2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
24 #include <asm/irq_regs.h>
26 #include "tick-internal.h"
29 * Per cpu nohz control structure
31 static DEFINE_PER_CPU(struct tick_sched
, tick_cpu_sched
);
34 * The time, when the last jiffy update happened. Protected by xtime_lock.
36 static ktime_t last_jiffies_update
;
38 struct tick_sched
*tick_get_tick_sched(int cpu
)
40 return &per_cpu(tick_cpu_sched
, cpu
);
44 * Must be called with interrupts disabled !
46 static void tick_do_update_jiffies64(ktime_t now
)
48 unsigned long ticks
= 0;
52 * Do a quick check without holding xtime_lock:
54 delta
= ktime_sub(now
, last_jiffies_update
);
55 if (delta
.tv64
< tick_period
.tv64
)
58 /* Reevalute with xtime_lock held */
59 write_seqlock(&xtime_lock
);
61 delta
= ktime_sub(now
, last_jiffies_update
);
62 if (delta
.tv64
>= tick_period
.tv64
) {
64 delta
= ktime_sub(delta
, tick_period
);
65 last_jiffies_update
= ktime_add(last_jiffies_update
,
68 /* Slow path for long timeouts */
69 if (unlikely(delta
.tv64
>= tick_period
.tv64
)) {
70 s64 incr
= ktime_to_ns(tick_period
);
72 ticks
= ktime_divns(delta
, incr
);
74 last_jiffies_update
= ktime_add_ns(last_jiffies_update
,
79 /* Keep the tick_next_period variable up to date */
80 tick_next_period
= ktime_add(last_jiffies_update
, tick_period
);
82 write_sequnlock(&xtime_lock
);
86 * Initialize and return retrieve the jiffies update.
88 static ktime_t
tick_init_jiffy_update(void)
92 write_seqlock(&xtime_lock
);
93 /* Did we start the jiffies update yet ? */
94 if (last_jiffies_update
.tv64
== 0)
95 last_jiffies_update
= tick_next_period
;
96 period
= last_jiffies_update
;
97 write_sequnlock(&xtime_lock
);
102 * NOHZ - aka dynamic tick functionality
108 static int tick_nohz_enabled __read_mostly
= 1;
111 * Enable / Disable tickless mode
113 static int __init
setup_tick_nohz(char *str
)
115 if (!strcmp(str
, "off"))
116 tick_nohz_enabled
= 0;
117 else if (!strcmp(str
, "on"))
118 tick_nohz_enabled
= 1;
124 __setup("nohz=", setup_tick_nohz
);
127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
129 * Called from interrupt entry when the CPU was idle
131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132 * must be updated. Otherwise an interrupt handler could use a stale jiffy
133 * value. We do this unconditionally on any cpu, as we don't know whether the
134 * cpu, which has the update task assigned is in a long sleep.
136 static void tick_nohz_update_jiffies(ktime_t now
)
138 int cpu
= smp_processor_id();
139 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
142 ts
->idle_waketime
= now
;
144 local_irq_save(flags
);
145 tick_do_update_jiffies64(now
);
146 local_irq_restore(flags
);
148 touch_softlockup_watchdog();
152 * Updates the per cpu time idle statistics counters
155 update_ts_time_stats(int cpu
, struct tick_sched
*ts
, ktime_t now
, u64
*last_update_time
)
159 if (ts
->idle_active
) {
160 delta
= ktime_sub(now
, ts
->idle_entrytime
);
161 if (nr_iowait_cpu(cpu
) > 0)
162 ts
->iowait_sleeptime
= ktime_add(ts
->iowait_sleeptime
, delta
);
164 ts
->idle_sleeptime
= ktime_add(ts
->idle_sleeptime
, delta
);
165 ts
->idle_entrytime
= now
;
168 if (last_update_time
)
169 *last_update_time
= ktime_to_us(now
);
173 static void tick_nohz_stop_idle(int cpu
, ktime_t now
)
175 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
177 update_ts_time_stats(cpu
, ts
, now
, NULL
);
180 sched_clock_idle_wakeup_event(0);
183 static ktime_t
tick_nohz_start_idle(int cpu
, struct tick_sched
*ts
)
189 update_ts_time_stats(cpu
, ts
, now
, NULL
);
191 ts
->idle_entrytime
= now
;
193 sched_clock_idle_sleep_event();
198 * get_cpu_idle_time_us - get the total idle time of a cpu
199 * @cpu: CPU number to query
200 * @last_update_time: variable to store update time in. Do not update
203 * Return the cummulative idle time (since boot) for a given
204 * CPU, in microseconds.
206 * This time is measured via accounting rather than sampling,
207 * and is as accurate as ktime_get() is.
209 * This function returns -1 if NOHZ is not enabled.
211 u64
get_cpu_idle_time_us(int cpu
, u64
*last_update_time
)
213 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
216 if (!tick_nohz_enabled
)
220 if (last_update_time
) {
221 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
222 idle
= ts
->idle_sleeptime
;
224 if (ts
->idle_active
&& !nr_iowait_cpu(cpu
)) {
225 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
227 idle
= ktime_add(ts
->idle_sleeptime
, delta
);
229 idle
= ts
->idle_sleeptime
;
233 return ktime_to_us(idle
);
236 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us
);
239 * get_cpu_iowait_time_us - get the total iowait time of a cpu
240 * @cpu: CPU number to query
241 * @last_update_time: variable to store update time in. Do not update
244 * Return the cummulative iowait time (since boot) for a given
245 * CPU, in microseconds.
247 * This time is measured via accounting rather than sampling,
248 * and is as accurate as ktime_get() is.
250 * This function returns -1 if NOHZ is not enabled.
252 u64
get_cpu_iowait_time_us(int cpu
, u64
*last_update_time
)
254 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
257 if (!tick_nohz_enabled
)
261 if (last_update_time
) {
262 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
263 iowait
= ts
->iowait_sleeptime
;
265 if (ts
->idle_active
&& nr_iowait_cpu(cpu
) > 0) {
266 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
268 iowait
= ktime_add(ts
->iowait_sleeptime
, delta
);
270 iowait
= ts
->iowait_sleeptime
;
274 return ktime_to_us(iowait
);
276 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us
);
279 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
281 * When the next event is more than a tick into the future, stop the idle tick
282 * Called either from the idle loop or from irq_exit() when an idle period was
283 * just interrupted by an interrupt which did not cause a reschedule.
285 void tick_nohz_stop_sched_tick(int inidle
)
287 unsigned long seq
, last_jiffies
, next_jiffies
, delta_jiffies
, flags
;
288 struct tick_sched
*ts
;
289 ktime_t last_update
, expires
, now
;
290 struct clock_event_device
*dev
= __get_cpu_var(tick_cpu_device
).evtdev
;
294 local_irq_save(flags
);
296 cpu
= smp_processor_id();
297 ts
= &per_cpu(tick_cpu_sched
, cpu
);
300 * Call to tick_nohz_start_idle stops the last_update_time from being
301 * updated. Thus, it must not be called in the event we are called from
302 * irq_exit() with the prior state different than idle.
304 if (!inidle
&& !ts
->inidle
)
308 * Set ts->inidle unconditionally. Even if the system did not
309 * switch to NOHZ mode the cpu frequency governers rely on the
310 * update of the idle time accounting in tick_nohz_start_idle().
314 now
= tick_nohz_start_idle(cpu
, ts
);
317 * If this cpu is offline and it is the one which updates
318 * jiffies, then give up the assignment and let it be taken by
319 * the cpu which runs the tick timer next. If we don't drop
320 * this here the jiffies might be stale and do_timer() never
323 if (unlikely(!cpu_online(cpu
))) {
324 if (cpu
== tick_do_timer_cpu
)
325 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
328 if (unlikely(ts
->nohz_mode
== NOHZ_MODE_INACTIVE
))
334 if (unlikely(local_softirq_pending() && cpu_online(cpu
))) {
335 static int ratelimit
;
337 if (ratelimit
< 10) {
338 printk(KERN_ERR
"NOHZ: local_softirq_pending %02x\n",
339 (unsigned int) local_softirq_pending());
346 /* Read jiffies and the time when jiffies were updated last */
348 seq
= read_seqbegin(&xtime_lock
);
349 last_update
= last_jiffies_update
;
350 last_jiffies
= jiffies
;
351 time_delta
= timekeeping_max_deferment();
352 } while (read_seqretry(&xtime_lock
, seq
));
354 if (rcu_needs_cpu(cpu
) || printk_needs_cpu(cpu
) ||
355 arch_needs_cpu(cpu
)) {
356 next_jiffies
= last_jiffies
+ 1;
359 /* Get the next timer wheel timer */
360 next_jiffies
= get_next_timer_interrupt(last_jiffies
);
361 delta_jiffies
= next_jiffies
- last_jiffies
;
364 * Do not stop the tick, if we are only one off
365 * or if the cpu is required for rcu
367 if (!ts
->tick_stopped
&& delta_jiffies
== 1)
370 /* Schedule the tick, if we are at least one jiffie off */
371 if ((long)delta_jiffies
>= 1) {
374 * If this cpu is the one which updates jiffies, then
375 * give up the assignment and let it be taken by the
376 * cpu which runs the tick timer next, which might be
377 * this cpu as well. If we don't drop this here the
378 * jiffies might be stale and do_timer() never
379 * invoked. Keep track of the fact that it was the one
380 * which had the do_timer() duty last. If this cpu is
381 * the one which had the do_timer() duty last, we
382 * limit the sleep time to the timekeeping
383 * max_deferement value which we retrieved
384 * above. Otherwise we can sleep as long as we want.
386 if (cpu
== tick_do_timer_cpu
) {
387 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
388 ts
->do_timer_last
= 1;
389 } else if (tick_do_timer_cpu
!= TICK_DO_TIMER_NONE
) {
390 time_delta
= KTIME_MAX
;
391 ts
->do_timer_last
= 0;
392 } else if (!ts
->do_timer_last
) {
393 time_delta
= KTIME_MAX
;
397 * calculate the expiry time for the next timer wheel
398 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
399 * that there is no timer pending or at least extremely
400 * far into the future (12 days for HZ=1000). In this
401 * case we set the expiry to the end of time.
403 if (likely(delta_jiffies
< NEXT_TIMER_MAX_DELTA
)) {
405 * Calculate the time delta for the next timer event.
406 * If the time delta exceeds the maximum time delta
407 * permitted by the current clocksource then adjust
408 * the time delta accordingly to ensure the
409 * clocksource does not wrap.
411 time_delta
= min_t(u64
, time_delta
,
412 tick_period
.tv64
* delta_jiffies
);
415 if (time_delta
< KTIME_MAX
)
416 expires
= ktime_add_ns(last_update
, time_delta
);
418 expires
.tv64
= KTIME_MAX
;
420 /* Skip reprogram of event if its not changed */
421 if (ts
->tick_stopped
&& ktime_equal(expires
, dev
->next_event
))
425 * nohz_stop_sched_tick can be called several times before
426 * the nohz_restart_sched_tick is called. This happens when
427 * interrupts arrive which do not cause a reschedule. In the
428 * first call we save the current tick time, so we can restart
429 * the scheduler tick in nohz_restart_sched_tick.
431 if (!ts
->tick_stopped
) {
432 select_nohz_load_balancer(1);
433 calc_load_enter_idle();
435 ts
->idle_tick
= hrtimer_get_expires(&ts
->sched_timer
);
436 ts
->tick_stopped
= 1;
437 ts
->idle_jiffies
= last_jiffies
;
444 ts
->idle_expires
= expires
;
447 * If the expiration time == KTIME_MAX, then
448 * in this case we simply stop the tick timer.
450 if (unlikely(expires
.tv64
== KTIME_MAX
)) {
451 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
452 hrtimer_cancel(&ts
->sched_timer
);
456 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
) {
457 hrtimer_start(&ts
->sched_timer
, expires
,
458 HRTIMER_MODE_ABS_PINNED
);
459 /* Check, if the timer was already in the past */
460 if (hrtimer_active(&ts
->sched_timer
))
462 } else if (!tick_program_event(expires
, 0))
465 * We are past the event already. So we crossed a
466 * jiffie boundary. Update jiffies and raise the
469 tick_do_update_jiffies64(ktime_get());
471 raise_softirq_irqoff(TIMER_SOFTIRQ
);
473 ts
->next_jiffies
= next_jiffies
;
474 ts
->last_jiffies
= last_jiffies
;
475 ts
->sleep_length
= ktime_sub(dev
->next_event
, now
);
477 local_irq_restore(flags
);
481 * tick_nohz_get_sleep_length - return the length of the current sleep
483 * Called from power state control code with interrupts disabled
485 ktime_t
tick_nohz_get_sleep_length(void)
487 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
489 return ts
->sleep_length
;
492 static void tick_nohz_restart(struct tick_sched
*ts
, ktime_t now
)
494 hrtimer_cancel(&ts
->sched_timer
);
495 hrtimer_set_expires(&ts
->sched_timer
, ts
->idle_tick
);
498 /* Forward the time to expire in the future */
499 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
501 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
) {
502 hrtimer_start_expires(&ts
->sched_timer
,
503 HRTIMER_MODE_ABS_PINNED
);
504 /* Check, if the timer was already in the past */
505 if (hrtimer_active(&ts
->sched_timer
))
508 if (!tick_program_event(
509 hrtimer_get_expires(&ts
->sched_timer
), 0))
512 /* Reread time and update jiffies */
514 tick_do_update_jiffies64(now
);
519 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
521 * Restart the idle tick when the CPU is woken up from idle
523 void tick_nohz_restart_sched_tick(void)
525 int cpu
= smp_processor_id();
526 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
527 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
533 if (ts
->idle_active
|| (ts
->inidle
&& ts
->tick_stopped
))
537 tick_nohz_stop_idle(cpu
, now
);
539 if (!ts
->inidle
|| !ts
->tick_stopped
) {
549 /* Update jiffies first */
550 select_nohz_load_balancer(0);
551 tick_do_update_jiffies64(now
);
552 update_cpu_load_nohz();
554 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
556 * We stopped the tick in idle. Update process times would miss the
557 * time we slept as update_process_times does only a 1 tick
558 * accounting. Enforce that this is accounted to idle !
560 ticks
= jiffies
- ts
->idle_jiffies
;
562 * We might be one off. Do not randomly account a huge number of ticks!
564 if (ticks
&& ticks
< LONG_MAX
)
565 account_idle_ticks(ticks
);
568 calc_load_exit_idle();
569 touch_softlockup_watchdog();
571 * Cancel the scheduled timer and restore the tick
573 ts
->tick_stopped
= 0;
574 ts
->idle_exittime
= now
;
576 tick_nohz_restart(ts
, now
);
581 static int tick_nohz_reprogram(struct tick_sched
*ts
, ktime_t now
)
583 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
584 return tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 0);
588 * The nohz low res interrupt handler
590 static void tick_nohz_handler(struct clock_event_device
*dev
)
592 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
593 struct pt_regs
*regs
= get_irq_regs();
594 int cpu
= smp_processor_id();
595 ktime_t now
= ktime_get();
597 dev
->next_event
.tv64
= KTIME_MAX
;
600 * Check if the do_timer duty was dropped. We don't care about
601 * concurrency: This happens only when the cpu in charge went
602 * into a long sleep. If two cpus happen to assign themself to
603 * this duty, then the jiffies update is still serialized by
606 if (unlikely(tick_do_timer_cpu
== TICK_DO_TIMER_NONE
))
607 tick_do_timer_cpu
= cpu
;
609 /* Check, if the jiffies need an update */
610 if (tick_do_timer_cpu
== cpu
)
611 tick_do_update_jiffies64(now
);
614 * When we are idle and the tick is stopped, we have to touch
615 * the watchdog as we might not schedule for a really long
616 * time. This happens on complete idle SMP systems while
617 * waiting on the login prompt. We also increment the "start
618 * of idle" jiffy stamp so the idle accounting adjustment we
619 * do when we go busy again does not account too much ticks.
621 if (ts
->tick_stopped
) {
622 touch_softlockup_watchdog();
626 update_process_times(user_mode(regs
));
627 profile_tick(CPU_PROFILING
);
629 while (tick_nohz_reprogram(ts
, now
)) {
631 tick_do_update_jiffies64(now
);
636 * tick_nohz_switch_to_nohz - switch to nohz mode
638 static void tick_nohz_switch_to_nohz(void)
640 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
643 if (!tick_nohz_enabled
)
647 if (tick_switch_to_oneshot(tick_nohz_handler
)) {
652 ts
->nohz_mode
= NOHZ_MODE_LOWRES
;
655 * Recycle the hrtimer in ts, so we can share the
656 * hrtimer_forward with the highres code.
658 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
659 /* Get the next period */
660 next
= tick_init_jiffy_update();
663 hrtimer_set_expires(&ts
->sched_timer
, next
);
664 if (!tick_program_event(next
, 0))
666 next
= ktime_add(next
, tick_period
);
672 * When NOHZ is enabled and the tick is stopped, we need to kick the
673 * tick timer from irq_enter() so that the jiffies update is kept
674 * alive during long running softirqs. That's ugly as hell, but
675 * correctness is key even if we need to fix the offending softirq in
678 * Note, this is different to tick_nohz_restart. We just kick the
679 * timer and do not touch the other magic bits which need to be done
682 static void tick_nohz_kick_tick(int cpu
, ktime_t now
)
685 /* Switch back to 2.6.27 behaviour */
687 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
691 * Do not touch the tick device, when the next expiry is either
692 * already reached or less/equal than the tick period.
694 delta
= ktime_sub(hrtimer_get_expires(&ts
->sched_timer
), now
);
695 if (delta
.tv64
<= tick_period
.tv64
)
698 tick_nohz_restart(ts
, now
);
702 static inline void tick_check_nohz(int cpu
)
704 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
707 if (!ts
->idle_active
&& !ts
->tick_stopped
)
711 tick_nohz_stop_idle(cpu
, now
);
712 if (ts
->tick_stopped
) {
713 tick_nohz_update_jiffies(now
);
714 tick_nohz_kick_tick(cpu
, now
);
720 static inline void tick_nohz_switch_to_nohz(void) { }
721 static inline void tick_check_nohz(int cpu
) { }
726 * Called from irq_enter to notify about the possible interruption of idle()
728 void tick_check_idle(int cpu
)
730 tick_check_oneshot_broadcast(cpu
);
731 tick_check_nohz(cpu
);
735 * High resolution timer specific code
737 #ifdef CONFIG_HIGH_RES_TIMERS
739 * We rearm the timer until we get disabled by the idle code.
740 * Called with interrupts disabled and timer->base->cpu_base->lock held.
742 static enum hrtimer_restart
tick_sched_timer(struct hrtimer
*timer
)
744 struct tick_sched
*ts
=
745 container_of(timer
, struct tick_sched
, sched_timer
);
746 struct pt_regs
*regs
= get_irq_regs();
747 ktime_t now
= ktime_get();
748 int cpu
= smp_processor_id();
752 * Check if the do_timer duty was dropped. We don't care about
753 * concurrency: This happens only when the cpu in charge went
754 * into a long sleep. If two cpus happen to assign themself to
755 * this duty, then the jiffies update is still serialized by
758 if (unlikely(tick_do_timer_cpu
== TICK_DO_TIMER_NONE
))
759 tick_do_timer_cpu
= cpu
;
762 /* Check, if the jiffies need an update */
763 if (tick_do_timer_cpu
== cpu
)
764 tick_do_update_jiffies64(now
);
767 * Do not call, when we are not in irq context and have
768 * no valid regs pointer
772 * When we are idle and the tick is stopped, we have to touch
773 * the watchdog as we might not schedule for a really long
774 * time. This happens on complete idle SMP systems while
775 * waiting on the login prompt. We also increment the "start of
776 * idle" jiffy stamp so the idle accounting adjustment we do
777 * when we go busy again does not account too much ticks.
779 if (ts
->tick_stopped
) {
780 touch_softlockup_watchdog();
783 update_process_times(user_mode(regs
));
784 profile_tick(CPU_PROFILING
);
787 hrtimer_forward(timer
, now
, tick_period
);
789 return HRTIMER_RESTART
;
793 * tick_setup_sched_timer - setup the tick emulation timer
795 void tick_setup_sched_timer(void)
797 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
798 ktime_t now
= ktime_get();
801 * Emulate tick processing via per-CPU hrtimers:
803 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
804 ts
->sched_timer
.function
= tick_sched_timer
;
806 /* Get the next period (per cpu) */
807 hrtimer_set_expires(&ts
->sched_timer
, tick_init_jiffy_update());
810 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
811 hrtimer_start_expires(&ts
->sched_timer
,
812 HRTIMER_MODE_ABS_PINNED
);
813 /* Check, if the timer was already in the past */
814 if (hrtimer_active(&ts
->sched_timer
))
820 if (tick_nohz_enabled
)
821 ts
->nohz_mode
= NOHZ_MODE_HIGHRES
;
824 #endif /* HIGH_RES_TIMERS */
826 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
827 void tick_cancel_sched_timer(int cpu
)
829 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
831 # ifdef CONFIG_HIGH_RES_TIMERS
832 if (ts
->sched_timer
.base
)
833 hrtimer_cancel(&ts
->sched_timer
);
836 ts
->nohz_mode
= NOHZ_MODE_INACTIVE
;
841 * Async notification about clocksource changes
843 void tick_clock_notify(void)
847 for_each_possible_cpu(cpu
)
848 set_bit(0, &per_cpu(tick_cpu_sched
, cpu
).check_clocks
);
852 * Async notification about clock event changes
854 void tick_oneshot_notify(void)
856 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
858 set_bit(0, &ts
->check_clocks
);
862 * Check, if a change happened, which makes oneshot possible.
864 * Called cyclic from the hrtimer softirq (driven by the timer
865 * softirq) allow_nohz signals, that we can switch into low-res nohz
866 * mode, because high resolution timers are disabled (either compile
869 int tick_check_oneshot_change(int allow_nohz
)
871 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
873 if (!test_and_clear_bit(0, &ts
->check_clocks
))
876 if (ts
->nohz_mode
!= NOHZ_MODE_INACTIVE
)
879 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
885 tick_nohz_switch_to_nohz();