perf_event: Allocate children's perf_event_ctxp at the right time
[linux/fpc-iii.git] / drivers / net / e1000e / phy.c
blob03175b3a2c9e25c28923439db0699ea312bca376
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/delay.h>
31 #include "e1000.h"
33 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
34 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
35 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
36 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
37 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
38 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
39 u16 *data, bool read);
40 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
41 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
42 u16 *data, bool read);
44 /* Cable length tables */
45 static const u16 e1000_m88_cable_length_table[] =
46 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
48 static const u16 e1000_igp_2_cable_length_table[] =
49 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
50 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
51 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
52 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
53 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
54 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
55 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
56 124};
57 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
58 ARRAY_SIZE(e1000_igp_2_cable_length_table)
60 #define BM_PHY_REG_PAGE(offset) \
61 ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
62 #define BM_PHY_REG_NUM(offset) \
63 ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
64 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
65 ~MAX_PHY_REG_ADDRESS)))
67 #define HV_INTC_FC_PAGE_START 768
68 #define I82578_ADDR_REG 29
69 #define I82577_ADDR_REG 16
70 #define I82577_CFG_REG 22
71 #define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
72 #define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */
73 #define I82577_CTRL_REG 23
74 #define I82577_CTRL_DOWNSHIFT_MASK (7 << 10)
76 /* 82577 specific PHY registers */
77 #define I82577_PHY_CTRL_2 18
78 #define I82577_PHY_STATUS_2 26
79 #define I82577_PHY_DIAG_STATUS 31
81 /* I82577 PHY Status 2 */
82 #define I82577_PHY_STATUS2_REV_POLARITY 0x0400
83 #define I82577_PHY_STATUS2_MDIX 0x0800
84 #define I82577_PHY_STATUS2_SPEED_MASK 0x0300
85 #define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
87 /* I82577 PHY Control 2 */
88 #define I82577_PHY_CTRL2_AUTO_MDIX 0x0400
89 #define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200
91 /* I82577 PHY Diagnostics Status */
92 #define I82577_DSTATUS_CABLE_LENGTH 0x03FC
93 #define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
95 /* BM PHY Copper Specific Control 1 */
96 #define BM_CS_CTRL1 16
98 #define HV_MUX_DATA_CTRL PHY_REG(776, 16)
99 #define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400
100 #define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004
103 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
104 * @hw: pointer to the HW structure
106 * Read the PHY management control register and check whether a PHY reset
107 * is blocked. If a reset is not blocked return 0, otherwise
108 * return E1000_BLK_PHY_RESET (12).
110 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
112 u32 manc;
114 manc = er32(MANC);
116 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
117 E1000_BLK_PHY_RESET : 0;
121 * e1000e_get_phy_id - Retrieve the PHY ID and revision
122 * @hw: pointer to the HW structure
124 * Reads the PHY registers and stores the PHY ID and possibly the PHY
125 * revision in the hardware structure.
127 s32 e1000e_get_phy_id(struct e1000_hw *hw)
129 struct e1000_phy_info *phy = &hw->phy;
130 s32 ret_val = 0;
131 u16 phy_id;
132 u16 retry_count = 0;
134 if (!(phy->ops.read_phy_reg))
135 goto out;
137 while (retry_count < 2) {
138 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
139 if (ret_val)
140 goto out;
142 phy->id = (u32)(phy_id << 16);
143 udelay(20);
144 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
145 if (ret_val)
146 goto out;
148 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
149 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
151 if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
152 goto out;
155 * If the PHY ID is still unknown, we may have an 82577i
156 * without link. We will try again after setting Slow
157 * MDIC mode. No harm in trying again in this case since
158 * the PHY ID is unknown at this point anyway
160 ret_val = phy->ops.acquire_phy(hw);
161 if (ret_val)
162 goto out;
163 ret_val = e1000_set_mdio_slow_mode_hv(hw, true);
164 if (ret_val)
165 goto out;
166 phy->ops.release_phy(hw);
168 retry_count++;
170 out:
171 /* Revert to MDIO fast mode, if applicable */
172 if (retry_count) {
173 ret_val = phy->ops.acquire_phy(hw);
174 if (ret_val)
175 return ret_val;
176 ret_val = e1000_set_mdio_slow_mode_hv(hw, false);
177 phy->ops.release_phy(hw);
180 return ret_val;
184 * e1000e_phy_reset_dsp - Reset PHY DSP
185 * @hw: pointer to the HW structure
187 * Reset the digital signal processor.
189 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
191 s32 ret_val;
193 ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
194 if (ret_val)
195 return ret_val;
197 return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
201 * e1000e_read_phy_reg_mdic - Read MDI control register
202 * @hw: pointer to the HW structure
203 * @offset: register offset to be read
204 * @data: pointer to the read data
206 * Reads the MDI control register in the PHY at offset and stores the
207 * information read to data.
209 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
211 struct e1000_phy_info *phy = &hw->phy;
212 u32 i, mdic = 0;
214 if (offset > MAX_PHY_REG_ADDRESS) {
215 hw_dbg(hw, "PHY Address %d is out of range\n", offset);
216 return -E1000_ERR_PARAM;
220 * Set up Op-code, Phy Address, and register offset in the MDI
221 * Control register. The MAC will take care of interfacing with the
222 * PHY to retrieve the desired data.
224 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
225 (phy->addr << E1000_MDIC_PHY_SHIFT) |
226 (E1000_MDIC_OP_READ));
228 ew32(MDIC, mdic);
231 * Poll the ready bit to see if the MDI read completed
232 * Increasing the time out as testing showed failures with
233 * the lower time out
235 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
236 udelay(50);
237 mdic = er32(MDIC);
238 if (mdic & E1000_MDIC_READY)
239 break;
241 if (!(mdic & E1000_MDIC_READY)) {
242 hw_dbg(hw, "MDI Read did not complete\n");
243 return -E1000_ERR_PHY;
245 if (mdic & E1000_MDIC_ERROR) {
246 hw_dbg(hw, "MDI Error\n");
247 return -E1000_ERR_PHY;
249 *data = (u16) mdic;
251 return 0;
255 * e1000e_write_phy_reg_mdic - Write MDI control register
256 * @hw: pointer to the HW structure
257 * @offset: register offset to write to
258 * @data: data to write to register at offset
260 * Writes data to MDI control register in the PHY at offset.
262 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
264 struct e1000_phy_info *phy = &hw->phy;
265 u32 i, mdic = 0;
267 if (offset > MAX_PHY_REG_ADDRESS) {
268 hw_dbg(hw, "PHY Address %d is out of range\n", offset);
269 return -E1000_ERR_PARAM;
273 * Set up Op-code, Phy Address, and register offset in the MDI
274 * Control register. The MAC will take care of interfacing with the
275 * PHY to retrieve the desired data.
277 mdic = (((u32)data) |
278 (offset << E1000_MDIC_REG_SHIFT) |
279 (phy->addr << E1000_MDIC_PHY_SHIFT) |
280 (E1000_MDIC_OP_WRITE));
282 ew32(MDIC, mdic);
285 * Poll the ready bit to see if the MDI read completed
286 * Increasing the time out as testing showed failures with
287 * the lower time out
289 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
290 udelay(50);
291 mdic = er32(MDIC);
292 if (mdic & E1000_MDIC_READY)
293 break;
295 if (!(mdic & E1000_MDIC_READY)) {
296 hw_dbg(hw, "MDI Write did not complete\n");
297 return -E1000_ERR_PHY;
299 if (mdic & E1000_MDIC_ERROR) {
300 hw_dbg(hw, "MDI Error\n");
301 return -E1000_ERR_PHY;
304 return 0;
308 * e1000e_read_phy_reg_m88 - Read m88 PHY register
309 * @hw: pointer to the HW structure
310 * @offset: register offset to be read
311 * @data: pointer to the read data
313 * Acquires semaphore, if necessary, then reads the PHY register at offset
314 * and storing the retrieved information in data. Release any acquired
315 * semaphores before exiting.
317 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
319 s32 ret_val;
321 ret_val = hw->phy.ops.acquire_phy(hw);
322 if (ret_val)
323 return ret_val;
325 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
326 data);
328 hw->phy.ops.release_phy(hw);
330 return ret_val;
334 * e1000e_write_phy_reg_m88 - Write m88 PHY register
335 * @hw: pointer to the HW structure
336 * @offset: register offset to write to
337 * @data: data to write at register offset
339 * Acquires semaphore, if necessary, then writes the data to PHY register
340 * at the offset. Release any acquired semaphores before exiting.
342 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
344 s32 ret_val;
346 ret_val = hw->phy.ops.acquire_phy(hw);
347 if (ret_val)
348 return ret_val;
350 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
351 data);
353 hw->phy.ops.release_phy(hw);
355 return ret_val;
359 * __e1000e_read_phy_reg_igp - Read igp PHY register
360 * @hw: pointer to the HW structure
361 * @offset: register offset to be read
362 * @data: pointer to the read data
363 * @locked: semaphore has already been acquired or not
365 * Acquires semaphore, if necessary, then reads the PHY register at offset
366 * and stores the retrieved information in data. Release any acquired
367 * semaphores before exiting.
369 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
370 bool locked)
372 s32 ret_val = 0;
374 if (!locked) {
375 if (!(hw->phy.ops.acquire_phy))
376 goto out;
378 ret_val = hw->phy.ops.acquire_phy(hw);
379 if (ret_val)
380 goto out;
383 if (offset > MAX_PHY_MULTI_PAGE_REG) {
384 ret_val = e1000e_write_phy_reg_mdic(hw,
385 IGP01E1000_PHY_PAGE_SELECT,
386 (u16)offset);
387 if (ret_val)
388 goto release;
391 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
392 data);
394 release:
395 if (!locked)
396 hw->phy.ops.release_phy(hw);
397 out:
398 return ret_val;
402 * e1000e_read_phy_reg_igp - Read igp PHY register
403 * @hw: pointer to the HW structure
404 * @offset: register offset to be read
405 * @data: pointer to the read data
407 * Acquires semaphore then reads the PHY register at offset and stores the
408 * retrieved information in data.
409 * Release the acquired semaphore before exiting.
411 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
413 return __e1000e_read_phy_reg_igp(hw, offset, data, false);
417 * e1000e_read_phy_reg_igp_locked - Read igp PHY register
418 * @hw: pointer to the HW structure
419 * @offset: register offset to be read
420 * @data: pointer to the read data
422 * Reads the PHY register at offset and stores the retrieved information
423 * in data. Assumes semaphore already acquired.
425 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
427 return __e1000e_read_phy_reg_igp(hw, offset, data, true);
431 * e1000e_write_phy_reg_igp - Write igp PHY register
432 * @hw: pointer to the HW structure
433 * @offset: register offset to write to
434 * @data: data to write at register offset
435 * @locked: semaphore has already been acquired or not
437 * Acquires semaphore, if necessary, then writes the data to PHY register
438 * at the offset. Release any acquired semaphores before exiting.
440 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
441 bool locked)
443 s32 ret_val = 0;
445 if (!locked) {
446 if (!(hw->phy.ops.acquire_phy))
447 goto out;
449 ret_val = hw->phy.ops.acquire_phy(hw);
450 if (ret_val)
451 goto out;
454 if (offset > MAX_PHY_MULTI_PAGE_REG) {
455 ret_val = e1000e_write_phy_reg_mdic(hw,
456 IGP01E1000_PHY_PAGE_SELECT,
457 (u16)offset);
458 if (ret_val)
459 goto release;
462 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
463 data);
465 release:
466 if (!locked)
467 hw->phy.ops.release_phy(hw);
469 out:
470 return ret_val;
474 * e1000e_write_phy_reg_igp - Write igp PHY register
475 * @hw: pointer to the HW structure
476 * @offset: register offset to write to
477 * @data: data to write at register offset
479 * Acquires semaphore then writes the data to PHY register
480 * at the offset. Release any acquired semaphores before exiting.
482 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
484 return __e1000e_write_phy_reg_igp(hw, offset, data, false);
488 * e1000e_write_phy_reg_igp_locked - Write igp PHY register
489 * @hw: pointer to the HW structure
490 * @offset: register offset to write to
491 * @data: data to write at register offset
493 * Writes the data to PHY register at the offset.
494 * Assumes semaphore already acquired.
496 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
498 return __e1000e_write_phy_reg_igp(hw, offset, data, true);
502 * __e1000_read_kmrn_reg - Read kumeran register
503 * @hw: pointer to the HW structure
504 * @offset: register offset to be read
505 * @data: pointer to the read data
506 * @locked: semaphore has already been acquired or not
508 * Acquires semaphore, if necessary. Then reads the PHY register at offset
509 * using the kumeran interface. The information retrieved is stored in data.
510 * Release any acquired semaphores before exiting.
512 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
513 bool locked)
515 u32 kmrnctrlsta;
516 s32 ret_val = 0;
518 if (!locked) {
519 if (!(hw->phy.ops.acquire_phy))
520 goto out;
522 ret_val = hw->phy.ops.acquire_phy(hw);
523 if (ret_val)
524 goto out;
527 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
528 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
529 ew32(KMRNCTRLSTA, kmrnctrlsta);
531 udelay(2);
533 kmrnctrlsta = er32(KMRNCTRLSTA);
534 *data = (u16)kmrnctrlsta;
536 if (!locked)
537 hw->phy.ops.release_phy(hw);
539 out:
540 return ret_val;
544 * e1000e_read_kmrn_reg - Read kumeran register
545 * @hw: pointer to the HW structure
546 * @offset: register offset to be read
547 * @data: pointer to the read data
549 * Acquires semaphore then reads the PHY register at offset using the
550 * kumeran interface. The information retrieved is stored in data.
551 * Release the acquired semaphore before exiting.
553 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
555 return __e1000_read_kmrn_reg(hw, offset, data, false);
559 * e1000e_read_kmrn_reg_locked - Read kumeran register
560 * @hw: pointer to the HW structure
561 * @offset: register offset to be read
562 * @data: pointer to the read data
564 * Reads the PHY register at offset using the kumeran interface. The
565 * information retrieved is stored in data.
566 * Assumes semaphore already acquired.
568 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
570 return __e1000_read_kmrn_reg(hw, offset, data, true);
574 * __e1000_write_kmrn_reg - Write kumeran register
575 * @hw: pointer to the HW structure
576 * @offset: register offset to write to
577 * @data: data to write at register offset
578 * @locked: semaphore has already been acquired or not
580 * Acquires semaphore, if necessary. Then write the data to PHY register
581 * at the offset using the kumeran interface. Release any acquired semaphores
582 * before exiting.
584 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
585 bool locked)
587 u32 kmrnctrlsta;
588 s32 ret_val = 0;
590 if (!locked) {
591 if (!(hw->phy.ops.acquire_phy))
592 goto out;
594 ret_val = hw->phy.ops.acquire_phy(hw);
595 if (ret_val)
596 goto out;
599 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
600 E1000_KMRNCTRLSTA_OFFSET) | data;
601 ew32(KMRNCTRLSTA, kmrnctrlsta);
603 udelay(2);
605 if (!locked)
606 hw->phy.ops.release_phy(hw);
608 out:
609 return ret_val;
613 * e1000e_write_kmrn_reg - Write kumeran register
614 * @hw: pointer to the HW structure
615 * @offset: register offset to write to
616 * @data: data to write at register offset
618 * Acquires semaphore then writes the data to the PHY register at the offset
619 * using the kumeran interface. Release the acquired semaphore before exiting.
621 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
623 return __e1000_write_kmrn_reg(hw, offset, data, false);
627 * e1000e_write_kmrn_reg_locked - Write kumeran register
628 * @hw: pointer to the HW structure
629 * @offset: register offset to write to
630 * @data: data to write at register offset
632 * Write the data to PHY register at the offset using the kumeran interface.
633 * Assumes semaphore already acquired.
635 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
637 return __e1000_write_kmrn_reg(hw, offset, data, true);
641 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
642 * @hw: pointer to the HW structure
644 * Sets up Carrier-sense on Transmit and downshift values.
646 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
648 struct e1000_phy_info *phy = &hw->phy;
649 s32 ret_val;
650 u16 phy_data;
652 /* Enable CRS on TX. This must be set for half-duplex operation. */
653 ret_val = phy->ops.read_phy_reg(hw, I82577_CFG_REG, &phy_data);
654 if (ret_val)
655 goto out;
657 phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
659 /* Enable downshift */
660 phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
662 ret_val = phy->ops.write_phy_reg(hw, I82577_CFG_REG, phy_data);
663 if (ret_val)
664 goto out;
666 /* Set number of link attempts before downshift */
667 ret_val = phy->ops.read_phy_reg(hw, I82577_CTRL_REG, &phy_data);
668 if (ret_val)
669 goto out;
670 phy_data &= ~I82577_CTRL_DOWNSHIFT_MASK;
671 ret_val = phy->ops.write_phy_reg(hw, I82577_CTRL_REG, phy_data);
673 out:
674 return ret_val;
678 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
679 * @hw: pointer to the HW structure
681 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
682 * and downshift values are set also.
684 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
686 struct e1000_phy_info *phy = &hw->phy;
687 s32 ret_val;
688 u16 phy_data;
690 /* Enable CRS on Tx. This must be set for half-duplex operation. */
691 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
692 if (ret_val)
693 return ret_val;
695 /* For BM PHY this bit is downshift enable */
696 if (phy->type != e1000_phy_bm)
697 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
700 * Options:
701 * MDI/MDI-X = 0 (default)
702 * 0 - Auto for all speeds
703 * 1 - MDI mode
704 * 2 - MDI-X mode
705 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
707 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
709 switch (phy->mdix) {
710 case 1:
711 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
712 break;
713 case 2:
714 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
715 break;
716 case 3:
717 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
718 break;
719 case 0:
720 default:
721 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
722 break;
726 * Options:
727 * disable_polarity_correction = 0 (default)
728 * Automatic Correction for Reversed Cable Polarity
729 * 0 - Disabled
730 * 1 - Enabled
732 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
733 if (phy->disable_polarity_correction == 1)
734 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
736 /* Enable downshift on BM (disabled by default) */
737 if (phy->type == e1000_phy_bm)
738 phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
740 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
741 if (ret_val)
742 return ret_val;
744 if ((phy->type == e1000_phy_m88) &&
745 (phy->revision < E1000_REVISION_4) &&
746 (phy->id != BME1000_E_PHY_ID_R2)) {
748 * Force TX_CLK in the Extended PHY Specific Control Register
749 * to 25MHz clock.
751 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
752 if (ret_val)
753 return ret_val;
755 phy_data |= M88E1000_EPSCR_TX_CLK_25;
757 if ((phy->revision == 2) &&
758 (phy->id == M88E1111_I_PHY_ID)) {
759 /* 82573L PHY - set the downshift counter to 5x. */
760 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
761 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
762 } else {
763 /* Configure Master and Slave downshift values */
764 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
765 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
766 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
767 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
769 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
770 if (ret_val)
771 return ret_val;
774 if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
775 /* Set PHY page 0, register 29 to 0x0003 */
776 ret_val = e1e_wphy(hw, 29, 0x0003);
777 if (ret_val)
778 return ret_val;
780 /* Set PHY page 0, register 30 to 0x0000 */
781 ret_val = e1e_wphy(hw, 30, 0x0000);
782 if (ret_val)
783 return ret_val;
786 /* Commit the changes. */
787 ret_val = e1000e_commit_phy(hw);
788 if (ret_val) {
789 hw_dbg(hw, "Error committing the PHY changes\n");
790 return ret_val;
793 if (phy->type == e1000_phy_82578) {
794 ret_val = phy->ops.read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
795 &phy_data);
796 if (ret_val)
797 return ret_val;
799 /* 82578 PHY - set the downshift count to 1x. */
800 phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
801 phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
802 ret_val = phy->ops.write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
803 phy_data);
804 if (ret_val)
805 return ret_val;
808 return 0;
812 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
813 * @hw: pointer to the HW structure
815 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
816 * igp PHY's.
818 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
820 struct e1000_phy_info *phy = &hw->phy;
821 s32 ret_val;
822 u16 data;
824 ret_val = e1000_phy_hw_reset(hw);
825 if (ret_val) {
826 hw_dbg(hw, "Error resetting the PHY.\n");
827 return ret_val;
831 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
832 * timeout issues when LFS is enabled.
834 msleep(100);
836 /* disable lplu d0 during driver init */
837 ret_val = e1000_set_d0_lplu_state(hw, 0);
838 if (ret_val) {
839 hw_dbg(hw, "Error Disabling LPLU D0\n");
840 return ret_val;
842 /* Configure mdi-mdix settings */
843 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
844 if (ret_val)
845 return ret_val;
847 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
849 switch (phy->mdix) {
850 case 1:
851 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
852 break;
853 case 2:
854 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
855 break;
856 case 0:
857 default:
858 data |= IGP01E1000_PSCR_AUTO_MDIX;
859 break;
861 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
862 if (ret_val)
863 return ret_val;
865 /* set auto-master slave resolution settings */
866 if (hw->mac.autoneg) {
868 * when autonegotiation advertisement is only 1000Mbps then we
869 * should disable SmartSpeed and enable Auto MasterSlave
870 * resolution as hardware default.
872 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
873 /* Disable SmartSpeed */
874 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
875 &data);
876 if (ret_val)
877 return ret_val;
879 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
880 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
881 data);
882 if (ret_val)
883 return ret_val;
885 /* Set auto Master/Slave resolution process */
886 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
887 if (ret_val)
888 return ret_val;
890 data &= ~CR_1000T_MS_ENABLE;
891 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
892 if (ret_val)
893 return ret_val;
896 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
897 if (ret_val)
898 return ret_val;
900 /* load defaults for future use */
901 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
902 ((data & CR_1000T_MS_VALUE) ?
903 e1000_ms_force_master :
904 e1000_ms_force_slave) :
905 e1000_ms_auto;
907 switch (phy->ms_type) {
908 case e1000_ms_force_master:
909 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
910 break;
911 case e1000_ms_force_slave:
912 data |= CR_1000T_MS_ENABLE;
913 data &= ~(CR_1000T_MS_VALUE);
914 break;
915 case e1000_ms_auto:
916 data &= ~CR_1000T_MS_ENABLE;
917 default:
918 break;
920 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
923 return ret_val;
927 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
928 * @hw: pointer to the HW structure
930 * Reads the MII auto-neg advertisement register and/or the 1000T control
931 * register and if the PHY is already setup for auto-negotiation, then
932 * return successful. Otherwise, setup advertisement and flow control to
933 * the appropriate values for the wanted auto-negotiation.
935 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
937 struct e1000_phy_info *phy = &hw->phy;
938 s32 ret_val;
939 u16 mii_autoneg_adv_reg;
940 u16 mii_1000t_ctrl_reg = 0;
942 phy->autoneg_advertised &= phy->autoneg_mask;
944 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
945 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
946 if (ret_val)
947 return ret_val;
949 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
950 /* Read the MII 1000Base-T Control Register (Address 9). */
951 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
952 if (ret_val)
953 return ret_val;
957 * Need to parse both autoneg_advertised and fc and set up
958 * the appropriate PHY registers. First we will parse for
959 * autoneg_advertised software override. Since we can advertise
960 * a plethora of combinations, we need to check each bit
961 * individually.
965 * First we clear all the 10/100 mb speed bits in the Auto-Neg
966 * Advertisement Register (Address 4) and the 1000 mb speed bits in
967 * the 1000Base-T Control Register (Address 9).
969 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
970 NWAY_AR_100TX_HD_CAPS |
971 NWAY_AR_10T_FD_CAPS |
972 NWAY_AR_10T_HD_CAPS);
973 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
975 hw_dbg(hw, "autoneg_advertised %x\n", phy->autoneg_advertised);
977 /* Do we want to advertise 10 Mb Half Duplex? */
978 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
979 hw_dbg(hw, "Advertise 10mb Half duplex\n");
980 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
983 /* Do we want to advertise 10 Mb Full Duplex? */
984 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
985 hw_dbg(hw, "Advertise 10mb Full duplex\n");
986 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
989 /* Do we want to advertise 100 Mb Half Duplex? */
990 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
991 hw_dbg(hw, "Advertise 100mb Half duplex\n");
992 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
995 /* Do we want to advertise 100 Mb Full Duplex? */
996 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
997 hw_dbg(hw, "Advertise 100mb Full duplex\n");
998 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1001 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1002 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1003 hw_dbg(hw, "Advertise 1000mb Half duplex request denied!\n");
1005 /* Do we want to advertise 1000 Mb Full Duplex? */
1006 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1007 hw_dbg(hw, "Advertise 1000mb Full duplex\n");
1008 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1012 * Check for a software override of the flow control settings, and
1013 * setup the PHY advertisement registers accordingly. If
1014 * auto-negotiation is enabled, then software will have to set the
1015 * "PAUSE" bits to the correct value in the Auto-Negotiation
1016 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1017 * negotiation.
1019 * The possible values of the "fc" parameter are:
1020 * 0: Flow control is completely disabled
1021 * 1: Rx flow control is enabled (we can receive pause frames
1022 * but not send pause frames).
1023 * 2: Tx flow control is enabled (we can send pause frames
1024 * but we do not support receiving pause frames).
1025 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1026 * other: No software override. The flow control configuration
1027 * in the EEPROM is used.
1029 switch (hw->fc.current_mode) {
1030 case e1000_fc_none:
1032 * Flow control (Rx & Tx) is completely disabled by a
1033 * software over-ride.
1035 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1036 break;
1037 case e1000_fc_rx_pause:
1039 * Rx Flow control is enabled, and Tx Flow control is
1040 * disabled, by a software over-ride.
1042 * Since there really isn't a way to advertise that we are
1043 * capable of Rx Pause ONLY, we will advertise that we
1044 * support both symmetric and asymmetric Rx PAUSE. Later
1045 * (in e1000e_config_fc_after_link_up) we will disable the
1046 * hw's ability to send PAUSE frames.
1048 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1049 break;
1050 case e1000_fc_tx_pause:
1052 * Tx Flow control is enabled, and Rx Flow control is
1053 * disabled, by a software over-ride.
1055 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1056 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1057 break;
1058 case e1000_fc_full:
1060 * Flow control (both Rx and Tx) is enabled by a software
1061 * over-ride.
1063 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1064 break;
1065 default:
1066 hw_dbg(hw, "Flow control param set incorrectly\n");
1067 ret_val = -E1000_ERR_CONFIG;
1068 return ret_val;
1071 ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1072 if (ret_val)
1073 return ret_val;
1075 hw_dbg(hw, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1077 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1078 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1081 return ret_val;
1085 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1086 * @hw: pointer to the HW structure
1088 * Performs initial bounds checking on autoneg advertisement parameter, then
1089 * configure to advertise the full capability. Setup the PHY to autoneg
1090 * and restart the negotiation process between the link partner. If
1091 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1093 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1095 struct e1000_phy_info *phy = &hw->phy;
1096 s32 ret_val;
1097 u16 phy_ctrl;
1100 * Perform some bounds checking on the autoneg advertisement
1101 * parameter.
1103 phy->autoneg_advertised &= phy->autoneg_mask;
1106 * If autoneg_advertised is zero, we assume it was not defaulted
1107 * by the calling code so we set to advertise full capability.
1109 if (phy->autoneg_advertised == 0)
1110 phy->autoneg_advertised = phy->autoneg_mask;
1112 hw_dbg(hw, "Reconfiguring auto-neg advertisement params\n");
1113 ret_val = e1000_phy_setup_autoneg(hw);
1114 if (ret_val) {
1115 hw_dbg(hw, "Error Setting up Auto-Negotiation\n");
1116 return ret_val;
1118 hw_dbg(hw, "Restarting Auto-Neg\n");
1121 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1122 * the Auto Neg Restart bit in the PHY control register.
1124 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1125 if (ret_val)
1126 return ret_val;
1128 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1129 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1130 if (ret_val)
1131 return ret_val;
1134 * Does the user want to wait for Auto-Neg to complete here, or
1135 * check at a later time (for example, callback routine).
1137 if (phy->autoneg_wait_to_complete) {
1138 ret_val = e1000_wait_autoneg(hw);
1139 if (ret_val) {
1140 hw_dbg(hw, "Error while waiting for "
1141 "autoneg to complete\n");
1142 return ret_val;
1146 hw->mac.get_link_status = 1;
1148 return ret_val;
1152 * e1000e_setup_copper_link - Configure copper link settings
1153 * @hw: pointer to the HW structure
1155 * Calls the appropriate function to configure the link for auto-neg or forced
1156 * speed and duplex. Then we check for link, once link is established calls
1157 * to configure collision distance and flow control are called. If link is
1158 * not established, we return -E1000_ERR_PHY (-2).
1160 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1162 s32 ret_val;
1163 bool link;
1165 if (hw->mac.autoneg) {
1167 * Setup autoneg and flow control advertisement and perform
1168 * autonegotiation.
1170 ret_val = e1000_copper_link_autoneg(hw);
1171 if (ret_val)
1172 return ret_val;
1173 } else {
1175 * PHY will be set to 10H, 10F, 100H or 100F
1176 * depending on user settings.
1178 hw_dbg(hw, "Forcing Speed and Duplex\n");
1179 ret_val = e1000_phy_force_speed_duplex(hw);
1180 if (ret_val) {
1181 hw_dbg(hw, "Error Forcing Speed and Duplex\n");
1182 return ret_val;
1187 * Check link status. Wait up to 100 microseconds for link to become
1188 * valid.
1190 ret_val = e1000e_phy_has_link_generic(hw,
1191 COPPER_LINK_UP_LIMIT,
1193 &link);
1194 if (ret_val)
1195 return ret_val;
1197 if (link) {
1198 hw_dbg(hw, "Valid link established!!!\n");
1199 e1000e_config_collision_dist(hw);
1200 ret_val = e1000e_config_fc_after_link_up(hw);
1201 } else {
1202 hw_dbg(hw, "Unable to establish link!!!\n");
1205 return ret_val;
1209 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1210 * @hw: pointer to the HW structure
1212 * Calls the PHY setup function to force speed and duplex. Clears the
1213 * auto-crossover to force MDI manually. Waits for link and returns
1214 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1216 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1218 struct e1000_phy_info *phy = &hw->phy;
1219 s32 ret_val;
1220 u16 phy_data;
1221 bool link;
1223 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1224 if (ret_val)
1225 return ret_val;
1227 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1229 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1230 if (ret_val)
1231 return ret_val;
1234 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
1235 * forced whenever speed and duplex are forced.
1237 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1238 if (ret_val)
1239 return ret_val;
1241 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1242 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1244 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1245 if (ret_val)
1246 return ret_val;
1248 hw_dbg(hw, "IGP PSCR: %X\n", phy_data);
1250 udelay(1);
1252 if (phy->autoneg_wait_to_complete) {
1253 hw_dbg(hw, "Waiting for forced speed/duplex link on IGP phy.\n");
1255 ret_val = e1000e_phy_has_link_generic(hw,
1256 PHY_FORCE_LIMIT,
1257 100000,
1258 &link);
1259 if (ret_val)
1260 return ret_val;
1262 if (!link)
1263 hw_dbg(hw, "Link taking longer than expected.\n");
1265 /* Try once more */
1266 ret_val = e1000e_phy_has_link_generic(hw,
1267 PHY_FORCE_LIMIT,
1268 100000,
1269 &link);
1270 if (ret_val)
1271 return ret_val;
1274 return ret_val;
1278 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1279 * @hw: pointer to the HW structure
1281 * Calls the PHY setup function to force speed and duplex. Clears the
1282 * auto-crossover to force MDI manually. Resets the PHY to commit the
1283 * changes. If time expires while waiting for link up, we reset the DSP.
1284 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1285 * successful completion, else return corresponding error code.
1287 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1289 struct e1000_phy_info *phy = &hw->phy;
1290 s32 ret_val;
1291 u16 phy_data;
1292 bool link;
1295 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1296 * forced whenever speed and duplex are forced.
1298 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1299 if (ret_val)
1300 return ret_val;
1302 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1303 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1304 if (ret_val)
1305 return ret_val;
1307 hw_dbg(hw, "M88E1000 PSCR: %X\n", phy_data);
1309 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1310 if (ret_val)
1311 return ret_val;
1313 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1315 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1316 if (ret_val)
1317 return ret_val;
1319 /* Reset the phy to commit changes. */
1320 ret_val = e1000e_commit_phy(hw);
1321 if (ret_val)
1322 return ret_val;
1324 if (phy->autoneg_wait_to_complete) {
1325 hw_dbg(hw, "Waiting for forced speed/duplex link on M88 phy.\n");
1327 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1328 100000, &link);
1329 if (ret_val)
1330 return ret_val;
1332 if (!link) {
1334 * We didn't get link.
1335 * Reset the DSP and cross our fingers.
1337 ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1338 0x001d);
1339 if (ret_val)
1340 return ret_val;
1341 ret_val = e1000e_phy_reset_dsp(hw);
1342 if (ret_val)
1343 return ret_val;
1346 /* Try once more */
1347 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1348 100000, &link);
1349 if (ret_val)
1350 return ret_val;
1353 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1354 if (ret_val)
1355 return ret_val;
1358 * Resetting the phy means we need to re-force TX_CLK in the
1359 * Extended PHY Specific Control Register to 25MHz clock from
1360 * the reset value of 2.5MHz.
1362 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1363 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1364 if (ret_val)
1365 return ret_val;
1368 * In addition, we must re-enable CRS on Tx for both half and full
1369 * duplex.
1371 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1372 if (ret_val)
1373 return ret_val;
1375 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1376 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1378 return ret_val;
1382 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1383 * @hw: pointer to the HW structure
1384 * @phy_ctrl: pointer to current value of PHY_CONTROL
1386 * Forces speed and duplex on the PHY by doing the following: disable flow
1387 * control, force speed/duplex on the MAC, disable auto speed detection,
1388 * disable auto-negotiation, configure duplex, configure speed, configure
1389 * the collision distance, write configuration to CTRL register. The
1390 * caller must write to the PHY_CONTROL register for these settings to
1391 * take affect.
1393 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1395 struct e1000_mac_info *mac = &hw->mac;
1396 u32 ctrl;
1398 /* Turn off flow control when forcing speed/duplex */
1399 hw->fc.current_mode = e1000_fc_none;
1401 /* Force speed/duplex on the mac */
1402 ctrl = er32(CTRL);
1403 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1404 ctrl &= ~E1000_CTRL_SPD_SEL;
1406 /* Disable Auto Speed Detection */
1407 ctrl &= ~E1000_CTRL_ASDE;
1409 /* Disable autoneg on the phy */
1410 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1412 /* Forcing Full or Half Duplex? */
1413 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1414 ctrl &= ~E1000_CTRL_FD;
1415 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1416 hw_dbg(hw, "Half Duplex\n");
1417 } else {
1418 ctrl |= E1000_CTRL_FD;
1419 *phy_ctrl |= MII_CR_FULL_DUPLEX;
1420 hw_dbg(hw, "Full Duplex\n");
1423 /* Forcing 10mb or 100mb? */
1424 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1425 ctrl |= E1000_CTRL_SPD_100;
1426 *phy_ctrl |= MII_CR_SPEED_100;
1427 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1428 hw_dbg(hw, "Forcing 100mb\n");
1429 } else {
1430 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1431 *phy_ctrl |= MII_CR_SPEED_10;
1432 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1433 hw_dbg(hw, "Forcing 10mb\n");
1436 e1000e_config_collision_dist(hw);
1438 ew32(CTRL, ctrl);
1442 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1443 * @hw: pointer to the HW structure
1444 * @active: boolean used to enable/disable lplu
1446 * Success returns 0, Failure returns 1
1448 * The low power link up (lplu) state is set to the power management level D3
1449 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1450 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1451 * is used during Dx states where the power conservation is most important.
1452 * During driver activity, SmartSpeed should be enabled so performance is
1453 * maintained.
1455 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1457 struct e1000_phy_info *phy = &hw->phy;
1458 s32 ret_val;
1459 u16 data;
1461 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1462 if (ret_val)
1463 return ret_val;
1465 if (!active) {
1466 data &= ~IGP02E1000_PM_D3_LPLU;
1467 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1468 if (ret_val)
1469 return ret_val;
1471 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1472 * during Dx states where the power conservation is most
1473 * important. During driver activity we should enable
1474 * SmartSpeed, so performance is maintained.
1476 if (phy->smart_speed == e1000_smart_speed_on) {
1477 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1478 &data);
1479 if (ret_val)
1480 return ret_val;
1482 data |= IGP01E1000_PSCFR_SMART_SPEED;
1483 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1484 data);
1485 if (ret_val)
1486 return ret_val;
1487 } else if (phy->smart_speed == e1000_smart_speed_off) {
1488 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1489 &data);
1490 if (ret_val)
1491 return ret_val;
1493 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1494 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1495 data);
1496 if (ret_val)
1497 return ret_val;
1499 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1500 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1501 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1502 data |= IGP02E1000_PM_D3_LPLU;
1503 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1504 if (ret_val)
1505 return ret_val;
1507 /* When LPLU is enabled, we should disable SmartSpeed */
1508 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1509 if (ret_val)
1510 return ret_val;
1512 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1513 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1516 return ret_val;
1520 * e1000e_check_downshift - Checks whether a downshift in speed occurred
1521 * @hw: pointer to the HW structure
1523 * Success returns 0, Failure returns 1
1525 * A downshift is detected by querying the PHY link health.
1527 s32 e1000e_check_downshift(struct e1000_hw *hw)
1529 struct e1000_phy_info *phy = &hw->phy;
1530 s32 ret_val;
1531 u16 phy_data, offset, mask;
1533 switch (phy->type) {
1534 case e1000_phy_m88:
1535 case e1000_phy_gg82563:
1536 case e1000_phy_82578:
1537 case e1000_phy_82577:
1538 offset = M88E1000_PHY_SPEC_STATUS;
1539 mask = M88E1000_PSSR_DOWNSHIFT;
1540 break;
1541 case e1000_phy_igp_2:
1542 case e1000_phy_igp_3:
1543 offset = IGP01E1000_PHY_LINK_HEALTH;
1544 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1545 break;
1546 default:
1547 /* speed downshift not supported */
1548 phy->speed_downgraded = 0;
1549 return 0;
1552 ret_val = e1e_rphy(hw, offset, &phy_data);
1554 if (!ret_val)
1555 phy->speed_downgraded = (phy_data & mask);
1557 return ret_val;
1561 * e1000_check_polarity_m88 - Checks the polarity.
1562 * @hw: pointer to the HW structure
1564 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1566 * Polarity is determined based on the PHY specific status register.
1568 static s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1570 struct e1000_phy_info *phy = &hw->phy;
1571 s32 ret_val;
1572 u16 data;
1574 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1576 if (!ret_val)
1577 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1578 ? e1000_rev_polarity_reversed
1579 : e1000_rev_polarity_normal;
1581 return ret_val;
1585 * e1000_check_polarity_igp - Checks the polarity.
1586 * @hw: pointer to the HW structure
1588 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1590 * Polarity is determined based on the PHY port status register, and the
1591 * current speed (since there is no polarity at 100Mbps).
1593 static s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1595 struct e1000_phy_info *phy = &hw->phy;
1596 s32 ret_val;
1597 u16 data, offset, mask;
1600 * Polarity is determined based on the speed of
1601 * our connection.
1603 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1604 if (ret_val)
1605 return ret_val;
1607 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1608 IGP01E1000_PSSR_SPEED_1000MBPS) {
1609 offset = IGP01E1000_PHY_PCS_INIT_REG;
1610 mask = IGP01E1000_PHY_POLARITY_MASK;
1611 } else {
1613 * This really only applies to 10Mbps since
1614 * there is no polarity for 100Mbps (always 0).
1616 offset = IGP01E1000_PHY_PORT_STATUS;
1617 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1620 ret_val = e1e_rphy(hw, offset, &data);
1622 if (!ret_val)
1623 phy->cable_polarity = (data & mask)
1624 ? e1000_rev_polarity_reversed
1625 : e1000_rev_polarity_normal;
1627 return ret_val;
1631 * e1000_wait_autoneg - Wait for auto-neg completion
1632 * @hw: pointer to the HW structure
1634 * Waits for auto-negotiation to complete or for the auto-negotiation time
1635 * limit to expire, which ever happens first.
1637 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1639 s32 ret_val = 0;
1640 u16 i, phy_status;
1642 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1643 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1644 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1645 if (ret_val)
1646 break;
1647 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1648 if (ret_val)
1649 break;
1650 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1651 break;
1652 msleep(100);
1656 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1657 * has completed.
1659 return ret_val;
1663 * e1000e_phy_has_link_generic - Polls PHY for link
1664 * @hw: pointer to the HW structure
1665 * @iterations: number of times to poll for link
1666 * @usec_interval: delay between polling attempts
1667 * @success: pointer to whether polling was successful or not
1669 * Polls the PHY status register for link, 'iterations' number of times.
1671 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1672 u32 usec_interval, bool *success)
1674 s32 ret_val = 0;
1675 u16 i, phy_status;
1677 for (i = 0; i < iterations; i++) {
1679 * Some PHYs require the PHY_STATUS register to be read
1680 * twice due to the link bit being sticky. No harm doing
1681 * it across the board.
1683 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1684 if (ret_val)
1686 * If the first read fails, another entity may have
1687 * ownership of the resources, wait and try again to
1688 * see if they have relinquished the resources yet.
1690 udelay(usec_interval);
1691 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1692 if (ret_val)
1693 break;
1694 if (phy_status & MII_SR_LINK_STATUS)
1695 break;
1696 if (usec_interval >= 1000)
1697 mdelay(usec_interval/1000);
1698 else
1699 udelay(usec_interval);
1702 *success = (i < iterations);
1704 return ret_val;
1708 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1709 * @hw: pointer to the HW structure
1711 * Reads the PHY specific status register to retrieve the cable length
1712 * information. The cable length is determined by averaging the minimum and
1713 * maximum values to get the "average" cable length. The m88 PHY has four
1714 * possible cable length values, which are:
1715 * Register Value Cable Length
1716 * 0 < 50 meters
1717 * 1 50 - 80 meters
1718 * 2 80 - 110 meters
1719 * 3 110 - 140 meters
1720 * 4 > 140 meters
1722 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1724 struct e1000_phy_info *phy = &hw->phy;
1725 s32 ret_val;
1726 u16 phy_data, index;
1728 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1729 if (ret_val)
1730 return ret_val;
1732 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1733 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1734 phy->min_cable_length = e1000_m88_cable_length_table[index];
1735 phy->max_cable_length = e1000_m88_cable_length_table[index+1];
1737 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1739 return ret_val;
1743 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1744 * @hw: pointer to the HW structure
1746 * The automatic gain control (agc) normalizes the amplitude of the
1747 * received signal, adjusting for the attenuation produced by the
1748 * cable. By reading the AGC registers, which represent the
1749 * combination of course and fine gain value, the value can be put
1750 * into a lookup table to obtain the approximate cable length
1751 * for each channel.
1753 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1755 struct e1000_phy_info *phy = &hw->phy;
1756 s32 ret_val;
1757 u16 phy_data, i, agc_value = 0;
1758 u16 cur_agc_index, max_agc_index = 0;
1759 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1760 u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
1761 {IGP02E1000_PHY_AGC_A,
1762 IGP02E1000_PHY_AGC_B,
1763 IGP02E1000_PHY_AGC_C,
1764 IGP02E1000_PHY_AGC_D};
1766 /* Read the AGC registers for all channels */
1767 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1768 ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1769 if (ret_val)
1770 return ret_val;
1773 * Getting bits 15:9, which represent the combination of
1774 * course and fine gain values. The result is a number
1775 * that can be put into the lookup table to obtain the
1776 * approximate cable length.
1778 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1779 IGP02E1000_AGC_LENGTH_MASK;
1781 /* Array index bound check. */
1782 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1783 (cur_agc_index == 0))
1784 return -E1000_ERR_PHY;
1786 /* Remove min & max AGC values from calculation. */
1787 if (e1000_igp_2_cable_length_table[min_agc_index] >
1788 e1000_igp_2_cable_length_table[cur_agc_index])
1789 min_agc_index = cur_agc_index;
1790 if (e1000_igp_2_cable_length_table[max_agc_index] <
1791 e1000_igp_2_cable_length_table[cur_agc_index])
1792 max_agc_index = cur_agc_index;
1794 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1797 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1798 e1000_igp_2_cable_length_table[max_agc_index]);
1799 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1801 /* Calculate cable length with the error range of +/- 10 meters. */
1802 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1803 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1804 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1806 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1808 return ret_val;
1812 * e1000e_get_phy_info_m88 - Retrieve PHY information
1813 * @hw: pointer to the HW structure
1815 * Valid for only copper links. Read the PHY status register (sticky read)
1816 * to verify that link is up. Read the PHY special control register to
1817 * determine the polarity and 10base-T extended distance. Read the PHY
1818 * special status register to determine MDI/MDIx and current speed. If
1819 * speed is 1000, then determine cable length, local and remote receiver.
1821 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1823 struct e1000_phy_info *phy = &hw->phy;
1824 s32 ret_val;
1825 u16 phy_data;
1826 bool link;
1828 if (hw->phy.media_type != e1000_media_type_copper) {
1829 hw_dbg(hw, "Phy info is only valid for copper media\n");
1830 return -E1000_ERR_CONFIG;
1833 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1834 if (ret_val)
1835 return ret_val;
1837 if (!link) {
1838 hw_dbg(hw, "Phy info is only valid if link is up\n");
1839 return -E1000_ERR_CONFIG;
1842 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1843 if (ret_val)
1844 return ret_val;
1846 phy->polarity_correction = (phy_data &
1847 M88E1000_PSCR_POLARITY_REVERSAL);
1849 ret_val = e1000_check_polarity_m88(hw);
1850 if (ret_val)
1851 return ret_val;
1853 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1854 if (ret_val)
1855 return ret_val;
1857 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
1859 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1860 ret_val = e1000_get_cable_length(hw);
1861 if (ret_val)
1862 return ret_val;
1864 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1865 if (ret_val)
1866 return ret_val;
1868 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1869 ? e1000_1000t_rx_status_ok
1870 : e1000_1000t_rx_status_not_ok;
1872 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1873 ? e1000_1000t_rx_status_ok
1874 : e1000_1000t_rx_status_not_ok;
1875 } else {
1876 /* Set values to "undefined" */
1877 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1878 phy->local_rx = e1000_1000t_rx_status_undefined;
1879 phy->remote_rx = e1000_1000t_rx_status_undefined;
1882 return ret_val;
1886 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1887 * @hw: pointer to the HW structure
1889 * Read PHY status to determine if link is up. If link is up, then
1890 * set/determine 10base-T extended distance and polarity correction. Read
1891 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1892 * determine on the cable length, local and remote receiver.
1894 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1896 struct e1000_phy_info *phy = &hw->phy;
1897 s32 ret_val;
1898 u16 data;
1899 bool link;
1901 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1902 if (ret_val)
1903 return ret_val;
1905 if (!link) {
1906 hw_dbg(hw, "Phy info is only valid if link is up\n");
1907 return -E1000_ERR_CONFIG;
1910 phy->polarity_correction = 1;
1912 ret_val = e1000_check_polarity_igp(hw);
1913 if (ret_val)
1914 return ret_val;
1916 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1917 if (ret_val)
1918 return ret_val;
1920 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
1922 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1923 IGP01E1000_PSSR_SPEED_1000MBPS) {
1924 ret_val = e1000_get_cable_length(hw);
1925 if (ret_val)
1926 return ret_val;
1928 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
1929 if (ret_val)
1930 return ret_val;
1932 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1933 ? e1000_1000t_rx_status_ok
1934 : e1000_1000t_rx_status_not_ok;
1936 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1937 ? e1000_1000t_rx_status_ok
1938 : e1000_1000t_rx_status_not_ok;
1939 } else {
1940 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1941 phy->local_rx = e1000_1000t_rx_status_undefined;
1942 phy->remote_rx = e1000_1000t_rx_status_undefined;
1945 return ret_val;
1949 * e1000e_phy_sw_reset - PHY software reset
1950 * @hw: pointer to the HW structure
1952 * Does a software reset of the PHY by reading the PHY control register and
1953 * setting/write the control register reset bit to the PHY.
1955 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
1957 s32 ret_val;
1958 u16 phy_ctrl;
1960 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1961 if (ret_val)
1962 return ret_val;
1964 phy_ctrl |= MII_CR_RESET;
1965 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1966 if (ret_val)
1967 return ret_val;
1969 udelay(1);
1971 return ret_val;
1975 * e1000e_phy_hw_reset_generic - PHY hardware reset
1976 * @hw: pointer to the HW structure
1978 * Verify the reset block is not blocking us from resetting. Acquire
1979 * semaphore (if necessary) and read/set/write the device control reset
1980 * bit in the PHY. Wait the appropriate delay time for the device to
1981 * reset and release the semaphore (if necessary).
1983 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
1985 struct e1000_phy_info *phy = &hw->phy;
1986 s32 ret_val;
1987 u32 ctrl;
1989 ret_val = e1000_check_reset_block(hw);
1990 if (ret_val)
1991 return 0;
1993 ret_val = phy->ops.acquire_phy(hw);
1994 if (ret_val)
1995 return ret_val;
1997 ctrl = er32(CTRL);
1998 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
1999 e1e_flush();
2001 udelay(phy->reset_delay_us);
2003 ew32(CTRL, ctrl);
2004 e1e_flush();
2006 udelay(150);
2008 phy->ops.release_phy(hw);
2010 return e1000_get_phy_cfg_done(hw);
2014 * e1000e_get_cfg_done - Generic configuration done
2015 * @hw: pointer to the HW structure
2017 * Generic function to wait 10 milli-seconds for configuration to complete
2018 * and return success.
2020 s32 e1000e_get_cfg_done(struct e1000_hw *hw)
2022 mdelay(10);
2023 return 0;
2027 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2028 * @hw: pointer to the HW structure
2030 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2032 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2034 hw_dbg(hw, "Running IGP 3 PHY init script\n");
2036 /* PHY init IGP 3 */
2037 /* Enable rise/fall, 10-mode work in class-A */
2038 e1e_wphy(hw, 0x2F5B, 0x9018);
2039 /* Remove all caps from Replica path filter */
2040 e1e_wphy(hw, 0x2F52, 0x0000);
2041 /* Bias trimming for ADC, AFE and Driver (Default) */
2042 e1e_wphy(hw, 0x2FB1, 0x8B24);
2043 /* Increase Hybrid poly bias */
2044 e1e_wphy(hw, 0x2FB2, 0xF8F0);
2045 /* Add 4% to Tx amplitude in Gig mode */
2046 e1e_wphy(hw, 0x2010, 0x10B0);
2047 /* Disable trimming (TTT) */
2048 e1e_wphy(hw, 0x2011, 0x0000);
2049 /* Poly DC correction to 94.6% + 2% for all channels */
2050 e1e_wphy(hw, 0x20DD, 0x249A);
2051 /* ABS DC correction to 95.9% */
2052 e1e_wphy(hw, 0x20DE, 0x00D3);
2053 /* BG temp curve trim */
2054 e1e_wphy(hw, 0x28B4, 0x04CE);
2055 /* Increasing ADC OPAMP stage 1 currents to max */
2056 e1e_wphy(hw, 0x2F70, 0x29E4);
2057 /* Force 1000 ( required for enabling PHY regs configuration) */
2058 e1e_wphy(hw, 0x0000, 0x0140);
2059 /* Set upd_freq to 6 */
2060 e1e_wphy(hw, 0x1F30, 0x1606);
2061 /* Disable NPDFE */
2062 e1e_wphy(hw, 0x1F31, 0xB814);
2063 /* Disable adaptive fixed FFE (Default) */
2064 e1e_wphy(hw, 0x1F35, 0x002A);
2065 /* Enable FFE hysteresis */
2066 e1e_wphy(hw, 0x1F3E, 0x0067);
2067 /* Fixed FFE for short cable lengths */
2068 e1e_wphy(hw, 0x1F54, 0x0065);
2069 /* Fixed FFE for medium cable lengths */
2070 e1e_wphy(hw, 0x1F55, 0x002A);
2071 /* Fixed FFE for long cable lengths */
2072 e1e_wphy(hw, 0x1F56, 0x002A);
2073 /* Enable Adaptive Clip Threshold */
2074 e1e_wphy(hw, 0x1F72, 0x3FB0);
2075 /* AHT reset limit to 1 */
2076 e1e_wphy(hw, 0x1F76, 0xC0FF);
2077 /* Set AHT master delay to 127 msec */
2078 e1e_wphy(hw, 0x1F77, 0x1DEC);
2079 /* Set scan bits for AHT */
2080 e1e_wphy(hw, 0x1F78, 0xF9EF);
2081 /* Set AHT Preset bits */
2082 e1e_wphy(hw, 0x1F79, 0x0210);
2083 /* Change integ_factor of channel A to 3 */
2084 e1e_wphy(hw, 0x1895, 0x0003);
2085 /* Change prop_factor of channels BCD to 8 */
2086 e1e_wphy(hw, 0x1796, 0x0008);
2087 /* Change cg_icount + enable integbp for channels BCD */
2088 e1e_wphy(hw, 0x1798, 0xD008);
2090 * Change cg_icount + enable integbp + change prop_factor_master
2091 * to 8 for channel A
2093 e1e_wphy(hw, 0x1898, 0xD918);
2094 /* Disable AHT in Slave mode on channel A */
2095 e1e_wphy(hw, 0x187A, 0x0800);
2097 * Enable LPLU and disable AN to 1000 in non-D0a states,
2098 * Enable SPD+B2B
2100 e1e_wphy(hw, 0x0019, 0x008D);
2101 /* Enable restart AN on an1000_dis change */
2102 e1e_wphy(hw, 0x001B, 0x2080);
2103 /* Enable wh_fifo read clock in 10/100 modes */
2104 e1e_wphy(hw, 0x0014, 0x0045);
2105 /* Restart AN, Speed selection is 1000 */
2106 e1e_wphy(hw, 0x0000, 0x1340);
2108 return 0;
2111 /* Internal function pointers */
2114 * e1000_get_phy_cfg_done - Generic PHY configuration done
2115 * @hw: pointer to the HW structure
2117 * Return success if silicon family did not implement a family specific
2118 * get_cfg_done function.
2120 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
2122 if (hw->phy.ops.get_cfg_done)
2123 return hw->phy.ops.get_cfg_done(hw);
2125 return 0;
2129 * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2130 * @hw: pointer to the HW structure
2132 * When the silicon family has not implemented a forced speed/duplex
2133 * function for the PHY, simply return 0.
2135 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2137 if (hw->phy.ops.force_speed_duplex)
2138 return hw->phy.ops.force_speed_duplex(hw);
2140 return 0;
2144 * e1000e_get_phy_type_from_id - Get PHY type from id
2145 * @phy_id: phy_id read from the phy
2147 * Returns the phy type from the id.
2149 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2151 enum e1000_phy_type phy_type = e1000_phy_unknown;
2153 switch (phy_id) {
2154 case M88E1000_I_PHY_ID:
2155 case M88E1000_E_PHY_ID:
2156 case M88E1111_I_PHY_ID:
2157 case M88E1011_I_PHY_ID:
2158 phy_type = e1000_phy_m88;
2159 break;
2160 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2161 phy_type = e1000_phy_igp_2;
2162 break;
2163 case GG82563_E_PHY_ID:
2164 phy_type = e1000_phy_gg82563;
2165 break;
2166 case IGP03E1000_E_PHY_ID:
2167 phy_type = e1000_phy_igp_3;
2168 break;
2169 case IFE_E_PHY_ID:
2170 case IFE_PLUS_E_PHY_ID:
2171 case IFE_C_E_PHY_ID:
2172 phy_type = e1000_phy_ife;
2173 break;
2174 case BME1000_E_PHY_ID:
2175 case BME1000_E_PHY_ID_R2:
2176 phy_type = e1000_phy_bm;
2177 break;
2178 case I82578_E_PHY_ID:
2179 phy_type = e1000_phy_82578;
2180 break;
2181 case I82577_E_PHY_ID:
2182 phy_type = e1000_phy_82577;
2183 break;
2184 default:
2185 phy_type = e1000_phy_unknown;
2186 break;
2188 return phy_type;
2192 * e1000e_determine_phy_address - Determines PHY address.
2193 * @hw: pointer to the HW structure
2195 * This uses a trial and error method to loop through possible PHY
2196 * addresses. It tests each by reading the PHY ID registers and
2197 * checking for a match.
2199 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2201 s32 ret_val = -E1000_ERR_PHY_TYPE;
2202 u32 phy_addr= 0;
2203 u32 i = 0;
2204 enum e1000_phy_type phy_type = e1000_phy_unknown;
2206 do {
2207 for (phy_addr = 0; phy_addr < 4; phy_addr++) {
2208 hw->phy.addr = phy_addr;
2209 e1000e_get_phy_id(hw);
2210 phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2213 * If phy_type is valid, break - we found our
2214 * PHY address
2216 if (phy_type != e1000_phy_unknown) {
2217 ret_val = 0;
2218 break;
2221 i++;
2222 } while ((ret_val != 0) && (i < 100));
2224 return ret_val;
2228 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2229 * @page: page to access
2231 * Returns the phy address for the page requested.
2233 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2235 u32 phy_addr = 2;
2237 if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2238 phy_addr = 1;
2240 return phy_addr;
2244 * e1000e_write_phy_reg_bm - Write BM PHY register
2245 * @hw: pointer to the HW structure
2246 * @offset: register offset to write to
2247 * @data: data to write at register offset
2249 * Acquires semaphore, if necessary, then writes the data to PHY register
2250 * at the offset. Release any acquired semaphores before exiting.
2252 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2254 s32 ret_val;
2255 u32 page_select = 0;
2256 u32 page = offset >> IGP_PAGE_SHIFT;
2257 u32 page_shift = 0;
2259 ret_val = hw->phy.ops.acquire_phy(hw);
2260 if (ret_val)
2261 return ret_val;
2263 /* Page 800 works differently than the rest so it has its own func */
2264 if (page == BM_WUC_PAGE) {
2265 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2266 false);
2267 goto out;
2270 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2272 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2274 * Page select is register 31 for phy address 1 and 22 for
2275 * phy address 2 and 3. Page select is shifted only for
2276 * phy address 1.
2278 if (hw->phy.addr == 1) {
2279 page_shift = IGP_PAGE_SHIFT;
2280 page_select = IGP01E1000_PHY_PAGE_SELECT;
2281 } else {
2282 page_shift = 0;
2283 page_select = BM_PHY_PAGE_SELECT;
2286 /* Page is shifted left, PHY expects (page x 32) */
2287 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2288 (page << page_shift));
2289 if (ret_val)
2290 goto out;
2293 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2294 data);
2296 out:
2297 hw->phy.ops.release_phy(hw);
2298 return ret_val;
2302 * e1000e_read_phy_reg_bm - Read BM PHY register
2303 * @hw: pointer to the HW structure
2304 * @offset: register offset to be read
2305 * @data: pointer to the read data
2307 * Acquires semaphore, if necessary, then reads the PHY register at offset
2308 * and storing the retrieved information in data. Release any acquired
2309 * semaphores before exiting.
2311 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2313 s32 ret_val;
2314 u32 page_select = 0;
2315 u32 page = offset >> IGP_PAGE_SHIFT;
2316 u32 page_shift = 0;
2318 ret_val = hw->phy.ops.acquire_phy(hw);
2319 if (ret_val)
2320 return ret_val;
2322 /* Page 800 works differently than the rest so it has its own func */
2323 if (page == BM_WUC_PAGE) {
2324 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2325 true);
2326 goto out;
2329 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2331 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2333 * Page select is register 31 for phy address 1 and 22 for
2334 * phy address 2 and 3. Page select is shifted only for
2335 * phy address 1.
2337 if (hw->phy.addr == 1) {
2338 page_shift = IGP_PAGE_SHIFT;
2339 page_select = IGP01E1000_PHY_PAGE_SELECT;
2340 } else {
2341 page_shift = 0;
2342 page_select = BM_PHY_PAGE_SELECT;
2345 /* Page is shifted left, PHY expects (page x 32) */
2346 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2347 (page << page_shift));
2348 if (ret_val)
2349 goto out;
2352 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2353 data);
2354 out:
2355 hw->phy.ops.release_phy(hw);
2356 return ret_val;
2360 * e1000e_read_phy_reg_bm2 - Read BM PHY register
2361 * @hw: pointer to the HW structure
2362 * @offset: register offset to be read
2363 * @data: pointer to the read data
2365 * Acquires semaphore, if necessary, then reads the PHY register at offset
2366 * and storing the retrieved information in data. Release any acquired
2367 * semaphores before exiting.
2369 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2371 s32 ret_val;
2372 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2374 ret_val = hw->phy.ops.acquire_phy(hw);
2375 if (ret_val)
2376 return ret_val;
2378 /* Page 800 works differently than the rest so it has its own func */
2379 if (page == BM_WUC_PAGE) {
2380 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2381 true);
2382 goto out;
2385 hw->phy.addr = 1;
2387 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2389 /* Page is shifted left, PHY expects (page x 32) */
2390 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2391 page);
2393 if (ret_val)
2394 goto out;
2397 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2398 data);
2399 out:
2400 hw->phy.ops.release_phy(hw);
2401 return ret_val;
2405 * e1000e_write_phy_reg_bm2 - Write BM PHY register
2406 * @hw: pointer to the HW structure
2407 * @offset: register offset to write to
2408 * @data: data to write at register offset
2410 * Acquires semaphore, if necessary, then writes the data to PHY register
2411 * at the offset. Release any acquired semaphores before exiting.
2413 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2415 s32 ret_val;
2416 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2418 ret_val = hw->phy.ops.acquire_phy(hw);
2419 if (ret_val)
2420 return ret_val;
2422 /* Page 800 works differently than the rest so it has its own func */
2423 if (page == BM_WUC_PAGE) {
2424 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2425 false);
2426 goto out;
2429 hw->phy.addr = 1;
2431 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2432 /* Page is shifted left, PHY expects (page x 32) */
2433 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2434 page);
2436 if (ret_val)
2437 goto out;
2440 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2441 data);
2443 out:
2444 hw->phy.ops.release_phy(hw);
2445 return ret_val;
2449 * e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register
2450 * @hw: pointer to the HW structure
2451 * @offset: register offset to be read or written
2452 * @data: pointer to the data to read or write
2453 * @read: determines if operation is read or write
2455 * Acquires semaphore, if necessary, then reads the PHY register at offset
2456 * and storing the retrieved information in data. Release any acquired
2457 * semaphores before exiting. Note that procedure to read the wakeup
2458 * registers are different. It works as such:
2459 * 1) Set page 769, register 17, bit 2 = 1
2460 * 2) Set page to 800 for host (801 if we were manageability)
2461 * 3) Write the address using the address opcode (0x11)
2462 * 4) Read or write the data using the data opcode (0x12)
2463 * 5) Restore 769_17.2 to its original value
2465 * Assumes semaphore already acquired.
2467 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2468 u16 *data, bool read)
2470 s32 ret_val;
2471 u16 reg = BM_PHY_REG_NUM(offset);
2472 u16 phy_reg = 0;
2474 /* Gig must be disabled for MDIO accesses to page 800 */
2475 if ((hw->mac.type == e1000_pchlan) &&
2476 (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2477 hw_dbg(hw, "Attempting to access page 800 while gig enabled\n");
2479 /* All operations in this function are phy address 1 */
2480 hw->phy.addr = 1;
2482 /* Set page 769 */
2483 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2484 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
2486 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
2487 if (ret_val)
2488 goto out;
2490 /* First clear bit 4 to avoid a power state change */
2491 phy_reg &= ~(BM_WUC_HOST_WU_BIT);
2492 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2493 if (ret_val)
2494 goto out;
2496 /* Write bit 2 = 1, and clear bit 4 to 769_17 */
2497 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG,
2498 phy_reg | BM_WUC_ENABLE_BIT);
2499 if (ret_val)
2500 goto out;
2502 /* Select page 800 */
2503 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2504 (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2506 /* Write the page 800 offset value using opcode 0x11 */
2507 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2508 if (ret_val)
2509 goto out;
2511 if (read) {
2512 /* Read the page 800 value using opcode 0x12 */
2513 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2514 data);
2515 } else {
2516 /* Read the page 800 value using opcode 0x12 */
2517 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2518 *data);
2521 if (ret_val)
2522 goto out;
2525 * Restore 769_17.2 to its original value
2526 * Set page 769
2528 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2529 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
2531 /* Clear 769_17.2 */
2532 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2534 out:
2535 return ret_val;
2539 * e1000e_commit_phy - Soft PHY reset
2540 * @hw: pointer to the HW structure
2542 * Performs a soft PHY reset on those that apply. This is a function pointer
2543 * entry point called by drivers.
2545 s32 e1000e_commit_phy(struct e1000_hw *hw)
2547 if (hw->phy.ops.commit_phy)
2548 return hw->phy.ops.commit_phy(hw);
2550 return 0;
2554 * e1000_set_d0_lplu_state - Sets low power link up state for D0
2555 * @hw: pointer to the HW structure
2556 * @active: boolean used to enable/disable lplu
2558 * Success returns 0, Failure returns 1
2560 * The low power link up (lplu) state is set to the power management level D0
2561 * and SmartSpeed is disabled when active is true, else clear lplu for D0
2562 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
2563 * is used during Dx states where the power conservation is most important.
2564 * During driver activity, SmartSpeed should be enabled so performance is
2565 * maintained. This is a function pointer entry point called by drivers.
2567 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2569 if (hw->phy.ops.set_d0_lplu_state)
2570 return hw->phy.ops.set_d0_lplu_state(hw, active);
2572 return 0;
2576 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2577 * @hw: pointer to the HW structure
2578 * @slow: true for slow mode, false for normal mode
2580 * Assumes semaphore already acquired.
2582 s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw, bool slow)
2584 s32 ret_val = 0;
2585 u16 data = 0;
2587 /* Set MDIO mode - page 769, register 16: 0x2580==slow, 0x2180==fast */
2588 hw->phy.addr = 1;
2589 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2590 (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2591 if (ret_val)
2592 goto out;
2594 ret_val = e1000e_write_phy_reg_mdic(hw, BM_CS_CTRL1,
2595 (0x2180 | (slow << 10)));
2596 if (ret_val)
2597 goto out;
2599 /* dummy read when reverting to fast mode - throw away result */
2600 if (!slow)
2601 ret_val = e1000e_read_phy_reg_mdic(hw, BM_CS_CTRL1, &data);
2603 out:
2604 return ret_val;
2608 * __e1000_read_phy_reg_hv - Read HV PHY register
2609 * @hw: pointer to the HW structure
2610 * @offset: register offset to be read
2611 * @data: pointer to the read data
2612 * @locked: semaphore has already been acquired or not
2614 * Acquires semaphore, if necessary, then reads the PHY register at offset
2615 * and stores the retrieved information in data. Release any acquired
2616 * semaphore before exiting.
2618 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2619 bool locked)
2621 s32 ret_val;
2622 u16 page = BM_PHY_REG_PAGE(offset);
2623 u16 reg = BM_PHY_REG_NUM(offset);
2624 bool in_slow_mode = false;
2626 if (!locked) {
2627 ret_val = hw->phy.ops.acquire_phy(hw);
2628 if (ret_val)
2629 return ret_val;
2632 /* Workaround failure in MDIO access while cable is disconnected */
2633 if ((hw->phy.type == e1000_phy_82577) &&
2634 !(er32(STATUS) & E1000_STATUS_LU)) {
2635 ret_val = e1000_set_mdio_slow_mode_hv(hw, true);
2636 if (ret_val)
2637 goto out;
2639 in_slow_mode = true;
2642 /* Page 800 works differently than the rest so it has its own func */
2643 if (page == BM_WUC_PAGE) {
2644 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
2645 data, true);
2646 goto out;
2649 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2650 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2651 data, true);
2652 goto out;
2655 hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2657 if (page == HV_INTC_FC_PAGE_START)
2658 page = 0;
2660 if (reg > MAX_PHY_MULTI_PAGE_REG) {
2661 if ((hw->phy.type != e1000_phy_82578) ||
2662 ((reg != I82578_ADDR_REG) &&
2663 (reg != I82578_ADDR_REG + 1))) {
2664 u32 phy_addr = hw->phy.addr;
2666 hw->phy.addr = 1;
2668 /* Page is shifted left, PHY expects (page x 32) */
2669 ret_val = e1000e_write_phy_reg_mdic(hw,
2670 IGP01E1000_PHY_PAGE_SELECT,
2671 (page << IGP_PAGE_SHIFT));
2672 hw->phy.addr = phy_addr;
2676 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2677 data);
2678 out:
2679 /* Revert to MDIO fast mode, if applicable */
2680 if ((hw->phy.type == e1000_phy_82577) && in_slow_mode)
2681 ret_val = e1000_set_mdio_slow_mode_hv(hw, false);
2683 if (!locked)
2684 hw->phy.ops.release_phy(hw);
2686 return ret_val;
2690 * e1000_read_phy_reg_hv - Read HV PHY register
2691 * @hw: pointer to the HW structure
2692 * @offset: register offset to be read
2693 * @data: pointer to the read data
2695 * Acquires semaphore then reads the PHY register at offset and stores
2696 * the retrieved information in data. Release the acquired semaphore
2697 * before exiting.
2699 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2701 return __e1000_read_phy_reg_hv(hw, offset, data, false);
2705 * e1000_read_phy_reg_hv_locked - Read HV PHY register
2706 * @hw: pointer to the HW structure
2707 * @offset: register offset to be read
2708 * @data: pointer to the read data
2710 * Reads the PHY register at offset and stores the retrieved information
2711 * in data. Assumes semaphore already acquired.
2713 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2715 return __e1000_read_phy_reg_hv(hw, offset, data, true);
2719 * __e1000_write_phy_reg_hv - Write HV PHY register
2720 * @hw: pointer to the HW structure
2721 * @offset: register offset to write to
2722 * @data: data to write at register offset
2723 * @locked: semaphore has already been acquired or not
2725 * Acquires semaphore, if necessary, then writes the data to PHY register
2726 * at the offset. Release any acquired semaphores before exiting.
2728 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2729 bool locked)
2731 s32 ret_val;
2732 u16 page = BM_PHY_REG_PAGE(offset);
2733 u16 reg = BM_PHY_REG_NUM(offset);
2734 bool in_slow_mode = false;
2736 if (!locked) {
2737 ret_val = hw->phy.ops.acquire_phy(hw);
2738 if (ret_val)
2739 return ret_val;
2742 /* Workaround failure in MDIO access while cable is disconnected */
2743 if ((hw->phy.type == e1000_phy_82577) &&
2744 !(er32(STATUS) & E1000_STATUS_LU)) {
2745 ret_val = e1000_set_mdio_slow_mode_hv(hw, true);
2746 if (ret_val)
2747 goto out;
2749 in_slow_mode = true;
2752 /* Page 800 works differently than the rest so it has its own func */
2753 if (page == BM_WUC_PAGE) {
2754 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
2755 &data, false);
2756 goto out;
2759 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2760 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2761 &data, false);
2762 goto out;
2765 hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2767 if (page == HV_INTC_FC_PAGE_START)
2768 page = 0;
2771 * Workaround MDIO accesses being disabled after entering IEEE Power
2772 * Down (whenever bit 11 of the PHY Control register is set)
2774 if ((hw->phy.type == e1000_phy_82578) &&
2775 (hw->phy.revision >= 1) &&
2776 (hw->phy.addr == 2) &&
2777 ((MAX_PHY_REG_ADDRESS & reg) == 0) &&
2778 (data & (1 << 11))) {
2779 u16 data2 = 0x7EFF;
2780 ret_val = e1000_access_phy_debug_regs_hv(hw, (1 << 6) | 0x3,
2781 &data2, false);
2782 if (ret_val)
2783 goto out;
2786 if (reg > MAX_PHY_MULTI_PAGE_REG) {
2787 if ((hw->phy.type != e1000_phy_82578) ||
2788 ((reg != I82578_ADDR_REG) &&
2789 (reg != I82578_ADDR_REG + 1))) {
2790 u32 phy_addr = hw->phy.addr;
2792 hw->phy.addr = 1;
2794 /* Page is shifted left, PHY expects (page x 32) */
2795 ret_val = e1000e_write_phy_reg_mdic(hw,
2796 IGP01E1000_PHY_PAGE_SELECT,
2797 (page << IGP_PAGE_SHIFT));
2798 hw->phy.addr = phy_addr;
2802 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2803 data);
2805 out:
2806 /* Revert to MDIO fast mode, if applicable */
2807 if ((hw->phy.type == e1000_phy_82577) && in_slow_mode)
2808 ret_val = e1000_set_mdio_slow_mode_hv(hw, false);
2810 if (!locked)
2811 hw->phy.ops.release_phy(hw);
2813 return ret_val;
2817 * e1000_write_phy_reg_hv - Write HV PHY register
2818 * @hw: pointer to the HW structure
2819 * @offset: register offset to write to
2820 * @data: data to write at register offset
2822 * Acquires semaphore then writes the data to PHY register at the offset.
2823 * Release the acquired semaphores before exiting.
2825 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2827 return __e1000_write_phy_reg_hv(hw, offset, data, false);
2831 * e1000_write_phy_reg_hv_locked - Write HV PHY register
2832 * @hw: pointer to the HW structure
2833 * @offset: register offset to write to
2834 * @data: data to write at register offset
2836 * Writes the data to PHY register at the offset. Assumes semaphore
2837 * already acquired.
2839 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2841 return __e1000_write_phy_reg_hv(hw, offset, data, true);
2845 * e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page
2846 * @page: page to be accessed
2848 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2850 u32 phy_addr = 2;
2852 if (page >= HV_INTC_FC_PAGE_START)
2853 phy_addr = 1;
2855 return phy_addr;
2859 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2860 * @hw: pointer to the HW structure
2861 * @offset: register offset to be read or written
2862 * @data: pointer to the data to be read or written
2863 * @read: determines if operation is read or written
2865 * Reads the PHY register at offset and stores the retreived information
2866 * in data. Assumes semaphore already acquired. Note that the procedure
2867 * to read these regs uses the address port and data port to read/write.
2869 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
2870 u16 *data, bool read)
2872 s32 ret_val;
2873 u32 addr_reg = 0;
2874 u32 data_reg = 0;
2876 /* This takes care of the difference with desktop vs mobile phy */
2877 addr_reg = (hw->phy.type == e1000_phy_82578) ?
2878 I82578_ADDR_REG : I82577_ADDR_REG;
2879 data_reg = addr_reg + 1;
2881 /* All operations in this function are phy address 2 */
2882 hw->phy.addr = 2;
2884 /* masking with 0x3F to remove the page from offset */
2885 ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
2886 if (ret_val) {
2887 hw_dbg(hw, "Could not write PHY the HV address register\n");
2888 goto out;
2891 /* Read or write the data value next */
2892 if (read)
2893 ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
2894 else
2895 ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
2897 if (ret_val) {
2898 hw_dbg(hw, "Could not read data value from HV data register\n");
2899 goto out;
2902 out:
2903 return ret_val;
2907 * e1000_link_stall_workaround_hv - Si workaround
2908 * @hw: pointer to the HW structure
2910 * This function works around a Si bug where the link partner can get
2911 * a link up indication before the PHY does. If small packets are sent
2912 * by the link partner they can be placed in the packet buffer without
2913 * being properly accounted for by the PHY and will stall preventing
2914 * further packets from being received. The workaround is to clear the
2915 * packet buffer after the PHY detects link up.
2917 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
2919 s32 ret_val = 0;
2920 u16 data;
2922 if (hw->phy.type != e1000_phy_82578)
2923 goto out;
2925 /* Do not apply workaround if in PHY loopback bit 14 set */
2926 hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &data);
2927 if (data & PHY_CONTROL_LB)
2928 goto out;
2930 /* check if link is up and at 1Gbps */
2931 ret_val = hw->phy.ops.read_phy_reg(hw, BM_CS_STATUS, &data);
2932 if (ret_val)
2933 goto out;
2935 data &= BM_CS_STATUS_LINK_UP |
2936 BM_CS_STATUS_RESOLVED |
2937 BM_CS_STATUS_SPEED_MASK;
2939 if (data != (BM_CS_STATUS_LINK_UP |
2940 BM_CS_STATUS_RESOLVED |
2941 BM_CS_STATUS_SPEED_1000))
2942 goto out;
2944 mdelay(200);
2946 /* flush the packets in the fifo buffer */
2947 ret_val = hw->phy.ops.write_phy_reg(hw, HV_MUX_DATA_CTRL,
2948 HV_MUX_DATA_CTRL_GEN_TO_MAC |
2949 HV_MUX_DATA_CTRL_FORCE_SPEED);
2950 if (ret_val)
2951 goto out;
2953 ret_val = hw->phy.ops.write_phy_reg(hw, HV_MUX_DATA_CTRL,
2954 HV_MUX_DATA_CTRL_GEN_TO_MAC);
2956 out:
2957 return ret_val;
2961 * e1000_check_polarity_82577 - Checks the polarity.
2962 * @hw: pointer to the HW structure
2964 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2966 * Polarity is determined based on the PHY specific status register.
2968 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
2970 struct e1000_phy_info *phy = &hw->phy;
2971 s32 ret_val;
2972 u16 data;
2974 ret_val = phy->ops.read_phy_reg(hw, I82577_PHY_STATUS_2, &data);
2976 if (!ret_val)
2977 phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
2978 ? e1000_rev_polarity_reversed
2979 : e1000_rev_polarity_normal;
2981 return ret_val;
2985 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
2986 * @hw: pointer to the HW structure
2988 * Calls the PHY setup function to force speed and duplex. Clears the
2989 * auto-crossover to force MDI manually. Waits for link and returns
2990 * successful if link up is successful, else -E1000_ERR_PHY (-2).
2992 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
2994 struct e1000_phy_info *phy = &hw->phy;
2995 s32 ret_val;
2996 u16 phy_data;
2997 bool link;
2999 ret_val = phy->ops.read_phy_reg(hw, PHY_CONTROL, &phy_data);
3000 if (ret_val)
3001 goto out;
3003 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3005 ret_val = phy->ops.write_phy_reg(hw, PHY_CONTROL, phy_data);
3006 if (ret_val)
3007 goto out;
3010 * Clear Auto-Crossover to force MDI manually. 82577 requires MDI
3011 * forced whenever speed and duplex are forced.
3013 ret_val = phy->ops.read_phy_reg(hw, I82577_PHY_CTRL_2, &phy_data);
3014 if (ret_val)
3015 goto out;
3017 phy_data &= ~I82577_PHY_CTRL2_AUTO_MDIX;
3018 phy_data &= ~I82577_PHY_CTRL2_FORCE_MDI_MDIX;
3020 ret_val = phy->ops.write_phy_reg(hw, I82577_PHY_CTRL_2, phy_data);
3021 if (ret_val)
3022 goto out;
3024 hw_dbg(hw, "I82577_PHY_CTRL_2: %X\n", phy_data);
3026 udelay(1);
3028 if (phy->autoneg_wait_to_complete) {
3029 hw_dbg(hw, "Waiting for forced speed/duplex link on 82577 phy\n");
3031 ret_val = e1000e_phy_has_link_generic(hw,
3032 PHY_FORCE_LIMIT,
3033 100000,
3034 &link);
3035 if (ret_val)
3036 goto out;
3038 if (!link)
3039 hw_dbg(hw, "Link taking longer than expected.\n");
3041 /* Try once more */
3042 ret_val = e1000e_phy_has_link_generic(hw,
3043 PHY_FORCE_LIMIT,
3044 100000,
3045 &link);
3046 if (ret_val)
3047 goto out;
3050 out:
3051 return ret_val;
3055 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3056 * @hw: pointer to the HW structure
3058 * Read PHY status to determine if link is up. If link is up, then
3059 * set/determine 10base-T extended distance and polarity correction. Read
3060 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3061 * determine on the cable length, local and remote receiver.
3063 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3065 struct e1000_phy_info *phy = &hw->phy;
3066 s32 ret_val;
3067 u16 data;
3068 bool link;
3070 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3071 if (ret_val)
3072 goto out;
3074 if (!link) {
3075 hw_dbg(hw, "Phy info is only valid if link is up\n");
3076 ret_val = -E1000_ERR_CONFIG;
3077 goto out;
3080 phy->polarity_correction = true;
3082 ret_val = e1000_check_polarity_82577(hw);
3083 if (ret_val)
3084 goto out;
3086 ret_val = phy->ops.read_phy_reg(hw, I82577_PHY_STATUS_2, &data);
3087 if (ret_val)
3088 goto out;
3090 phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;
3092 if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3093 I82577_PHY_STATUS2_SPEED_1000MBPS) {
3094 ret_val = hw->phy.ops.get_cable_length(hw);
3095 if (ret_val)
3096 goto out;
3098 ret_val = phy->ops.read_phy_reg(hw, PHY_1000T_STATUS, &data);
3099 if (ret_val)
3100 goto out;
3102 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3103 ? e1000_1000t_rx_status_ok
3104 : e1000_1000t_rx_status_not_ok;
3106 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3107 ? e1000_1000t_rx_status_ok
3108 : e1000_1000t_rx_status_not_ok;
3109 } else {
3110 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3111 phy->local_rx = e1000_1000t_rx_status_undefined;
3112 phy->remote_rx = e1000_1000t_rx_status_undefined;
3115 out:
3116 return ret_val;
3120 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3121 * @hw: pointer to the HW structure
3123 * Reads the diagnostic status register and verifies result is valid before
3124 * placing it in the phy_cable_length field.
3126 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3128 struct e1000_phy_info *phy = &hw->phy;
3129 s32 ret_val;
3130 u16 phy_data, length;
3132 ret_val = phy->ops.read_phy_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3133 if (ret_val)
3134 goto out;
3136 length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3137 I82577_DSTATUS_CABLE_LENGTH_SHIFT;
3139 if (length == E1000_CABLE_LENGTH_UNDEFINED)
3140 ret_val = E1000_ERR_PHY;
3142 phy->cable_length = length;
3144 out:
3145 return ret_val;