2 * linux/kernel/ptrace.c
4 * (C) Copyright 1999 Linus Torvalds
6 * Common interfaces for "ptrace()" which we do not want
7 * to continually duplicate across every architecture.
10 #include <linux/capability.h>
11 #include <linux/export.h>
12 #include <linux/sched.h>
13 #include <linux/errno.h>
15 #include <linux/highmem.h>
16 #include <linux/pagemap.h>
17 #include <linux/ptrace.h>
18 #include <linux/security.h>
19 #include <linux/signal.h>
20 #include <linux/audit.h>
21 #include <linux/pid_namespace.h>
22 #include <linux/syscalls.h>
23 #include <linux/uaccess.h>
24 #include <linux/regset.h>
25 #include <linux/hw_breakpoint.h>
26 #include <linux/cn_proc.h>
29 static int ptrace_trapping_sleep_fn(void *flags
)
36 * ptrace a task: make the debugger its new parent and
37 * move it to the ptrace list.
39 * Must be called with the tasklist lock write-held.
41 void __ptrace_link(struct task_struct
*child
, struct task_struct
*new_parent
)
43 BUG_ON(!list_empty(&child
->ptrace_entry
));
44 list_add(&child
->ptrace_entry
, &new_parent
->ptraced
);
45 child
->parent
= new_parent
;
49 * __ptrace_unlink - unlink ptracee and restore its execution state
50 * @child: ptracee to be unlinked
52 * Remove @child from the ptrace list, move it back to the original parent,
53 * and restore the execution state so that it conforms to the group stop
56 * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer
57 * exiting. For PTRACE_DETACH, unless the ptracee has been killed between
58 * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED.
59 * If the ptracer is exiting, the ptracee can be in any state.
61 * After detach, the ptracee should be in a state which conforms to the
62 * group stop. If the group is stopped or in the process of stopping, the
63 * ptracee should be put into TASK_STOPPED; otherwise, it should be woken
64 * up from TASK_TRACED.
66 * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED,
67 * it goes through TRACED -> RUNNING -> STOPPED transition which is similar
68 * to but in the opposite direction of what happens while attaching to a
69 * stopped task. However, in this direction, the intermediate RUNNING
70 * state is not hidden even from the current ptracer and if it immediately
71 * re-attaches and performs a WNOHANG wait(2), it may fail.
74 * write_lock_irq(tasklist_lock)
76 void __ptrace_unlink(struct task_struct
*child
)
78 BUG_ON(!child
->ptrace
);
81 child
->parent
= child
->real_parent
;
82 list_del_init(&child
->ptrace_entry
);
84 spin_lock(&child
->sighand
->siglock
);
87 * Clear all pending traps and TRAPPING. TRAPPING should be
88 * cleared regardless of JOBCTL_STOP_PENDING. Do it explicitly.
90 task_clear_jobctl_pending(child
, JOBCTL_TRAP_MASK
);
91 task_clear_jobctl_trapping(child
);
94 * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and
97 if (!(child
->flags
& PF_EXITING
) &&
98 (child
->signal
->flags
& SIGNAL_STOP_STOPPED
||
99 child
->signal
->group_stop_count
)) {
100 child
->jobctl
|= JOBCTL_STOP_PENDING
;
103 * This is only possible if this thread was cloned by the
104 * traced task running in the stopped group, set the signal
105 * for the future reports.
106 * FIXME: we should change ptrace_init_task() to handle this
109 if (!(child
->jobctl
& JOBCTL_STOP_SIGMASK
))
110 child
->jobctl
|= SIGSTOP
;
114 * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick
115 * @child in the butt. Note that @resume should be used iff @child
116 * is in TASK_TRACED; otherwise, we might unduly disrupt
117 * TASK_KILLABLE sleeps.
119 if (child
->jobctl
& JOBCTL_STOP_PENDING
|| task_is_traced(child
))
120 ptrace_signal_wake_up(child
, true);
122 spin_unlock(&child
->sighand
->siglock
);
125 /* Ensure that nothing can wake it up, even SIGKILL */
126 static bool ptrace_freeze_traced(struct task_struct
*task
)
130 /* Lockless, nobody but us can set this flag */
131 if (task
->jobctl
& JOBCTL_LISTENING
)
134 spin_lock_irq(&task
->sighand
->siglock
);
135 if (task_is_traced(task
) && !__fatal_signal_pending(task
)) {
136 task
->state
= __TASK_TRACED
;
139 spin_unlock_irq(&task
->sighand
->siglock
);
144 static void ptrace_unfreeze_traced(struct task_struct
*task
)
146 if (task
->state
!= __TASK_TRACED
)
149 WARN_ON(!task
->ptrace
|| task
->parent
!= current
);
151 spin_lock_irq(&task
->sighand
->siglock
);
152 if (__fatal_signal_pending(task
))
153 wake_up_state(task
, __TASK_TRACED
);
155 task
->state
= TASK_TRACED
;
156 spin_unlock_irq(&task
->sighand
->siglock
);
160 * ptrace_check_attach - check whether ptracee is ready for ptrace operation
161 * @child: ptracee to check for
162 * @ignore_state: don't check whether @child is currently %TASK_TRACED
164 * Check whether @child is being ptraced by %current and ready for further
165 * ptrace operations. If @ignore_state is %false, @child also should be in
166 * %TASK_TRACED state and on return the child is guaranteed to be traced
167 * and not executing. If @ignore_state is %true, @child can be in any
171 * Grabs and releases tasklist_lock and @child->sighand->siglock.
174 * 0 on success, -ESRCH if %child is not ready.
176 int ptrace_check_attach(struct task_struct
*child
, bool ignore_state
)
181 * We take the read lock around doing both checks to close a
182 * possible race where someone else was tracing our child and
183 * detached between these two checks. After this locked check,
184 * we are sure that this is our traced child and that can only
185 * be changed by us so it's not changing right after this.
187 read_lock(&tasklist_lock
);
188 if (child
->ptrace
&& child
->parent
== current
) {
189 WARN_ON(child
->state
== __TASK_TRACED
);
191 * child->sighand can't be NULL, release_task()
192 * does ptrace_unlink() before __exit_signal().
194 if (ignore_state
|| ptrace_freeze_traced(child
))
197 read_unlock(&tasklist_lock
);
199 if (!ret
&& !ignore_state
) {
200 if (!wait_task_inactive(child
, __TASK_TRACED
)) {
202 * This can only happen if may_ptrace_stop() fails and
203 * ptrace_stop() changes ->state back to TASK_RUNNING,
204 * so we should not worry about leaking __TASK_TRACED.
206 WARN_ON(child
->state
== __TASK_TRACED
);
214 int __ptrace_may_access(struct task_struct
*task
, unsigned int mode
)
216 const struct cred
*cred
= current_cred(), *tcred
;
218 /* May we inspect the given task?
219 * This check is used both for attaching with ptrace
220 * and for allowing access to sensitive information in /proc.
222 * ptrace_attach denies several cases that /proc allows
223 * because setting up the necessary parent/child relationship
224 * or halting the specified task is impossible.
227 /* Don't let security modules deny introspection */
231 tcred
= __task_cred(task
);
232 if (cred
->user
->user_ns
== tcred
->user
->user_ns
&&
233 (cred
->uid
== tcred
->euid
&&
234 cred
->uid
== tcred
->suid
&&
235 cred
->uid
== tcred
->uid
&&
236 cred
->gid
== tcred
->egid
&&
237 cred
->gid
== tcred
->sgid
&&
238 cred
->gid
== tcred
->gid
))
240 if (ns_capable(tcred
->user
->user_ns
, CAP_SYS_PTRACE
))
248 dumpable
= get_dumpable(task
->mm
);
249 if (!dumpable
&& !task_ns_capable(task
, CAP_SYS_PTRACE
))
252 return security_ptrace_access_check(task
, mode
);
255 bool ptrace_may_access(struct task_struct
*task
, unsigned int mode
)
259 err
= __ptrace_may_access(task
, mode
);
264 static int ptrace_attach(struct task_struct
*task
, long request
,
267 bool seize
= (request
== PTRACE_SEIZE
);
271 * SEIZE will enable new ptrace behaviors which will be implemented
272 * gradually. SEIZE_DEVEL is used to prevent applications
273 * expecting full SEIZE behaviors trapping on kernel commits which
274 * are still in the process of implementing them.
276 * Only test programs for new ptrace behaviors being implemented
277 * should set SEIZE_DEVEL. If unset, SEIZE will fail with -EIO.
279 * Once SEIZE behaviors are completely implemented, this flag and
280 * the following test will be removed.
283 if (seize
&& !(flags
& PTRACE_SEIZE_DEVEL
))
289 if (unlikely(task
->flags
& PF_KTHREAD
))
291 if (same_thread_group(task
, current
))
295 * Protect exec's credential calculations against our interference;
296 * interference; SUID, SGID and LSM creds get determined differently
299 retval
= -ERESTARTNOINTR
;
300 if (mutex_lock_interruptible(&task
->signal
->cred_guard_mutex
))
304 retval
= __ptrace_may_access(task
, PTRACE_MODE_ATTACH
);
309 write_lock_irq(&tasklist_lock
);
311 if (unlikely(task
->exit_state
))
312 goto unlock_tasklist
;
314 goto unlock_tasklist
;
316 task
->ptrace
= PT_PTRACED
;
318 task
->ptrace
|= PT_SEIZED
;
319 if (task_ns_capable(task
, CAP_SYS_PTRACE
))
320 task
->ptrace
|= PT_PTRACE_CAP
;
322 __ptrace_link(task
, current
);
324 /* SEIZE doesn't trap tracee on attach */
326 send_sig_info(SIGSTOP
, SEND_SIG_FORCED
, task
);
328 spin_lock(&task
->sighand
->siglock
);
331 * If the task is already STOPPED, set JOBCTL_TRAP_STOP and
332 * TRAPPING, and kick it so that it transits to TRACED. TRAPPING
333 * will be cleared if the child completes the transition or any
334 * event which clears the group stop states happens. We'll wait
335 * for the transition to complete before returning from this
338 * This hides STOPPED -> RUNNING -> TRACED transition from the
339 * attaching thread but a different thread in the same group can
340 * still observe the transient RUNNING state. IOW, if another
341 * thread's WNOHANG wait(2) on the stopped tracee races against
342 * ATTACH, the wait(2) may fail due to the transient RUNNING.
344 * The following task_is_stopped() test is safe as both transitions
345 * in and out of STOPPED are protected by siglock.
347 if (task_is_stopped(task
) &&
348 task_set_jobctl_pending(task
, JOBCTL_TRAP_STOP
| JOBCTL_TRAPPING
))
349 signal_wake_up_state(task
, __TASK_STOPPED
);
351 spin_unlock(&task
->sighand
->siglock
);
355 write_unlock_irq(&tasklist_lock
);
357 mutex_unlock(&task
->signal
->cred_guard_mutex
);
360 wait_on_bit(&task
->jobctl
, JOBCTL_TRAPPING_BIT
,
361 ptrace_trapping_sleep_fn
, TASK_UNINTERRUPTIBLE
);
362 proc_ptrace_connector(task
, PTRACE_ATTACH
);
369 * ptrace_traceme -- helper for PTRACE_TRACEME
371 * Performs checks and sets PT_PTRACED.
372 * Should be used by all ptrace implementations for PTRACE_TRACEME.
374 static int ptrace_traceme(void)
378 write_lock_irq(&tasklist_lock
);
379 /* Are we already being traced? */
380 if (!current
->ptrace
) {
381 ret
= security_ptrace_traceme(current
->parent
);
383 * Check PF_EXITING to ensure ->real_parent has not passed
384 * exit_ptrace(). Otherwise we don't report the error but
385 * pretend ->real_parent untraces us right after return.
387 if (!ret
&& !(current
->real_parent
->flags
& PF_EXITING
)) {
388 current
->ptrace
= PT_PTRACED
;
389 __ptrace_link(current
, current
->real_parent
);
392 write_unlock_irq(&tasklist_lock
);
398 * Called with irqs disabled, returns true if childs should reap themselves.
400 static int ignoring_children(struct sighand_struct
*sigh
)
403 spin_lock(&sigh
->siglock
);
404 ret
= (sigh
->action
[SIGCHLD
-1].sa
.sa_handler
== SIG_IGN
) ||
405 (sigh
->action
[SIGCHLD
-1].sa
.sa_flags
& SA_NOCLDWAIT
);
406 spin_unlock(&sigh
->siglock
);
411 * Called with tasklist_lock held for writing.
412 * Unlink a traced task, and clean it up if it was a traced zombie.
413 * Return true if it needs to be reaped with release_task().
414 * (We can't call release_task() here because we already hold tasklist_lock.)
416 * If it's a zombie, our attachedness prevented normal parent notification
417 * or self-reaping. Do notification now if it would have happened earlier.
418 * If it should reap itself, return true.
420 * If it's our own child, there is no notification to do. But if our normal
421 * children self-reap, then this child was prevented by ptrace and we must
422 * reap it now, in that case we must also wake up sub-threads sleeping in
425 static bool __ptrace_detach(struct task_struct
*tracer
, struct task_struct
*p
)
431 if (p
->exit_state
!= EXIT_ZOMBIE
)
434 dead
= !thread_group_leader(p
);
436 if (!dead
&& thread_group_empty(p
)) {
437 if (!same_thread_group(p
->real_parent
, tracer
))
438 dead
= do_notify_parent(p
, p
->exit_signal
);
439 else if (ignoring_children(tracer
->sighand
)) {
440 __wake_up_parent(p
, tracer
);
444 /* Mark it as in the process of being reaped. */
446 p
->exit_state
= EXIT_DEAD
;
450 static int ptrace_detach(struct task_struct
*child
, unsigned int data
)
454 if (!valid_signal(data
))
457 /* Architecture-specific hardware disable .. */
458 ptrace_disable(child
);
459 clear_tsk_thread_flag(child
, TIF_SYSCALL_TRACE
);
461 write_lock_irq(&tasklist_lock
);
463 * This child can be already killed. Make sure de_thread() or
464 * our sub-thread doing do_wait() didn't do release_task() yet.
467 child
->exit_code
= data
;
468 dead
= __ptrace_detach(current
, child
);
470 write_unlock_irq(&tasklist_lock
);
472 proc_ptrace_connector(child
, PTRACE_DETACH
);
480 * Detach all tasks we were using ptrace on. Called with tasklist held
481 * for writing, and returns with it held too. But note it can release
482 * and reacquire the lock.
484 void exit_ptrace(struct task_struct
*tracer
)
485 __releases(&tasklist_lock
)
486 __acquires(&tasklist_lock
)
488 struct task_struct
*p
, *n
;
489 LIST_HEAD(ptrace_dead
);
491 if (likely(list_empty(&tracer
->ptraced
)))
494 list_for_each_entry_safe(p
, n
, &tracer
->ptraced
, ptrace_entry
) {
495 if (__ptrace_detach(tracer
, p
))
496 list_add(&p
->ptrace_entry
, &ptrace_dead
);
499 write_unlock_irq(&tasklist_lock
);
500 BUG_ON(!list_empty(&tracer
->ptraced
));
502 list_for_each_entry_safe(p
, n
, &ptrace_dead
, ptrace_entry
) {
503 list_del_init(&p
->ptrace_entry
);
507 write_lock_irq(&tasklist_lock
);
510 int ptrace_readdata(struct task_struct
*tsk
, unsigned long src
, char __user
*dst
, int len
)
516 int this_len
, retval
;
518 this_len
= (len
> sizeof(buf
)) ? sizeof(buf
) : len
;
519 retval
= access_process_vm(tsk
, src
, buf
, this_len
, 0);
525 if (copy_to_user(dst
, buf
, retval
))
535 int ptrace_writedata(struct task_struct
*tsk
, char __user
*src
, unsigned long dst
, int len
)
541 int this_len
, retval
;
543 this_len
= (len
> sizeof(buf
)) ? sizeof(buf
) : len
;
544 if (copy_from_user(buf
, src
, this_len
))
546 retval
= access_process_vm(tsk
, dst
, buf
, this_len
, 1);
560 static int ptrace_setoptions(struct task_struct
*child
, unsigned long data
)
562 child
->ptrace
&= ~PT_TRACE_MASK
;
564 if (data
& PTRACE_O_TRACESYSGOOD
)
565 child
->ptrace
|= PT_TRACESYSGOOD
;
567 if (data
& PTRACE_O_TRACEFORK
)
568 child
->ptrace
|= PT_TRACE_FORK
;
570 if (data
& PTRACE_O_TRACEVFORK
)
571 child
->ptrace
|= PT_TRACE_VFORK
;
573 if (data
& PTRACE_O_TRACECLONE
)
574 child
->ptrace
|= PT_TRACE_CLONE
;
576 if (data
& PTRACE_O_TRACEEXEC
)
577 child
->ptrace
|= PT_TRACE_EXEC
;
579 if (data
& PTRACE_O_TRACEVFORKDONE
)
580 child
->ptrace
|= PT_TRACE_VFORK_DONE
;
582 if (data
& PTRACE_O_TRACEEXIT
)
583 child
->ptrace
|= PT_TRACE_EXIT
;
585 return (data
& ~PTRACE_O_MASK
) ? -EINVAL
: 0;
588 static int ptrace_getsiginfo(struct task_struct
*child
, siginfo_t
*info
)
593 if (lock_task_sighand(child
, &flags
)) {
595 if (likely(child
->last_siginfo
!= NULL
)) {
596 *info
= *child
->last_siginfo
;
599 unlock_task_sighand(child
, &flags
);
604 static int ptrace_setsiginfo(struct task_struct
*child
, const siginfo_t
*info
)
609 if (lock_task_sighand(child
, &flags
)) {
611 if (likely(child
->last_siginfo
!= NULL
)) {
612 *child
->last_siginfo
= *info
;
615 unlock_task_sighand(child
, &flags
);
621 #ifdef PTRACE_SINGLESTEP
622 #define is_singlestep(request) ((request) == PTRACE_SINGLESTEP)
624 #define is_singlestep(request) 0
627 #ifdef PTRACE_SINGLEBLOCK
628 #define is_singleblock(request) ((request) == PTRACE_SINGLEBLOCK)
630 #define is_singleblock(request) 0
634 #define is_sysemu_singlestep(request) ((request) == PTRACE_SYSEMU_SINGLESTEP)
636 #define is_sysemu_singlestep(request) 0
639 static int ptrace_resume(struct task_struct
*child
, long request
,
642 if (!valid_signal(data
))
645 if (request
== PTRACE_SYSCALL
)
646 set_tsk_thread_flag(child
, TIF_SYSCALL_TRACE
);
648 clear_tsk_thread_flag(child
, TIF_SYSCALL_TRACE
);
650 #ifdef TIF_SYSCALL_EMU
651 if (request
== PTRACE_SYSEMU
|| request
== PTRACE_SYSEMU_SINGLESTEP
)
652 set_tsk_thread_flag(child
, TIF_SYSCALL_EMU
);
654 clear_tsk_thread_flag(child
, TIF_SYSCALL_EMU
);
657 if (is_singleblock(request
)) {
658 if (unlikely(!arch_has_block_step()))
660 user_enable_block_step(child
);
661 } else if (is_singlestep(request
) || is_sysemu_singlestep(request
)) {
662 if (unlikely(!arch_has_single_step()))
664 user_enable_single_step(child
);
666 user_disable_single_step(child
);
669 child
->exit_code
= data
;
670 wake_up_state(child
, __TASK_TRACED
);
675 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
677 static const struct user_regset
*
678 find_regset(const struct user_regset_view
*view
, unsigned int type
)
680 const struct user_regset
*regset
;
683 for (n
= 0; n
< view
->n
; ++n
) {
684 regset
= view
->regsets
+ n
;
685 if (regset
->core_note_type
== type
)
692 static int ptrace_regset(struct task_struct
*task
, int req
, unsigned int type
,
695 const struct user_regset_view
*view
= task_user_regset_view(task
);
696 const struct user_regset
*regset
= find_regset(view
, type
);
699 if (!regset
|| (kiov
->iov_len
% regset
->size
) != 0)
702 regset_no
= regset
- view
->regsets
;
703 kiov
->iov_len
= min(kiov
->iov_len
,
704 (__kernel_size_t
) (regset
->n
* regset
->size
));
706 if (req
== PTRACE_GETREGSET
)
707 return copy_regset_to_user(task
, view
, regset_no
, 0,
708 kiov
->iov_len
, kiov
->iov_base
);
710 return copy_regset_from_user(task
, view
, regset_no
, 0,
711 kiov
->iov_len
, kiov
->iov_base
);
716 int ptrace_request(struct task_struct
*child
, long request
,
717 unsigned long addr
, unsigned long data
)
719 bool seized
= child
->ptrace
& PT_SEIZED
;
721 siginfo_t siginfo
, *si
;
722 void __user
*datavp
= (void __user
*) data
;
723 unsigned long __user
*datalp
= datavp
;
727 case PTRACE_PEEKTEXT
:
728 case PTRACE_PEEKDATA
:
729 return generic_ptrace_peekdata(child
, addr
, data
);
730 case PTRACE_POKETEXT
:
731 case PTRACE_POKEDATA
:
732 return generic_ptrace_pokedata(child
, addr
, data
);
734 #ifdef PTRACE_OLDSETOPTIONS
735 case PTRACE_OLDSETOPTIONS
:
737 case PTRACE_SETOPTIONS
:
738 ret
= ptrace_setoptions(child
, data
);
740 case PTRACE_GETEVENTMSG
:
741 ret
= put_user(child
->ptrace_message
, datalp
);
744 case PTRACE_GETSIGINFO
:
745 ret
= ptrace_getsiginfo(child
, &siginfo
);
747 ret
= copy_siginfo_to_user(datavp
, &siginfo
);
750 case PTRACE_SETSIGINFO
:
751 if (copy_from_user(&siginfo
, datavp
, sizeof siginfo
))
754 ret
= ptrace_setsiginfo(child
, &siginfo
);
757 case PTRACE_INTERRUPT
:
759 * Stop tracee without any side-effect on signal or job
760 * control. At least one trap is guaranteed to happen
761 * after this request. If @child is already trapped, the
762 * current trap is not disturbed and another trap will
763 * happen after the current trap is ended with PTRACE_CONT.
765 * The actual trap might not be PTRACE_EVENT_STOP trap but
766 * the pending condition is cleared regardless.
768 if (unlikely(!seized
|| !lock_task_sighand(child
, &flags
)))
772 * INTERRUPT doesn't disturb existing trap sans one
773 * exception. If ptracer issued LISTEN for the current
774 * STOP, this INTERRUPT should clear LISTEN and re-trap
777 if (likely(task_set_jobctl_pending(child
, JOBCTL_TRAP_STOP
)))
778 ptrace_signal_wake_up(child
, child
->jobctl
& JOBCTL_LISTENING
);
780 unlock_task_sighand(child
, &flags
);
786 * Listen for events. Tracee must be in STOP. It's not
787 * resumed per-se but is not considered to be in TRACED by
788 * wait(2) or ptrace(2). If an async event (e.g. group
789 * stop state change) happens, tracee will enter STOP trap
790 * again. Alternatively, ptracer can issue INTERRUPT to
791 * finish listening and re-trap tracee into STOP.
793 if (unlikely(!seized
|| !lock_task_sighand(child
, &flags
)))
796 si
= child
->last_siginfo
;
797 if (likely(si
&& (si
->si_code
>> 8) == PTRACE_EVENT_STOP
)) {
798 child
->jobctl
|= JOBCTL_LISTENING
;
800 * If NOTIFY is set, it means event happened between
801 * start of this trap and now. Trigger re-trap.
803 if (child
->jobctl
& JOBCTL_TRAP_NOTIFY
)
804 ptrace_signal_wake_up(child
, true);
807 unlock_task_sighand(child
, &flags
);
810 case PTRACE_DETACH
: /* detach a process that was attached. */
811 ret
= ptrace_detach(child
, data
);
814 #ifdef CONFIG_BINFMT_ELF_FDPIC
815 case PTRACE_GETFDPIC
: {
816 struct mm_struct
*mm
= get_task_mm(child
);
817 unsigned long tmp
= 0;
824 case PTRACE_GETFDPIC_EXEC
:
825 tmp
= mm
->context
.exec_fdpic_loadmap
;
827 case PTRACE_GETFDPIC_INTERP
:
828 tmp
= mm
->context
.interp_fdpic_loadmap
;
835 ret
= put_user(tmp
, datalp
);
840 #ifdef PTRACE_SINGLESTEP
841 case PTRACE_SINGLESTEP
:
843 #ifdef PTRACE_SINGLEBLOCK
844 case PTRACE_SINGLEBLOCK
:
848 case PTRACE_SYSEMU_SINGLESTEP
:
852 return ptrace_resume(child
, request
, data
);
855 if (child
->exit_state
) /* already dead */
857 return ptrace_resume(child
, request
, SIGKILL
);
859 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
860 case PTRACE_GETREGSET
:
861 case PTRACE_SETREGSET
:
864 struct iovec __user
*uiov
= datavp
;
866 if (!access_ok(VERIFY_WRITE
, uiov
, sizeof(*uiov
)))
869 if (__get_user(kiov
.iov_base
, &uiov
->iov_base
) ||
870 __get_user(kiov
.iov_len
, &uiov
->iov_len
))
873 ret
= ptrace_regset(child
, request
, addr
, &kiov
);
875 ret
= __put_user(kiov
.iov_len
, &uiov
->iov_len
);
886 static struct task_struct
*ptrace_get_task_struct(pid_t pid
)
888 struct task_struct
*child
;
891 child
= find_task_by_vpid(pid
);
893 get_task_struct(child
);
897 return ERR_PTR(-ESRCH
);
901 #ifndef arch_ptrace_attach
902 #define arch_ptrace_attach(child) do { } while (0)
905 SYSCALL_DEFINE4(ptrace
, long, request
, long, pid
, unsigned long, addr
,
908 struct task_struct
*child
;
911 if (request
== PTRACE_TRACEME
) {
912 ret
= ptrace_traceme();
914 arch_ptrace_attach(current
);
918 child
= ptrace_get_task_struct(pid
);
920 ret
= PTR_ERR(child
);
924 if (request
== PTRACE_ATTACH
|| request
== PTRACE_SEIZE
) {
925 ret
= ptrace_attach(child
, request
, data
);
927 * Some architectures need to do book-keeping after
931 arch_ptrace_attach(child
);
932 goto out_put_task_struct
;
935 ret
= ptrace_check_attach(child
, request
== PTRACE_KILL
||
936 request
== PTRACE_INTERRUPT
);
938 goto out_put_task_struct
;
940 ret
= arch_ptrace(child
, request
, addr
, data
);
941 if (ret
|| request
!= PTRACE_DETACH
)
942 ptrace_unfreeze_traced(child
);
945 put_task_struct(child
);
950 int generic_ptrace_peekdata(struct task_struct
*tsk
, unsigned long addr
,
956 copied
= access_process_vm(tsk
, addr
, &tmp
, sizeof(tmp
), 0);
957 if (copied
!= sizeof(tmp
))
959 return put_user(tmp
, (unsigned long __user
*)data
);
962 int generic_ptrace_pokedata(struct task_struct
*tsk
, unsigned long addr
,
967 copied
= access_process_vm(tsk
, addr
, &data
, sizeof(data
), 1);
968 return (copied
== sizeof(data
)) ? 0 : -EIO
;
971 #if defined CONFIG_COMPAT
972 #include <linux/compat.h>
974 int compat_ptrace_request(struct task_struct
*child
, compat_long_t request
,
975 compat_ulong_t addr
, compat_ulong_t data
)
977 compat_ulong_t __user
*datap
= compat_ptr(data
);
983 case PTRACE_PEEKTEXT
:
984 case PTRACE_PEEKDATA
:
985 ret
= access_process_vm(child
, addr
, &word
, sizeof(word
), 0);
986 if (ret
!= sizeof(word
))
989 ret
= put_user(word
, datap
);
992 case PTRACE_POKETEXT
:
993 case PTRACE_POKEDATA
:
994 ret
= access_process_vm(child
, addr
, &data
, sizeof(data
), 1);
995 ret
= (ret
!= sizeof(data
) ? -EIO
: 0);
998 case PTRACE_GETEVENTMSG
:
999 ret
= put_user((compat_ulong_t
) child
->ptrace_message
, datap
);
1002 case PTRACE_GETSIGINFO
:
1003 ret
= ptrace_getsiginfo(child
, &siginfo
);
1005 ret
= copy_siginfo_to_user32(
1006 (struct compat_siginfo __user
*) datap
,
1010 case PTRACE_SETSIGINFO
:
1011 memset(&siginfo
, 0, sizeof siginfo
);
1012 if (copy_siginfo_from_user32(
1013 &siginfo
, (struct compat_siginfo __user
*) datap
))
1016 ret
= ptrace_setsiginfo(child
, &siginfo
);
1018 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1019 case PTRACE_GETREGSET
:
1020 case PTRACE_SETREGSET
:
1023 struct compat_iovec __user
*uiov
=
1024 (struct compat_iovec __user
*) datap
;
1028 if (!access_ok(VERIFY_WRITE
, uiov
, sizeof(*uiov
)))
1031 if (__get_user(ptr
, &uiov
->iov_base
) ||
1032 __get_user(len
, &uiov
->iov_len
))
1035 kiov
.iov_base
= compat_ptr(ptr
);
1038 ret
= ptrace_regset(child
, request
, addr
, &kiov
);
1040 ret
= __put_user(kiov
.iov_len
, &uiov
->iov_len
);
1046 ret
= ptrace_request(child
, request
, addr
, data
);
1052 asmlinkage
long compat_sys_ptrace(compat_long_t request
, compat_long_t pid
,
1053 compat_long_t addr
, compat_long_t data
)
1055 struct task_struct
*child
;
1058 if (request
== PTRACE_TRACEME
) {
1059 ret
= ptrace_traceme();
1063 child
= ptrace_get_task_struct(pid
);
1064 if (IS_ERR(child
)) {
1065 ret
= PTR_ERR(child
);
1069 if (request
== PTRACE_ATTACH
|| request
== PTRACE_SEIZE
) {
1070 ret
= ptrace_attach(child
, request
, data
);
1072 * Some architectures need to do book-keeping after
1076 arch_ptrace_attach(child
);
1077 goto out_put_task_struct
;
1080 ret
= ptrace_check_attach(child
, request
== PTRACE_KILL
||
1081 request
== PTRACE_INTERRUPT
);
1083 ret
= compat_arch_ptrace(child
, request
, addr
, data
);
1084 if (ret
|| request
!= PTRACE_DETACH
)
1085 ptrace_unfreeze_traced(child
);
1088 out_put_task_struct
:
1089 put_task_struct(child
);
1093 #endif /* CONFIG_COMPAT */
1095 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1096 int ptrace_get_breakpoints(struct task_struct
*tsk
)
1098 if (atomic_inc_not_zero(&tsk
->ptrace_bp_refcnt
))
1104 void ptrace_put_breakpoints(struct task_struct
*tsk
)
1106 if (atomic_dec_and_test(&tsk
->ptrace_bp_refcnt
))
1107 flush_ptrace_hw_breakpoint(tsk
);
1109 #endif /* CONFIG_HAVE_HW_BREAKPOINT */