2 * linux/kernel/workqueue.c
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
7 * Started by Ingo Molnar, Copyright (C) 2002
9 * Derived from the taskqueue/keventd code by:
11 * David Woodhouse <dwmw2@infradead.org>
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
16 * Made to use alloc_percpu by Christoph Lameter.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
36 #include <trace/workqueue.h>
39 * The per-CPU workqueue (if single thread, we always use the first
42 struct cpu_workqueue_struct
{
46 struct list_head worklist
;
47 wait_queue_head_t more_work
;
48 struct work_struct
*current_work
;
50 struct workqueue_struct
*wq
;
51 struct task_struct
*thread
;
53 int run_depth
; /* Detect run_workqueue() recursion depth */
54 } ____cacheline_aligned
;
57 * The externally visible workqueue abstraction is an array of
60 struct workqueue_struct
{
61 struct cpu_workqueue_struct
*cpu_wq
;
62 struct list_head list
;
65 int freezeable
; /* Freeze threads during suspend */
68 struct lockdep_map lockdep_map
;
72 /* Serializes the accesses to the list of workqueues. */
73 static DEFINE_SPINLOCK(workqueue_lock
);
74 static LIST_HEAD(workqueues
);
76 static int singlethread_cpu __read_mostly
;
77 static const struct cpumask
*cpu_singlethread_map __read_mostly
;
79 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
80 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
81 * which comes in between can't use for_each_online_cpu(). We could
82 * use cpu_possible_map, the cpumask below is more a documentation
85 static cpumask_var_t cpu_populated_map __read_mostly
;
87 /* If it's single threaded, it isn't in the list of workqueues. */
88 static inline int is_wq_single_threaded(struct workqueue_struct
*wq
)
90 return wq
->singlethread
;
93 static const struct cpumask
*wq_cpu_map(struct workqueue_struct
*wq
)
95 return is_wq_single_threaded(wq
)
96 ? cpu_singlethread_map
: cpu_populated_map
;
100 struct cpu_workqueue_struct
*wq_per_cpu(struct workqueue_struct
*wq
, int cpu
)
102 if (unlikely(is_wq_single_threaded(wq
)))
103 cpu
= singlethread_cpu
;
104 return per_cpu_ptr(wq
->cpu_wq
, cpu
);
108 * Set the workqueue on which a work item is to be run
109 * - Must *only* be called if the pending flag is set
111 static inline void set_wq_data(struct work_struct
*work
,
112 struct cpu_workqueue_struct
*cwq
)
116 BUG_ON(!work_pending(work
));
118 new = (unsigned long) cwq
| (1UL << WORK_STRUCT_PENDING
);
119 new |= WORK_STRUCT_FLAG_MASK
& *work_data_bits(work
);
120 atomic_long_set(&work
->data
, new);
124 struct cpu_workqueue_struct
*get_wq_data(struct work_struct
*work
)
126 return (void *) (atomic_long_read(&work
->data
) & WORK_STRUCT_WQ_DATA_MASK
);
129 DEFINE_TRACE(workqueue_insertion
);
131 static void insert_work(struct cpu_workqueue_struct
*cwq
,
132 struct work_struct
*work
, struct list_head
*head
)
134 trace_workqueue_insertion(cwq
->thread
, work
);
136 set_wq_data(work
, cwq
);
138 * Ensure that we get the right work->data if we see the
139 * result of list_add() below, see try_to_grab_pending().
142 list_add_tail(&work
->entry
, head
);
143 wake_up(&cwq
->more_work
);
146 static void __queue_work(struct cpu_workqueue_struct
*cwq
,
147 struct work_struct
*work
)
151 spin_lock_irqsave(&cwq
->lock
, flags
);
152 insert_work(cwq
, work
, &cwq
->worklist
);
153 spin_unlock_irqrestore(&cwq
->lock
, flags
);
157 * queue_work - queue work on a workqueue
158 * @wq: workqueue to use
159 * @work: work to queue
161 * Returns 0 if @work was already on a queue, non-zero otherwise.
163 * We queue the work to the CPU on which it was submitted, but if the CPU dies
164 * it can be processed by another CPU.
166 int queue_work(struct workqueue_struct
*wq
, struct work_struct
*work
)
170 ret
= queue_work_on(get_cpu(), wq
, work
);
175 EXPORT_SYMBOL_GPL(queue_work
);
178 * queue_work_on - queue work on specific cpu
179 * @cpu: CPU number to execute work on
180 * @wq: workqueue to use
181 * @work: work to queue
183 * Returns 0 if @work was already on a queue, non-zero otherwise.
185 * We queue the work to a specific CPU, the caller must ensure it
189 queue_work_on(int cpu
, struct workqueue_struct
*wq
, struct work_struct
*work
)
193 if (!test_and_set_bit(WORK_STRUCT_PENDING
, work_data_bits(work
))) {
194 BUG_ON(!list_empty(&work
->entry
));
195 __queue_work(wq_per_cpu(wq
, cpu
), work
);
200 EXPORT_SYMBOL_GPL(queue_work_on
);
202 static void delayed_work_timer_fn(unsigned long __data
)
204 struct delayed_work
*dwork
= (struct delayed_work
*)__data
;
205 struct cpu_workqueue_struct
*cwq
= get_wq_data(&dwork
->work
);
206 struct workqueue_struct
*wq
= cwq
->wq
;
208 __queue_work(wq_per_cpu(wq
, smp_processor_id()), &dwork
->work
);
212 * queue_delayed_work - queue work on a workqueue after delay
213 * @wq: workqueue to use
214 * @dwork: delayable work to queue
215 * @delay: number of jiffies to wait before queueing
217 * Returns 0 if @work was already on a queue, non-zero otherwise.
219 int queue_delayed_work(struct workqueue_struct
*wq
,
220 struct delayed_work
*dwork
, unsigned long delay
)
223 return queue_work(wq
, &dwork
->work
);
225 return queue_delayed_work_on(-1, wq
, dwork
, delay
);
227 EXPORT_SYMBOL_GPL(queue_delayed_work
);
230 * queue_delayed_work_on - queue work on specific CPU after delay
231 * @cpu: CPU number to execute work on
232 * @wq: workqueue to use
233 * @dwork: work to queue
234 * @delay: number of jiffies to wait before queueing
236 * Returns 0 if @work was already on a queue, non-zero otherwise.
238 int queue_delayed_work_on(int cpu
, struct workqueue_struct
*wq
,
239 struct delayed_work
*dwork
, unsigned long delay
)
242 struct timer_list
*timer
= &dwork
->timer
;
243 struct work_struct
*work
= &dwork
->work
;
245 if (!test_and_set_bit(WORK_STRUCT_PENDING
, work_data_bits(work
))) {
246 BUG_ON(timer_pending(timer
));
247 BUG_ON(!list_empty(&work
->entry
));
249 timer_stats_timer_set_start_info(&dwork
->timer
);
251 /* This stores cwq for the moment, for the timer_fn */
252 set_wq_data(work
, wq_per_cpu(wq
, raw_smp_processor_id()));
253 timer
->expires
= jiffies
+ delay
;
254 timer
->data
= (unsigned long)dwork
;
255 timer
->function
= delayed_work_timer_fn
;
257 if (unlikely(cpu
>= 0))
258 add_timer_on(timer
, cpu
);
265 EXPORT_SYMBOL_GPL(queue_delayed_work_on
);
267 DEFINE_TRACE(workqueue_execution
);
269 static void run_workqueue(struct cpu_workqueue_struct
*cwq
)
271 spin_lock_irq(&cwq
->lock
);
273 if (cwq
->run_depth
> 3) {
274 /* morton gets to eat his hat */
275 printk("%s: recursion depth exceeded: %d\n",
276 __func__
, cwq
->run_depth
);
279 while (!list_empty(&cwq
->worklist
)) {
280 struct work_struct
*work
= list_entry(cwq
->worklist
.next
,
281 struct work_struct
, entry
);
282 work_func_t f
= work
->func
;
283 #ifdef CONFIG_LOCKDEP
285 * It is permissible to free the struct work_struct
286 * from inside the function that is called from it,
287 * this we need to take into account for lockdep too.
288 * To avoid bogus "held lock freed" warnings as well
289 * as problems when looking into work->lockdep_map,
290 * make a copy and use that here.
292 struct lockdep_map lockdep_map
= work
->lockdep_map
;
294 trace_workqueue_execution(cwq
->thread
, work
);
295 cwq
->current_work
= work
;
296 list_del_init(cwq
->worklist
.next
);
297 spin_unlock_irq(&cwq
->lock
);
299 BUG_ON(get_wq_data(work
) != cwq
);
300 work_clear_pending(work
);
301 lock_map_acquire(&cwq
->wq
->lockdep_map
);
302 lock_map_acquire(&lockdep_map
);
304 lock_map_release(&lockdep_map
);
305 lock_map_release(&cwq
->wq
->lockdep_map
);
307 if (unlikely(in_atomic() || lockdep_depth(current
) > 0)) {
308 printk(KERN_ERR
"BUG: workqueue leaked lock or atomic: "
310 current
->comm
, preempt_count(),
311 task_pid_nr(current
));
312 printk(KERN_ERR
" last function: ");
313 print_symbol("%s\n", (unsigned long)f
);
314 debug_show_held_locks(current
);
318 spin_lock_irq(&cwq
->lock
);
319 cwq
->current_work
= NULL
;
322 spin_unlock_irq(&cwq
->lock
);
325 static int worker_thread(void *__cwq
)
327 struct cpu_workqueue_struct
*cwq
= __cwq
;
330 if (cwq
->wq
->freezeable
)
333 set_user_nice(current
, -5);
336 prepare_to_wait(&cwq
->more_work
, &wait
, TASK_INTERRUPTIBLE
);
337 if (!freezing(current
) &&
338 !kthread_should_stop() &&
339 list_empty(&cwq
->worklist
))
341 finish_wait(&cwq
->more_work
, &wait
);
345 if (kthread_should_stop())
355 struct work_struct work
;
356 struct completion done
;
359 static void wq_barrier_func(struct work_struct
*work
)
361 struct wq_barrier
*barr
= container_of(work
, struct wq_barrier
, work
);
362 complete(&barr
->done
);
365 static void insert_wq_barrier(struct cpu_workqueue_struct
*cwq
,
366 struct wq_barrier
*barr
, struct list_head
*head
)
368 INIT_WORK(&barr
->work
, wq_barrier_func
);
369 __set_bit(WORK_STRUCT_PENDING
, work_data_bits(&barr
->work
));
371 init_completion(&barr
->done
);
373 insert_work(cwq
, &barr
->work
, head
);
376 static int flush_cpu_workqueue(struct cpu_workqueue_struct
*cwq
)
380 if (cwq
->thread
== current
) {
382 * Probably keventd trying to flush its own queue. So simply run
383 * it by hand rather than deadlocking.
388 struct wq_barrier barr
;
391 spin_lock_irq(&cwq
->lock
);
392 if (!list_empty(&cwq
->worklist
) || cwq
->current_work
!= NULL
) {
393 insert_wq_barrier(cwq
, &barr
, &cwq
->worklist
);
396 spin_unlock_irq(&cwq
->lock
);
399 wait_for_completion(&barr
.done
);
406 * flush_workqueue - ensure that any scheduled work has run to completion.
407 * @wq: workqueue to flush
409 * Forces execution of the workqueue and blocks until its completion.
410 * This is typically used in driver shutdown handlers.
412 * We sleep until all works which were queued on entry have been handled,
413 * but we are not livelocked by new incoming ones.
415 * This function used to run the workqueues itself. Now we just wait for the
416 * helper threads to do it.
418 void flush_workqueue(struct workqueue_struct
*wq
)
420 const struct cpumask
*cpu_map
= wq_cpu_map(wq
);
424 lock_map_acquire(&wq
->lockdep_map
);
425 lock_map_release(&wq
->lockdep_map
);
426 for_each_cpu_mask_nr(cpu
, *cpu_map
)
427 flush_cpu_workqueue(per_cpu_ptr(wq
->cpu_wq
, cpu
));
429 EXPORT_SYMBOL_GPL(flush_workqueue
);
432 * flush_work - block until a work_struct's callback has terminated
433 * @work: the work which is to be flushed
435 * Returns false if @work has already terminated.
437 * It is expected that, prior to calling flush_work(), the caller has
438 * arranged for the work to not be requeued, otherwise it doesn't make
439 * sense to use this function.
441 int flush_work(struct work_struct
*work
)
443 struct cpu_workqueue_struct
*cwq
;
444 struct list_head
*prev
;
445 struct wq_barrier barr
;
448 cwq
= get_wq_data(work
);
452 lock_map_acquire(&cwq
->wq
->lockdep_map
);
453 lock_map_release(&cwq
->wq
->lockdep_map
);
456 spin_lock_irq(&cwq
->lock
);
457 if (!list_empty(&work
->entry
)) {
459 * See the comment near try_to_grab_pending()->smp_rmb().
460 * If it was re-queued under us we are not going to wait.
463 if (unlikely(cwq
!= get_wq_data(work
)))
467 if (cwq
->current_work
!= work
)
469 prev
= &cwq
->worklist
;
471 insert_wq_barrier(cwq
, &barr
, prev
->next
);
473 spin_unlock_irq(&cwq
->lock
);
477 wait_for_completion(&barr
.done
);
480 EXPORT_SYMBOL_GPL(flush_work
);
483 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
484 * so this work can't be re-armed in any way.
486 static int try_to_grab_pending(struct work_struct
*work
)
488 struct cpu_workqueue_struct
*cwq
;
491 if (!test_and_set_bit(WORK_STRUCT_PENDING
, work_data_bits(work
)))
495 * The queueing is in progress, or it is already queued. Try to
496 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
499 cwq
= get_wq_data(work
);
503 spin_lock_irq(&cwq
->lock
);
504 if (!list_empty(&work
->entry
)) {
506 * This work is queued, but perhaps we locked the wrong cwq.
507 * In that case we must see the new value after rmb(), see
508 * insert_work()->wmb().
511 if (cwq
== get_wq_data(work
)) {
512 list_del_init(&work
->entry
);
516 spin_unlock_irq(&cwq
->lock
);
521 static void wait_on_cpu_work(struct cpu_workqueue_struct
*cwq
,
522 struct work_struct
*work
)
524 struct wq_barrier barr
;
527 spin_lock_irq(&cwq
->lock
);
528 if (unlikely(cwq
->current_work
== work
)) {
529 insert_wq_barrier(cwq
, &barr
, cwq
->worklist
.next
);
532 spin_unlock_irq(&cwq
->lock
);
534 if (unlikely(running
))
535 wait_for_completion(&barr
.done
);
538 static void wait_on_work(struct work_struct
*work
)
540 struct cpu_workqueue_struct
*cwq
;
541 struct workqueue_struct
*wq
;
542 const struct cpumask
*cpu_map
;
547 lock_map_acquire(&work
->lockdep_map
);
548 lock_map_release(&work
->lockdep_map
);
550 cwq
= get_wq_data(work
);
555 cpu_map
= wq_cpu_map(wq
);
557 for_each_cpu_mask_nr(cpu
, *cpu_map
)
558 wait_on_cpu_work(per_cpu_ptr(wq
->cpu_wq
, cpu
), work
);
561 static int __cancel_work_timer(struct work_struct
*work
,
562 struct timer_list
* timer
)
567 ret
= (timer
&& likely(del_timer(timer
)));
569 ret
= try_to_grab_pending(work
);
571 } while (unlikely(ret
< 0));
573 work_clear_pending(work
);
578 * cancel_work_sync - block until a work_struct's callback has terminated
579 * @work: the work which is to be flushed
581 * Returns true if @work was pending.
583 * cancel_work_sync() will cancel the work if it is queued. If the work's
584 * callback appears to be running, cancel_work_sync() will block until it
587 * It is possible to use this function if the work re-queues itself. It can
588 * cancel the work even if it migrates to another workqueue, however in that
589 * case it only guarantees that work->func() has completed on the last queued
592 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
593 * pending, otherwise it goes into a busy-wait loop until the timer expires.
595 * The caller must ensure that workqueue_struct on which this work was last
596 * queued can't be destroyed before this function returns.
598 int cancel_work_sync(struct work_struct
*work
)
600 return __cancel_work_timer(work
, NULL
);
602 EXPORT_SYMBOL_GPL(cancel_work_sync
);
605 * cancel_delayed_work_sync - reliably kill off a delayed work.
606 * @dwork: the delayed work struct
608 * Returns true if @dwork was pending.
610 * It is possible to use this function if @dwork rearms itself via queue_work()
611 * or queue_delayed_work(). See also the comment for cancel_work_sync().
613 int cancel_delayed_work_sync(struct delayed_work
*dwork
)
615 return __cancel_work_timer(&dwork
->work
, &dwork
->timer
);
617 EXPORT_SYMBOL(cancel_delayed_work_sync
);
619 static struct workqueue_struct
*keventd_wq __read_mostly
;
622 * schedule_work - put work task in global workqueue
623 * @work: job to be done
625 * This puts a job in the kernel-global workqueue.
627 int schedule_work(struct work_struct
*work
)
629 return queue_work(keventd_wq
, work
);
631 EXPORT_SYMBOL(schedule_work
);
634 * schedule_work_on - put work task on a specific cpu
635 * @cpu: cpu to put the work task on
636 * @work: job to be done
638 * This puts a job on a specific cpu
640 int schedule_work_on(int cpu
, struct work_struct
*work
)
642 return queue_work_on(cpu
, keventd_wq
, work
);
644 EXPORT_SYMBOL(schedule_work_on
);
647 * schedule_delayed_work - put work task in global workqueue after delay
648 * @dwork: job to be done
649 * @delay: number of jiffies to wait or 0 for immediate execution
651 * After waiting for a given time this puts a job in the kernel-global
654 int schedule_delayed_work(struct delayed_work
*dwork
,
657 return queue_delayed_work(keventd_wq
, dwork
, delay
);
659 EXPORT_SYMBOL(schedule_delayed_work
);
662 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
664 * @dwork: job to be done
665 * @delay: number of jiffies to wait
667 * After waiting for a given time this puts a job in the kernel-global
668 * workqueue on the specified CPU.
670 int schedule_delayed_work_on(int cpu
,
671 struct delayed_work
*dwork
, unsigned long delay
)
673 return queue_delayed_work_on(cpu
, keventd_wq
, dwork
, delay
);
675 EXPORT_SYMBOL(schedule_delayed_work_on
);
678 * schedule_on_each_cpu - call a function on each online CPU from keventd
679 * @func: the function to call
681 * Returns zero on success.
682 * Returns -ve errno on failure.
684 * schedule_on_each_cpu() is very slow.
686 int schedule_on_each_cpu(work_func_t func
)
689 struct work_struct
*works
;
691 works
= alloc_percpu(struct work_struct
);
696 for_each_online_cpu(cpu
) {
697 struct work_struct
*work
= per_cpu_ptr(works
, cpu
);
699 INIT_WORK(work
, func
);
700 schedule_work_on(cpu
, work
);
702 for_each_online_cpu(cpu
)
703 flush_work(per_cpu_ptr(works
, cpu
));
709 void flush_scheduled_work(void)
711 flush_workqueue(keventd_wq
);
713 EXPORT_SYMBOL(flush_scheduled_work
);
716 * execute_in_process_context - reliably execute the routine with user context
717 * @fn: the function to execute
718 * @ew: guaranteed storage for the execute work structure (must
719 * be available when the work executes)
721 * Executes the function immediately if process context is available,
722 * otherwise schedules the function for delayed execution.
724 * Returns: 0 - function was executed
725 * 1 - function was scheduled for execution
727 int execute_in_process_context(work_func_t fn
, struct execute_work
*ew
)
729 if (!in_interrupt()) {
734 INIT_WORK(&ew
->work
, fn
);
735 schedule_work(&ew
->work
);
739 EXPORT_SYMBOL_GPL(execute_in_process_context
);
743 return keventd_wq
!= NULL
;
746 int current_is_keventd(void)
748 struct cpu_workqueue_struct
*cwq
;
749 int cpu
= raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
754 cwq
= per_cpu_ptr(keventd_wq
->cpu_wq
, cpu
);
755 if (current
== cwq
->thread
)
762 static struct cpu_workqueue_struct
*
763 init_cpu_workqueue(struct workqueue_struct
*wq
, int cpu
)
765 struct cpu_workqueue_struct
*cwq
= per_cpu_ptr(wq
->cpu_wq
, cpu
);
768 spin_lock_init(&cwq
->lock
);
769 INIT_LIST_HEAD(&cwq
->worklist
);
770 init_waitqueue_head(&cwq
->more_work
);
775 DEFINE_TRACE(workqueue_creation
);
777 static int create_workqueue_thread(struct cpu_workqueue_struct
*cwq
, int cpu
)
779 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
-1 };
780 struct workqueue_struct
*wq
= cwq
->wq
;
781 const char *fmt
= is_wq_single_threaded(wq
) ? "%s" : "%s/%d";
782 struct task_struct
*p
;
784 p
= kthread_create(worker_thread
, cwq
, fmt
, wq
->name
, cpu
);
786 * Nobody can add the work_struct to this cwq,
787 * if (caller is __create_workqueue)
788 * nobody should see this wq
789 * else // caller is CPU_UP_PREPARE
790 * cpu is not on cpu_online_map
791 * so we can abort safely.
796 sched_setscheduler_nocheck(p
, SCHED_FIFO
, ¶m
);
799 trace_workqueue_creation(cwq
->thread
, cpu
);
804 static void start_workqueue_thread(struct cpu_workqueue_struct
*cwq
, int cpu
)
806 struct task_struct
*p
= cwq
->thread
;
810 kthread_bind(p
, cpu
);
815 struct workqueue_struct
*__create_workqueue_key(const char *name
,
819 struct lock_class_key
*key
,
820 const char *lock_name
)
822 struct workqueue_struct
*wq
;
823 struct cpu_workqueue_struct
*cwq
;
826 wq
= kzalloc(sizeof(*wq
), GFP_KERNEL
);
830 wq
->cpu_wq
= alloc_percpu(struct cpu_workqueue_struct
);
837 lockdep_init_map(&wq
->lockdep_map
, lock_name
, key
, 0);
838 wq
->singlethread
= singlethread
;
839 wq
->freezeable
= freezeable
;
841 INIT_LIST_HEAD(&wq
->list
);
844 cwq
= init_cpu_workqueue(wq
, singlethread_cpu
);
845 err
= create_workqueue_thread(cwq
, singlethread_cpu
);
846 start_workqueue_thread(cwq
, -1);
848 cpu_maps_update_begin();
850 * We must place this wq on list even if the code below fails.
851 * cpu_down(cpu) can remove cpu from cpu_populated_map before
852 * destroy_workqueue() takes the lock, in that case we leak
855 spin_lock(&workqueue_lock
);
856 list_add(&wq
->list
, &workqueues
);
857 spin_unlock(&workqueue_lock
);
859 * We must initialize cwqs for each possible cpu even if we
860 * are going to call destroy_workqueue() finally. Otherwise
861 * cpu_up() can hit the uninitialized cwq once we drop the
864 for_each_possible_cpu(cpu
) {
865 cwq
= init_cpu_workqueue(wq
, cpu
);
866 if (err
|| !cpu_online(cpu
))
868 err
= create_workqueue_thread(cwq
, cpu
);
869 start_workqueue_thread(cwq
, cpu
);
871 cpu_maps_update_done();
875 destroy_workqueue(wq
);
880 EXPORT_SYMBOL_GPL(__create_workqueue_key
);
882 DEFINE_TRACE(workqueue_destruction
);
884 static void cleanup_workqueue_thread(struct cpu_workqueue_struct
*cwq
)
887 * Our caller is either destroy_workqueue() or CPU_POST_DEAD,
888 * cpu_add_remove_lock protects cwq->thread.
890 if (cwq
->thread
== NULL
)
893 lock_map_acquire(&cwq
->wq
->lockdep_map
);
894 lock_map_release(&cwq
->wq
->lockdep_map
);
896 flush_cpu_workqueue(cwq
);
898 * If the caller is CPU_POST_DEAD and cwq->worklist was not empty,
899 * a concurrent flush_workqueue() can insert a barrier after us.
900 * However, in that case run_workqueue() won't return and check
901 * kthread_should_stop() until it flushes all work_struct's.
902 * When ->worklist becomes empty it is safe to exit because no
903 * more work_structs can be queued on this cwq: flush_workqueue
904 * checks list_empty(), and a "normal" queue_work() can't use
907 trace_workqueue_destruction(cwq
->thread
);
908 kthread_stop(cwq
->thread
);
913 * destroy_workqueue - safely terminate a workqueue
914 * @wq: target workqueue
916 * Safely destroy a workqueue. All work currently pending will be done first.
918 void destroy_workqueue(struct workqueue_struct
*wq
)
920 const struct cpumask
*cpu_map
= wq_cpu_map(wq
);
923 cpu_maps_update_begin();
924 spin_lock(&workqueue_lock
);
926 spin_unlock(&workqueue_lock
);
928 for_each_cpu_mask_nr(cpu
, *cpu_map
)
929 cleanup_workqueue_thread(per_cpu_ptr(wq
->cpu_wq
, cpu
));
930 cpu_maps_update_done();
932 free_percpu(wq
->cpu_wq
);
935 EXPORT_SYMBOL_GPL(destroy_workqueue
);
937 static int __devinit
workqueue_cpu_callback(struct notifier_block
*nfb
,
938 unsigned long action
,
941 unsigned int cpu
= (unsigned long)hcpu
;
942 struct cpu_workqueue_struct
*cwq
;
943 struct workqueue_struct
*wq
;
946 action
&= ~CPU_TASKS_FROZEN
;
950 cpumask_set_cpu(cpu
, cpu_populated_map
);
953 list_for_each_entry(wq
, &workqueues
, list
) {
954 cwq
= per_cpu_ptr(wq
->cpu_wq
, cpu
);
958 if (!create_workqueue_thread(cwq
, cpu
))
960 printk(KERN_ERR
"workqueue [%s] for %i failed\n",
962 action
= CPU_UP_CANCELED
;
967 start_workqueue_thread(cwq
, cpu
);
970 case CPU_UP_CANCELED
:
971 start_workqueue_thread(cwq
, -1);
973 cleanup_workqueue_thread(cwq
);
979 case CPU_UP_CANCELED
:
981 cpumask_clear_cpu(cpu
, cpu_populated_map
);
988 static struct workqueue_struct
*work_on_cpu_wq __read_mostly
;
990 struct work_for_cpu
{
991 struct work_struct work
;
997 static void do_work_for_cpu(struct work_struct
*w
)
999 struct work_for_cpu
*wfc
= container_of(w
, struct work_for_cpu
, work
);
1001 wfc
->ret
= wfc
->fn(wfc
->arg
);
1005 * work_on_cpu - run a function in user context on a particular cpu
1006 * @cpu: the cpu to run on
1007 * @fn: the function to run
1008 * @arg: the function arg
1010 * This will return the value @fn returns.
1011 * It is up to the caller to ensure that the cpu doesn't go offline.
1013 long work_on_cpu(unsigned int cpu
, long (*fn
)(void *), void *arg
)
1015 struct work_for_cpu wfc
;
1017 INIT_WORK(&wfc
.work
, do_work_for_cpu
);
1020 queue_work_on(cpu
, work_on_cpu_wq
, &wfc
.work
);
1021 flush_work(&wfc
.work
);
1025 EXPORT_SYMBOL_GPL(work_on_cpu
);
1026 #endif /* CONFIG_SMP */
1028 void __init
init_workqueues(void)
1030 alloc_cpumask_var(&cpu_populated_map
, GFP_KERNEL
);
1032 cpumask_copy(cpu_populated_map
, cpu_online_mask
);
1033 singlethread_cpu
= cpumask_first(cpu_possible_mask
);
1034 cpu_singlethread_map
= cpumask_of(singlethread_cpu
);
1035 hotcpu_notifier(workqueue_cpu_callback
, 0);
1036 keventd_wq
= create_workqueue("events");
1037 BUG_ON(!keventd_wq
);
1039 work_on_cpu_wq
= create_workqueue("work_on_cpu");
1040 BUG_ON(!work_on_cpu_wq
);