
482 struct key_vector
*oldtnode
,
483 struct key_vector
*tn
)
485 struct key_vector
*tp
= node_parent(oldtnode
);
488 /* setup the parent pointer out of and back into this node */
489 NODE_INIT_PARENT(tn
, tp
);
490 put_child_root(tp
, tn
->key
, tn
);
492 /* update all of the child parent pointers */
495 /* all pointers should be clean so we are done */
496 tnode_free(oldtnode
);
498 /* resize children now that oldtnode is freed */
499 for (i
= child_length(tn
); i
;) {
500 struct key_vector
*inode
= get_child(tn
, --i
);
502 /* resize child node */
503 if (tnode_full(tn
, inode
))
504 tn
= resize(t
, inode
);
510 static struct key_vector
*inflate(struct trie
*t
,
511 struct key_vector
*oldtnode
)
513 struct key_vector
*tn
;
517 pr_debug("In inflate\n");
519 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
- 1, oldtnode
->bits
+ 1);
523 /* prepare oldtnode to be freed */
524 tnode_free_init(oldtnode
);
526 /* Assemble all of the pointers in our cluster, in this case that
527 * represents all of the pointers out of our allocated nodes that
528 * point to existing tnodes and the links between our allocated
531 for (i
= child_length(oldtnode
), m
= 1u << tn
->pos
; i
;) {
532 struct key_vector
*inode
= get_child(oldtnode
, --i
);
533 struct key_vector
*node0
, *node1
;
540 /* A leaf or an internal node with skipped bits */
541 if (!tnode_full(oldtnode
, inode
)) {
542 put_child(tn
, get_index(inode
->key
, tn
), inode
);
546 /* drop the node in the old tnode free list */
547 tnode_free_append(oldtnode
, inode
);
549 /* An internal node with two children */
550 if (inode
->bits
== 1) {
551 put_child(tn
, 2 * i
+ 1, get_child(inode
, 1));
552 put_child(tn
, 2 * i
, get_child(inode
, 0));
556 /* We will replace this node 'inode' with two new
557 * ones, 'node0' and 'node1', each with half of the
558 * original children. The two new nodes will have
559 * a position one bit further down the key and this
560 * means that the "significant" part of their keys
561 * (see the discussion near the top of this file)
562 * will differ by one bit, which will be "0" in
563 * node0's key and "1" in node1's key. Since we are
564 * moving the key position by one step, the bit that
565 * we are moving away from - the bit at position
566 * (tn->pos) - is the one that will differ between
567 * node0 and node1. So... we synthesize that bit in the
570 node1
= tnode_new(inode
->key
| m
, inode
->pos
, inode
->bits
- 1);
573 node0
= tnode_new(inode
->key
, inode
->pos
, inode
->bits
- 1);
575 tnode_free_append(tn
, node1
);
578 tnode_free_append(tn
, node0
);
580 /* populate child pointers in new nodes */
581 for (k
= child_length(inode
), j
= k
/ 2; j
;) {
582 put_child(node1
, --j
, get_child(inode
, --k
));
583 put_child(node0
, j
, get_child(inode
, j
));
584 put_child(node1
, --j
, get_child(inode
, --k
));
585 put_child(node0
, j
, get_child(inode
, j
));
588 /* link new nodes to parent */
589 NODE_INIT_PARENT(node1
, tn
);
590 NODE_INIT_PARENT(node0
, tn
);
592 /* link parent to nodes */
593 put_child(tn
, 2 * i
+ 1, node1
);
594 put_child(tn
, 2 * i
, node0
);
597 /* setup the parent pointers into and out of this node */
598 return replace(t
, oldtnode
, tn
);
600 /* all pointers should be clean so we are done */
606 static struct key_vector
*halve(struct trie
*t
,
607 struct key_vector
*oldtnode
)
609 struct key_vector
*tn
;
612 pr_debug("In halve\n");
614 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
+ 1, oldtnode
->bits
- 1);
618 /* prepare oldtnode to be freed */
619 tnode_free_init(oldtnode
);
621 /* Assemble all of the pointers in our cluster, in this case that
622 * represents all of the pointers out of our allocated nodes that
623 * point to existing tnodes and the links between our allocated
626 for (i
= child_length(oldtnode
); i
;) {
627 struct key_vector
*node1
= get_child(oldtnode
, --i
);
628 struct key_vector
*node0
= get_child(oldtnode
, --i
);
629 struct key_vector
*inode
;
631 /* At least one of the children is empty */
632 if (!node1
|| !node0
) {
633 put_child(tn
, i
/ 2, node1
? : node0
);
637 /* Two nonempty children */
638 inode
= tnode_new(node0
->key
, oldtnode
->pos
, 1);
641 tnode_free_append(tn
, inode
);
643 /* initialize pointers out of node */
644 put_child(inode
, 1, node1
);
645 put_child(inode
, 0, node0
);
646 NODE_INIT_PARENT(inode
, tn
);
648 /* link parent to node */
649 put_child(tn
, i
/ 2, inode
);
652 /* setup the parent pointers into and out of this node */
653 return replace(t
, oldtnode
, tn
);
655 /* all pointers should be clean so we are done */
661 static struct key_vector
*collapse(struct trie
*t
,
662 struct key_vector
*oldtnode
)
664 struct key_vector
*n
, *tp
;
667 /* scan the tnode looking for that one child that might still exist */
668 for (n
= NULL
, i
= child_length(oldtnode
); !n
&& i
;)
669 n
= get_child(oldtnode
, --i
);
671 /* compress one level */
672 tp
= node_parent(oldtnode
);
673 put_child_root(tp
, oldtnode
->key
, n
);
674 node_set_parent(n
, tp
);
682 static unsigned char update_suffix(struct key_vector
*tn
)
684 unsigned char slen
= tn
->pos
;
685 unsigned long stride
, i
;
687 /* search though the list of children looking for nodes that might
688 * have a suffix greater than the one we currently have. This is
689 * why we start with a stride of 2 since a stride of 1 would
690 * represent the nodes with suffix length equal to tn->pos
692 for (i
= 0, stride
= 0x2ul
; i
< child_length(tn
); i
+= stride
) {
693 struct key_vector
*n
= get_child(tn
, i
);
695 if (!n
|| (n
->slen
<= slen
))
698 /* update stride and slen based on new value */
699 stride
<<= (n
->slen
- slen
);
703 /* if slen covers all but the last bit we can stop here
704 * there will be nothing longer than that since only node
705 * 0 and 1 << (bits - 1) could have that as their suffix
708 if ((slen
+ 1) >= (tn
->pos
+ tn
->bits
))
717 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
718 * the Helsinki University of Technology and Matti Tikkanen of Nokia
719 * Telecommunications, page 6:
720 * "A node is doubled if the ratio of non-empty children to all
721 * children in the *doubled* node is at least 'high'."
723 * 'high' in this instance is the variable 'inflate_threshold'. It
724 * is expressed as a percentage, so we multiply it with
725 * child_length() and instead of multiplying by 2 (since the
726 * child array will be doubled by inflate()) and multiplying
727 * the left-hand side by 100 (to handle the percentage thing) we
728 * multiply the left-hand side by 50.
730 * The left-hand side may look a bit weird: child_length(tn)
731 * - tn->empty_children is of course the number of non-null children
732 * in the current node. tn->full_children is the number of "full"
733 * children, that is non-null tnodes with a skip value of 0.
734 * All of those will be doubled in the resulting inflated tnode, so
735 * we just count them one extra time here.
737 * A clearer way to write this would be:
739 * to_be_doubled = tn->full_children;
740 * not_to_be_doubled = child_length(tn) - tn->empty_children -
743 * new_child_length = child_length(tn) * 2;
745 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
747 * if (new_fill_factor >= inflate_threshold)
749 * ...and so on, tho it would mess up the while () loop.
752 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
756 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
757 * inflate_threshold * new_child_length
759 * expand not_to_be_doubled and to_be_doubled, and shorten:
760 * 100 * (child_length(tn) - tn->empty_children +
761 * tn->full_children) >= inflate_threshold * new_child_length
763 * expand new_child_length:
764 * 100 * (child_length(tn) - tn->empty_children +
765 * tn->full_children) >=
766 * inflate_threshold * child_length(tn) * 2
769 * 50 * (tn->full_children + child_length(tn) -
770 * tn->empty_children) >= inflate_threshold *
774 static inline bool should_inflate(struct key_vector
*tp
, struct key_vector
*tn
)
776 unsigned long used
= child_length(tn
);
777 unsigned long threshold
= used
;
779 /* Keep root node larger */
780 threshold
*= IS_TRIE(tp
) ? inflate_threshold_root
: inflate_threshold
;
781 used
-= tn_info(tn
)->empty_children
;
782 used
+= tn_info(tn
)->full_children
;
784 /* if bits == KEYLENGTH then pos = 0, and will fail below */
786 return (used
> 1) && tn
->pos
&& ((50 * used
) >= threshold
);
789 static inline bool should_halve(struct key_vector
*tp
, struct key_vector
*tn
)
791 unsigned long used
= child_length(tn
);
792 unsigned long threshold
= used
;
794 /* Keep root node larger */
795 threshold
*= IS_TRIE(tp
) ? halve_threshold_root
: halve_threshold
;
796 used
-= tn_info(tn
)->empty_children
;
798 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
800 return (used
> 1) && (tn
->bits
> 1) && ((100 * used
) < threshold
);
803 static inline bool should_collapse(struct key_vector
*tn
)
805 unsigned long used
= child_length(tn
);
807 used
-= tn_info(tn
)->empty_children
;
809 /* account for bits == KEYLENGTH case */
810 if ((tn
->bits
== KEYLENGTH
) && tn_info(tn
)->full_children
)
813 /* One child or none, time to drop us from the trie */
818 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
)
820 #ifdef CONFIG_IP_FIB_TRIE_STATS
821 struct trie_use_stats __percpu
*stats
= t
->stats
;
823 struct key_vector
*tp
= node_parent(tn
);
824 unsigned long cindex
= get_index(tn
->key
, tp
);
825 int max_work
= MAX_WORK
;
827 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
828 tn
, inflate_threshold
, halve_threshold
);
830 /* track the tnode via the pointer from the parent instead of
831 * doing it ourselves. This way we can let RCU fully do its
832 * thing without us interfering
834 BUG_ON(tn
!= get_child(tp
, cindex
));
836 /* Double as long as the resulting node has a number of
837 * nonempty nodes that are above the threshold.
839 while (should_inflate(tp
, tn
) && max_work
) {
842 #ifdef CONFIG_IP_FIB_TRIE_STATS
843 this_cpu_inc(stats
->resize_node_skipped
);
849 tn
= get_child(tp
, cindex
);
852 /* update parent in case inflate failed */
853 tp
= node_parent(tn
);
855 /* Return if at least one inflate is run */
856 if (max_work
!= MAX_WORK
)
859 /* Halve as long as the number of empty children in this
860 * node is above threshold.
862 while (should_halve(tp
, tn
) && max_work
) {
865 #ifdef CONFIG_IP_FIB_TRIE_STATS
866 this_cpu_inc(stats
->resize_node_skipped
);
872 tn
= get_child(tp
, cindex
);
875 /* Only one child remains */
876 if (should_collapse(tn
))
877 return collapse(t
, tn
);
879 /* update parent in case halve failed */
880 tp
= node_parent(tn
);
882 /* Return if at least one deflate was run */
883 if (max_work
!= MAX_WORK
)
886 /* push the suffix length to the parent node */
887 if (tn
->slen
> tn
->pos
) {
888 unsigned char slen
= update_suffix(tn
);
897 static void leaf_pull_suffix(struct key_vector
*tp
, struct key_vector
*l
)
899 while ((tp
->slen
> tp
->pos
) && (tp
->slen
> l
->slen
)) {
900 if (update_suffix(tp
) > l
->slen
)
902 tp
= node_parent(tp
);
906 static void leaf_push_suffix(struct key_vector
*tn
, struct key_vector
*l
)
908 /* if this is a new leaf then tn will be NULL and we can sort
909 * out parent suffix lengths as a part of trie_rebalance
911 while (tn
->slen
< l
->slen
) {
913 tn
= node_parent(tn
);
917 /* rcu_read_lock needs to be hold by caller from readside */
918 static struct key_vector
*fib_find_node(struct trie
*t
,
919 struct key_vector
**tp
, u32 key
)
921 struct key_vector
*pn
, *n
= t
->kv
;
922 unsigned long index
= 0;
926 n
= get_child_rcu(n
, index
);
931 index
= get_cindex(key
, n
);
933 /* This bit of code is a bit tricky but it combines multiple
934 * checks into a single check. The prefix consists of the
935 * prefix plus zeros for the bits in the cindex. The index
936 * is the difference between the key and this value. From
937 * this we can actually derive several pieces of data.
938 * if (index >= (1ul << bits))
939 * we have a mismatch in skip bits and failed
941 * we know the value is cindex
943 * This check is safe even if bits == KEYLENGTH due to the
944 * fact that we can only allocate a node with 32 bits if a
945 * long is greater than 32 bits.
947 if (index
>= (1ul << n
->bits
)) {
952 /* keep searching until we find a perfect match leaf or NULL */
953 } while (IS_TNODE(n
));
960 /* Return the first fib alias matching TOS with
961 * priority less than or equal to PRIO.
963 static struct fib_alias
*fib_find_alias(struct hlist_head
*fah
, u8 slen
,
964 u8 tos
, u32 prio
, u32 tb_id
)
966 struct fib_alias
*fa
;
971 hlist_for_each_entry(fa
, fah
, fa_list
) {
972 if (fa
->fa_slen
< slen
)
974 if (fa
->fa_slen
!= slen
)
976 if (fa
->tb_id
> tb_id
)
978 if (fa
->tb_id
!= tb_id
)
980 if (fa
->fa_tos
> tos
)
982 if (fa
->fa_info
->fib_priority
>= prio
|| fa
->fa_tos
< tos
)
989 static void trie_rebalance(struct trie
*t
, struct key_vector
*tn
)
995 static int fib_insert_node(struct trie
*t
, struct key_vector
*tp
,
996 struct fib_alias
*new, t_key key
)
998 struct key_vector
*n
, *l
;
1000 l
= leaf_new(key
, new);
1004 /* retrieve child from parent node */
1005 n
= get_child(tp
, get_index(key
, tp
));
1007 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1009 * Add a new tnode here
1010 * first tnode need some special handling
1011 * leaves us in position for handling as case 3
1014 struct key_vector
*tn
;
1016 tn
= tnode_new(key
, __fls(key
^ n
->key
), 1);
1020 /* initialize routes out of node */
1021 NODE_INIT_PARENT(tn
, tp
);
1022 put_child(tn
, get_index(key
, tn
) ^ 1, n
);
1024 /* start adding routes into the node */
1025 put_child_root(tp
, key
, tn
);
1026 node_set_parent(n
, tn
);
1028 /* parent now has a NULL spot where the leaf can go */
1032 /* Case 3: n is NULL, and will just insert a new leaf */
1033 NODE_INIT_PARENT(l
, tp
);
1034 put_child_root(tp
, key
, l
);
1035 trie_rebalance(t
, tp
);
1044 static int fib_insert_alias(struct trie
*t
, struct key_vector
*tp
,
1045 struct key_vector
*l
, struct fib_alias
*new,
1046 struct fib_alias
*fa
, t_key key
)
1049 return fib_insert_node(t
, tp
, new, key
);
1052 hlist_add_before_rcu(&new->fa_list
, &fa
->fa_list
);
1054 struct fib_alias
*last
;
1056 hlist_for_each_entry(last
, &l
->leaf
, fa_list
) {
1057 if (new->fa_slen
< last
->fa_slen
)
1059 if ((new->fa_slen
== last
->fa_slen
) &&
1060 (new->tb_id
> last
->tb_id
))
1066 hlist_add_behind_rcu(&new->fa_list
, &fa
->fa_list
);
1068 hlist_add_head_rcu(&new->fa_list
, &l
->leaf
);
1071 /* if we added to the tail node then we need to update slen */
1072 if (l
->slen
< new->fa_slen
) {
1073 l
->slen
= new->fa_slen
;
1074 leaf_push_suffix(tp
, l
);
1080 /* Caller must hold RTNL. */
1081 int fib_table_insert(struct fib_table
*tb
, struct fib_config
*cfg
)
1083 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1084 struct fib_alias
*fa
, *new_fa
;
1085 struct key_vector
*l
, *tp
;
1086 unsigned int nlflags
= 0;
1087 struct fib_info
*fi
;
1088 u8 plen
= cfg
->fc_dst_len
;
1089 u8 slen
= KEYLENGTH
- plen
;
1090 u8 tos
= cfg
->fc_tos
;
1094 if (plen
> KEYLENGTH
)
1097 key
= ntohl(cfg
->fc_dst
);
1099 pr_debug("Insert table=%u %08x/%d\n", tb
->tb_id
, key
, plen
);
1101 if ((plen
< KEYLENGTH
) && (key
<< plen
))
1104 fi
= fib_create_info(cfg
);
1110 l
= fib_find_node(t
, &tp
, key
);
1111 fa
= l
? fib_find_alias(&l
->leaf
, slen
, tos
, fi
->fib_priority
,
1114 /* Now fa, if non-NULL, points to the first fib alias
1115 * with the same keys [prefix,tos,priority], if such key already
1116 * exists or to the node before which we will insert new one.
1118 * If fa is NULL, we will need to allocate a new one and
1119 * insert to the tail of the section matching the suffix length
1123 if (fa
&& fa
->fa_tos
== tos
&&
1124 fa
->fa_info
->fib_priority
== fi
->fib_priority
) {
1125 struct fib_alias
*fa_first
, *fa_match
;
1128 if (cfg
->fc_nlflags
& NLM_F_EXCL
)
1132 * 1. Find exact match for type, scope, fib_info to avoid
1134 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1138 hlist_for_each_entry_from(fa
, fa_list
) {
1139 if ((fa
->fa_slen
!= slen
) ||
1140 (fa
->tb_id
!= tb
->tb_id
) ||
1141 (fa
->fa_tos
!= tos
))
1143 if (fa
->fa_info
->fib_priority
!= fi
->fib_priority
)
1145 if (fa
->fa_type
== cfg
->fc_type
&&
1146 fa
->fa_info
== fi
) {
1152 if (cfg
->fc_nlflags
& NLM_F_REPLACE
) {
1153 struct fib_info
*fi_drop
;
1163 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1167 fi_drop
= fa
->fa_info
;
1168 new_fa
->fa_tos
= fa
->fa_tos
;
1169 new_fa
->fa_info
= fi
;
1170 new_fa
->fa_type
= cfg
->fc_type
;
1171 state
= fa
->fa_state
;
1172 new_fa
->fa_state
= state
& ~FA_S_ACCESSED
;
1173 new_fa
->fa_slen
= fa
->fa_slen
;
1174 new_fa
->tb_id
= tb
->tb_id
;
1175 new_fa
->fa_default
= -1;
1177 err
= switchdev_fib_ipv4_add(key
, plen
, fi
,
1183 switchdev_fib_ipv4_abort(fi
);
1184 kmem_cache_free(fn_alias_kmem
, new_fa
);
1188 hlist_replace_rcu(&fa
->fa_list
, &new_fa
->fa_list
);
1190 alias_free_mem_rcu(fa
);
1192 fib_release_info(fi_drop
);
1193 if (state
& FA_S_ACCESSED
)
1194 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1195 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
,
1196 tb
->tb_id
, &cfg
->fc_nlinfo
, NLM_F_REPLACE
);
1200 /* Error if we find a perfect match which
1201 * uses the same scope, type, and nexthop
1207 if (cfg
->fc_nlflags
& NLM_F_APPEND
)
1208 nlflags
= NLM_F_APPEND
;
1213 if (!(cfg
->fc_nlflags
& NLM_F_CREATE
))
1217 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1221 new_fa
->fa_info
= fi
;
1222 new_fa
->fa_tos
= tos
;
1223 new_fa
->fa_type
= cfg
->fc_type
;
1224 new_fa
->fa_state
= 0;
1225 new_fa
->fa_slen
= slen
;
1226 new_fa
->tb_id
= tb
->tb_id
;
1227 new_fa
->fa_default
= -1;
1229 /* (Optionally) offload fib entry to switch hardware. */
1230 err
= switchdev_fib_ipv4_add(key
, plen
, fi
, tos
, cfg
->fc_type
,
1231 cfg
->fc_nlflags
, tb
->tb_id
);
1233 switchdev_fib_ipv4_abort(fi
);
1234 goto out_free_new_fa
;
1237 /* Insert new entry to the list. */
1238 err
= fib_insert_alias(t
, tp
, l
, new_fa
, fa
, key
);
1240 goto out_sw_fib_del
;
1243 tb
->tb_num_default
++;
1245 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1246 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
, new_fa
->tb_id
,
1247 &cfg
->fc_nlinfo
, nlflags
);
1252 switchdev_fib_ipv4_del(key
, plen
, fi
, tos
, cfg
->fc_type
, tb
->tb_id
);
1254 kmem_cache_free(fn_alias_kmem
, new_fa
);
1256 fib_release_info(fi
);
1261 static inline t_key
prefix_mismatch(t_key key
, struct key_vector
*n
)
1263 t_key prefix
= n
->key
;
1265 return (key
^ prefix
) & (prefix
| -prefix
);
1268 /* should be called with rcu_read_lock */
1269 int fib_table_lookup(struct fib_table
*tb
, const struct flowi4
*flp
,
1270 struct fib_result
*res
, int fib_flags
)
1272 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1273 #ifdef CONFIG_IP_FIB_TRIE_STATS
1274 struct trie_use_stats __percpu
*stats
= t
->stats
;
1276 const t_key key
= ntohl(flp
->daddr
);
1277 struct key_vector
*n
, *pn
;
1278 struct fib_alias
*fa
;
1279 unsigned long index
;
1282 trace_fib_table_lookup(tb
->tb_id
, flp
);
1287 n
= get_child_rcu(pn
, cindex
);
1291 #ifdef CONFIG_IP_FIB_TRIE_STATS
1292 this_cpu_inc(stats
->gets
);
1295 /* Step 1: Travel to the longest prefix match in the trie */
1297 index
= get_cindex(key
, n
);
1299 /* This bit of code is a bit tricky but it combines multiple
1300 * checks into a single check. The prefix consists of the
1301 * prefix plus zeros for the "bits" in the prefix. The index
1302 * is the difference between the key and this value. From
1303 * this we can actually derive several pieces of data.
1304 * if (index >= (1ul << bits))
1305 * we have a mismatch in skip bits and failed
1307 * we know the value is cindex
1309 * This check is safe even if bits == KEYLENGTH due to the
1310 * fact that we can only allocate a node with 32 bits if a
1311 * long is greater than 32 bits.
1313 if (index
>= (1ul << n
->bits
))
1316 /* we have found a leaf. Prefixes have already been compared */
1320 /* only record pn and cindex if we are going to be chopping
1321 * bits later. Otherwise we are just wasting cycles.
1323 if (n
->slen
> n
->pos
) {
1328 n
= get_child_rcu(n
, index
);
1333 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1335 /* record the pointer where our next node pointer is stored */
1336 struct key_vector __rcu
**cptr
= n
->tnode
;
1338 /* This test verifies that none of the bits that differ
1339 * between the key and the prefix exist in the region of
1340 * the lsb and higher in the prefix.
1342 if (unlikely(prefix_mismatch(key
, n
)) || (n
->slen
== n
->pos
))
1345 /* exit out and process leaf */
1346 if (unlikely(IS_LEAF(n
)))
1349 /* Don't bother recording parent info. Since we are in
1350 * prefix match mode we will have to come back to wherever
1351 * we started this traversal anyway
1354 while ((n
= rcu_dereference(*cptr
)) == NULL
) {
1356 #ifdef CONFIG_IP_FIB_TRIE_STATS
1358 this_cpu_inc(stats
->null_node_hit
);
1360 /* If we are at cindex 0 there are no more bits for
1361 * us to strip at this level so we must ascend back
1362 * up one level to see if there are any more bits to
1363 * be stripped there.
1366 t_key pkey
= pn
->key
;
1368 /* If we don't have a parent then there is
1369 * nothing for us to do as we do not have any
1370 * further nodes to parse.
1374 #ifdef CONFIG_IP_FIB_TRIE_STATS
1375 this_cpu_inc(stats
->backtrack
);
1377 /* Get Child's index */
1378 pn
= node_parent_rcu(pn
);
1379 cindex
= get_index(pkey
, pn
);
1382 /* strip the least significant bit from the cindex */
1383 cindex
&= cindex
- 1;
1385 /* grab pointer for next child node */
1386 cptr
= &pn
->tnode
[cindex
];
1391 /* this line carries forward the xor from earlier in the function */
1392 index
= key
^ n
->key
;
1394 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1395 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
1396 struct fib_info
*fi
= fa
->fa_info
;
1399 if ((index
>= (1ul << fa
->fa_slen
)) &&
1400 ((BITS_PER_LONG
> KEYLENGTH
) || (fa
->fa_slen
!= KEYLENGTH
)))
1402 if (fa
->fa_tos
&& fa
->fa_tos
!= flp
->flowi4_tos
)
1406 if (fa
->fa_info
->fib_scope
< flp
->flowi4_scope
)
1408 fib_alias_accessed(fa
);
1409 err
= fib_props
[fa
->fa_type
].error
;
1410 if (unlikely(err
< 0)) {
1411 #ifdef CONFIG_IP_FIB_TRIE_STATS
1412 this_cpu_inc(stats
->semantic_match_passed
);
1416 if (fi
->fib_flags
& RTNH_F_DEAD
)
1418 for (nhsel
= 0; nhsel
< fi
->fib_nhs
; nhsel
++) {
1419 const struct fib_nh
*nh
= &fi
->fib_nh
[nhsel
];
1420 struct in_device
*in_dev
= __in_dev_get_rcu(nh
->nh_dev
);
1422 if (nh
->nh_flags
& RTNH_F_DEAD
)
1425 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev
) &&
1426 nh
->nh_flags
& RTNH_F_LINKDOWN
&&
1427 !(fib_flags
& FIB_LOOKUP_IGNORE_LINKSTATE
))
1429 if (!(flp
->flowi4_flags
& FLOWI_FLAG_SKIP_NH_OIF
)) {
1430 if (flp
->flowi4_oif
&&
1431 flp
->flowi4_oif
!= nh
->nh_oif
)
1435 if (!(fib_flags
& FIB_LOOKUP_NOREF
))
1436 atomic_inc(&fi
->fib_clntref
);
1438 res
->prefixlen
= KEYLENGTH
- fa
->fa_slen
;
1439 res
->nh_sel
= nhsel
;
1440 res
->type
= fa
->fa_type
;
1441 res
->scope
= fi
->fib_scope
;
1444 res
->fa_head
= &n
->leaf
;
1445 #ifdef CONFIG_IP_FIB_TRIE_STATS
1446 this_cpu_inc(stats
->semantic_match_passed
);
1448 trace_fib_table_lookup_nh(nh
);
1453 #ifdef CONFIG_IP_FIB_TRIE_STATS
1454 this_cpu_inc(stats
->semantic_match_miss
);
1458 EXPORT_SYMBOL_GPL(fib_table_lookup
);
1460 static void fib_remove_alias(struct trie
*t
, struct key_vector
*tp
,
1461 struct key_vector
*l
, struct fib_alias
*old
)
1463 /* record the location of the previous list_info entry */
1464 struct hlist_node
**pprev
= old
->fa_list
.pprev
;
1465 struct fib_alias
*fa
= hlist_entry(pprev
, typeof(*fa
), fa_list
.next
);
1467 /* remove the fib_alias from the list */
1468 hlist_del_rcu(&old
->fa_list
);
1470 /* if we emptied the list this leaf will be freed and we can sort
1471 * out parent suffix lengths as a part of trie_rebalance
1473 if (hlist_empty(&l
->leaf
)) {
1474 put_child_root(tp
, l
->key
, NULL
);
1476 trie_rebalance(t
, tp
);
1480 /* only access fa if it is pointing at the last valid hlist_node */
1484 /* update the trie with the latest suffix length */
1485 l
->slen
= fa
->fa_slen
;
1486 leaf_pull_suffix(tp
, l
);
1489 /* Caller must hold RTNL. */
1490 int fib_table_delete(struct fib_table
*tb
, struct fib_config
*cfg
)
1492 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1493 struct fib_alias
*fa
, *fa_to_delete
;
1494 struct key_vector
*l
, *tp
;
1495 u8 plen
= cfg
->fc_dst_len
;
1496 u8 slen
= KEYLENGTH
- plen
;
1497 u8 tos
= cfg
->fc_tos
;
1500 if (plen
> KEYLENGTH
)
1503 key
= ntohl(cfg
->fc_dst
);
1505 if ((plen
< KEYLENGTH
) && (key
<< plen
))
1508 l
= fib_find_node(t
, &tp
, key
);
1512 fa
= fib_find_alias(&l
->leaf
, slen
, tos
, 0, tb
->tb_id
);
1516 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key
, plen
, tos
, t
);
1518 fa_to_delete
= NULL
;
1519 hlist_for_each_entry_from(fa
, fa_list
) {
1520 struct fib_info
*fi
= fa
->fa_info
;
1522 if ((fa
->fa_slen
!= slen
) ||
1523 (fa
->tb_id
!= tb
->tb_id
) ||
1524 (fa
->fa_tos
!= tos
))
1527 if ((!cfg
->fc_type
|| fa
->fa_type
== cfg
->fc_type
) &&
1528 (cfg
->fc_scope
== RT_SCOPE_NOWHERE
||
1529 fa
->fa_info
->fib_scope
== cfg
->fc_scope
) &&
1530 (!cfg
->fc_prefsrc
||
1531 fi
->fib_prefsrc
== cfg
->fc_prefsrc
) &&
1532 (!cfg
->fc_protocol
||
1533 fi
->fib_protocol
== cfg
->fc_protocol
) &&
1534 fib_nh_match(cfg
, fi
) == 0) {
1543 switchdev_fib_ipv4_del(key
, plen
, fa_to_delete
->fa_info
, tos
,
1544 cfg
->fc_type
, tb
->tb_id
);
1546 rtmsg_fib(RTM_DELROUTE
, htonl(key
), fa_to_delete
, plen
, tb
->tb_id
,
1547 &cfg
->fc_nlinfo
, 0);
1550 tb
->tb_num_default
--;
1552 fib_remove_alias(t
, tp
, l
, fa_to_delete
);
1554 if (fa_to_delete
->fa_state
& FA_S_ACCESSED
)
1555 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1557 fib_release_info(fa_to_delete
->fa_info
);
1558 alias_free_mem_rcu(fa_to_delete
);
1562 /* Scan for the next leaf starting at the provided key value */
1563 static struct key_vector
*leaf_walk_rcu(struct key_vector
**tn
, t_key key
)
1565 struct key_vector
*pn
, *n
= *tn
;
1566 unsigned long cindex
;
1568 /* this loop is meant to try and find the key in the trie */
1570 /* record parent and next child index */
1572 cindex
= (key
> pn
->key
) ? get_index(key
, pn
) : 0;
1574 if (cindex
>> pn
->bits
)
1577 /* descend into the next child */
1578 n
= get_child_rcu(pn
, cindex
++);
1582 /* guarantee forward progress on the keys */
1583 if (IS_LEAF(n
) && (n
->key
>= key
))
1585 } while (IS_TNODE(n
));
1587 /* this loop will search for the next leaf with a greater key */
1588 while (!IS_TRIE(pn
)) {
1589 /* if we exhausted the parent node we will need to climb */
1590 if (cindex
>= (1ul << pn
->bits
)) {
1591 t_key pkey
= pn
->key
;
1593 pn
= node_parent_rcu(pn
);
1594 cindex
= get_index(pkey
, pn
) + 1;
1598 /* grab the next available node */
1599 n
= get_child_rcu(pn
, cindex
++);
1603 /* no need to compare keys since we bumped the index */
1607 /* Rescan start scanning in new node */
1613 return NULL
; /* Root of trie */
1615 /* if we are at the limit for keys just return NULL for the tnode */
1620 static void fib_trie_free(struct fib_table
*tb
)
1622 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1623 struct key_vector
*pn
= t
->kv
;
1624 unsigned long cindex
= 1;
1625 struct hlist_node
*tmp
;
1626 struct fib_alias
*fa
;
1628 /* walk trie in reverse order and free everything */
1630 struct key_vector
*n
;
1633 t_key pkey
= pn
->key
;
1639 pn
= node_parent(pn
);
1641 /* drop emptied tnode */
1642 put_child_root(pn
, n
->key
, NULL
);
1645 cindex
= get_index(pkey
, pn
);
1650 /* grab the next available node */
1651 n
= get_child(pn
, cindex
);
1656 /* record pn and cindex for leaf walking */
1658 cindex
= 1ul << n
->bits
;
1663 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1664 hlist_del_rcu(&fa
->fa_list
);
1665 alias_free_mem_rcu(fa
);
1668 put_child_root(pn
, n
->key
, NULL
);
1672 #ifdef CONFIG_IP_FIB_TRIE_STATS
1673 free_percpu(t
->stats
);
1678 struct fib_table
*fib_trie_unmerge(struct fib_table
*oldtb
)
1680 struct trie
*ot
= (struct trie
*)oldtb
->tb_data
;
1681 struct key_vector
*l
, *tp
= ot
->kv
;
1682 struct fib_table
*local_tb
;
1683 struct fib_alias
*fa
;
1687 if (oldtb
->tb_data
== oldtb
->__data
)
1690 local_tb
= fib_trie_table(RT_TABLE_LOCAL
, NULL
);
1694 lt
= (struct trie
*)local_tb
->tb_data
;
1696 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
1697 struct key_vector
*local_l
= NULL
, *local_tp
;
1699 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
1700 struct fib_alias
*new_fa
;
1702 if (local_tb
->tb_id
!= fa
->tb_id
)
1705 /* clone fa for new local table */
1706 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1710 memcpy(new_fa
, fa
, sizeof(*fa
));
1712 /* insert clone into table */
1714 local_l
= fib_find_node(lt
, &local_tp
, l
->key
);
1716 if (fib_insert_alias(lt
, local_tp
, local_l
, new_fa
,
1721 /* stop loop if key wrapped back to 0 */
1729 fib_trie_free(local_tb
);
1734 /* Caller must hold RTNL */
1735 void fib_table_flush_external(struct fib_table
*tb
)
1737 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1738 struct key_vector
*pn
= t
->kv
;
1739 unsigned long cindex
= 1;
1740 struct hlist_node
*tmp
;
1741 struct fib_alias
*fa
;
1743 /* walk trie in reverse order */
1745 unsigned char slen
= 0;
1746 struct key_vector
*n
;
1749 t_key pkey
= pn
->key
;
1751 /* cannot resize the trie vector */
1755 /* resize completed node */
1757 cindex
= get_index(pkey
, pn
);
1762 /* grab the next available node */
1763 n
= get_child(pn
, cindex
);
1768 /* record pn and cindex for leaf walking */
1770 cindex
= 1ul << n
->bits
;
1775 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1776 struct fib_info
*fi
= fa
->fa_info
;
1778 /* if alias was cloned to local then we just
1779 * need to remove the local copy from main
1781 if (tb
->tb_id
!= fa
->tb_id
) {
1782 hlist_del_rcu(&fa
->fa_list
);
1783 alias_free_mem_rcu(fa
);
1787 /* record local slen */
1790 if (!fi
|| !(fi
->fib_flags
& RTNH_F_OFFLOAD
))
1793 switchdev_fib_ipv4_del(n
->key
, KEYLENGTH
- fa
->fa_slen
,
1794 fi
, fa
->fa_tos
, fa
->fa_type
,
1798 /* update leaf slen */
1801 if (hlist_empty(&n
->leaf
)) {
1802 put_child_root(pn
, n
->key
, NULL
);
1808 /* Caller must hold RTNL. */
1809 int fib_table_flush(struct fib_table
*tb
)
1811 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1812 struct key_vector
*pn
= t
->kv
;
1813 unsigned long cindex
= 1;
1814 struct hlist_node
*tmp
;
1815 struct fib_alias
*fa
;
1818 /* walk trie in reverse order */
1820 unsigned char slen
= 0;
1821 struct key_vector
*n
;
1824 t_key pkey
= pn
->key
;
1826 /* cannot resize the trie vector */
1830 /* resize completed node */
1832 cindex
= get_index(pkey
, pn
);
1837 /* grab the next available node */
1838 n
= get_child(pn
, cindex
);
1843 /* record pn and cindex for leaf walking */
1845 cindex
= 1ul << n
->bits
;
1850 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1851 struct fib_info
*fi
= fa
->fa_info
;
1853 if (!fi
|| !(fi
->fib_flags
& RTNH_F_DEAD
)) {
1858 switchdev_fib_ipv4_del(n
->key
, KEYLENGTH
- fa
->fa_slen
,
1859 fi
, fa
->fa_tos
, fa
->fa_type
,
1861 hlist_del_rcu(&fa
->fa_list
);
1862 fib_release_info(fa
->fa_info
);
1863 alias_free_mem_rcu(fa
);
1867 /* update leaf slen */
1870 if (hlist_empty(&n
->leaf
)) {
1871 put_child_root(pn
, n
->key
, NULL
);
1876 pr_debug("trie_flush found=%d\n", found
);
1880 static void __trie_free_rcu(struct rcu_head
*head
)
1882 struct fib_table
*tb
= container_of(head
, struct fib_table
, rcu
);
1883 #ifdef CONFIG_IP_FIB_TRIE_STATS
1884 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1886 if (tb
->tb_data
== tb
->__data
)
1887 free_percpu(t
->stats
);
1888 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1892 void fib_free_table(struct fib_table
*tb
)
1894 call_rcu(&tb
->rcu
, __trie_free_rcu
);
1897 static int fn_trie_dump_leaf(struct key_vector
*l
, struct fib_table
*tb
,
1898 struct sk_buff
*skb
, struct netlink_callback
*cb
)
1900 __be32 xkey
= htonl(l
->key
);
1901 struct fib_alias
*fa
;
1907 /* rcu_read_lock is hold by caller */
1908 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
1914 if (tb
->tb_id
!= fa
->tb_id
) {
1919 if (fib_dump_info(skb
, NETLINK_CB(cb
->skb
).portid
,
1925 KEYLENGTH
- fa
->fa_slen
,
1927 fa
->fa_info
, NLM_F_MULTI
) < 0) {
1938 /* rcu_read_lock needs to be hold by caller from readside */
1939 int fib_table_dump(struct fib_table
*tb
, struct sk_buff
*skb
,
1940 struct netlink_callback
*cb
)
1942 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1943 struct key_vector
*l
, *tp
= t
->kv
;
1944 /* Dump starting at last key.
1945 * Note: 0.0.0.0/0 (ie default) is first key.
1947 int count
= cb
->args
[2];
1948 t_key key
= cb
->args
[3];
1950 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
1951 if (fn_trie_dump_leaf(l
, tb
, skb
, cb
) < 0) {
1953 cb
->args
[2] = count
;
1960 memset(&cb
->args
[4], 0,
1961 sizeof(cb
->args
) - 4*sizeof(cb
->args
[0]));
1963 /* stop loop if key wrapped back to 0 */
1969 cb
->args
[2] = count
;
1974 void __init
fib_trie_init(void)
1976 fn_alias_kmem
= kmem_cache_create("ip_fib_alias",
1977 sizeof(struct fib_alias
),
1978 0, SLAB_PANIC
, NULL
);
1980 trie_leaf_kmem
= kmem_cache_create("ip_fib_trie",
1982 0, SLAB_PANIC
, NULL
);
1985 struct fib_table
*fib_trie_table(u32 id
, struct fib_table
*alias
)
1987 struct fib_table
*tb
;
1989 size_t sz
= sizeof(*tb
);
1992 sz
+= sizeof(struct trie
);
1994 tb
= kzalloc(sz
, GFP_KERNEL
);
1999 tb
->tb_num_default
= 0;
2000 tb
->tb_data
= (alias
? alias
->__data
: tb
->__data
);
2005 t
= (struct trie
*) tb
->tb_data
;
2006 t
->kv
[0].pos
= KEYLENGTH
;
2007 t
->kv
[0].slen
= KEYLENGTH
;
2008 #ifdef CONFIG_IP_FIB_TRIE_STATS
2009 t
->stats
= alloc_percpu(struct trie_use_stats
);
2019 #ifdef CONFIG_PROC_FS
2020 /* Depth first Trie walk iterator */
2021 struct fib_trie_iter
{
2022 struct seq_net_private p
;
2023 struct fib_table
*tb
;
2024 struct key_vector
*tnode
;
2029 static struct key_vector
*fib_trie_get_next(struct fib_trie_iter
*iter
)
2031 unsigned long cindex
= iter
->index
;
2032 struct key_vector
*pn
= iter
->tnode
;
2035 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2036 iter
->tnode
, iter
->index
, iter
->depth
);
2038 while (!IS_TRIE(pn
)) {
2039 while (cindex
< child_length(pn
)) {
2040 struct key_vector
*n
= get_child_rcu(pn
, cindex
++);
2047 iter
->index
= cindex
;
2049 /* push down one level */
2058 /* Current node exhausted, pop back up */
2060 pn
= node_parent_rcu(pn
);
2061 cindex
= get_index(pkey
, pn
) + 1;
2065 /* record root node so further searches know we are done */
2072 static struct key_vector
*fib_trie_get_first(struct fib_trie_iter
*iter
,
2075 struct key_vector
*n
, *pn
;
2081 n
= rcu_dereference(pn
->tnode
[0]);
2098 static void trie_collect_stats(struct trie
*t
, struct trie_stat
*s
)
2100 struct key_vector
*n
;
2101 struct fib_trie_iter iter
;
2103 memset(s
, 0, sizeof(*s
));
2106 for (n
= fib_trie_get_first(&iter
, t
); n
; n
= fib_trie_get_next(&iter
)) {
2108 struct fib_alias
*fa
;
2111 s
->totdepth
+= iter
.depth
;
2112 if (iter
.depth
> s
->maxdepth
)
2113 s
->maxdepth
= iter
.depth
;
2115 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
)
2119 if (n
->bits
< MAX_STAT_DEPTH
)
2120 s
->nodesizes
[n
->bits
]++;
2121 s
->nullpointers
+= tn_info(n
)->empty_children
;
2128 * This outputs /proc/net/fib_triestats
2130 static void trie_show_stats(struct seq_file
*seq
, struct trie_stat
*stat
)
2132 unsigned int i
, max
, pointers
, bytes
, avdepth
;
2135 avdepth
= stat
->totdepth
*100 / stat
->leaves
;
2139 seq_printf(seq
, "\tAver depth: %u.%02d\n",
2140 avdepth
/ 100, avdepth
% 100);
2141 seq_printf(seq
, "\tMax depth: %u\n", stat
->maxdepth
);
2143 seq_printf(seq
, "\tLeaves: %u\n", stat
->leaves
);
2144 bytes
= LEAF_SIZE
* stat
->leaves
;
2146 seq_printf(seq
, "\tPrefixes: %u\n", stat
->prefixes
);
2147 bytes
+= sizeof(struct fib_alias
) * stat
->prefixes
;
2149 seq_printf(seq
, "\tInternal nodes: %u\n\t", stat
->tnodes
);
2150 bytes
+= TNODE_SIZE(0) * stat
->tnodes
;
2152 max
= MAX_STAT_DEPTH
;
2153 while (max
> 0 && stat
->nodesizes
[max
-1] == 0)
2157 for (i
= 1; i
< max
; i
++)
2158 if (stat
->nodesizes
[i
] != 0) {
2159 seq_printf(seq
, " %u: %u", i
, stat
->nodesizes
[i
]);
2160 pointers
+= (1<<i
) * stat
->nodesizes
[i
];
2162 seq_putc(seq
, '\n');
2163 seq_printf(seq
, "\tPointers: %u\n", pointers
);
2165 bytes
+= sizeof(struct key_vector
*) * pointers
;
2166 seq_printf(seq
, "Null ptrs: %u\n", stat
->nullpointers
);
2167 seq_printf(seq
, "Total size: %u kB\n", (bytes
+ 1023) / 1024);
2170 #ifdef CONFIG_IP_FIB_TRIE_STATS
2171 static void trie_show_usage(struct seq_file
*seq
,
2172 const struct trie_use_stats __percpu
*stats
)
2174 struct trie_use_stats s
= { 0 };
2177 /* loop through all of the CPUs and gather up the stats */
2178 for_each_possible_cpu(cpu
) {
2179 const struct trie_use_stats
*pcpu
= per_cpu_ptr(stats
, cpu
);
2181 s
.gets
+= pcpu
->gets
;
2182 s
.backtrack
+= pcpu
->backtrack
;
2183 s
.semantic_match_passed
+= pcpu
->semantic_match_passed
;
2184 s
.semantic_match_miss
+= pcpu
->semantic_match_miss
;
2185 s
.null_node_hit
+= pcpu
->null_node_hit
;
2186 s
.resize_node_skipped
+= pcpu
->resize_node_skipped
;
2189 seq_printf(seq
, "\nCounters:\n---------\n");
2190 seq_printf(seq
, "gets = %u\n", s
.gets
);
2191 seq_printf(seq
, "backtracks = %u\n", s
.backtrack
);
2192 seq_printf(seq
, "semantic match passed = %u\n",
2193 s
.semantic_match_passed
);
2194 seq_printf(seq
, "semantic match miss = %u\n", s
.semantic_match_miss
);
2195 seq_printf(seq
, "null node hit= %u\n", s
.null_node_hit
);
2196 seq_printf(seq
, "skipped node resize = %u\n\n", s
.resize_node_skipped
);
2198 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2200 static void fib_table_print(struct seq_file
*seq
, struct fib_table
*tb
)
2202 if (tb
->tb_id
== RT_TABLE_LOCAL
)
2203 seq_puts(seq
, "Local:\n");
2204 else if (tb
->tb_id
== RT_TABLE_MAIN
)
2205 seq_puts(seq
, "Main:\n");
2207 seq_printf(seq
, "Id %d:\n", tb
->tb_id
);
2211 static int fib_triestat_seq_show(struct seq_file
*seq
, void *v
)
2213 struct net
*net
= (struct net
*)seq
->private;
2217 "Basic info: size of leaf:"
2218 " %Zd bytes, size of tnode: %Zd bytes.\n",
2219 LEAF_SIZE
, TNODE_SIZE(0));
2221 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2222 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2223 struct fib_table
*tb
;
2225 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2226 struct trie
*t
= (struct trie
*) tb
->tb_data
;
2227 struct trie_stat stat
;
2232 fib_table_print(seq
, tb
);
2234 trie_collect_stats(t
, &stat
);
2235 trie_show_stats(seq
, &stat
);
2236 #ifdef CONFIG_IP_FIB_TRIE_STATS
2237 trie_show_usage(seq
, t
->stats
);
2245 static int fib_triestat_seq_open(struct inode
*inode
, struct file
*file
)
2247 return single_open_net(inode
, file
, fib_triestat_seq_show
);
2250 static const struct file_operations fib_triestat_fops
= {
2251 .owner
= THIS_MODULE
,
2252 .open
= fib_triestat_seq_open
,
2254 .llseek
= seq_lseek
,
2255 .release
= single_release_net
,
2258 static struct key_vector
*fib_trie_get_idx(struct seq_file
*seq
, loff_t pos
)
2260 struct fib_trie_iter
*iter
= seq
->private;
2261 struct net
*net
= seq_file_net(seq
);
2265 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2266 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2267 struct fib_table
*tb
;
2269 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2270 struct key_vector
*n
;
2272 for (n
= fib_trie_get_first(iter
,
2273 (struct trie
*) tb
->tb_data
);
2274 n
; n
= fib_trie_get_next(iter
))
2285 static void *fib_trie_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2289 return fib_trie_get_idx(seq
, *pos
);
2292 static void *fib_trie_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2294 struct fib_trie_iter
*iter
= seq
->private;
2295 struct net
*net
= seq_file_net(seq
);
2296 struct fib_table
*tb
= iter
->tb
;
2297 struct hlist_node
*tb_node
;
2299 struct key_vector
*n
;
2302 /* next node in same table */
2303 n
= fib_trie_get_next(iter
);
2307 /* walk rest of this hash chain */
2308 h
= tb
->tb_id
& (FIB_TABLE_HASHSZ
- 1);
2309 while ((tb_node
= rcu_dereference(hlist_next_rcu(&tb
->tb_hlist
)))) {
2310 tb
= hlist_entry(tb_node
, struct fib_table
, tb_hlist
);
2311 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2316 /* new hash chain */
2317 while (++h
< FIB_TABLE_HASHSZ
) {
2318 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2319 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2320 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2332 static void fib_trie_seq_stop(struct seq_file
*seq
, void *v
)
2338 static void seq_indent(struct seq_file
*seq
, int n
)
2344 static inline const char *rtn_scope(char *buf
, size_t len
, enum rt_scope_t s
)
2347 case RT_SCOPE_UNIVERSE
: return "universe";
2348 case RT_SCOPE_SITE
: return "site";
2349 case RT_SCOPE_LINK
: return "link";
2350 case RT_SCOPE_HOST
: return "host";
2351 case RT_SCOPE_NOWHERE
: return "nowhere";
2353 snprintf(buf
, len
, "scope=%d", s
);
2358 static const char *const rtn_type_names
[__RTN_MAX
] = {
2359 [RTN_UNSPEC
] = "UNSPEC",
2360 [RTN_UNICAST
] = "UNICAST",
2361 [RTN_LOCAL
] = "LOCAL",
2362 [RTN_BROADCAST
] = "BROADCAST",
2363 [RTN_ANYCAST
] = "ANYCAST",
2364 [RTN_MULTICAST
] = "MULTICAST",
2365 [RTN_BLACKHOLE
] = "BLACKHOLE",
2366 [RTN_UNREACHABLE
] = "UNREACHABLE",
2367 [RTN_PROHIBIT
] = "PROHIBIT",
2368 [RTN_THROW
] = "THROW",
2370 [RTN_XRESOLVE
] = "XRESOLVE",
2373 static inline const char *rtn_type(char *buf
, size_t len
, unsigned int t
)
2375 if (t
< __RTN_MAX
&& rtn_type_names
[t
])
2376 return rtn_type_names
[t
];
2377 snprintf(buf
, len
, "type %u", t
);
2381 /* Pretty print the trie */
2382 static int fib_trie_seq_show(struct seq_file
*seq
, void *v
)
2384 const struct fib_trie_iter
*iter
= seq
->private;
2385 struct key_vector
*n
= v
;
2387 if (IS_TRIE(node_parent_rcu(n
)))
2388 fib_table_print(seq
, iter
->tb
);
2391 __be32 prf
= htonl(n
->key
);
2393 seq_indent(seq
, iter
->depth
-1);
2394 seq_printf(seq
, " +-- %pI4/%zu %u %u %u\n",
2395 &prf
, KEYLENGTH
- n
->pos
- n
->bits
, n
->bits
,
2396 tn_info(n
)->full_children
,
2397 tn_info(n
)->empty_children
);
2399 __be32 val
= htonl(n
->key
);
2400 struct fib_alias
*fa
;
2402 seq_indent(seq
, iter
->depth
);
2403 seq_printf(seq
, " |-- %pI4\n", &val
);
2405 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
2406 char buf1
[32], buf2
[32];
2408 seq_indent(seq
, iter
->depth
+ 1);
2409 seq_printf(seq
, " /%zu %s %s",
2410 KEYLENGTH
- fa
->fa_slen
,
2411 rtn_scope(buf1
, sizeof(buf1
),
2412 fa
->fa_info
->fib_scope
),
2413 rtn_type(buf2
, sizeof(buf2
),
2416 seq_printf(seq
, " tos=%d", fa
->fa_tos
);
2417 seq_putc(seq
, '\n');
2424 static const struct seq_operations fib_trie_seq_ops
= {
2425 .start
= fib_trie_seq_start
,
2426 .next
= fib_trie_seq_next
,
2427 .stop
= fib_trie_seq_stop
,
2428 .show
= fib_trie_seq_show
,
2431 static int fib_trie_seq_open(struct inode
*inode
, struct file
*file
)
2433 return seq_open_net(inode
, file
, &fib_trie_seq_ops
,
2434 sizeof(struct fib_trie_iter
));
2437 static const struct file_operations fib_trie_fops
= {
2438 .owner
= THIS_MODULE
,
2439 .open
= fib_trie_seq_open
,
2441 .llseek
= seq_lseek
,
2442 .release
= seq_release_net
,
2445 struct fib_route_iter
{
2446 struct seq_net_private p
;
2447 struct fib_table
*main_tb
;
2448 struct key_vector
*tnode
;
2453 static struct key_vector
*fib_route_get_idx(struct fib_route_iter
*iter
,
2456 struct fib_table
*tb
= iter
->main_tb
;
2457 struct key_vector
*l
, **tp
= &iter
->tnode
;
2461 /* use cache location of next-to-find key */
2462 if (iter
->pos
> 0 && pos
>= iter
->pos
) {
2466 t
= (struct trie
*)tb
->tb_data
;
2467 iter
->tnode
= t
->kv
;
2472 while ((l
= leaf_walk_rcu(tp
, key
)) != NULL
) {
2481 /* handle unlikely case of a key wrap */
2487 iter
->key
= key
; /* remember it */
2489 iter
->pos
= 0; /* forget it */
2494 static void *fib_route_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2497 struct fib_route_iter
*iter
= seq
->private;
2498 struct fib_table
*tb
;
2503 tb
= fib_get_table(seq_file_net(seq
), RT_TABLE_MAIN
);
2510 return fib_route_get_idx(iter
, *pos
);
2512 t
= (struct trie
*)tb
->tb_data
;
2513 iter
->tnode
= t
->kv
;
2517 return SEQ_START_TOKEN
;
2520 static void *fib_route_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2522 struct fib_route_iter
*iter
= seq
->private;
2523 struct key_vector
*l
= NULL
;
2524 t_key key
= iter
->key
;
2528 /* only allow key of 0 for start of sequence */
2529 if ((v
== SEQ_START_TOKEN
) || key
)
2530 l
= leaf_walk_rcu(&iter
->tnode
, key
);
2533 iter
->key
= l
->key
+ 1;
2542 static void fib_route_seq_stop(struct seq_file
*seq
, void *v
)
2548 static unsigned int fib_flag_trans(int type
, __be32 mask
, const struct fib_info
*fi
)
2550 unsigned int flags
= 0;
2552 if (type
== RTN_UNREACHABLE
|| type
== RTN_PROHIBIT
)
2554 if (fi
&& fi
->fib_nh
->nh_gw
)
2555 flags
|= RTF_GATEWAY
;
2556 if (mask
== htonl(0xFFFFFFFF))
2563 * This outputs /proc/net/route.
2564 * The format of the file is not supposed to be changed
2565 * and needs to be same as fib_hash output to avoid breaking
2568 static int fib_route_seq_show(struct seq_file
*seq
, void *v
)
2570 struct fib_route_iter
*iter
= seq
->private;
2571 struct fib_table
*tb
= iter
->main_tb
;
2572 struct fib_alias
*fa
;
2573 struct key_vector
*l
= v
;
2576 if (v
== SEQ_START_TOKEN
) {
2577 seq_printf(seq
, "%-127s\n", "Iface\tDestination\tGateway "
2578 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2583 prefix
= htonl(l
->key
);
2585 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
2586 const struct fib_info
*fi
= fa
->fa_info
;
2587 __be32 mask
= inet_make_mask(KEYLENGTH
- fa
->fa_slen
);
2588 unsigned int flags
= fib_flag_trans(fa
->fa_type
, mask
, fi
);
2590 if ((fa
->fa_type
== RTN_BROADCAST
) ||
2591 (fa
->fa_type
== RTN_MULTICAST
))
2594 if (fa
->tb_id
!= tb
->tb_id
)
2597 seq_setwidth(seq
, 127);
2601 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2602 "%d\t%08X\t%d\t%u\t%u",
2603 fi
->fib_dev
? fi
->fib_dev
->name
: "*",
2605 fi
->fib_nh
->nh_gw
, flags
, 0, 0,
2609 fi
->fib_advmss
+ 40 : 0),
2614 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2615 "%d\t%08X\t%d\t%u\t%u",
2616 prefix
, 0, flags
, 0, 0, 0,
2625 static const struct seq_operations fib_route_seq_ops
= {
2626 .start
= fib_route_seq_start
,
2627 .next
= fib_route_seq_next
,
2628 .stop
= fib_route_seq_stop
,
2629 .show
= fib_route_seq_show
,
2632 static int fib_route_seq_open(struct inode
*inode
, struct file
*file
)
2634 return seq_open_net(inode
, file
, &fib_route_seq_ops
,
2635 sizeof(struct fib_route_iter
));
2638 static const struct file_operations fib_route_fops
= {
2639 .owner
= THIS_MODULE
,
2640 .open
= fib_route_seq_open
,
2642 .llseek
= seq_lseek
,
2643 .release
= seq_release_net
,
2646 int __net_init
fib_proc_init(struct net
*net
)
2648 if (!proc_create("fib_trie", S_IRUGO
, net
->proc_net
, &fib_trie_fops
))
2651 if (!proc_create("fib_triestat", S_IRUGO
, net
->proc_net
,
2652 &fib_triestat_fops
))
2655 if (!proc_create("route", S_IRUGO
, net
->proc_net
, &fib_route_fops
))
2661 remove_proc_entry("fib_triestat", net
->proc_net
);
2663 remove_proc_entry("fib_trie", net
->proc_net
);
2668 void __net_exit
fib_proc_exit(struct net
*net
)
2670 remove_proc_entry("fib_trie", net
->proc_net
);
2671 remove_proc_entry("fib_triestat", net
->proc_net
);
2672 remove_proc_entry("route", net
->proc_net
);
2675 #endif /* CONFIG_PROC_FS */