2 * linux/fs/jbd/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
40 #include <asm/uaccess.h>
43 EXPORT_SYMBOL(journal_start
);
44 EXPORT_SYMBOL(journal_restart
);
45 EXPORT_SYMBOL(journal_extend
);
46 EXPORT_SYMBOL(journal_stop
);
47 EXPORT_SYMBOL(journal_lock_updates
);
48 EXPORT_SYMBOL(journal_unlock_updates
);
49 EXPORT_SYMBOL(journal_get_write_access
);
50 EXPORT_SYMBOL(journal_get_create_access
);
51 EXPORT_SYMBOL(journal_get_undo_access
);
52 EXPORT_SYMBOL(journal_dirty_data
);
53 EXPORT_SYMBOL(journal_dirty_metadata
);
54 EXPORT_SYMBOL(journal_release_buffer
);
55 EXPORT_SYMBOL(journal_forget
);
57 EXPORT_SYMBOL(journal_sync_buffer
);
59 EXPORT_SYMBOL(journal_flush
);
60 EXPORT_SYMBOL(journal_revoke
);
62 EXPORT_SYMBOL(journal_init_dev
);
63 EXPORT_SYMBOL(journal_init_inode
);
64 EXPORT_SYMBOL(journal_update_format
);
65 EXPORT_SYMBOL(journal_check_used_features
);
66 EXPORT_SYMBOL(journal_check_available_features
);
67 EXPORT_SYMBOL(journal_set_features
);
68 EXPORT_SYMBOL(journal_create
);
69 EXPORT_SYMBOL(journal_load
);
70 EXPORT_SYMBOL(journal_destroy
);
71 EXPORT_SYMBOL(journal_abort
);
72 EXPORT_SYMBOL(journal_errno
);
73 EXPORT_SYMBOL(journal_ack_err
);
74 EXPORT_SYMBOL(journal_clear_err
);
75 EXPORT_SYMBOL(log_wait_commit
);
76 EXPORT_SYMBOL(log_start_commit
);
77 EXPORT_SYMBOL(journal_start_commit
);
78 EXPORT_SYMBOL(journal_force_commit_nested
);
79 EXPORT_SYMBOL(journal_wipe
);
80 EXPORT_SYMBOL(journal_blocks_per_page
);
81 EXPORT_SYMBOL(journal_invalidatepage
);
82 EXPORT_SYMBOL(journal_try_to_free_buffers
);
83 EXPORT_SYMBOL(journal_force_commit
);
85 static int journal_convert_superblock_v1(journal_t
*, journal_superblock_t
*);
86 static void __journal_abort_soft (journal_t
*journal
, int errno
);
89 * Helper function used to manage commit timeouts
92 static void commit_timeout(unsigned long __data
)
94 struct task_struct
* p
= (struct task_struct
*) __data
;
100 * kjournald: The main thread function used to manage a logging device
103 * This kernel thread is responsible for two things:
105 * 1) COMMIT: Every so often we need to commit the current state of the
106 * filesystem to disk. The journal thread is responsible for writing
107 * all of the metadata buffers to disk.
109 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
110 * of the data in that part of the log has been rewritten elsewhere on
111 * the disk. Flushing these old buffers to reclaim space in the log is
112 * known as checkpointing, and this thread is responsible for that job.
115 static int kjournald(void *arg
)
117 journal_t
*journal
= arg
;
118 transaction_t
*transaction
;
121 * Set up an interval timer which can be used to trigger a commit wakeup
122 * after the commit interval expires
124 setup_timer(&journal
->j_commit_timer
, commit_timeout
,
125 (unsigned long)current
);
127 /* Record that the journal thread is running */
128 journal
->j_task
= current
;
129 wake_up(&journal
->j_wait_done_commit
);
131 printk(KERN_INFO
"kjournald starting. Commit interval %ld seconds\n",
132 journal
->j_commit_interval
/ HZ
);
135 * And now, wait forever for commit wakeup events.
137 spin_lock(&journal
->j_state_lock
);
140 if (journal
->j_flags
& JFS_UNMOUNT
)
143 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
144 journal
->j_commit_sequence
, journal
->j_commit_request
);
146 if (journal
->j_commit_sequence
!= journal
->j_commit_request
) {
147 jbd_debug(1, "OK, requests differ\n");
148 spin_unlock(&journal
->j_state_lock
);
149 del_timer_sync(&journal
->j_commit_timer
);
150 journal_commit_transaction(journal
);
151 spin_lock(&journal
->j_state_lock
);
155 wake_up(&journal
->j_wait_done_commit
);
156 if (freezing(current
)) {
158 * The simpler the better. Flushing journal isn't a
159 * good idea, because that depends on threads that may
160 * be already stopped.
162 jbd_debug(1, "Now suspending kjournald\n");
163 spin_unlock(&journal
->j_state_lock
);
165 spin_lock(&journal
->j_state_lock
);
168 * We assume on resume that commits are already there,
172 int should_sleep
= 1;
174 prepare_to_wait(&journal
->j_wait_commit
, &wait
,
176 if (journal
->j_commit_sequence
!= journal
->j_commit_request
)
178 transaction
= journal
->j_running_transaction
;
179 if (transaction
&& time_after_eq(jiffies
,
180 transaction
->t_expires
))
182 if (journal
->j_flags
& JFS_UNMOUNT
)
185 spin_unlock(&journal
->j_state_lock
);
187 spin_lock(&journal
->j_state_lock
);
189 finish_wait(&journal
->j_wait_commit
, &wait
);
192 jbd_debug(1, "kjournald wakes\n");
195 * Were we woken up by a commit wakeup event?
197 transaction
= journal
->j_running_transaction
;
198 if (transaction
&& time_after_eq(jiffies
, transaction
->t_expires
)) {
199 journal
->j_commit_request
= transaction
->t_tid
;
200 jbd_debug(1, "woke because of timeout\n");
205 spin_unlock(&journal
->j_state_lock
);
206 del_timer_sync(&journal
->j_commit_timer
);
207 journal
->j_task
= NULL
;
208 wake_up(&journal
->j_wait_done_commit
);
209 jbd_debug(1, "Journal thread exiting.\n");
213 static int journal_start_thread(journal_t
*journal
)
215 struct task_struct
*t
;
217 t
= kthread_run(kjournald
, journal
, "kjournald");
221 wait_event(journal
->j_wait_done_commit
, journal
->j_task
!= NULL
);
225 static void journal_kill_thread(journal_t
*journal
)
227 spin_lock(&journal
->j_state_lock
);
228 journal
->j_flags
|= JFS_UNMOUNT
;
230 while (journal
->j_task
) {
231 wake_up(&journal
->j_wait_commit
);
232 spin_unlock(&journal
->j_state_lock
);
233 wait_event(journal
->j_wait_done_commit
,
234 journal
->j_task
== NULL
);
235 spin_lock(&journal
->j_state_lock
);
237 spin_unlock(&journal
->j_state_lock
);
241 * journal_write_metadata_buffer: write a metadata buffer to the journal.
243 * Writes a metadata buffer to a given disk block. The actual IO is not
244 * performed but a new buffer_head is constructed which labels the data
245 * to be written with the correct destination disk block.
247 * Any magic-number escaping which needs to be done will cause a
248 * copy-out here. If the buffer happens to start with the
249 * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
250 * magic number is only written to the log for descripter blocks. In
251 * this case, we copy the data and replace the first word with 0, and we
252 * return a result code which indicates that this buffer needs to be
253 * marked as an escaped buffer in the corresponding log descriptor
254 * block. The missing word can then be restored when the block is read
257 * If the source buffer has already been modified by a new transaction
258 * since we took the last commit snapshot, we use the frozen copy of
259 * that data for IO. If we end up using the existing buffer_head's data
260 * for the write, then we *have* to lock the buffer to prevent anyone
261 * else from using and possibly modifying it while the IO is in
264 * The function returns a pointer to the buffer_heads to be used for IO.
266 * We assume that the journal has already been locked in this function.
273 * Bit 0 set == escape performed on the data
274 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
277 int journal_write_metadata_buffer(transaction_t
*transaction
,
278 struct journal_head
*jh_in
,
279 struct journal_head
**jh_out
,
280 unsigned int blocknr
)
282 int need_copy_out
= 0;
283 int done_copy_out
= 0;
286 struct buffer_head
*new_bh
;
287 struct journal_head
*new_jh
;
288 struct page
*new_page
;
289 unsigned int new_offset
;
290 struct buffer_head
*bh_in
= jh2bh(jh_in
);
291 journal_t
*journal
= transaction
->t_journal
;
294 * The buffer really shouldn't be locked: only the current committing
295 * transaction is allowed to write it, so nobody else is allowed
298 * akpm: except if we're journalling data, and write() output is
299 * also part of a shared mapping, and another thread has
300 * decided to launch a writepage() against this buffer.
302 J_ASSERT_BH(bh_in
, buffer_jbddirty(bh_in
));
304 new_bh
= alloc_buffer_head(GFP_NOFS
|__GFP_NOFAIL
);
305 /* keep subsequent assertions sane */
307 init_buffer(new_bh
, NULL
, NULL
);
308 atomic_set(&new_bh
->b_count
, 1);
309 new_jh
= journal_add_journal_head(new_bh
); /* This sleeps */
312 * If a new transaction has already done a buffer copy-out, then
313 * we use that version of the data for the commit.
315 jbd_lock_bh_state(bh_in
);
317 if (jh_in
->b_frozen_data
) {
319 new_page
= virt_to_page(jh_in
->b_frozen_data
);
320 new_offset
= offset_in_page(jh_in
->b_frozen_data
);
322 new_page
= jh2bh(jh_in
)->b_page
;
323 new_offset
= offset_in_page(jh2bh(jh_in
)->b_data
);
326 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
330 if (*((__be32
*)(mapped_data
+ new_offset
)) ==
331 cpu_to_be32(JFS_MAGIC_NUMBER
)) {
335 kunmap_atomic(mapped_data
, KM_USER0
);
338 * Do we need to do a data copy?
340 if (need_copy_out
&& !done_copy_out
) {
343 jbd_unlock_bh_state(bh_in
);
344 tmp
= jbd_alloc(bh_in
->b_size
, GFP_NOFS
);
345 jbd_lock_bh_state(bh_in
);
346 if (jh_in
->b_frozen_data
) {
347 jbd_free(tmp
, bh_in
->b_size
);
351 jh_in
->b_frozen_data
= tmp
;
352 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
353 memcpy(tmp
, mapped_data
+ new_offset
, jh2bh(jh_in
)->b_size
);
354 kunmap_atomic(mapped_data
, KM_USER0
);
356 new_page
= virt_to_page(tmp
);
357 new_offset
= offset_in_page(tmp
);
362 * Did we need to do an escaping? Now we've done all the
363 * copying, we can finally do so.
366 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
367 *((unsigned int *)(mapped_data
+ new_offset
)) = 0;
368 kunmap_atomic(mapped_data
, KM_USER0
);
371 set_bh_page(new_bh
, new_page
, new_offset
);
372 new_jh
->b_transaction
= NULL
;
373 new_bh
->b_size
= jh2bh(jh_in
)->b_size
;
374 new_bh
->b_bdev
= transaction
->t_journal
->j_dev
;
375 new_bh
->b_blocknr
= blocknr
;
376 set_buffer_mapped(new_bh
);
377 set_buffer_dirty(new_bh
);
382 * The to-be-written buffer needs to get moved to the io queue,
383 * and the original buffer whose contents we are shadowing or
384 * copying is moved to the transaction's shadow queue.
386 JBUFFER_TRACE(jh_in
, "file as BJ_Shadow");
387 spin_lock(&journal
->j_list_lock
);
388 __journal_file_buffer(jh_in
, transaction
, BJ_Shadow
);
389 spin_unlock(&journal
->j_list_lock
);
390 jbd_unlock_bh_state(bh_in
);
392 JBUFFER_TRACE(new_jh
, "file as BJ_IO");
393 journal_file_buffer(new_jh
, transaction
, BJ_IO
);
395 return do_escape
| (done_copy_out
<< 1);
399 * Allocation code for the journal file. Manage the space left in the
400 * journal, so that we can begin checkpointing when appropriate.
404 * __log_space_left: Return the number of free blocks left in the journal.
406 * Called with the journal already locked.
408 * Called under j_state_lock
411 int __log_space_left(journal_t
*journal
)
413 int left
= journal
->j_free
;
415 assert_spin_locked(&journal
->j_state_lock
);
418 * Be pessimistic here about the number of those free blocks which
419 * might be required for log descriptor control blocks.
422 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
424 left
-= MIN_LOG_RESERVED_BLOCKS
;
433 * Called under j_state_lock. Returns true if a transaction commit was started.
435 int __log_start_commit(journal_t
*journal
, tid_t target
)
438 * The only transaction we can possibly wait upon is the
439 * currently running transaction (if it exists). Otherwise,
440 * the target tid must be an old one.
442 if (journal
->j_running_transaction
&&
443 journal
->j_running_transaction
->t_tid
== target
) {
445 * We want a new commit: OK, mark the request and wakup the
446 * commit thread. We do _not_ do the commit ourselves.
449 journal
->j_commit_request
= target
;
450 jbd_debug(1, "JBD: requesting commit %d/%d\n",
451 journal
->j_commit_request
,
452 journal
->j_commit_sequence
);
453 wake_up(&journal
->j_wait_commit
);
455 } else if (!tid_geq(journal
->j_commit_request
, target
))
456 /* This should never happen, but if it does, preserve
457 the evidence before kjournald goes into a loop and
458 increments j_commit_sequence beyond all recognition. */
459 WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
460 journal
->j_commit_request
, journal
->j_commit_sequence
,
461 target
, journal
->j_running_transaction
?
462 journal
->j_running_transaction
->t_tid
: 0);
466 int log_start_commit(journal_t
*journal
, tid_t tid
)
470 spin_lock(&journal
->j_state_lock
);
471 ret
= __log_start_commit(journal
, tid
);
472 spin_unlock(&journal
->j_state_lock
);
477 * Force and wait upon a commit if the calling process is not within
478 * transaction. This is used for forcing out undo-protected data which contains
479 * bitmaps, when the fs is running out of space.
481 * We can only force the running transaction if we don't have an active handle;
482 * otherwise, we will deadlock.
484 * Returns true if a transaction was started.
486 int journal_force_commit_nested(journal_t
*journal
)
488 transaction_t
*transaction
= NULL
;
491 spin_lock(&journal
->j_state_lock
);
492 if (journal
->j_running_transaction
&& !current
->journal_info
) {
493 transaction
= journal
->j_running_transaction
;
494 __log_start_commit(journal
, transaction
->t_tid
);
495 } else if (journal
->j_committing_transaction
)
496 transaction
= journal
->j_committing_transaction
;
499 spin_unlock(&journal
->j_state_lock
);
500 return 0; /* Nothing to retry */
503 tid
= transaction
->t_tid
;
504 spin_unlock(&journal
->j_state_lock
);
505 log_wait_commit(journal
, tid
);
510 * Start a commit of the current running transaction (if any). Returns true
511 * if a transaction is going to be committed (or is currently already
512 * committing), and fills its tid in at *ptid
514 int journal_start_commit(journal_t
*journal
, tid_t
*ptid
)
518 spin_lock(&journal
->j_state_lock
);
519 if (journal
->j_running_transaction
) {
520 tid_t tid
= journal
->j_running_transaction
->t_tid
;
522 __log_start_commit(journal
, tid
);
523 /* There's a running transaction and we've just made sure
524 * it's commit has been scheduled. */
528 } else if (journal
->j_committing_transaction
) {
530 * If ext3_write_super() recently started a commit, then we
531 * have to wait for completion of that transaction
534 *ptid
= journal
->j_committing_transaction
->t_tid
;
537 spin_unlock(&journal
->j_state_lock
);
542 * Wait for a specified commit to complete.
543 * The caller may not hold the journal lock.
545 int log_wait_commit(journal_t
*journal
, tid_t tid
)
549 #ifdef CONFIG_JBD_DEBUG
550 spin_lock(&journal
->j_state_lock
);
551 if (!tid_geq(journal
->j_commit_request
, tid
)) {
553 "%s: error: j_commit_request=%d, tid=%d\n",
554 __func__
, journal
->j_commit_request
, tid
);
556 spin_unlock(&journal
->j_state_lock
);
558 spin_lock(&journal
->j_state_lock
);
559 while (tid_gt(tid
, journal
->j_commit_sequence
)) {
560 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
561 tid
, journal
->j_commit_sequence
);
562 wake_up(&journal
->j_wait_commit
);
563 spin_unlock(&journal
->j_state_lock
);
564 wait_event(journal
->j_wait_done_commit
,
565 !tid_gt(tid
, journal
->j_commit_sequence
));
566 spin_lock(&journal
->j_state_lock
);
568 spin_unlock(&journal
->j_state_lock
);
570 if (unlikely(is_journal_aborted(journal
))) {
571 printk(KERN_EMERG
"journal commit I/O error\n");
578 * Log buffer allocation routines:
581 int journal_next_log_block(journal_t
*journal
, unsigned int *retp
)
583 unsigned int blocknr
;
585 spin_lock(&journal
->j_state_lock
);
586 J_ASSERT(journal
->j_free
> 1);
588 blocknr
= journal
->j_head
;
591 if (journal
->j_head
== journal
->j_last
)
592 journal
->j_head
= journal
->j_first
;
593 spin_unlock(&journal
->j_state_lock
);
594 return journal_bmap(journal
, blocknr
, retp
);
598 * Conversion of logical to physical block numbers for the journal
600 * On external journals the journal blocks are identity-mapped, so
601 * this is a no-op. If needed, we can use j_blk_offset - everything is
604 int journal_bmap(journal_t
*journal
, unsigned int blocknr
,
610 if (journal
->j_inode
) {
611 ret
= bmap(journal
->j_inode
, blocknr
);
615 char b
[BDEVNAME_SIZE
];
617 printk(KERN_ALERT
"%s: journal block not found "
618 "at offset %u on %s\n",
621 bdevname(journal
->j_dev
, b
));
623 __journal_abort_soft(journal
, err
);
626 *retp
= blocknr
; /* +journal->j_blk_offset */
632 * We play buffer_head aliasing tricks to write data/metadata blocks to
633 * the journal without copying their contents, but for journal
634 * descriptor blocks we do need to generate bona fide buffers.
636 * After the caller of journal_get_descriptor_buffer() has finished modifying
637 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
638 * But we don't bother doing that, so there will be coherency problems with
639 * mmaps of blockdevs which hold live JBD-controlled filesystems.
641 struct journal_head
*journal_get_descriptor_buffer(journal_t
*journal
)
643 struct buffer_head
*bh
;
644 unsigned int blocknr
;
647 err
= journal_next_log_block(journal
, &blocknr
);
652 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
656 memset(bh
->b_data
, 0, journal
->j_blocksize
);
657 set_buffer_uptodate(bh
);
659 BUFFER_TRACE(bh
, "return this buffer");
660 return journal_add_journal_head(bh
);
664 * Management for journal control blocks: functions to create and
665 * destroy journal_t structures, and to initialise and read existing
666 * journal blocks from disk. */
668 /* First: create and setup a journal_t object in memory. We initialise
669 * very few fields yet: that has to wait until we have created the
670 * journal structures from from scratch, or loaded them from disk. */
672 static journal_t
* journal_init_common (void)
677 journal
= kzalloc(sizeof(*journal
), GFP_KERNEL
);
681 init_waitqueue_head(&journal
->j_wait_transaction_locked
);
682 init_waitqueue_head(&journal
->j_wait_logspace
);
683 init_waitqueue_head(&journal
->j_wait_done_commit
);
684 init_waitqueue_head(&journal
->j_wait_checkpoint
);
685 init_waitqueue_head(&journal
->j_wait_commit
);
686 init_waitqueue_head(&journal
->j_wait_updates
);
687 mutex_init(&journal
->j_barrier
);
688 mutex_init(&journal
->j_checkpoint_mutex
);
689 spin_lock_init(&journal
->j_revoke_lock
);
690 spin_lock_init(&journal
->j_list_lock
);
691 spin_lock_init(&journal
->j_state_lock
);
693 journal
->j_commit_interval
= (HZ
* JBD_DEFAULT_MAX_COMMIT_AGE
);
695 /* The journal is marked for error until we succeed with recovery! */
696 journal
->j_flags
= JFS_ABORT
;
698 /* Set up a default-sized revoke table for the new mount. */
699 err
= journal_init_revoke(journal
, JOURNAL_REVOKE_DEFAULT_HASH
);
709 /* journal_init_dev and journal_init_inode:
711 * Create a journal structure assigned some fixed set of disk blocks to
712 * the journal. We don't actually touch those disk blocks yet, but we
713 * need to set up all of the mapping information to tell the journaling
714 * system where the journal blocks are.
719 * journal_t * journal_init_dev() - creates and initialises a journal structure
720 * @bdev: Block device on which to create the journal
721 * @fs_dev: Device which hold journalled filesystem for this journal.
722 * @start: Block nr Start of journal.
723 * @len: Length of the journal in blocks.
724 * @blocksize: blocksize of journalling device
726 * Returns: a newly created journal_t *
728 * journal_init_dev creates a journal which maps a fixed contiguous
729 * range of blocks on an arbitrary block device.
732 journal_t
* journal_init_dev(struct block_device
*bdev
,
733 struct block_device
*fs_dev
,
734 int start
, int len
, int blocksize
)
736 journal_t
*journal
= journal_init_common();
737 struct buffer_head
*bh
;
743 /* journal descriptor can store up to n blocks -bzzz */
744 journal
->j_blocksize
= blocksize
;
745 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
746 journal
->j_wbufsize
= n
;
747 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
748 if (!journal
->j_wbuf
) {
749 printk(KERN_ERR
"%s: Cant allocate bhs for commit thread\n",
753 journal
->j_dev
= bdev
;
754 journal
->j_fs_dev
= fs_dev
;
755 journal
->j_blk_offset
= start
;
756 journal
->j_maxlen
= len
;
758 bh
= __getblk(journal
->j_dev
, start
, journal
->j_blocksize
);
761 "%s: Cannot get buffer for journal superblock\n",
765 journal
->j_sb_buffer
= bh
;
766 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
770 kfree(journal
->j_wbuf
);
776 * journal_t * journal_init_inode () - creates a journal which maps to a inode.
777 * @inode: An inode to create the journal in
779 * journal_init_inode creates a journal which maps an on-disk inode as
780 * the journal. The inode must exist already, must support bmap() and
781 * must have all data blocks preallocated.
783 journal_t
* journal_init_inode (struct inode
*inode
)
785 struct buffer_head
*bh
;
786 journal_t
*journal
= journal_init_common();
789 unsigned int blocknr
;
794 journal
->j_dev
= journal
->j_fs_dev
= inode
->i_sb
->s_bdev
;
795 journal
->j_inode
= inode
;
797 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
798 journal
, inode
->i_sb
->s_id
, inode
->i_ino
,
799 (long long) inode
->i_size
,
800 inode
->i_sb
->s_blocksize_bits
, inode
->i_sb
->s_blocksize
);
802 journal
->j_maxlen
= inode
->i_size
>> inode
->i_sb
->s_blocksize_bits
;
803 journal
->j_blocksize
= inode
->i_sb
->s_blocksize
;
805 /* journal descriptor can store up to n blocks -bzzz */
806 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
807 journal
->j_wbufsize
= n
;
808 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
809 if (!journal
->j_wbuf
) {
810 printk(KERN_ERR
"%s: Cant allocate bhs for commit thread\n",
815 err
= journal_bmap(journal
, 0, &blocknr
);
816 /* If that failed, give up */
818 printk(KERN_ERR
"%s: Cannnot locate journal superblock\n",
823 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
826 "%s: Cannot get buffer for journal superblock\n",
830 journal
->j_sb_buffer
= bh
;
831 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
835 kfree(journal
->j_wbuf
);
841 * If the journal init or create aborts, we need to mark the journal
842 * superblock as being NULL to prevent the journal destroy from writing
843 * back a bogus superblock.
845 static void journal_fail_superblock (journal_t
*journal
)
847 struct buffer_head
*bh
= journal
->j_sb_buffer
;
849 journal
->j_sb_buffer
= NULL
;
853 * Given a journal_t structure, initialise the various fields for
854 * startup of a new journaling session. We use this both when creating
855 * a journal, and after recovering an old journal to reset it for
859 static int journal_reset(journal_t
*journal
)
861 journal_superblock_t
*sb
= journal
->j_superblock
;
862 unsigned int first
, last
;
864 first
= be32_to_cpu(sb
->s_first
);
865 last
= be32_to_cpu(sb
->s_maxlen
);
866 if (first
+ JFS_MIN_JOURNAL_BLOCKS
> last
+ 1) {
867 printk(KERN_ERR
"JBD: Journal too short (blocks %u-%u).\n",
869 journal_fail_superblock(journal
);
873 journal
->j_first
= first
;
874 journal
->j_last
= last
;
876 journal
->j_head
= first
;
877 journal
->j_tail
= first
;
878 journal
->j_free
= last
- first
;
880 journal
->j_tail_sequence
= journal
->j_transaction_sequence
;
881 journal
->j_commit_sequence
= journal
->j_transaction_sequence
- 1;
882 journal
->j_commit_request
= journal
->j_commit_sequence
;
884 journal
->j_max_transaction_buffers
= journal
->j_maxlen
/ 4;
886 /* Add the dynamic fields and write it to disk. */
887 journal_update_superblock(journal
, 1);
888 return journal_start_thread(journal
);
892 * int journal_create() - Initialise the new journal file
893 * @journal: Journal to create. This structure must have been initialised
895 * Given a journal_t structure which tells us which disk blocks we can
896 * use, create a new journal superblock and initialise all of the
897 * journal fields from scratch.
899 int journal_create(journal_t
*journal
)
901 unsigned int blocknr
;
902 struct buffer_head
*bh
;
903 journal_superblock_t
*sb
;
906 if (journal
->j_maxlen
< JFS_MIN_JOURNAL_BLOCKS
) {
907 printk (KERN_ERR
"Journal length (%d blocks) too short.\n",
909 journal_fail_superblock(journal
);
913 if (journal
->j_inode
== NULL
) {
915 * We don't know what block to start at!
918 "%s: creation of journal on external device!\n",
923 /* Zero out the entire journal on disk. We cannot afford to
924 have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
925 jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
926 for (i
= 0; i
< journal
->j_maxlen
; i
++) {
927 err
= journal_bmap(journal
, i
, &blocknr
);
930 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
932 memset (bh
->b_data
, 0, journal
->j_blocksize
);
933 BUFFER_TRACE(bh
, "marking dirty");
934 mark_buffer_dirty(bh
);
935 BUFFER_TRACE(bh
, "marking uptodate");
936 set_buffer_uptodate(bh
);
941 sync_blockdev(journal
->j_dev
);
942 jbd_debug(1, "JBD: journal cleared.\n");
944 /* OK, fill in the initial static fields in the new superblock */
945 sb
= journal
->j_superblock
;
947 sb
->s_header
.h_magic
= cpu_to_be32(JFS_MAGIC_NUMBER
);
948 sb
->s_header
.h_blocktype
= cpu_to_be32(JFS_SUPERBLOCK_V2
);
950 sb
->s_blocksize
= cpu_to_be32(journal
->j_blocksize
);
951 sb
->s_maxlen
= cpu_to_be32(journal
->j_maxlen
);
952 sb
->s_first
= cpu_to_be32(1);
954 journal
->j_transaction_sequence
= 1;
956 journal
->j_flags
&= ~JFS_ABORT
;
957 journal
->j_format_version
= 2;
959 return journal_reset(journal
);
963 * void journal_update_superblock() - Update journal sb on disk.
964 * @journal: The journal to update.
965 * @wait: Set to '0' if you don't want to wait for IO completion.
967 * Update a journal's dynamic superblock fields and write it to disk,
968 * optionally waiting for the IO to complete.
970 void journal_update_superblock(journal_t
*journal
, int wait
)
972 journal_superblock_t
*sb
= journal
->j_superblock
;
973 struct buffer_head
*bh
= journal
->j_sb_buffer
;
976 * As a special case, if the on-disk copy is already marked as needing
977 * no recovery (s_start == 0) and there are no outstanding transactions
978 * in the filesystem, then we can safely defer the superblock update
979 * until the next commit by setting JFS_FLUSHED. This avoids
980 * attempting a write to a potential-readonly device.
982 if (sb
->s_start
== 0 && journal
->j_tail_sequence
==
983 journal
->j_transaction_sequence
) {
984 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
985 "(start %u, seq %d, errno %d)\n",
986 journal
->j_tail
, journal
->j_tail_sequence
,
991 spin_lock(&journal
->j_state_lock
);
992 jbd_debug(1,"JBD: updating superblock (start %u, seq %d, errno %d)\n",
993 journal
->j_tail
, journal
->j_tail_sequence
, journal
->j_errno
);
995 sb
->s_sequence
= cpu_to_be32(journal
->j_tail_sequence
);
996 sb
->s_start
= cpu_to_be32(journal
->j_tail
);
997 sb
->s_errno
= cpu_to_be32(journal
->j_errno
);
998 spin_unlock(&journal
->j_state_lock
);
1000 BUFFER_TRACE(bh
, "marking dirty");
1001 mark_buffer_dirty(bh
);
1003 sync_dirty_buffer(bh
);
1005 ll_rw_block(SWRITE
, 1, &bh
);
1008 /* If we have just flushed the log (by marking s_start==0), then
1009 * any future commit will have to be careful to update the
1010 * superblock again to re-record the true start of the log. */
1012 spin_lock(&journal
->j_state_lock
);
1014 journal
->j_flags
&= ~JFS_FLUSHED
;
1016 journal
->j_flags
|= JFS_FLUSHED
;
1017 spin_unlock(&journal
->j_state_lock
);
1021 * Read the superblock for a given journal, performing initial
1022 * validation of the format.
1025 static int journal_get_superblock(journal_t
*journal
)
1027 struct buffer_head
*bh
;
1028 journal_superblock_t
*sb
;
1031 bh
= journal
->j_sb_buffer
;
1033 J_ASSERT(bh
!= NULL
);
1034 if (!buffer_uptodate(bh
)) {
1035 ll_rw_block(READ
, 1, &bh
);
1037 if (!buffer_uptodate(bh
)) {
1039 "JBD: IO error reading journal superblock\n");
1044 sb
= journal
->j_superblock
;
1048 if (sb
->s_header
.h_magic
!= cpu_to_be32(JFS_MAGIC_NUMBER
) ||
1049 sb
->s_blocksize
!= cpu_to_be32(journal
->j_blocksize
)) {
1050 printk(KERN_WARNING
"JBD: no valid journal superblock found\n");
1054 switch(be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1055 case JFS_SUPERBLOCK_V1
:
1056 journal
->j_format_version
= 1;
1058 case JFS_SUPERBLOCK_V2
:
1059 journal
->j_format_version
= 2;
1062 printk(KERN_WARNING
"JBD: unrecognised superblock format ID\n");
1066 if (be32_to_cpu(sb
->s_maxlen
) < journal
->j_maxlen
)
1067 journal
->j_maxlen
= be32_to_cpu(sb
->s_maxlen
);
1068 else if (be32_to_cpu(sb
->s_maxlen
) > journal
->j_maxlen
) {
1069 printk (KERN_WARNING
"JBD: journal file too short\n");
1076 journal_fail_superblock(journal
);
1081 * Load the on-disk journal superblock and read the key fields into the
1085 static int load_superblock(journal_t
*journal
)
1088 journal_superblock_t
*sb
;
1090 err
= journal_get_superblock(journal
);
1094 sb
= journal
->j_superblock
;
1096 journal
->j_tail_sequence
= be32_to_cpu(sb
->s_sequence
);
1097 journal
->j_tail
= be32_to_cpu(sb
->s_start
);
1098 journal
->j_first
= be32_to_cpu(sb
->s_first
);
1099 journal
->j_last
= be32_to_cpu(sb
->s_maxlen
);
1100 journal
->j_errno
= be32_to_cpu(sb
->s_errno
);
1107 * int journal_load() - Read journal from disk.
1108 * @journal: Journal to act on.
1110 * Given a journal_t structure which tells us which disk blocks contain
1111 * a journal, read the journal from disk to initialise the in-memory
1114 int journal_load(journal_t
*journal
)
1117 journal_superblock_t
*sb
;
1119 err
= load_superblock(journal
);
1123 sb
= journal
->j_superblock
;
1124 /* If this is a V2 superblock, then we have to check the
1125 * features flags on it. */
1127 if (journal
->j_format_version
>= 2) {
1128 if ((sb
->s_feature_ro_compat
&
1129 ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES
)) ||
1130 (sb
->s_feature_incompat
&
1131 ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES
))) {
1132 printk (KERN_WARNING
1133 "JBD: Unrecognised features on journal\n");
1138 /* Let the recovery code check whether it needs to recover any
1139 * data from the journal. */
1140 if (journal_recover(journal
))
1141 goto recovery_error
;
1143 /* OK, we've finished with the dynamic journal bits:
1144 * reinitialise the dynamic contents of the superblock in memory
1145 * and reset them on disk. */
1146 if (journal_reset(journal
))
1147 goto recovery_error
;
1149 journal
->j_flags
&= ~JFS_ABORT
;
1150 journal
->j_flags
|= JFS_LOADED
;
1154 printk (KERN_WARNING
"JBD: recovery failed\n");
1159 * void journal_destroy() - Release a journal_t structure.
1160 * @journal: Journal to act on.
1162 * Release a journal_t structure once it is no longer in use by the
1164 * Return <0 if we couldn't clean up the journal.
1166 int journal_destroy(journal_t
*journal
)
1170 /* Wait for the commit thread to wake up and die. */
1171 journal_kill_thread(journal
);
1173 /* Force a final log commit */
1174 if (journal
->j_running_transaction
)
1175 journal_commit_transaction(journal
);
1177 /* Force any old transactions to disk */
1179 /* Totally anal locking here... */
1180 spin_lock(&journal
->j_list_lock
);
1181 while (journal
->j_checkpoint_transactions
!= NULL
) {
1182 spin_unlock(&journal
->j_list_lock
);
1183 log_do_checkpoint(journal
);
1184 spin_lock(&journal
->j_list_lock
);
1187 J_ASSERT(journal
->j_running_transaction
== NULL
);
1188 J_ASSERT(journal
->j_committing_transaction
== NULL
);
1189 J_ASSERT(journal
->j_checkpoint_transactions
== NULL
);
1190 spin_unlock(&journal
->j_list_lock
);
1192 if (journal
->j_sb_buffer
) {
1193 if (!is_journal_aborted(journal
)) {
1194 /* We can now mark the journal as empty. */
1195 journal
->j_tail
= 0;
1196 journal
->j_tail_sequence
=
1197 ++journal
->j_transaction_sequence
;
1198 journal_update_superblock(journal
, 1);
1202 brelse(journal
->j_sb_buffer
);
1205 if (journal
->j_inode
)
1206 iput(journal
->j_inode
);
1207 if (journal
->j_revoke
)
1208 journal_destroy_revoke(journal
);
1209 kfree(journal
->j_wbuf
);
1217 *int journal_check_used_features () - Check if features specified are used.
1218 * @journal: Journal to check.
1219 * @compat: bitmask of compatible features
1220 * @ro: bitmask of features that force read-only mount
1221 * @incompat: bitmask of incompatible features
1223 * Check whether the journal uses all of a given set of
1224 * features. Return true (non-zero) if it does.
1227 int journal_check_used_features (journal_t
*journal
, unsigned long compat
,
1228 unsigned long ro
, unsigned long incompat
)
1230 journal_superblock_t
*sb
;
1232 if (!compat
&& !ro
&& !incompat
)
1234 if (journal
->j_format_version
== 1)
1237 sb
= journal
->j_superblock
;
1239 if (((be32_to_cpu(sb
->s_feature_compat
) & compat
) == compat
) &&
1240 ((be32_to_cpu(sb
->s_feature_ro_compat
) & ro
) == ro
) &&
1241 ((be32_to_cpu(sb
->s_feature_incompat
) & incompat
) == incompat
))
1248 * int journal_check_available_features() - Check feature set in journalling layer
1249 * @journal: Journal to check.
1250 * @compat: bitmask of compatible features
1251 * @ro: bitmask of features that force read-only mount
1252 * @incompat: bitmask of incompatible features
1254 * Check whether the journaling code supports the use of
1255 * all of a given set of features on this journal. Return true
1256 * (non-zero) if it can. */
1258 int journal_check_available_features (journal_t
*journal
, unsigned long compat
,
1259 unsigned long ro
, unsigned long incompat
)
1261 journal_superblock_t
*sb
;
1263 if (!compat
&& !ro
&& !incompat
)
1266 sb
= journal
->j_superblock
;
1268 /* We can support any known requested features iff the
1269 * superblock is in version 2. Otherwise we fail to support any
1270 * extended sb features. */
1272 if (journal
->j_format_version
!= 2)
1275 if ((compat
& JFS_KNOWN_COMPAT_FEATURES
) == compat
&&
1276 (ro
& JFS_KNOWN_ROCOMPAT_FEATURES
) == ro
&&
1277 (incompat
& JFS_KNOWN_INCOMPAT_FEATURES
) == incompat
)
1284 * int journal_set_features () - Mark a given journal feature in the superblock
1285 * @journal: Journal to act on.
1286 * @compat: bitmask of compatible features
1287 * @ro: bitmask of features that force read-only mount
1288 * @incompat: bitmask of incompatible features
1290 * Mark a given journal feature as present on the
1291 * superblock. Returns true if the requested features could be set.
1295 int journal_set_features (journal_t
*journal
, unsigned long compat
,
1296 unsigned long ro
, unsigned long incompat
)
1298 journal_superblock_t
*sb
;
1300 if (journal_check_used_features(journal
, compat
, ro
, incompat
))
1303 if (!journal_check_available_features(journal
, compat
, ro
, incompat
))
1306 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1307 compat
, ro
, incompat
);
1309 sb
= journal
->j_superblock
;
1311 sb
->s_feature_compat
|= cpu_to_be32(compat
);
1312 sb
->s_feature_ro_compat
|= cpu_to_be32(ro
);
1313 sb
->s_feature_incompat
|= cpu_to_be32(incompat
);
1320 * int journal_update_format () - Update on-disk journal structure.
1321 * @journal: Journal to act on.
1323 * Given an initialised but unloaded journal struct, poke about in the
1324 * on-disk structure to update it to the most recent supported version.
1326 int journal_update_format (journal_t
*journal
)
1328 journal_superblock_t
*sb
;
1331 err
= journal_get_superblock(journal
);
1335 sb
= journal
->j_superblock
;
1337 switch (be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1338 case JFS_SUPERBLOCK_V2
:
1340 case JFS_SUPERBLOCK_V1
:
1341 return journal_convert_superblock_v1(journal
, sb
);
1348 static int journal_convert_superblock_v1(journal_t
*journal
,
1349 journal_superblock_t
*sb
)
1351 int offset
, blocksize
;
1352 struct buffer_head
*bh
;
1355 "JBD: Converting superblock from version 1 to 2.\n");
1357 /* Pre-initialise new fields to zero */
1358 offset
= ((char *) &(sb
->s_feature_compat
)) - ((char *) sb
);
1359 blocksize
= be32_to_cpu(sb
->s_blocksize
);
1360 memset(&sb
->s_feature_compat
, 0, blocksize
-offset
);
1362 sb
->s_nr_users
= cpu_to_be32(1);
1363 sb
->s_header
.h_blocktype
= cpu_to_be32(JFS_SUPERBLOCK_V2
);
1364 journal
->j_format_version
= 2;
1366 bh
= journal
->j_sb_buffer
;
1367 BUFFER_TRACE(bh
, "marking dirty");
1368 mark_buffer_dirty(bh
);
1369 sync_dirty_buffer(bh
);
1375 * int journal_flush () - Flush journal
1376 * @journal: Journal to act on.
1378 * Flush all data for a given journal to disk and empty the journal.
1379 * Filesystems can use this when remounting readonly to ensure that
1380 * recovery does not need to happen on remount.
1383 int journal_flush(journal_t
*journal
)
1386 transaction_t
*transaction
= NULL
;
1387 unsigned int old_tail
;
1389 spin_lock(&journal
->j_state_lock
);
1391 /* Force everything buffered to the log... */
1392 if (journal
->j_running_transaction
) {
1393 transaction
= journal
->j_running_transaction
;
1394 __log_start_commit(journal
, transaction
->t_tid
);
1395 } else if (journal
->j_committing_transaction
)
1396 transaction
= journal
->j_committing_transaction
;
1398 /* Wait for the log commit to complete... */
1400 tid_t tid
= transaction
->t_tid
;
1402 spin_unlock(&journal
->j_state_lock
);
1403 log_wait_commit(journal
, tid
);
1405 spin_unlock(&journal
->j_state_lock
);
1408 /* ...and flush everything in the log out to disk. */
1409 spin_lock(&journal
->j_list_lock
);
1410 while (!err
&& journal
->j_checkpoint_transactions
!= NULL
) {
1411 spin_unlock(&journal
->j_list_lock
);
1412 mutex_lock(&journal
->j_checkpoint_mutex
);
1413 err
= log_do_checkpoint(journal
);
1414 mutex_unlock(&journal
->j_checkpoint_mutex
);
1415 spin_lock(&journal
->j_list_lock
);
1417 spin_unlock(&journal
->j_list_lock
);
1419 if (is_journal_aborted(journal
))
1422 cleanup_journal_tail(journal
);
1424 /* Finally, mark the journal as really needing no recovery.
1425 * This sets s_start==0 in the underlying superblock, which is
1426 * the magic code for a fully-recovered superblock. Any future
1427 * commits of data to the journal will restore the current
1429 spin_lock(&journal
->j_state_lock
);
1430 old_tail
= journal
->j_tail
;
1431 journal
->j_tail
= 0;
1432 spin_unlock(&journal
->j_state_lock
);
1433 journal_update_superblock(journal
, 1);
1434 spin_lock(&journal
->j_state_lock
);
1435 journal
->j_tail
= old_tail
;
1437 J_ASSERT(!journal
->j_running_transaction
);
1438 J_ASSERT(!journal
->j_committing_transaction
);
1439 J_ASSERT(!journal
->j_checkpoint_transactions
);
1440 J_ASSERT(journal
->j_head
== journal
->j_tail
);
1441 J_ASSERT(journal
->j_tail_sequence
== journal
->j_transaction_sequence
);
1442 spin_unlock(&journal
->j_state_lock
);
1447 * int journal_wipe() - Wipe journal contents
1448 * @journal: Journal to act on.
1449 * @write: flag (see below)
1451 * Wipe out all of the contents of a journal, safely. This will produce
1452 * a warning if the journal contains any valid recovery information.
1453 * Must be called between journal_init_*() and journal_load().
1455 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1456 * we merely suppress recovery.
1459 int journal_wipe(journal_t
*journal
, int write
)
1461 journal_superblock_t
*sb
;
1464 J_ASSERT (!(journal
->j_flags
& JFS_LOADED
));
1466 err
= load_superblock(journal
);
1470 sb
= journal
->j_superblock
;
1472 if (!journal
->j_tail
)
1475 printk (KERN_WARNING
"JBD: %s recovery information on journal\n",
1476 write
? "Clearing" : "Ignoring");
1478 err
= journal_skip_recovery(journal
);
1480 journal_update_superblock(journal
, 1);
1487 * journal_dev_name: format a character string to describe on what
1488 * device this journal is present.
1491 static const char *journal_dev_name(journal_t
*journal
, char *buffer
)
1493 struct block_device
*bdev
;
1495 if (journal
->j_inode
)
1496 bdev
= journal
->j_inode
->i_sb
->s_bdev
;
1498 bdev
= journal
->j_dev
;
1500 return bdevname(bdev
, buffer
);
1504 * Journal abort has very specific semantics, which we describe
1505 * for journal abort.
1507 * Two internal function, which provide abort to te jbd layer
1512 * Quick version for internal journal use (doesn't lock the journal).
1513 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1514 * and don't attempt to make any other journal updates.
1516 static void __journal_abort_hard(journal_t
*journal
)
1518 transaction_t
*transaction
;
1519 char b
[BDEVNAME_SIZE
];
1521 if (journal
->j_flags
& JFS_ABORT
)
1524 printk(KERN_ERR
"Aborting journal on device %s.\n",
1525 journal_dev_name(journal
, b
));
1527 spin_lock(&journal
->j_state_lock
);
1528 journal
->j_flags
|= JFS_ABORT
;
1529 transaction
= journal
->j_running_transaction
;
1531 __log_start_commit(journal
, transaction
->t_tid
);
1532 spin_unlock(&journal
->j_state_lock
);
1535 /* Soft abort: record the abort error status in the journal superblock,
1536 * but don't do any other IO. */
1537 static void __journal_abort_soft (journal_t
*journal
, int errno
)
1539 if (journal
->j_flags
& JFS_ABORT
)
1542 if (!journal
->j_errno
)
1543 journal
->j_errno
= errno
;
1545 __journal_abort_hard(journal
);
1548 journal_update_superblock(journal
, 1);
1552 * void journal_abort () - Shutdown the journal immediately.
1553 * @journal: the journal to shutdown.
1554 * @errno: an error number to record in the journal indicating
1555 * the reason for the shutdown.
1557 * Perform a complete, immediate shutdown of the ENTIRE
1558 * journal (not of a single transaction). This operation cannot be
1559 * undone without closing and reopening the journal.
1561 * The journal_abort function is intended to support higher level error
1562 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1565 * Journal abort has very specific semantics. Any existing dirty,
1566 * unjournaled buffers in the main filesystem will still be written to
1567 * disk by bdflush, but the journaling mechanism will be suspended
1568 * immediately and no further transaction commits will be honoured.
1570 * Any dirty, journaled buffers will be written back to disk without
1571 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1572 * filesystem, but we _do_ attempt to leave as much data as possible
1573 * behind for fsck to use for cleanup.
1575 * Any attempt to get a new transaction handle on a journal which is in
1576 * ABORT state will just result in an -EROFS error return. A
1577 * journal_stop on an existing handle will return -EIO if we have
1578 * entered abort state during the update.
1580 * Recursive transactions are not disturbed by journal abort until the
1581 * final journal_stop, which will receive the -EIO error.
1583 * Finally, the journal_abort call allows the caller to supply an errno
1584 * which will be recorded (if possible) in the journal superblock. This
1585 * allows a client to record failure conditions in the middle of a
1586 * transaction without having to complete the transaction to record the
1587 * failure to disk. ext3_error, for example, now uses this
1590 * Errors which originate from within the journaling layer will NOT
1591 * supply an errno; a null errno implies that absolutely no further
1592 * writes are done to the journal (unless there are any already in
1597 void journal_abort(journal_t
*journal
, int errno
)
1599 __journal_abort_soft(journal
, errno
);
1603 * int journal_errno () - returns the journal's error state.
1604 * @journal: journal to examine.
1606 * This is the errno numbet set with journal_abort(), the last
1607 * time the journal was mounted - if the journal was stopped
1608 * without calling abort this will be 0.
1610 * If the journal has been aborted on this mount time -EROFS will
1613 int journal_errno(journal_t
*journal
)
1617 spin_lock(&journal
->j_state_lock
);
1618 if (journal
->j_flags
& JFS_ABORT
)
1621 err
= journal
->j_errno
;
1622 spin_unlock(&journal
->j_state_lock
);
1627 * int journal_clear_err () - clears the journal's error state
1628 * @journal: journal to act on.
1630 * An error must be cleared or Acked to take a FS out of readonly
1633 int journal_clear_err(journal_t
*journal
)
1637 spin_lock(&journal
->j_state_lock
);
1638 if (journal
->j_flags
& JFS_ABORT
)
1641 journal
->j_errno
= 0;
1642 spin_unlock(&journal
->j_state_lock
);
1647 * void journal_ack_err() - Ack journal err.
1648 * @journal: journal to act on.
1650 * An error must be cleared or Acked to take a FS out of readonly
1653 void journal_ack_err(journal_t
*journal
)
1655 spin_lock(&journal
->j_state_lock
);
1656 if (journal
->j_errno
)
1657 journal
->j_flags
|= JFS_ACK_ERR
;
1658 spin_unlock(&journal
->j_state_lock
);
1661 int journal_blocks_per_page(struct inode
*inode
)
1663 return 1 << (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
1667 * Journal_head storage management
1669 static struct kmem_cache
*journal_head_cache
;
1670 #ifdef CONFIG_JBD_DEBUG
1671 static atomic_t nr_journal_heads
= ATOMIC_INIT(0);
1674 static int journal_init_journal_head_cache(void)
1678 J_ASSERT(journal_head_cache
== NULL
);
1679 journal_head_cache
= kmem_cache_create("journal_head",
1680 sizeof(struct journal_head
),
1682 SLAB_TEMPORARY
, /* flags */
1685 if (!journal_head_cache
) {
1687 printk(KERN_EMERG
"JBD: no memory for journal_head cache\n");
1692 static void journal_destroy_journal_head_cache(void)
1694 if (journal_head_cache
) {
1695 kmem_cache_destroy(journal_head_cache
);
1696 journal_head_cache
= NULL
;
1701 * journal_head splicing and dicing
1703 static struct journal_head
*journal_alloc_journal_head(void)
1705 struct journal_head
*ret
;
1706 static unsigned long last_warning
;
1708 #ifdef CONFIG_JBD_DEBUG
1709 atomic_inc(&nr_journal_heads
);
1711 ret
= kmem_cache_alloc(journal_head_cache
, GFP_NOFS
);
1713 jbd_debug(1, "out of memory for journal_head\n");
1714 if (time_after(jiffies
, last_warning
+ 5*HZ
)) {
1715 printk(KERN_NOTICE
"ENOMEM in %s, retrying.\n",
1717 last_warning
= jiffies
;
1719 while (ret
== NULL
) {
1721 ret
= kmem_cache_alloc(journal_head_cache
, GFP_NOFS
);
1727 static void journal_free_journal_head(struct journal_head
*jh
)
1729 #ifdef CONFIG_JBD_DEBUG
1730 atomic_dec(&nr_journal_heads
);
1731 memset(jh
, JBD_POISON_FREE
, sizeof(*jh
));
1733 kmem_cache_free(journal_head_cache
, jh
);
1737 * A journal_head is attached to a buffer_head whenever JBD has an
1738 * interest in the buffer.
1740 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1741 * is set. This bit is tested in core kernel code where we need to take
1742 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
1745 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1747 * When a buffer has its BH_JBD bit set it is immune from being released by
1748 * core kernel code, mainly via ->b_count.
1750 * A journal_head may be detached from its buffer_head when the journal_head's
1751 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1752 * Various places in JBD call journal_remove_journal_head() to indicate that the
1753 * journal_head can be dropped if needed.
1755 * Various places in the kernel want to attach a journal_head to a buffer_head
1756 * _before_ attaching the journal_head to a transaction. To protect the
1757 * journal_head in this situation, journal_add_journal_head elevates the
1758 * journal_head's b_jcount refcount by one. The caller must call
1759 * journal_put_journal_head() to undo this.
1761 * So the typical usage would be:
1763 * (Attach a journal_head if needed. Increments b_jcount)
1764 * struct journal_head *jh = journal_add_journal_head(bh);
1766 * jh->b_transaction = xxx;
1767 * journal_put_journal_head(jh);
1769 * Now, the journal_head's b_jcount is zero, but it is safe from being released
1770 * because it has a non-zero b_transaction.
1774 * Give a buffer_head a journal_head.
1776 * Doesn't need the journal lock.
1779 struct journal_head
*journal_add_journal_head(struct buffer_head
*bh
)
1781 struct journal_head
*jh
;
1782 struct journal_head
*new_jh
= NULL
;
1785 if (!buffer_jbd(bh
)) {
1786 new_jh
= journal_alloc_journal_head();
1787 memset(new_jh
, 0, sizeof(*new_jh
));
1790 jbd_lock_bh_journal_head(bh
);
1791 if (buffer_jbd(bh
)) {
1795 (atomic_read(&bh
->b_count
) > 0) ||
1796 (bh
->b_page
&& bh
->b_page
->mapping
));
1799 jbd_unlock_bh_journal_head(bh
);
1804 new_jh
= NULL
; /* We consumed it */
1809 BUFFER_TRACE(bh
, "added journal_head");
1812 jbd_unlock_bh_journal_head(bh
);
1814 journal_free_journal_head(new_jh
);
1815 return bh
->b_private
;
1819 * Grab a ref against this buffer_head's journal_head. If it ended up not
1820 * having a journal_head, return NULL
1822 struct journal_head
*journal_grab_journal_head(struct buffer_head
*bh
)
1824 struct journal_head
*jh
= NULL
;
1826 jbd_lock_bh_journal_head(bh
);
1827 if (buffer_jbd(bh
)) {
1831 jbd_unlock_bh_journal_head(bh
);
1835 static void __journal_remove_journal_head(struct buffer_head
*bh
)
1837 struct journal_head
*jh
= bh2jh(bh
);
1839 J_ASSERT_JH(jh
, jh
->b_jcount
>= 0);
1842 if (jh
->b_jcount
== 0) {
1843 if (jh
->b_transaction
== NULL
&&
1844 jh
->b_next_transaction
== NULL
&&
1845 jh
->b_cp_transaction
== NULL
) {
1846 J_ASSERT_JH(jh
, jh
->b_jlist
== BJ_None
);
1847 J_ASSERT_BH(bh
, buffer_jbd(bh
));
1848 J_ASSERT_BH(bh
, jh2bh(jh
) == bh
);
1849 BUFFER_TRACE(bh
, "remove journal_head");
1850 if (jh
->b_frozen_data
) {
1851 printk(KERN_WARNING
"%s: freeing "
1854 jbd_free(jh
->b_frozen_data
, bh
->b_size
);
1856 if (jh
->b_committed_data
) {
1857 printk(KERN_WARNING
"%s: freeing "
1858 "b_committed_data\n",
1860 jbd_free(jh
->b_committed_data
, bh
->b_size
);
1862 bh
->b_private
= NULL
;
1863 jh
->b_bh
= NULL
; /* debug, really */
1864 clear_buffer_jbd(bh
);
1866 journal_free_journal_head(jh
);
1868 BUFFER_TRACE(bh
, "journal_head was locked");
1874 * journal_remove_journal_head(): if the buffer isn't attached to a transaction
1875 * and has a zero b_jcount then remove and release its journal_head. If we did
1876 * see that the buffer is not used by any transaction we also "logically"
1877 * decrement ->b_count.
1879 * We in fact take an additional increment on ->b_count as a convenience,
1880 * because the caller usually wants to do additional things with the bh
1881 * after calling here.
1882 * The caller of journal_remove_journal_head() *must* run __brelse(bh) at some
1883 * time. Once the caller has run __brelse(), the buffer is eligible for
1884 * reaping by try_to_free_buffers().
1886 void journal_remove_journal_head(struct buffer_head
*bh
)
1888 jbd_lock_bh_journal_head(bh
);
1889 __journal_remove_journal_head(bh
);
1890 jbd_unlock_bh_journal_head(bh
);
1894 * Drop a reference on the passed journal_head. If it fell to zero then try to
1895 * release the journal_head from the buffer_head.
1897 void journal_put_journal_head(struct journal_head
*jh
)
1899 struct buffer_head
*bh
= jh2bh(jh
);
1901 jbd_lock_bh_journal_head(bh
);
1902 J_ASSERT_JH(jh
, jh
->b_jcount
> 0);
1904 if (!jh
->b_jcount
&& !jh
->b_transaction
) {
1905 __journal_remove_journal_head(bh
);
1908 jbd_unlock_bh_journal_head(bh
);
1914 #ifdef CONFIG_JBD_DEBUG
1916 u8 journal_enable_debug __read_mostly
;
1917 EXPORT_SYMBOL(journal_enable_debug
);
1919 static struct dentry
*jbd_debugfs_dir
;
1920 static struct dentry
*jbd_debug
;
1922 static void __init
jbd_create_debugfs_entry(void)
1924 jbd_debugfs_dir
= debugfs_create_dir("jbd", NULL
);
1925 if (jbd_debugfs_dir
)
1926 jbd_debug
= debugfs_create_u8("jbd-debug", S_IRUGO
| S_IWUSR
,
1928 &journal_enable_debug
);
1931 static void __exit
jbd_remove_debugfs_entry(void)
1933 debugfs_remove(jbd_debug
);
1934 debugfs_remove(jbd_debugfs_dir
);
1939 static inline void jbd_create_debugfs_entry(void)
1943 static inline void jbd_remove_debugfs_entry(void)
1949 struct kmem_cache
*jbd_handle_cache
;
1951 static int __init
journal_init_handle_cache(void)
1953 jbd_handle_cache
= kmem_cache_create("journal_handle",
1956 SLAB_TEMPORARY
, /* flags */
1958 if (jbd_handle_cache
== NULL
) {
1959 printk(KERN_EMERG
"JBD: failed to create handle cache\n");
1965 static void journal_destroy_handle_cache(void)
1967 if (jbd_handle_cache
)
1968 kmem_cache_destroy(jbd_handle_cache
);
1972 * Module startup and shutdown
1975 static int __init
journal_init_caches(void)
1979 ret
= journal_init_revoke_caches();
1981 ret
= journal_init_journal_head_cache();
1983 ret
= journal_init_handle_cache();
1987 static void journal_destroy_caches(void)
1989 journal_destroy_revoke_caches();
1990 journal_destroy_journal_head_cache();
1991 journal_destroy_handle_cache();
1994 static int __init
journal_init(void)
1998 BUILD_BUG_ON(sizeof(struct journal_superblock_s
) != 1024);
2000 ret
= journal_init_caches();
2002 journal_destroy_caches();
2003 jbd_create_debugfs_entry();
2007 static void __exit
journal_exit(void)
2009 #ifdef CONFIG_JBD_DEBUG
2010 int n
= atomic_read(&nr_journal_heads
);
2012 printk(KERN_EMERG
"JBD: leaked %d journal_heads!\n", n
);
2014 jbd_remove_debugfs_entry();
2015 journal_destroy_caches();
2018 MODULE_LICENSE("GPL");
2019 module_init(journal_init
);
2020 module_exit(journal_exit
);