macvtap: read vnet_hdr_size once
[linux/fpc-iii.git] / block / blk-mq.c
blob81caceb96c3c1c444f82b0eaa389084b39f7308d
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
27 #include <trace/events/block.h>
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
34 static DEFINE_MUTEX(all_q_mutex);
35 static LIST_HEAD(all_q_list);
38 * Check if any of the ctx's have pending work in this hardware queue
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 return sbitmap_any_bit_set(&hctx->ctx_map);
46 * Mark this ctx as having pending work in this hardware queue
48 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
49 struct blk_mq_ctx *ctx)
51 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
52 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
55 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
56 struct blk_mq_ctx *ctx)
58 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
61 void blk_mq_freeze_queue_start(struct request_queue *q)
63 int freeze_depth;
65 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
66 if (freeze_depth == 1) {
67 percpu_ref_kill(&q->q_usage_counter);
68 blk_mq_run_hw_queues(q, false);
71 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
73 static void blk_mq_freeze_queue_wait(struct request_queue *q)
75 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
79 * Guarantee no request is in use, so we can change any data structure of
80 * the queue afterward.
82 void blk_freeze_queue(struct request_queue *q)
85 * In the !blk_mq case we are only calling this to kill the
86 * q_usage_counter, otherwise this increases the freeze depth
87 * and waits for it to return to zero. For this reason there is
88 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
89 * exported to drivers as the only user for unfreeze is blk_mq.
91 blk_mq_freeze_queue_start(q);
92 blk_mq_freeze_queue_wait(q);
95 void blk_mq_freeze_queue(struct request_queue *q)
98 * ...just an alias to keep freeze and unfreeze actions balanced
99 * in the blk_mq_* namespace
101 blk_freeze_queue(q);
103 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
105 void blk_mq_unfreeze_queue(struct request_queue *q)
107 int freeze_depth;
109 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
110 WARN_ON_ONCE(freeze_depth < 0);
111 if (!freeze_depth) {
112 percpu_ref_reinit(&q->q_usage_counter);
113 wake_up_all(&q->mq_freeze_wq);
116 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
118 void blk_mq_wake_waiters(struct request_queue *q)
120 struct blk_mq_hw_ctx *hctx;
121 unsigned int i;
123 queue_for_each_hw_ctx(q, hctx, i)
124 if (blk_mq_hw_queue_mapped(hctx))
125 blk_mq_tag_wakeup_all(hctx->tags, true);
128 * If we are called because the queue has now been marked as
129 * dying, we need to ensure that processes currently waiting on
130 * the queue are notified as well.
132 wake_up_all(&q->mq_freeze_wq);
135 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
137 return blk_mq_has_free_tags(hctx->tags);
139 EXPORT_SYMBOL(blk_mq_can_queue);
141 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
142 struct request *rq, int op,
143 unsigned int op_flags)
145 if (blk_queue_io_stat(q))
146 op_flags |= REQ_IO_STAT;
148 INIT_LIST_HEAD(&rq->queuelist);
149 /* csd/requeue_work/fifo_time is initialized before use */
150 rq->q = q;
151 rq->mq_ctx = ctx;
152 req_set_op_attrs(rq, op, op_flags);
153 /* do not touch atomic flags, it needs atomic ops against the timer */
154 rq->cpu = -1;
155 INIT_HLIST_NODE(&rq->hash);
156 RB_CLEAR_NODE(&rq->rb_node);
157 rq->rq_disk = NULL;
158 rq->part = NULL;
159 rq->start_time = jiffies;
160 #ifdef CONFIG_BLK_CGROUP
161 rq->rl = NULL;
162 set_start_time_ns(rq);
163 rq->io_start_time_ns = 0;
164 #endif
165 rq->nr_phys_segments = 0;
166 #if defined(CONFIG_BLK_DEV_INTEGRITY)
167 rq->nr_integrity_segments = 0;
168 #endif
169 rq->special = NULL;
170 /* tag was already set */
171 rq->errors = 0;
173 rq->cmd = rq->__cmd;
175 rq->extra_len = 0;
176 rq->sense_len = 0;
177 rq->resid_len = 0;
178 rq->sense = NULL;
180 INIT_LIST_HEAD(&rq->timeout_list);
181 rq->timeout = 0;
183 rq->end_io = NULL;
184 rq->end_io_data = NULL;
185 rq->next_rq = NULL;
187 ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
190 static struct request *
191 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
193 struct request *rq;
194 unsigned int tag;
196 tag = blk_mq_get_tag(data);
197 if (tag != BLK_MQ_TAG_FAIL) {
198 rq = data->hctx->tags->rqs[tag];
200 if (blk_mq_tag_busy(data->hctx)) {
201 rq->cmd_flags = REQ_MQ_INFLIGHT;
202 atomic_inc(&data->hctx->nr_active);
205 rq->tag = tag;
206 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
207 return rq;
210 return NULL;
213 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
214 unsigned int flags)
216 struct blk_mq_ctx *ctx;
217 struct blk_mq_hw_ctx *hctx;
218 struct request *rq;
219 struct blk_mq_alloc_data alloc_data;
220 int ret;
222 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
223 if (ret)
224 return ERR_PTR(ret);
226 ctx = blk_mq_get_ctx(q);
227 hctx = blk_mq_map_queue(q, ctx->cpu);
228 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
229 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
230 blk_mq_put_ctx(ctx);
232 if (!rq) {
233 blk_queue_exit(q);
234 return ERR_PTR(-EWOULDBLOCK);
237 rq->__data_len = 0;
238 rq->__sector = (sector_t) -1;
239 rq->bio = rq->biotail = NULL;
240 return rq;
242 EXPORT_SYMBOL(blk_mq_alloc_request);
244 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
245 unsigned int flags, unsigned int hctx_idx)
247 struct blk_mq_hw_ctx *hctx;
248 struct blk_mq_ctx *ctx;
249 struct request *rq;
250 struct blk_mq_alloc_data alloc_data;
251 int ret;
254 * If the tag allocator sleeps we could get an allocation for a
255 * different hardware context. No need to complicate the low level
256 * allocator for this for the rare use case of a command tied to
257 * a specific queue.
259 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
260 return ERR_PTR(-EINVAL);
262 if (hctx_idx >= q->nr_hw_queues)
263 return ERR_PTR(-EIO);
265 ret = blk_queue_enter(q, true);
266 if (ret)
267 return ERR_PTR(ret);
270 * Check if the hardware context is actually mapped to anything.
271 * If not tell the caller that it should skip this queue.
273 hctx = q->queue_hw_ctx[hctx_idx];
274 if (!blk_mq_hw_queue_mapped(hctx)) {
275 ret = -EXDEV;
276 goto out_queue_exit;
278 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
280 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
281 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
282 if (!rq) {
283 ret = -EWOULDBLOCK;
284 goto out_queue_exit;
287 return rq;
289 out_queue_exit:
290 blk_queue_exit(q);
291 return ERR_PTR(ret);
293 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
295 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
296 struct blk_mq_ctx *ctx, struct request *rq)
298 const int tag = rq->tag;
299 struct request_queue *q = rq->q;
301 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
302 atomic_dec(&hctx->nr_active);
303 rq->cmd_flags = 0;
305 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
306 blk_mq_put_tag(hctx, ctx, tag);
307 blk_queue_exit(q);
310 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
312 struct blk_mq_ctx *ctx = rq->mq_ctx;
314 ctx->rq_completed[rq_is_sync(rq)]++;
315 __blk_mq_free_request(hctx, ctx, rq);
318 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
320 void blk_mq_free_request(struct request *rq)
322 blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
324 EXPORT_SYMBOL_GPL(blk_mq_free_request);
326 inline void __blk_mq_end_request(struct request *rq, int error)
328 blk_account_io_done(rq);
330 if (rq->end_io) {
331 rq->end_io(rq, error);
332 } else {
333 if (unlikely(blk_bidi_rq(rq)))
334 blk_mq_free_request(rq->next_rq);
335 blk_mq_free_request(rq);
338 EXPORT_SYMBOL(__blk_mq_end_request);
340 void blk_mq_end_request(struct request *rq, int error)
342 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
343 BUG();
344 __blk_mq_end_request(rq, error);
346 EXPORT_SYMBOL(blk_mq_end_request);
348 static void __blk_mq_complete_request_remote(void *data)
350 struct request *rq = data;
352 rq->q->softirq_done_fn(rq);
355 static void blk_mq_ipi_complete_request(struct request *rq)
357 struct blk_mq_ctx *ctx = rq->mq_ctx;
358 bool shared = false;
359 int cpu;
361 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
362 rq->q->softirq_done_fn(rq);
363 return;
366 cpu = get_cpu();
367 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
368 shared = cpus_share_cache(cpu, ctx->cpu);
370 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
371 rq->csd.func = __blk_mq_complete_request_remote;
372 rq->csd.info = rq;
373 rq->csd.flags = 0;
374 smp_call_function_single_async(ctx->cpu, &rq->csd);
375 } else {
376 rq->q->softirq_done_fn(rq);
378 put_cpu();
381 static void __blk_mq_complete_request(struct request *rq)
383 struct request_queue *q = rq->q;
385 if (!q->softirq_done_fn)
386 blk_mq_end_request(rq, rq->errors);
387 else
388 blk_mq_ipi_complete_request(rq);
392 * blk_mq_complete_request - end I/O on a request
393 * @rq: the request being processed
395 * Description:
396 * Ends all I/O on a request. It does not handle partial completions.
397 * The actual completion happens out-of-order, through a IPI handler.
399 void blk_mq_complete_request(struct request *rq, int error)
401 struct request_queue *q = rq->q;
403 if (unlikely(blk_should_fake_timeout(q)))
404 return;
405 if (!blk_mark_rq_complete(rq)) {
406 rq->errors = error;
407 __blk_mq_complete_request(rq);
410 EXPORT_SYMBOL(blk_mq_complete_request);
412 int blk_mq_request_started(struct request *rq)
414 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
416 EXPORT_SYMBOL_GPL(blk_mq_request_started);
418 void blk_mq_start_request(struct request *rq)
420 struct request_queue *q = rq->q;
422 trace_block_rq_issue(q, rq);
424 rq->resid_len = blk_rq_bytes(rq);
425 if (unlikely(blk_bidi_rq(rq)))
426 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
428 blk_add_timer(rq);
431 * Ensure that ->deadline is visible before set the started
432 * flag and clear the completed flag.
434 smp_mb__before_atomic();
437 * Mark us as started and clear complete. Complete might have been
438 * set if requeue raced with timeout, which then marked it as
439 * complete. So be sure to clear complete again when we start
440 * the request, otherwise we'll ignore the completion event.
442 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
443 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
444 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
445 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
447 if (q->dma_drain_size && blk_rq_bytes(rq)) {
449 * Make sure space for the drain appears. We know we can do
450 * this because max_hw_segments has been adjusted to be one
451 * fewer than the device can handle.
453 rq->nr_phys_segments++;
456 EXPORT_SYMBOL(blk_mq_start_request);
458 static void __blk_mq_requeue_request(struct request *rq)
460 struct request_queue *q = rq->q;
462 trace_block_rq_requeue(q, rq);
464 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
465 if (q->dma_drain_size && blk_rq_bytes(rq))
466 rq->nr_phys_segments--;
470 void blk_mq_requeue_request(struct request *rq)
472 __blk_mq_requeue_request(rq);
474 BUG_ON(blk_queued_rq(rq));
475 blk_mq_add_to_requeue_list(rq, true);
477 EXPORT_SYMBOL(blk_mq_requeue_request);
479 static void blk_mq_requeue_work(struct work_struct *work)
481 struct request_queue *q =
482 container_of(work, struct request_queue, requeue_work.work);
483 LIST_HEAD(rq_list);
484 struct request *rq, *next;
485 unsigned long flags;
487 spin_lock_irqsave(&q->requeue_lock, flags);
488 list_splice_init(&q->requeue_list, &rq_list);
489 spin_unlock_irqrestore(&q->requeue_lock, flags);
491 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
492 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
493 continue;
495 rq->cmd_flags &= ~REQ_SOFTBARRIER;
496 list_del_init(&rq->queuelist);
497 blk_mq_insert_request(rq, true, false, false);
500 while (!list_empty(&rq_list)) {
501 rq = list_entry(rq_list.next, struct request, queuelist);
502 list_del_init(&rq->queuelist);
503 blk_mq_insert_request(rq, false, false, false);
507 * Use the start variant of queue running here, so that running
508 * the requeue work will kick stopped queues.
510 blk_mq_start_hw_queues(q);
513 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
515 struct request_queue *q = rq->q;
516 unsigned long flags;
519 * We abuse this flag that is otherwise used by the I/O scheduler to
520 * request head insertation from the workqueue.
522 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
524 spin_lock_irqsave(&q->requeue_lock, flags);
525 if (at_head) {
526 rq->cmd_flags |= REQ_SOFTBARRIER;
527 list_add(&rq->queuelist, &q->requeue_list);
528 } else {
529 list_add_tail(&rq->queuelist, &q->requeue_list);
531 spin_unlock_irqrestore(&q->requeue_lock, flags);
533 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
535 void blk_mq_cancel_requeue_work(struct request_queue *q)
537 cancel_delayed_work_sync(&q->requeue_work);
539 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
541 void blk_mq_kick_requeue_list(struct request_queue *q)
543 kblockd_schedule_delayed_work(&q->requeue_work, 0);
545 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
547 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
548 unsigned long msecs)
550 kblockd_schedule_delayed_work(&q->requeue_work,
551 msecs_to_jiffies(msecs));
553 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
555 void blk_mq_abort_requeue_list(struct request_queue *q)
557 unsigned long flags;
558 LIST_HEAD(rq_list);
560 spin_lock_irqsave(&q->requeue_lock, flags);
561 list_splice_init(&q->requeue_list, &rq_list);
562 spin_unlock_irqrestore(&q->requeue_lock, flags);
564 while (!list_empty(&rq_list)) {
565 struct request *rq;
567 rq = list_first_entry(&rq_list, struct request, queuelist);
568 list_del_init(&rq->queuelist);
569 rq->errors = -EIO;
570 blk_mq_end_request(rq, rq->errors);
573 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
575 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
577 if (tag < tags->nr_tags) {
578 prefetch(tags->rqs[tag]);
579 return tags->rqs[tag];
582 return NULL;
584 EXPORT_SYMBOL(blk_mq_tag_to_rq);
586 struct blk_mq_timeout_data {
587 unsigned long next;
588 unsigned int next_set;
591 void blk_mq_rq_timed_out(struct request *req, bool reserved)
593 struct blk_mq_ops *ops = req->q->mq_ops;
594 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
597 * We know that complete is set at this point. If STARTED isn't set
598 * anymore, then the request isn't active and the "timeout" should
599 * just be ignored. This can happen due to the bitflag ordering.
600 * Timeout first checks if STARTED is set, and if it is, assumes
601 * the request is active. But if we race with completion, then
602 * we both flags will get cleared. So check here again, and ignore
603 * a timeout event with a request that isn't active.
605 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
606 return;
608 if (ops->timeout)
609 ret = ops->timeout(req, reserved);
611 switch (ret) {
612 case BLK_EH_HANDLED:
613 __blk_mq_complete_request(req);
614 break;
615 case BLK_EH_RESET_TIMER:
616 blk_add_timer(req);
617 blk_clear_rq_complete(req);
618 break;
619 case BLK_EH_NOT_HANDLED:
620 break;
621 default:
622 printk(KERN_ERR "block: bad eh return: %d\n", ret);
623 break;
627 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
628 struct request *rq, void *priv, bool reserved)
630 struct blk_mq_timeout_data *data = priv;
632 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
634 * If a request wasn't started before the queue was
635 * marked dying, kill it here or it'll go unnoticed.
637 if (unlikely(blk_queue_dying(rq->q))) {
638 rq->errors = -EIO;
639 blk_mq_end_request(rq, rq->errors);
641 return;
644 if (time_after_eq(jiffies, rq->deadline)) {
645 if (!blk_mark_rq_complete(rq))
646 blk_mq_rq_timed_out(rq, reserved);
647 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
648 data->next = rq->deadline;
649 data->next_set = 1;
653 static void blk_mq_timeout_work(struct work_struct *work)
655 struct request_queue *q =
656 container_of(work, struct request_queue, timeout_work);
657 struct blk_mq_timeout_data data = {
658 .next = 0,
659 .next_set = 0,
661 int i;
663 /* A deadlock might occur if a request is stuck requiring a
664 * timeout at the same time a queue freeze is waiting
665 * completion, since the timeout code would not be able to
666 * acquire the queue reference here.
668 * That's why we don't use blk_queue_enter here; instead, we use
669 * percpu_ref_tryget directly, because we need to be able to
670 * obtain a reference even in the short window between the queue
671 * starting to freeze, by dropping the first reference in
672 * blk_mq_freeze_queue_start, and the moment the last request is
673 * consumed, marked by the instant q_usage_counter reaches
674 * zero.
676 if (!percpu_ref_tryget(&q->q_usage_counter))
677 return;
679 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
681 if (data.next_set) {
682 data.next = blk_rq_timeout(round_jiffies_up(data.next));
683 mod_timer(&q->timeout, data.next);
684 } else {
685 struct blk_mq_hw_ctx *hctx;
687 queue_for_each_hw_ctx(q, hctx, i) {
688 /* the hctx may be unmapped, so check it here */
689 if (blk_mq_hw_queue_mapped(hctx))
690 blk_mq_tag_idle(hctx);
693 blk_queue_exit(q);
697 * Reverse check our software queue for entries that we could potentially
698 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
699 * too much time checking for merges.
701 static bool blk_mq_attempt_merge(struct request_queue *q,
702 struct blk_mq_ctx *ctx, struct bio *bio)
704 struct request *rq;
705 int checked = 8;
707 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
708 int el_ret;
710 if (!checked--)
711 break;
713 if (!blk_rq_merge_ok(rq, bio))
714 continue;
716 el_ret = blk_try_merge(rq, bio);
717 if (el_ret == ELEVATOR_BACK_MERGE) {
718 if (bio_attempt_back_merge(q, rq, bio)) {
719 ctx->rq_merged++;
720 return true;
722 break;
723 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
724 if (bio_attempt_front_merge(q, rq, bio)) {
725 ctx->rq_merged++;
726 return true;
728 break;
732 return false;
735 struct flush_busy_ctx_data {
736 struct blk_mq_hw_ctx *hctx;
737 struct list_head *list;
740 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
742 struct flush_busy_ctx_data *flush_data = data;
743 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
744 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
746 sbitmap_clear_bit(sb, bitnr);
747 spin_lock(&ctx->lock);
748 list_splice_tail_init(&ctx->rq_list, flush_data->list);
749 spin_unlock(&ctx->lock);
750 return true;
754 * Process software queues that have been marked busy, splicing them
755 * to the for-dispatch
757 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
759 struct flush_busy_ctx_data data = {
760 .hctx = hctx,
761 .list = list,
764 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
767 static inline unsigned int queued_to_index(unsigned int queued)
769 if (!queued)
770 return 0;
772 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
776 * Run this hardware queue, pulling any software queues mapped to it in.
777 * Note that this function currently has various problems around ordering
778 * of IO. In particular, we'd like FIFO behaviour on handling existing
779 * items on the hctx->dispatch list. Ignore that for now.
781 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
783 struct request_queue *q = hctx->queue;
784 struct request *rq;
785 LIST_HEAD(rq_list);
786 LIST_HEAD(driver_list);
787 struct list_head *dptr;
788 int queued;
790 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
791 return;
793 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
794 cpu_online(hctx->next_cpu));
796 hctx->run++;
799 * Touch any software queue that has pending entries.
801 flush_busy_ctxs(hctx, &rq_list);
804 * If we have previous entries on our dispatch list, grab them
805 * and stuff them at the front for more fair dispatch.
807 if (!list_empty_careful(&hctx->dispatch)) {
808 spin_lock(&hctx->lock);
809 if (!list_empty(&hctx->dispatch))
810 list_splice_init(&hctx->dispatch, &rq_list);
811 spin_unlock(&hctx->lock);
815 * Start off with dptr being NULL, so we start the first request
816 * immediately, even if we have more pending.
818 dptr = NULL;
821 * Now process all the entries, sending them to the driver.
823 queued = 0;
824 while (!list_empty(&rq_list)) {
825 struct blk_mq_queue_data bd;
826 int ret;
828 rq = list_first_entry(&rq_list, struct request, queuelist);
829 list_del_init(&rq->queuelist);
831 bd.rq = rq;
832 bd.list = dptr;
833 bd.last = list_empty(&rq_list);
835 ret = q->mq_ops->queue_rq(hctx, &bd);
836 switch (ret) {
837 case BLK_MQ_RQ_QUEUE_OK:
838 queued++;
839 break;
840 case BLK_MQ_RQ_QUEUE_BUSY:
841 list_add(&rq->queuelist, &rq_list);
842 __blk_mq_requeue_request(rq);
843 break;
844 default:
845 pr_err("blk-mq: bad return on queue: %d\n", ret);
846 case BLK_MQ_RQ_QUEUE_ERROR:
847 rq->errors = -EIO;
848 blk_mq_end_request(rq, rq->errors);
849 break;
852 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
853 break;
856 * We've done the first request. If we have more than 1
857 * left in the list, set dptr to defer issue.
859 if (!dptr && rq_list.next != rq_list.prev)
860 dptr = &driver_list;
863 hctx->dispatched[queued_to_index(queued)]++;
866 * Any items that need requeuing? Stuff them into hctx->dispatch,
867 * that is where we will continue on next queue run.
869 if (!list_empty(&rq_list)) {
870 spin_lock(&hctx->lock);
871 list_splice(&rq_list, &hctx->dispatch);
872 spin_unlock(&hctx->lock);
874 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
875 * it's possible the queue is stopped and restarted again
876 * before this. Queue restart will dispatch requests. And since
877 * requests in rq_list aren't added into hctx->dispatch yet,
878 * the requests in rq_list might get lost.
880 * blk_mq_run_hw_queue() already checks the STOPPED bit
882 blk_mq_run_hw_queue(hctx, true);
887 * It'd be great if the workqueue API had a way to pass
888 * in a mask and had some smarts for more clever placement.
889 * For now we just round-robin here, switching for every
890 * BLK_MQ_CPU_WORK_BATCH queued items.
892 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
894 if (hctx->queue->nr_hw_queues == 1)
895 return WORK_CPU_UNBOUND;
897 if (--hctx->next_cpu_batch <= 0) {
898 int next_cpu;
900 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
901 if (next_cpu >= nr_cpu_ids)
902 next_cpu = cpumask_first(hctx->cpumask);
904 hctx->next_cpu = next_cpu;
905 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
908 return hctx->next_cpu;
911 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
913 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
914 !blk_mq_hw_queue_mapped(hctx)))
915 return;
917 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
918 int cpu = get_cpu();
919 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
920 __blk_mq_run_hw_queue(hctx);
921 put_cpu();
922 return;
925 put_cpu();
928 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
931 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
933 struct blk_mq_hw_ctx *hctx;
934 int i;
936 queue_for_each_hw_ctx(q, hctx, i) {
937 if ((!blk_mq_hctx_has_pending(hctx) &&
938 list_empty_careful(&hctx->dispatch)) ||
939 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
940 continue;
942 blk_mq_run_hw_queue(hctx, async);
945 EXPORT_SYMBOL(blk_mq_run_hw_queues);
947 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
949 cancel_work(&hctx->run_work);
950 cancel_delayed_work(&hctx->delay_work);
951 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
953 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
955 void blk_mq_stop_hw_queues(struct request_queue *q)
957 struct blk_mq_hw_ctx *hctx;
958 int i;
960 queue_for_each_hw_ctx(q, hctx, i)
961 blk_mq_stop_hw_queue(hctx);
963 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
965 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
967 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
969 blk_mq_run_hw_queue(hctx, false);
971 EXPORT_SYMBOL(blk_mq_start_hw_queue);
973 void blk_mq_start_hw_queues(struct request_queue *q)
975 struct blk_mq_hw_ctx *hctx;
976 int i;
978 queue_for_each_hw_ctx(q, hctx, i)
979 blk_mq_start_hw_queue(hctx);
981 EXPORT_SYMBOL(blk_mq_start_hw_queues);
983 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
985 struct blk_mq_hw_ctx *hctx;
986 int i;
988 queue_for_each_hw_ctx(q, hctx, i) {
989 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
990 continue;
992 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
993 blk_mq_run_hw_queue(hctx, async);
996 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
998 static void blk_mq_run_work_fn(struct work_struct *work)
1000 struct blk_mq_hw_ctx *hctx;
1002 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1004 __blk_mq_run_hw_queue(hctx);
1007 static void blk_mq_delay_work_fn(struct work_struct *work)
1009 struct blk_mq_hw_ctx *hctx;
1011 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1013 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1014 __blk_mq_run_hw_queue(hctx);
1017 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1019 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1020 return;
1022 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1023 &hctx->delay_work, msecs_to_jiffies(msecs));
1025 EXPORT_SYMBOL(blk_mq_delay_queue);
1027 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1028 struct request *rq,
1029 bool at_head)
1031 struct blk_mq_ctx *ctx = rq->mq_ctx;
1033 trace_block_rq_insert(hctx->queue, rq);
1035 if (at_head)
1036 list_add(&rq->queuelist, &ctx->rq_list);
1037 else
1038 list_add_tail(&rq->queuelist, &ctx->rq_list);
1041 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1042 struct request *rq, bool at_head)
1044 struct blk_mq_ctx *ctx = rq->mq_ctx;
1046 __blk_mq_insert_req_list(hctx, rq, at_head);
1047 blk_mq_hctx_mark_pending(hctx, ctx);
1050 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1051 bool async)
1053 struct blk_mq_ctx *ctx = rq->mq_ctx;
1054 struct request_queue *q = rq->q;
1055 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1057 spin_lock(&ctx->lock);
1058 __blk_mq_insert_request(hctx, rq, at_head);
1059 spin_unlock(&ctx->lock);
1061 if (run_queue)
1062 blk_mq_run_hw_queue(hctx, async);
1065 static void blk_mq_insert_requests(struct request_queue *q,
1066 struct blk_mq_ctx *ctx,
1067 struct list_head *list,
1068 int depth,
1069 bool from_schedule)
1072 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1074 trace_block_unplug(q, depth, !from_schedule);
1077 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1078 * offline now
1080 spin_lock(&ctx->lock);
1081 while (!list_empty(list)) {
1082 struct request *rq;
1084 rq = list_first_entry(list, struct request, queuelist);
1085 BUG_ON(rq->mq_ctx != ctx);
1086 list_del_init(&rq->queuelist);
1087 __blk_mq_insert_req_list(hctx, rq, false);
1089 blk_mq_hctx_mark_pending(hctx, ctx);
1090 spin_unlock(&ctx->lock);
1092 blk_mq_run_hw_queue(hctx, from_schedule);
1095 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1097 struct request *rqa = container_of(a, struct request, queuelist);
1098 struct request *rqb = container_of(b, struct request, queuelist);
1100 return !(rqa->mq_ctx < rqb->mq_ctx ||
1101 (rqa->mq_ctx == rqb->mq_ctx &&
1102 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1105 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1107 struct blk_mq_ctx *this_ctx;
1108 struct request_queue *this_q;
1109 struct request *rq;
1110 LIST_HEAD(list);
1111 LIST_HEAD(ctx_list);
1112 unsigned int depth;
1114 list_splice_init(&plug->mq_list, &list);
1116 list_sort(NULL, &list, plug_ctx_cmp);
1118 this_q = NULL;
1119 this_ctx = NULL;
1120 depth = 0;
1122 while (!list_empty(&list)) {
1123 rq = list_entry_rq(list.next);
1124 list_del_init(&rq->queuelist);
1125 BUG_ON(!rq->q);
1126 if (rq->mq_ctx != this_ctx) {
1127 if (this_ctx) {
1128 blk_mq_insert_requests(this_q, this_ctx,
1129 &ctx_list, depth,
1130 from_schedule);
1133 this_ctx = rq->mq_ctx;
1134 this_q = rq->q;
1135 depth = 0;
1138 depth++;
1139 list_add_tail(&rq->queuelist, &ctx_list);
1143 * If 'this_ctx' is set, we know we have entries to complete
1144 * on 'ctx_list'. Do those.
1146 if (this_ctx) {
1147 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1148 from_schedule);
1152 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1154 init_request_from_bio(rq, bio);
1156 blk_account_io_start(rq, 1);
1159 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1161 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1162 !blk_queue_nomerges(hctx->queue);
1165 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1166 struct blk_mq_ctx *ctx,
1167 struct request *rq, struct bio *bio)
1169 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1170 blk_mq_bio_to_request(rq, bio);
1171 spin_lock(&ctx->lock);
1172 insert_rq:
1173 __blk_mq_insert_request(hctx, rq, false);
1174 spin_unlock(&ctx->lock);
1175 return false;
1176 } else {
1177 struct request_queue *q = hctx->queue;
1179 spin_lock(&ctx->lock);
1180 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1181 blk_mq_bio_to_request(rq, bio);
1182 goto insert_rq;
1185 spin_unlock(&ctx->lock);
1186 __blk_mq_free_request(hctx, ctx, rq);
1187 return true;
1191 struct blk_map_ctx {
1192 struct blk_mq_hw_ctx *hctx;
1193 struct blk_mq_ctx *ctx;
1196 static struct request *blk_mq_map_request(struct request_queue *q,
1197 struct bio *bio,
1198 struct blk_map_ctx *data)
1200 struct blk_mq_hw_ctx *hctx;
1201 struct blk_mq_ctx *ctx;
1202 struct request *rq;
1203 int op = bio_data_dir(bio);
1204 int op_flags = 0;
1205 struct blk_mq_alloc_data alloc_data;
1207 blk_queue_enter_live(q);
1208 ctx = blk_mq_get_ctx(q);
1209 hctx = blk_mq_map_queue(q, ctx->cpu);
1211 if (rw_is_sync(bio_op(bio), bio->bi_opf))
1212 op_flags |= REQ_SYNC;
1214 trace_block_getrq(q, bio, op);
1215 blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1216 rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1218 data->hctx = alloc_data.hctx;
1219 data->ctx = alloc_data.ctx;
1220 data->hctx->queued++;
1221 return rq;
1224 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1226 int ret;
1227 struct request_queue *q = rq->q;
1228 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
1229 struct blk_mq_queue_data bd = {
1230 .rq = rq,
1231 .list = NULL,
1232 .last = 1
1234 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1237 * For OK queue, we are done. For error, kill it. Any other
1238 * error (busy), just add it to our list as we previously
1239 * would have done
1241 ret = q->mq_ops->queue_rq(hctx, &bd);
1242 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1243 *cookie = new_cookie;
1244 return 0;
1247 __blk_mq_requeue_request(rq);
1249 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1250 *cookie = BLK_QC_T_NONE;
1251 rq->errors = -EIO;
1252 blk_mq_end_request(rq, rq->errors);
1253 return 0;
1256 return -1;
1260 * Multiple hardware queue variant. This will not use per-process plugs,
1261 * but will attempt to bypass the hctx queueing if we can go straight to
1262 * hardware for SYNC IO.
1264 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1266 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1267 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1268 struct blk_map_ctx data;
1269 struct request *rq;
1270 unsigned int request_count = 0;
1271 struct blk_plug *plug;
1272 struct request *same_queue_rq = NULL;
1273 blk_qc_t cookie;
1275 blk_queue_bounce(q, &bio);
1277 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1278 bio_io_error(bio);
1279 return BLK_QC_T_NONE;
1282 blk_queue_split(q, &bio, q->bio_split);
1284 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1285 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1286 return BLK_QC_T_NONE;
1288 rq = blk_mq_map_request(q, bio, &data);
1289 if (unlikely(!rq))
1290 return BLK_QC_T_NONE;
1292 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1294 if (unlikely(is_flush_fua)) {
1295 blk_mq_bio_to_request(rq, bio);
1296 blk_insert_flush(rq);
1297 goto run_queue;
1300 plug = current->plug;
1302 * If the driver supports defer issued based on 'last', then
1303 * queue it up like normal since we can potentially save some
1304 * CPU this way.
1306 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1307 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1308 struct request *old_rq = NULL;
1310 blk_mq_bio_to_request(rq, bio);
1313 * We do limited pluging. If the bio can be merged, do that.
1314 * Otherwise the existing request in the plug list will be
1315 * issued. So the plug list will have one request at most
1317 if (plug) {
1319 * The plug list might get flushed before this. If that
1320 * happens, same_queue_rq is invalid and plug list is
1321 * empty
1323 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1324 old_rq = same_queue_rq;
1325 list_del_init(&old_rq->queuelist);
1327 list_add_tail(&rq->queuelist, &plug->mq_list);
1328 } else /* is_sync */
1329 old_rq = rq;
1330 blk_mq_put_ctx(data.ctx);
1331 if (!old_rq)
1332 goto done;
1333 if (test_bit(BLK_MQ_S_STOPPED, &data.hctx->state) ||
1334 blk_mq_direct_issue_request(old_rq, &cookie) != 0)
1335 blk_mq_insert_request(old_rq, false, true, true);
1336 goto done;
1339 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1341 * For a SYNC request, send it to the hardware immediately. For
1342 * an ASYNC request, just ensure that we run it later on. The
1343 * latter allows for merging opportunities and more efficient
1344 * dispatching.
1346 run_queue:
1347 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1349 blk_mq_put_ctx(data.ctx);
1350 done:
1351 return cookie;
1355 * Single hardware queue variant. This will attempt to use any per-process
1356 * plug for merging and IO deferral.
1358 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1360 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1361 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1362 struct blk_plug *plug;
1363 unsigned int request_count = 0;
1364 struct blk_map_ctx data;
1365 struct request *rq;
1366 blk_qc_t cookie;
1368 blk_queue_bounce(q, &bio);
1370 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1371 bio_io_error(bio);
1372 return BLK_QC_T_NONE;
1375 blk_queue_split(q, &bio, q->bio_split);
1377 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1378 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1379 return BLK_QC_T_NONE;
1380 } else
1381 request_count = blk_plug_queued_count(q);
1383 rq = blk_mq_map_request(q, bio, &data);
1384 if (unlikely(!rq))
1385 return BLK_QC_T_NONE;
1387 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1389 if (unlikely(is_flush_fua)) {
1390 blk_mq_bio_to_request(rq, bio);
1391 blk_insert_flush(rq);
1392 goto run_queue;
1396 * A task plug currently exists. Since this is completely lockless,
1397 * utilize that to temporarily store requests until the task is
1398 * either done or scheduled away.
1400 plug = current->plug;
1401 if (plug) {
1402 blk_mq_bio_to_request(rq, bio);
1403 if (!request_count)
1404 trace_block_plug(q);
1406 blk_mq_put_ctx(data.ctx);
1408 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1409 blk_flush_plug_list(plug, false);
1410 trace_block_plug(q);
1413 list_add_tail(&rq->queuelist, &plug->mq_list);
1414 return cookie;
1417 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1419 * For a SYNC request, send it to the hardware immediately. For
1420 * an ASYNC request, just ensure that we run it later on. The
1421 * latter allows for merging opportunities and more efficient
1422 * dispatching.
1424 run_queue:
1425 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1428 blk_mq_put_ctx(data.ctx);
1429 return cookie;
1432 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1433 struct blk_mq_tags *tags, unsigned int hctx_idx)
1435 struct page *page;
1437 if (tags->rqs && set->ops->exit_request) {
1438 int i;
1440 for (i = 0; i < tags->nr_tags; i++) {
1441 if (!tags->rqs[i])
1442 continue;
1443 set->ops->exit_request(set->driver_data, tags->rqs[i],
1444 hctx_idx, i);
1445 tags->rqs[i] = NULL;
1449 while (!list_empty(&tags->page_list)) {
1450 page = list_first_entry(&tags->page_list, struct page, lru);
1451 list_del_init(&page->lru);
1453 * Remove kmemleak object previously allocated in
1454 * blk_mq_init_rq_map().
1456 kmemleak_free(page_address(page));
1457 __free_pages(page, page->private);
1460 kfree(tags->rqs);
1462 blk_mq_free_tags(tags);
1465 static size_t order_to_size(unsigned int order)
1467 return (size_t)PAGE_SIZE << order;
1470 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1471 unsigned int hctx_idx)
1473 struct blk_mq_tags *tags;
1474 unsigned int i, j, entries_per_page, max_order = 4;
1475 size_t rq_size, left;
1477 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1478 set->numa_node,
1479 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1480 if (!tags)
1481 return NULL;
1483 INIT_LIST_HEAD(&tags->page_list);
1485 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1486 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1487 set->numa_node);
1488 if (!tags->rqs) {
1489 blk_mq_free_tags(tags);
1490 return NULL;
1494 * rq_size is the size of the request plus driver payload, rounded
1495 * to the cacheline size
1497 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1498 cache_line_size());
1499 left = rq_size * set->queue_depth;
1501 for (i = 0; i < set->queue_depth; ) {
1502 int this_order = max_order;
1503 struct page *page;
1504 int to_do;
1505 void *p;
1507 while (this_order && left < order_to_size(this_order - 1))
1508 this_order--;
1510 do {
1511 page = alloc_pages_node(set->numa_node,
1512 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1513 this_order);
1514 if (page)
1515 break;
1516 if (!this_order--)
1517 break;
1518 if (order_to_size(this_order) < rq_size)
1519 break;
1520 } while (1);
1522 if (!page)
1523 goto fail;
1525 page->private = this_order;
1526 list_add_tail(&page->lru, &tags->page_list);
1528 p = page_address(page);
1530 * Allow kmemleak to scan these pages as they contain pointers
1531 * to additional allocations like via ops->init_request().
1533 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1534 entries_per_page = order_to_size(this_order) / rq_size;
1535 to_do = min(entries_per_page, set->queue_depth - i);
1536 left -= to_do * rq_size;
1537 for (j = 0; j < to_do; j++) {
1538 tags->rqs[i] = p;
1539 if (set->ops->init_request) {
1540 if (set->ops->init_request(set->driver_data,
1541 tags->rqs[i], hctx_idx, i,
1542 set->numa_node)) {
1543 tags->rqs[i] = NULL;
1544 goto fail;
1548 p += rq_size;
1549 i++;
1552 return tags;
1554 fail:
1555 blk_mq_free_rq_map(set, tags, hctx_idx);
1556 return NULL;
1560 * 'cpu' is going away. splice any existing rq_list entries from this
1561 * software queue to the hw queue dispatch list, and ensure that it
1562 * gets run.
1564 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1566 struct blk_mq_hw_ctx *hctx;
1567 struct blk_mq_ctx *ctx;
1568 LIST_HEAD(tmp);
1570 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1571 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1573 spin_lock(&ctx->lock);
1574 if (!list_empty(&ctx->rq_list)) {
1575 list_splice_init(&ctx->rq_list, &tmp);
1576 blk_mq_hctx_clear_pending(hctx, ctx);
1578 spin_unlock(&ctx->lock);
1580 if (list_empty(&tmp))
1581 return 0;
1583 spin_lock(&hctx->lock);
1584 list_splice_tail_init(&tmp, &hctx->dispatch);
1585 spin_unlock(&hctx->lock);
1587 blk_mq_run_hw_queue(hctx, true);
1588 return 0;
1591 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1593 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1594 &hctx->cpuhp_dead);
1597 /* hctx->ctxs will be freed in queue's release handler */
1598 static void blk_mq_exit_hctx(struct request_queue *q,
1599 struct blk_mq_tag_set *set,
1600 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1602 unsigned flush_start_tag = set->queue_depth;
1604 blk_mq_tag_idle(hctx);
1606 if (set->ops->exit_request)
1607 set->ops->exit_request(set->driver_data,
1608 hctx->fq->flush_rq, hctx_idx,
1609 flush_start_tag + hctx_idx);
1611 if (set->ops->exit_hctx)
1612 set->ops->exit_hctx(hctx, hctx_idx);
1614 blk_mq_remove_cpuhp(hctx);
1615 blk_free_flush_queue(hctx->fq);
1616 sbitmap_free(&hctx->ctx_map);
1619 static void blk_mq_exit_hw_queues(struct request_queue *q,
1620 struct blk_mq_tag_set *set, int nr_queue)
1622 struct blk_mq_hw_ctx *hctx;
1623 unsigned int i;
1625 queue_for_each_hw_ctx(q, hctx, i) {
1626 if (i == nr_queue)
1627 break;
1628 blk_mq_exit_hctx(q, set, hctx, i);
1632 static void blk_mq_free_hw_queues(struct request_queue *q,
1633 struct blk_mq_tag_set *set)
1635 struct blk_mq_hw_ctx *hctx;
1636 unsigned int i;
1638 queue_for_each_hw_ctx(q, hctx, i)
1639 free_cpumask_var(hctx->cpumask);
1642 static int blk_mq_init_hctx(struct request_queue *q,
1643 struct blk_mq_tag_set *set,
1644 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1646 int node;
1647 unsigned flush_start_tag = set->queue_depth;
1649 node = hctx->numa_node;
1650 if (node == NUMA_NO_NODE)
1651 node = hctx->numa_node = set->numa_node;
1653 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1654 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1655 spin_lock_init(&hctx->lock);
1656 INIT_LIST_HEAD(&hctx->dispatch);
1657 hctx->queue = q;
1658 hctx->queue_num = hctx_idx;
1659 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1661 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1663 hctx->tags = set->tags[hctx_idx];
1666 * Allocate space for all possible cpus to avoid allocation at
1667 * runtime
1669 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1670 GFP_KERNEL, node);
1671 if (!hctx->ctxs)
1672 goto unregister_cpu_notifier;
1674 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1675 node))
1676 goto free_ctxs;
1678 hctx->nr_ctx = 0;
1680 if (set->ops->init_hctx &&
1681 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1682 goto free_bitmap;
1684 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1685 if (!hctx->fq)
1686 goto exit_hctx;
1688 if (set->ops->init_request &&
1689 set->ops->init_request(set->driver_data,
1690 hctx->fq->flush_rq, hctx_idx,
1691 flush_start_tag + hctx_idx, node))
1692 goto free_fq;
1694 return 0;
1696 free_fq:
1697 kfree(hctx->fq);
1698 exit_hctx:
1699 if (set->ops->exit_hctx)
1700 set->ops->exit_hctx(hctx, hctx_idx);
1701 free_bitmap:
1702 sbitmap_free(&hctx->ctx_map);
1703 free_ctxs:
1704 kfree(hctx->ctxs);
1705 unregister_cpu_notifier:
1706 blk_mq_remove_cpuhp(hctx);
1707 return -1;
1710 static void blk_mq_init_cpu_queues(struct request_queue *q,
1711 unsigned int nr_hw_queues)
1713 unsigned int i;
1715 for_each_possible_cpu(i) {
1716 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1717 struct blk_mq_hw_ctx *hctx;
1719 memset(__ctx, 0, sizeof(*__ctx));
1720 __ctx->cpu = i;
1721 spin_lock_init(&__ctx->lock);
1722 INIT_LIST_HEAD(&__ctx->rq_list);
1723 __ctx->queue = q;
1725 /* If the cpu isn't online, the cpu is mapped to first hctx */
1726 if (!cpu_online(i))
1727 continue;
1729 hctx = blk_mq_map_queue(q, i);
1732 * Set local node, IFF we have more than one hw queue. If
1733 * not, we remain on the home node of the device
1735 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1736 hctx->numa_node = local_memory_node(cpu_to_node(i));
1740 static void blk_mq_map_swqueue(struct request_queue *q,
1741 const struct cpumask *online_mask)
1743 unsigned int i;
1744 struct blk_mq_hw_ctx *hctx;
1745 struct blk_mq_ctx *ctx;
1746 struct blk_mq_tag_set *set = q->tag_set;
1749 * Avoid others reading imcomplete hctx->cpumask through sysfs
1751 mutex_lock(&q->sysfs_lock);
1753 queue_for_each_hw_ctx(q, hctx, i) {
1754 cpumask_clear(hctx->cpumask);
1755 hctx->nr_ctx = 0;
1759 * Map software to hardware queues
1761 for_each_possible_cpu(i) {
1762 /* If the cpu isn't online, the cpu is mapped to first hctx */
1763 if (!cpumask_test_cpu(i, online_mask))
1764 continue;
1766 ctx = per_cpu_ptr(q->queue_ctx, i);
1767 hctx = blk_mq_map_queue(q, i);
1769 cpumask_set_cpu(i, hctx->cpumask);
1770 ctx->index_hw = hctx->nr_ctx;
1771 hctx->ctxs[hctx->nr_ctx++] = ctx;
1774 mutex_unlock(&q->sysfs_lock);
1776 queue_for_each_hw_ctx(q, hctx, i) {
1778 * If no software queues are mapped to this hardware queue,
1779 * disable it and free the request entries.
1781 if (!hctx->nr_ctx) {
1782 if (set->tags[i]) {
1783 blk_mq_free_rq_map(set, set->tags[i], i);
1784 set->tags[i] = NULL;
1786 hctx->tags = NULL;
1787 continue;
1790 /* unmapped hw queue can be remapped after CPU topo changed */
1791 if (!set->tags[i])
1792 set->tags[i] = blk_mq_init_rq_map(set, i);
1793 hctx->tags = set->tags[i];
1794 WARN_ON(!hctx->tags);
1797 * Set the map size to the number of mapped software queues.
1798 * This is more accurate and more efficient than looping
1799 * over all possibly mapped software queues.
1801 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1804 * Initialize batch roundrobin counts
1806 hctx->next_cpu = cpumask_first(hctx->cpumask);
1807 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1811 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1813 struct blk_mq_hw_ctx *hctx;
1814 int i;
1816 queue_for_each_hw_ctx(q, hctx, i) {
1817 if (shared)
1818 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1819 else
1820 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1824 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1826 struct request_queue *q;
1828 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1829 blk_mq_freeze_queue(q);
1830 queue_set_hctx_shared(q, shared);
1831 blk_mq_unfreeze_queue(q);
1835 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1837 struct blk_mq_tag_set *set = q->tag_set;
1839 mutex_lock(&set->tag_list_lock);
1840 list_del_init(&q->tag_set_list);
1841 if (list_is_singular(&set->tag_list)) {
1842 /* just transitioned to unshared */
1843 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1844 /* update existing queue */
1845 blk_mq_update_tag_set_depth(set, false);
1847 mutex_unlock(&set->tag_list_lock);
1850 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1851 struct request_queue *q)
1853 q->tag_set = set;
1855 mutex_lock(&set->tag_list_lock);
1857 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1858 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1859 set->flags |= BLK_MQ_F_TAG_SHARED;
1860 /* update existing queue */
1861 blk_mq_update_tag_set_depth(set, true);
1863 if (set->flags & BLK_MQ_F_TAG_SHARED)
1864 queue_set_hctx_shared(q, true);
1865 list_add_tail(&q->tag_set_list, &set->tag_list);
1867 mutex_unlock(&set->tag_list_lock);
1871 * It is the actual release handler for mq, but we do it from
1872 * request queue's release handler for avoiding use-after-free
1873 * and headache because q->mq_kobj shouldn't have been introduced,
1874 * but we can't group ctx/kctx kobj without it.
1876 void blk_mq_release(struct request_queue *q)
1878 struct blk_mq_hw_ctx *hctx;
1879 unsigned int i;
1881 /* hctx kobj stays in hctx */
1882 queue_for_each_hw_ctx(q, hctx, i) {
1883 if (!hctx)
1884 continue;
1885 kfree(hctx->ctxs);
1886 kfree(hctx);
1889 q->mq_map = NULL;
1891 kfree(q->queue_hw_ctx);
1893 /* ctx kobj stays in queue_ctx */
1894 free_percpu(q->queue_ctx);
1897 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1899 struct request_queue *uninit_q, *q;
1901 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1902 if (!uninit_q)
1903 return ERR_PTR(-ENOMEM);
1905 q = blk_mq_init_allocated_queue(set, uninit_q);
1906 if (IS_ERR(q))
1907 blk_cleanup_queue(uninit_q);
1909 return q;
1911 EXPORT_SYMBOL(blk_mq_init_queue);
1913 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
1914 struct request_queue *q)
1916 int i, j;
1917 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1919 blk_mq_sysfs_unregister(q);
1920 for (i = 0; i < set->nr_hw_queues; i++) {
1921 int node;
1923 if (hctxs[i])
1924 continue;
1926 node = blk_mq_hw_queue_to_node(q->mq_map, i);
1927 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1928 GFP_KERNEL, node);
1929 if (!hctxs[i])
1930 break;
1932 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1933 node)) {
1934 kfree(hctxs[i]);
1935 hctxs[i] = NULL;
1936 break;
1939 atomic_set(&hctxs[i]->nr_active, 0);
1940 hctxs[i]->numa_node = node;
1941 hctxs[i]->queue_num = i;
1943 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
1944 free_cpumask_var(hctxs[i]->cpumask);
1945 kfree(hctxs[i]);
1946 hctxs[i] = NULL;
1947 break;
1949 blk_mq_hctx_kobj_init(hctxs[i]);
1951 for (j = i; j < q->nr_hw_queues; j++) {
1952 struct blk_mq_hw_ctx *hctx = hctxs[j];
1954 if (hctx) {
1955 if (hctx->tags) {
1956 blk_mq_free_rq_map(set, hctx->tags, j);
1957 set->tags[j] = NULL;
1959 blk_mq_exit_hctx(q, set, hctx, j);
1960 free_cpumask_var(hctx->cpumask);
1961 kobject_put(&hctx->kobj);
1962 kfree(hctx->ctxs);
1963 kfree(hctx);
1964 hctxs[j] = NULL;
1968 q->nr_hw_queues = i;
1969 blk_mq_sysfs_register(q);
1972 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1973 struct request_queue *q)
1975 /* mark the queue as mq asap */
1976 q->mq_ops = set->ops;
1978 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
1979 if (!q->queue_ctx)
1980 goto err_exit;
1982 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
1983 GFP_KERNEL, set->numa_node);
1984 if (!q->queue_hw_ctx)
1985 goto err_percpu;
1987 q->mq_map = set->mq_map;
1989 blk_mq_realloc_hw_ctxs(set, q);
1990 if (!q->nr_hw_queues)
1991 goto err_hctxs;
1993 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
1994 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
1996 q->nr_queues = nr_cpu_ids;
1998 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2000 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2001 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2003 q->sg_reserved_size = INT_MAX;
2005 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2006 INIT_LIST_HEAD(&q->requeue_list);
2007 spin_lock_init(&q->requeue_lock);
2009 if (q->nr_hw_queues > 1)
2010 blk_queue_make_request(q, blk_mq_make_request);
2011 else
2012 blk_queue_make_request(q, blk_sq_make_request);
2015 * Do this after blk_queue_make_request() overrides it...
2017 q->nr_requests = set->queue_depth;
2019 if (set->ops->complete)
2020 blk_queue_softirq_done(q, set->ops->complete);
2022 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2024 get_online_cpus();
2025 mutex_lock(&all_q_mutex);
2027 list_add_tail(&q->all_q_node, &all_q_list);
2028 blk_mq_add_queue_tag_set(set, q);
2029 blk_mq_map_swqueue(q, cpu_online_mask);
2031 mutex_unlock(&all_q_mutex);
2032 put_online_cpus();
2034 return q;
2036 err_hctxs:
2037 kfree(q->queue_hw_ctx);
2038 err_percpu:
2039 free_percpu(q->queue_ctx);
2040 err_exit:
2041 q->mq_ops = NULL;
2042 return ERR_PTR(-ENOMEM);
2044 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2046 void blk_mq_free_queue(struct request_queue *q)
2048 struct blk_mq_tag_set *set = q->tag_set;
2050 mutex_lock(&all_q_mutex);
2051 list_del_init(&q->all_q_node);
2052 mutex_unlock(&all_q_mutex);
2054 blk_mq_del_queue_tag_set(q);
2056 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2057 blk_mq_free_hw_queues(q, set);
2060 /* Basically redo blk_mq_init_queue with queue frozen */
2061 static void blk_mq_queue_reinit(struct request_queue *q,
2062 const struct cpumask *online_mask)
2064 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2066 blk_mq_sysfs_unregister(q);
2069 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2070 * we should change hctx numa_node according to new topology (this
2071 * involves free and re-allocate memory, worthy doing?)
2074 blk_mq_map_swqueue(q, online_mask);
2076 blk_mq_sysfs_register(q);
2080 * New online cpumask which is going to be set in this hotplug event.
2081 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2082 * one-by-one and dynamically allocating this could result in a failure.
2084 static struct cpumask cpuhp_online_new;
2086 static void blk_mq_queue_reinit_work(void)
2088 struct request_queue *q;
2090 mutex_lock(&all_q_mutex);
2092 * We need to freeze and reinit all existing queues. Freezing
2093 * involves synchronous wait for an RCU grace period and doing it
2094 * one by one may take a long time. Start freezing all queues in
2095 * one swoop and then wait for the completions so that freezing can
2096 * take place in parallel.
2098 list_for_each_entry(q, &all_q_list, all_q_node)
2099 blk_mq_freeze_queue_start(q);
2100 list_for_each_entry(q, &all_q_list, all_q_node) {
2101 blk_mq_freeze_queue_wait(q);
2104 * timeout handler can't touch hw queue during the
2105 * reinitialization
2107 del_timer_sync(&q->timeout);
2110 list_for_each_entry(q, &all_q_list, all_q_node)
2111 blk_mq_queue_reinit(q, &cpuhp_online_new);
2113 list_for_each_entry(q, &all_q_list, all_q_node)
2114 blk_mq_unfreeze_queue(q);
2116 mutex_unlock(&all_q_mutex);
2119 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2121 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2122 blk_mq_queue_reinit_work();
2123 return 0;
2127 * Before hotadded cpu starts handling requests, new mappings must be
2128 * established. Otherwise, these requests in hw queue might never be
2129 * dispatched.
2131 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2132 * for CPU0, and ctx1 for CPU1).
2134 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2135 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2137 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
2138 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2139 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
2140 * is ignored.
2142 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2144 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2145 cpumask_set_cpu(cpu, &cpuhp_online_new);
2146 blk_mq_queue_reinit_work();
2147 return 0;
2150 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2152 int i;
2154 for (i = 0; i < set->nr_hw_queues; i++) {
2155 set->tags[i] = blk_mq_init_rq_map(set, i);
2156 if (!set->tags[i])
2157 goto out_unwind;
2160 return 0;
2162 out_unwind:
2163 while (--i >= 0)
2164 blk_mq_free_rq_map(set, set->tags[i], i);
2166 return -ENOMEM;
2170 * Allocate the request maps associated with this tag_set. Note that this
2171 * may reduce the depth asked for, if memory is tight. set->queue_depth
2172 * will be updated to reflect the allocated depth.
2174 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2176 unsigned int depth;
2177 int err;
2179 depth = set->queue_depth;
2180 do {
2181 err = __blk_mq_alloc_rq_maps(set);
2182 if (!err)
2183 break;
2185 set->queue_depth >>= 1;
2186 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2187 err = -ENOMEM;
2188 break;
2190 } while (set->queue_depth);
2192 if (!set->queue_depth || err) {
2193 pr_err("blk-mq: failed to allocate request map\n");
2194 return -ENOMEM;
2197 if (depth != set->queue_depth)
2198 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2199 depth, set->queue_depth);
2201 return 0;
2205 * Alloc a tag set to be associated with one or more request queues.
2206 * May fail with EINVAL for various error conditions. May adjust the
2207 * requested depth down, if if it too large. In that case, the set
2208 * value will be stored in set->queue_depth.
2210 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2212 int ret;
2214 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2216 if (!set->nr_hw_queues)
2217 return -EINVAL;
2218 if (!set->queue_depth)
2219 return -EINVAL;
2220 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2221 return -EINVAL;
2223 if (!set->ops->queue_rq)
2224 return -EINVAL;
2226 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2227 pr_info("blk-mq: reduced tag depth to %u\n",
2228 BLK_MQ_MAX_DEPTH);
2229 set->queue_depth = BLK_MQ_MAX_DEPTH;
2233 * If a crashdump is active, then we are potentially in a very
2234 * memory constrained environment. Limit us to 1 queue and
2235 * 64 tags to prevent using too much memory.
2237 if (is_kdump_kernel()) {
2238 set->nr_hw_queues = 1;
2239 set->queue_depth = min(64U, set->queue_depth);
2242 * There is no use for more h/w queues than cpus.
2244 if (set->nr_hw_queues > nr_cpu_ids)
2245 set->nr_hw_queues = nr_cpu_ids;
2247 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2248 GFP_KERNEL, set->numa_node);
2249 if (!set->tags)
2250 return -ENOMEM;
2252 ret = -ENOMEM;
2253 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2254 GFP_KERNEL, set->numa_node);
2255 if (!set->mq_map)
2256 goto out_free_tags;
2258 if (set->ops->map_queues)
2259 ret = set->ops->map_queues(set);
2260 else
2261 ret = blk_mq_map_queues(set);
2262 if (ret)
2263 goto out_free_mq_map;
2265 ret = blk_mq_alloc_rq_maps(set);
2266 if (ret)
2267 goto out_free_mq_map;
2269 mutex_init(&set->tag_list_lock);
2270 INIT_LIST_HEAD(&set->tag_list);
2272 return 0;
2274 out_free_mq_map:
2275 kfree(set->mq_map);
2276 set->mq_map = NULL;
2277 out_free_tags:
2278 kfree(set->tags);
2279 set->tags = NULL;
2280 return ret;
2282 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2284 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2286 int i;
2288 for (i = 0; i < nr_cpu_ids; i++) {
2289 if (set->tags[i])
2290 blk_mq_free_rq_map(set, set->tags[i], i);
2293 kfree(set->mq_map);
2294 set->mq_map = NULL;
2296 kfree(set->tags);
2297 set->tags = NULL;
2299 EXPORT_SYMBOL(blk_mq_free_tag_set);
2301 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2303 struct blk_mq_tag_set *set = q->tag_set;
2304 struct blk_mq_hw_ctx *hctx;
2305 int i, ret;
2307 if (!set || nr > set->queue_depth)
2308 return -EINVAL;
2310 ret = 0;
2311 queue_for_each_hw_ctx(q, hctx, i) {
2312 if (!hctx->tags)
2313 continue;
2314 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2315 if (ret)
2316 break;
2319 if (!ret)
2320 q->nr_requests = nr;
2322 return ret;
2325 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2327 struct request_queue *q;
2329 if (nr_hw_queues > nr_cpu_ids)
2330 nr_hw_queues = nr_cpu_ids;
2331 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2332 return;
2334 list_for_each_entry(q, &set->tag_list, tag_set_list)
2335 blk_mq_freeze_queue(q);
2337 set->nr_hw_queues = nr_hw_queues;
2338 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2339 blk_mq_realloc_hw_ctxs(set, q);
2341 if (q->nr_hw_queues > 1)
2342 blk_queue_make_request(q, blk_mq_make_request);
2343 else
2344 blk_queue_make_request(q, blk_sq_make_request);
2346 blk_mq_queue_reinit(q, cpu_online_mask);
2349 list_for_each_entry(q, &set->tag_list, tag_set_list)
2350 blk_mq_unfreeze_queue(q);
2352 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2354 void blk_mq_disable_hotplug(void)
2356 mutex_lock(&all_q_mutex);
2359 void blk_mq_enable_hotplug(void)
2361 mutex_unlock(&all_q_mutex);
2364 static int __init blk_mq_init(void)
2366 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2367 blk_mq_hctx_notify_dead);
2369 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2370 blk_mq_queue_reinit_prepare,
2371 blk_mq_queue_reinit_dead);
2372 return 0;
2374 subsys_initcall(blk_mq_init);