2 * linux/fs/jbd/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/ratelimit.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/jbd.h>
44 #include <asm/uaccess.h>
47 EXPORT_SYMBOL(journal_start
);
48 EXPORT_SYMBOL(journal_restart
);
49 EXPORT_SYMBOL(journal_extend
);
50 EXPORT_SYMBOL(journal_stop
);
51 EXPORT_SYMBOL(journal_lock_updates
);
52 EXPORT_SYMBOL(journal_unlock_updates
);
53 EXPORT_SYMBOL(journal_get_write_access
);
54 EXPORT_SYMBOL(journal_get_create_access
);
55 EXPORT_SYMBOL(journal_get_undo_access
);
56 EXPORT_SYMBOL(journal_dirty_data
);
57 EXPORT_SYMBOL(journal_dirty_metadata
);
58 EXPORT_SYMBOL(journal_release_buffer
);
59 EXPORT_SYMBOL(journal_forget
);
61 EXPORT_SYMBOL(journal_sync_buffer
);
63 EXPORT_SYMBOL(journal_flush
);
64 EXPORT_SYMBOL(journal_revoke
);
66 EXPORT_SYMBOL(journal_init_dev
);
67 EXPORT_SYMBOL(journal_init_inode
);
68 EXPORT_SYMBOL(journal_update_format
);
69 EXPORT_SYMBOL(journal_check_used_features
);
70 EXPORT_SYMBOL(journal_check_available_features
);
71 EXPORT_SYMBOL(journal_set_features
);
72 EXPORT_SYMBOL(journal_create
);
73 EXPORT_SYMBOL(journal_load
);
74 EXPORT_SYMBOL(journal_destroy
);
75 EXPORT_SYMBOL(journal_abort
);
76 EXPORT_SYMBOL(journal_errno
);
77 EXPORT_SYMBOL(journal_ack_err
);
78 EXPORT_SYMBOL(journal_clear_err
);
79 EXPORT_SYMBOL(log_wait_commit
);
80 EXPORT_SYMBOL(log_start_commit
);
81 EXPORT_SYMBOL(journal_start_commit
);
82 EXPORT_SYMBOL(journal_force_commit_nested
);
83 EXPORT_SYMBOL(journal_wipe
);
84 EXPORT_SYMBOL(journal_blocks_per_page
);
85 EXPORT_SYMBOL(journal_invalidatepage
);
86 EXPORT_SYMBOL(journal_try_to_free_buffers
);
87 EXPORT_SYMBOL(journal_force_commit
);
89 static int journal_convert_superblock_v1(journal_t
*, journal_superblock_t
*);
90 static void __journal_abort_soft (journal_t
*journal
, int errno
);
91 static const char *journal_dev_name(journal_t
*journal
, char *buffer
);
94 * Helper function used to manage commit timeouts
97 static void commit_timeout(unsigned long __data
)
99 struct task_struct
* p
= (struct task_struct
*) __data
;
105 * kjournald: The main thread function used to manage a logging device
108 * This kernel thread is responsible for two things:
110 * 1) COMMIT: Every so often we need to commit the current state of the
111 * filesystem to disk. The journal thread is responsible for writing
112 * all of the metadata buffers to disk.
114 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
115 * of the data in that part of the log has been rewritten elsewhere on
116 * the disk. Flushing these old buffers to reclaim space in the log is
117 * known as checkpointing, and this thread is responsible for that job.
120 static int kjournald(void *arg
)
122 journal_t
*journal
= arg
;
123 transaction_t
*transaction
;
126 * Set up an interval timer which can be used to trigger a commit wakeup
127 * after the commit interval expires
129 setup_timer(&journal
->j_commit_timer
, commit_timeout
,
130 (unsigned long)current
);
134 /* Record that the journal thread is running */
135 journal
->j_task
= current
;
136 wake_up(&journal
->j_wait_done_commit
);
138 printk(KERN_INFO
"kjournald starting. Commit interval %ld seconds\n",
139 journal
->j_commit_interval
/ HZ
);
142 * And now, wait forever for commit wakeup events.
144 spin_lock(&journal
->j_state_lock
);
147 if (journal
->j_flags
& JFS_UNMOUNT
)
150 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
151 journal
->j_commit_sequence
, journal
->j_commit_request
);
153 if (journal
->j_commit_sequence
!= journal
->j_commit_request
) {
154 jbd_debug(1, "OK, requests differ\n");
155 spin_unlock(&journal
->j_state_lock
);
156 del_timer_sync(&journal
->j_commit_timer
);
157 journal_commit_transaction(journal
);
158 spin_lock(&journal
->j_state_lock
);
162 wake_up(&journal
->j_wait_done_commit
);
163 if (freezing(current
)) {
165 * The simpler the better. Flushing journal isn't a
166 * good idea, because that depends on threads that may
167 * be already stopped.
169 jbd_debug(1, "Now suspending kjournald\n");
170 spin_unlock(&journal
->j_state_lock
);
172 spin_lock(&journal
->j_state_lock
);
175 * We assume on resume that commits are already there,
179 int should_sleep
= 1;
181 prepare_to_wait(&journal
->j_wait_commit
, &wait
,
183 if (journal
->j_commit_sequence
!= journal
->j_commit_request
)
185 transaction
= journal
->j_running_transaction
;
186 if (transaction
&& time_after_eq(jiffies
,
187 transaction
->t_expires
))
189 if (journal
->j_flags
& JFS_UNMOUNT
)
192 spin_unlock(&journal
->j_state_lock
);
194 spin_lock(&journal
->j_state_lock
);
196 finish_wait(&journal
->j_wait_commit
, &wait
);
199 jbd_debug(1, "kjournald wakes\n");
202 * Were we woken up by a commit wakeup event?
204 transaction
= journal
->j_running_transaction
;
205 if (transaction
&& time_after_eq(jiffies
, transaction
->t_expires
)) {
206 journal
->j_commit_request
= transaction
->t_tid
;
207 jbd_debug(1, "woke because of timeout\n");
212 spin_unlock(&journal
->j_state_lock
);
213 del_timer_sync(&journal
->j_commit_timer
);
214 journal
->j_task
= NULL
;
215 wake_up(&journal
->j_wait_done_commit
);
216 jbd_debug(1, "Journal thread exiting.\n");
220 static int journal_start_thread(journal_t
*journal
)
222 struct task_struct
*t
;
224 t
= kthread_run(kjournald
, journal
, "kjournald");
228 wait_event(journal
->j_wait_done_commit
, journal
->j_task
!= NULL
);
232 static void journal_kill_thread(journal_t
*journal
)
234 spin_lock(&journal
->j_state_lock
);
235 journal
->j_flags
|= JFS_UNMOUNT
;
237 while (journal
->j_task
) {
238 wake_up(&journal
->j_wait_commit
);
239 spin_unlock(&journal
->j_state_lock
);
240 wait_event(journal
->j_wait_done_commit
,
241 journal
->j_task
== NULL
);
242 spin_lock(&journal
->j_state_lock
);
244 spin_unlock(&journal
->j_state_lock
);
248 * journal_write_metadata_buffer: write a metadata buffer to the journal.
250 * Writes a metadata buffer to a given disk block. The actual IO is not
251 * performed but a new buffer_head is constructed which labels the data
252 * to be written with the correct destination disk block.
254 * Any magic-number escaping which needs to be done will cause a
255 * copy-out here. If the buffer happens to start with the
256 * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
257 * magic number is only written to the log for descripter blocks. In
258 * this case, we copy the data and replace the first word with 0, and we
259 * return a result code which indicates that this buffer needs to be
260 * marked as an escaped buffer in the corresponding log descriptor
261 * block. The missing word can then be restored when the block is read
264 * If the source buffer has already been modified by a new transaction
265 * since we took the last commit snapshot, we use the frozen copy of
266 * that data for IO. If we end up using the existing buffer_head's data
267 * for the write, then we *have* to lock the buffer to prevent anyone
268 * else from using and possibly modifying it while the IO is in
271 * The function returns a pointer to the buffer_heads to be used for IO.
273 * We assume that the journal has already been locked in this function.
280 * Bit 0 set == escape performed on the data
281 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
284 int journal_write_metadata_buffer(transaction_t
*transaction
,
285 struct journal_head
*jh_in
,
286 struct journal_head
**jh_out
,
287 unsigned int blocknr
)
289 int need_copy_out
= 0;
290 int done_copy_out
= 0;
293 struct buffer_head
*new_bh
;
294 struct journal_head
*new_jh
;
295 struct page
*new_page
;
296 unsigned int new_offset
;
297 struct buffer_head
*bh_in
= jh2bh(jh_in
);
298 journal_t
*journal
= transaction
->t_journal
;
301 * The buffer really shouldn't be locked: only the current committing
302 * transaction is allowed to write it, so nobody else is allowed
305 * akpm: except if we're journalling data, and write() output is
306 * also part of a shared mapping, and another thread has
307 * decided to launch a writepage() against this buffer.
309 J_ASSERT_BH(bh_in
, buffer_jbddirty(bh_in
));
311 new_bh
= alloc_buffer_head(GFP_NOFS
|__GFP_NOFAIL
);
312 /* keep subsequent assertions sane */
314 init_buffer(new_bh
, NULL
, NULL
);
315 atomic_set(&new_bh
->b_count
, 1);
316 new_jh
= journal_add_journal_head(new_bh
); /* This sleeps */
319 * If a new transaction has already done a buffer copy-out, then
320 * we use that version of the data for the commit.
322 jbd_lock_bh_state(bh_in
);
324 if (jh_in
->b_frozen_data
) {
326 new_page
= virt_to_page(jh_in
->b_frozen_data
);
327 new_offset
= offset_in_page(jh_in
->b_frozen_data
);
329 new_page
= jh2bh(jh_in
)->b_page
;
330 new_offset
= offset_in_page(jh2bh(jh_in
)->b_data
);
333 mapped_data
= kmap_atomic(new_page
);
337 if (*((__be32
*)(mapped_data
+ new_offset
)) ==
338 cpu_to_be32(JFS_MAGIC_NUMBER
)) {
342 kunmap_atomic(mapped_data
);
345 * Do we need to do a data copy?
347 if (need_copy_out
&& !done_copy_out
) {
350 jbd_unlock_bh_state(bh_in
);
351 tmp
= jbd_alloc(bh_in
->b_size
, GFP_NOFS
);
352 jbd_lock_bh_state(bh_in
);
353 if (jh_in
->b_frozen_data
) {
354 jbd_free(tmp
, bh_in
->b_size
);
358 jh_in
->b_frozen_data
= tmp
;
359 mapped_data
= kmap_atomic(new_page
);
360 memcpy(tmp
, mapped_data
+ new_offset
, jh2bh(jh_in
)->b_size
);
361 kunmap_atomic(mapped_data
);
363 new_page
= virt_to_page(tmp
);
364 new_offset
= offset_in_page(tmp
);
369 * Did we need to do an escaping? Now we've done all the
370 * copying, we can finally do so.
373 mapped_data
= kmap_atomic(new_page
);
374 *((unsigned int *)(mapped_data
+ new_offset
)) = 0;
375 kunmap_atomic(mapped_data
);
378 set_bh_page(new_bh
, new_page
, new_offset
);
379 new_jh
->b_transaction
= NULL
;
380 new_bh
->b_size
= jh2bh(jh_in
)->b_size
;
381 new_bh
->b_bdev
= transaction
->t_journal
->j_dev
;
382 new_bh
->b_blocknr
= blocknr
;
383 set_buffer_mapped(new_bh
);
384 set_buffer_dirty(new_bh
);
389 * The to-be-written buffer needs to get moved to the io queue,
390 * and the original buffer whose contents we are shadowing or
391 * copying is moved to the transaction's shadow queue.
393 JBUFFER_TRACE(jh_in
, "file as BJ_Shadow");
394 spin_lock(&journal
->j_list_lock
);
395 __journal_file_buffer(jh_in
, transaction
, BJ_Shadow
);
396 spin_unlock(&journal
->j_list_lock
);
397 jbd_unlock_bh_state(bh_in
);
399 JBUFFER_TRACE(new_jh
, "file as BJ_IO");
400 journal_file_buffer(new_jh
, transaction
, BJ_IO
);
402 return do_escape
| (done_copy_out
<< 1);
406 * Allocation code for the journal file. Manage the space left in the
407 * journal, so that we can begin checkpointing when appropriate.
411 * __log_space_left: Return the number of free blocks left in the journal.
413 * Called with the journal already locked.
415 * Called under j_state_lock
418 int __log_space_left(journal_t
*journal
)
420 int left
= journal
->j_free
;
422 assert_spin_locked(&journal
->j_state_lock
);
425 * Be pessimistic here about the number of those free blocks which
426 * might be required for log descriptor control blocks.
429 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
431 left
-= MIN_LOG_RESERVED_BLOCKS
;
440 * Called under j_state_lock. Returns true if a transaction commit was started.
442 int __log_start_commit(journal_t
*journal
, tid_t target
)
445 * The only transaction we can possibly wait upon is the
446 * currently running transaction (if it exists). Otherwise,
447 * the target tid must be an old one.
449 if (journal
->j_running_transaction
&&
450 journal
->j_running_transaction
->t_tid
== target
) {
452 * We want a new commit: OK, mark the request and wakeup the
453 * commit thread. We do _not_ do the commit ourselves.
456 journal
->j_commit_request
= target
;
457 jbd_debug(1, "JBD: requesting commit %d/%d\n",
458 journal
->j_commit_request
,
459 journal
->j_commit_sequence
);
460 wake_up(&journal
->j_wait_commit
);
462 } else if (!tid_geq(journal
->j_commit_request
, target
))
463 /* This should never happen, but if it does, preserve
464 the evidence before kjournald goes into a loop and
465 increments j_commit_sequence beyond all recognition. */
466 WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
467 journal
->j_commit_request
, journal
->j_commit_sequence
,
468 target
, journal
->j_running_transaction
?
469 journal
->j_running_transaction
->t_tid
: 0);
473 int log_start_commit(journal_t
*journal
, tid_t tid
)
477 spin_lock(&journal
->j_state_lock
);
478 ret
= __log_start_commit(journal
, tid
);
479 spin_unlock(&journal
->j_state_lock
);
484 * Force and wait upon a commit if the calling process is not within
485 * transaction. This is used for forcing out undo-protected data which contains
486 * bitmaps, when the fs is running out of space.
488 * We can only force the running transaction if we don't have an active handle;
489 * otherwise, we will deadlock.
491 * Returns true if a transaction was started.
493 int journal_force_commit_nested(journal_t
*journal
)
495 transaction_t
*transaction
= NULL
;
498 spin_lock(&journal
->j_state_lock
);
499 if (journal
->j_running_transaction
&& !current
->journal_info
) {
500 transaction
= journal
->j_running_transaction
;
501 __log_start_commit(journal
, transaction
->t_tid
);
502 } else if (journal
->j_committing_transaction
)
503 transaction
= journal
->j_committing_transaction
;
506 spin_unlock(&journal
->j_state_lock
);
507 return 0; /* Nothing to retry */
510 tid
= transaction
->t_tid
;
511 spin_unlock(&journal
->j_state_lock
);
512 log_wait_commit(journal
, tid
);
517 * Start a commit of the current running transaction (if any). Returns true
518 * if a transaction is going to be committed (or is currently already
519 * committing), and fills its tid in at *ptid
521 int journal_start_commit(journal_t
*journal
, tid_t
*ptid
)
525 spin_lock(&journal
->j_state_lock
);
526 if (journal
->j_running_transaction
) {
527 tid_t tid
= journal
->j_running_transaction
->t_tid
;
529 __log_start_commit(journal
, tid
);
530 /* There's a running transaction and we've just made sure
531 * it's commit has been scheduled. */
535 } else if (journal
->j_committing_transaction
) {
537 * If ext3_write_super() recently started a commit, then we
538 * have to wait for completion of that transaction
541 *ptid
= journal
->j_committing_transaction
->t_tid
;
544 spin_unlock(&journal
->j_state_lock
);
549 * Wait for a specified commit to complete.
550 * The caller may not hold the journal lock.
552 int log_wait_commit(journal_t
*journal
, tid_t tid
)
556 #ifdef CONFIG_JBD_DEBUG
557 spin_lock(&journal
->j_state_lock
);
558 if (!tid_geq(journal
->j_commit_request
, tid
)) {
560 "%s: error: j_commit_request=%d, tid=%d\n",
561 __func__
, journal
->j_commit_request
, tid
);
563 spin_unlock(&journal
->j_state_lock
);
565 spin_lock(&journal
->j_state_lock
);
566 if (!tid_geq(journal
->j_commit_waited
, tid
))
567 journal
->j_commit_waited
= tid
;
568 while (tid_gt(tid
, journal
->j_commit_sequence
)) {
569 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
570 tid
, journal
->j_commit_sequence
);
571 wake_up(&journal
->j_wait_commit
);
572 spin_unlock(&journal
->j_state_lock
);
573 wait_event(journal
->j_wait_done_commit
,
574 !tid_gt(tid
, journal
->j_commit_sequence
));
575 spin_lock(&journal
->j_state_lock
);
577 spin_unlock(&journal
->j_state_lock
);
579 if (unlikely(is_journal_aborted(journal
))) {
580 printk(KERN_EMERG
"journal commit I/O error\n");
587 * Return 1 if a given transaction has not yet sent barrier request
588 * connected with a transaction commit. If 0 is returned, transaction
589 * may or may not have sent the barrier. Used to avoid sending barrier
590 * twice in common cases.
592 int journal_trans_will_send_data_barrier(journal_t
*journal
, tid_t tid
)
595 transaction_t
*commit_trans
;
597 if (!(journal
->j_flags
& JFS_BARRIER
))
599 spin_lock(&journal
->j_state_lock
);
600 /* Transaction already committed? */
601 if (tid_geq(journal
->j_commit_sequence
, tid
))
604 * Transaction is being committed and we already proceeded to
605 * writing commit record?
607 commit_trans
= journal
->j_committing_transaction
;
608 if (commit_trans
&& commit_trans
->t_tid
== tid
&&
609 commit_trans
->t_state
>= T_COMMIT_RECORD
)
613 spin_unlock(&journal
->j_state_lock
);
616 EXPORT_SYMBOL(journal_trans_will_send_data_barrier
);
619 * Log buffer allocation routines:
622 int journal_next_log_block(journal_t
*journal
, unsigned int *retp
)
624 unsigned int blocknr
;
626 spin_lock(&journal
->j_state_lock
);
627 J_ASSERT(journal
->j_free
> 1);
629 blocknr
= journal
->j_head
;
632 if (journal
->j_head
== journal
->j_last
)
633 journal
->j_head
= journal
->j_first
;
634 spin_unlock(&journal
->j_state_lock
);
635 return journal_bmap(journal
, blocknr
, retp
);
639 * Conversion of logical to physical block numbers for the journal
641 * On external journals the journal blocks are identity-mapped, so
642 * this is a no-op. If needed, we can use j_blk_offset - everything is
645 int journal_bmap(journal_t
*journal
, unsigned int blocknr
,
651 if (journal
->j_inode
) {
652 ret
= bmap(journal
->j_inode
, blocknr
);
656 char b
[BDEVNAME_SIZE
];
658 printk(KERN_ALERT
"%s: journal block not found "
659 "at offset %u on %s\n",
662 bdevname(journal
->j_dev
, b
));
664 __journal_abort_soft(journal
, err
);
667 *retp
= blocknr
; /* +journal->j_blk_offset */
673 * We play buffer_head aliasing tricks to write data/metadata blocks to
674 * the journal without copying their contents, but for journal
675 * descriptor blocks we do need to generate bona fide buffers.
677 * After the caller of journal_get_descriptor_buffer() has finished modifying
678 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
679 * But we don't bother doing that, so there will be coherency problems with
680 * mmaps of blockdevs which hold live JBD-controlled filesystems.
682 struct journal_head
*journal_get_descriptor_buffer(journal_t
*journal
)
684 struct buffer_head
*bh
;
685 unsigned int blocknr
;
688 err
= journal_next_log_block(journal
, &blocknr
);
693 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
697 memset(bh
->b_data
, 0, journal
->j_blocksize
);
698 set_buffer_uptodate(bh
);
700 BUFFER_TRACE(bh
, "return this buffer");
701 return journal_add_journal_head(bh
);
705 * Management for journal control blocks: functions to create and
706 * destroy journal_t structures, and to initialise and read existing
707 * journal blocks from disk. */
709 /* First: create and setup a journal_t object in memory. We initialise
710 * very few fields yet: that has to wait until we have created the
711 * journal structures from from scratch, or loaded them from disk. */
713 static journal_t
* journal_init_common (void)
718 journal
= kzalloc(sizeof(*journal
), GFP_KERNEL
);
722 init_waitqueue_head(&journal
->j_wait_transaction_locked
);
723 init_waitqueue_head(&journal
->j_wait_logspace
);
724 init_waitqueue_head(&journal
->j_wait_done_commit
);
725 init_waitqueue_head(&journal
->j_wait_checkpoint
);
726 init_waitqueue_head(&journal
->j_wait_commit
);
727 init_waitqueue_head(&journal
->j_wait_updates
);
728 mutex_init(&journal
->j_checkpoint_mutex
);
729 spin_lock_init(&journal
->j_revoke_lock
);
730 spin_lock_init(&journal
->j_list_lock
);
731 spin_lock_init(&journal
->j_state_lock
);
733 journal
->j_commit_interval
= (HZ
* JBD_DEFAULT_MAX_COMMIT_AGE
);
735 /* The journal is marked for error until we succeed with recovery! */
736 journal
->j_flags
= JFS_ABORT
;
738 /* Set up a default-sized revoke table for the new mount. */
739 err
= journal_init_revoke(journal
, JOURNAL_REVOKE_DEFAULT_HASH
);
749 /* journal_init_dev and journal_init_inode:
751 * Create a journal structure assigned some fixed set of disk blocks to
752 * the journal. We don't actually touch those disk blocks yet, but we
753 * need to set up all of the mapping information to tell the journaling
754 * system where the journal blocks are.
759 * journal_t * journal_init_dev() - creates and initialises a journal structure
760 * @bdev: Block device on which to create the journal
761 * @fs_dev: Device which hold journalled filesystem for this journal.
762 * @start: Block nr Start of journal.
763 * @len: Length of the journal in blocks.
764 * @blocksize: blocksize of journalling device
766 * Returns: a newly created journal_t *
768 * journal_init_dev creates a journal which maps a fixed contiguous
769 * range of blocks on an arbitrary block device.
772 journal_t
* journal_init_dev(struct block_device
*bdev
,
773 struct block_device
*fs_dev
,
774 int start
, int len
, int blocksize
)
776 journal_t
*journal
= journal_init_common();
777 struct buffer_head
*bh
;
783 /* journal descriptor can store up to n blocks -bzzz */
784 journal
->j_blocksize
= blocksize
;
785 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
786 journal
->j_wbufsize
= n
;
787 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
788 if (!journal
->j_wbuf
) {
789 printk(KERN_ERR
"%s: Can't allocate bhs for commit thread\n",
793 journal
->j_dev
= bdev
;
794 journal
->j_fs_dev
= fs_dev
;
795 journal
->j_blk_offset
= start
;
796 journal
->j_maxlen
= len
;
798 bh
= __getblk(journal
->j_dev
, start
, journal
->j_blocksize
);
801 "%s: Cannot get buffer for journal superblock\n",
805 journal
->j_sb_buffer
= bh
;
806 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
810 kfree(journal
->j_wbuf
);
816 * journal_t * journal_init_inode () - creates a journal which maps to a inode.
817 * @inode: An inode to create the journal in
819 * journal_init_inode creates a journal which maps an on-disk inode as
820 * the journal. The inode must exist already, must support bmap() and
821 * must have all data blocks preallocated.
823 journal_t
* journal_init_inode (struct inode
*inode
)
825 struct buffer_head
*bh
;
826 journal_t
*journal
= journal_init_common();
829 unsigned int blocknr
;
834 journal
->j_dev
= journal
->j_fs_dev
= inode
->i_sb
->s_bdev
;
835 journal
->j_inode
= inode
;
837 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
838 journal
, inode
->i_sb
->s_id
, inode
->i_ino
,
839 (long long) inode
->i_size
,
840 inode
->i_sb
->s_blocksize_bits
, inode
->i_sb
->s_blocksize
);
842 journal
->j_maxlen
= inode
->i_size
>> inode
->i_sb
->s_blocksize_bits
;
843 journal
->j_blocksize
= inode
->i_sb
->s_blocksize
;
845 /* journal descriptor can store up to n blocks -bzzz */
846 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
847 journal
->j_wbufsize
= n
;
848 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
849 if (!journal
->j_wbuf
) {
850 printk(KERN_ERR
"%s: Can't allocate bhs for commit thread\n",
855 err
= journal_bmap(journal
, 0, &blocknr
);
856 /* If that failed, give up */
858 printk(KERN_ERR
"%s: Cannot locate journal superblock\n",
863 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
866 "%s: Cannot get buffer for journal superblock\n",
870 journal
->j_sb_buffer
= bh
;
871 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
875 kfree(journal
->j_wbuf
);
881 * If the journal init or create aborts, we need to mark the journal
882 * superblock as being NULL to prevent the journal destroy from writing
883 * back a bogus superblock.
885 static void journal_fail_superblock (journal_t
*journal
)
887 struct buffer_head
*bh
= journal
->j_sb_buffer
;
889 journal
->j_sb_buffer
= NULL
;
893 * Given a journal_t structure, initialise the various fields for
894 * startup of a new journaling session. We use this both when creating
895 * a journal, and after recovering an old journal to reset it for
899 static int journal_reset(journal_t
*journal
)
901 journal_superblock_t
*sb
= journal
->j_superblock
;
902 unsigned int first
, last
;
904 first
= be32_to_cpu(sb
->s_first
);
905 last
= be32_to_cpu(sb
->s_maxlen
);
906 if (first
+ JFS_MIN_JOURNAL_BLOCKS
> last
+ 1) {
907 printk(KERN_ERR
"JBD: Journal too short (blocks %u-%u).\n",
909 journal_fail_superblock(journal
);
913 journal
->j_first
= first
;
914 journal
->j_last
= last
;
916 journal
->j_head
= first
;
917 journal
->j_tail
= first
;
918 journal
->j_free
= last
- first
;
920 journal
->j_tail_sequence
= journal
->j_transaction_sequence
;
921 journal
->j_commit_sequence
= journal
->j_transaction_sequence
- 1;
922 journal
->j_commit_request
= journal
->j_commit_sequence
;
924 journal
->j_max_transaction_buffers
= journal
->j_maxlen
/ 4;
927 * As a special case, if the on-disk copy is already marked as needing
928 * no recovery (s_start == 0), then we can safely defer the superblock
929 * update until the next commit by setting JFS_FLUSHED. This avoids
930 * attempting a write to a potential-readonly device.
932 if (sb
->s_start
== 0) {
933 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
934 "(start %u, seq %d, errno %d)\n",
935 journal
->j_tail
, journal
->j_tail_sequence
,
937 journal
->j_flags
|= JFS_FLUSHED
;
939 /* Lock here to make assertions happy... */
940 mutex_lock(&journal
->j_checkpoint_mutex
);
942 * Update log tail information. We use WRITE_FUA since new
943 * transaction will start reusing journal space and so we
944 * must make sure information about current log tail is on
947 journal_update_sb_log_tail(journal
,
948 journal
->j_tail_sequence
,
951 mutex_unlock(&journal
->j_checkpoint_mutex
);
953 return journal_start_thread(journal
);
957 * int journal_create() - Initialise the new journal file
958 * @journal: Journal to create. This structure must have been initialised
960 * Given a journal_t structure which tells us which disk blocks we can
961 * use, create a new journal superblock and initialise all of the
962 * journal fields from scratch.
964 int journal_create(journal_t
*journal
)
966 unsigned int blocknr
;
967 struct buffer_head
*bh
;
968 journal_superblock_t
*sb
;
971 if (journal
->j_maxlen
< JFS_MIN_JOURNAL_BLOCKS
) {
972 printk (KERN_ERR
"Journal length (%d blocks) too short.\n",
974 journal_fail_superblock(journal
);
978 if (journal
->j_inode
== NULL
) {
980 * We don't know what block to start at!
983 "%s: creation of journal on external device!\n",
988 /* Zero out the entire journal on disk. We cannot afford to
989 have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
990 jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
991 for (i
= 0; i
< journal
->j_maxlen
; i
++) {
992 err
= journal_bmap(journal
, i
, &blocknr
);
995 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
999 memset (bh
->b_data
, 0, journal
->j_blocksize
);
1000 BUFFER_TRACE(bh
, "marking dirty");
1001 mark_buffer_dirty(bh
);
1002 BUFFER_TRACE(bh
, "marking uptodate");
1003 set_buffer_uptodate(bh
);
1008 sync_blockdev(journal
->j_dev
);
1009 jbd_debug(1, "JBD: journal cleared.\n");
1011 /* OK, fill in the initial static fields in the new superblock */
1012 sb
= journal
->j_superblock
;
1014 sb
->s_header
.h_magic
= cpu_to_be32(JFS_MAGIC_NUMBER
);
1015 sb
->s_header
.h_blocktype
= cpu_to_be32(JFS_SUPERBLOCK_V2
);
1017 sb
->s_blocksize
= cpu_to_be32(journal
->j_blocksize
);
1018 sb
->s_maxlen
= cpu_to_be32(journal
->j_maxlen
);
1019 sb
->s_first
= cpu_to_be32(1);
1021 journal
->j_transaction_sequence
= 1;
1023 journal
->j_flags
&= ~JFS_ABORT
;
1024 journal
->j_format_version
= 2;
1026 return journal_reset(journal
);
1029 static void journal_write_superblock(journal_t
*journal
, int write_op
)
1031 struct buffer_head
*bh
= journal
->j_sb_buffer
;
1034 trace_journal_write_superblock(journal
, write_op
);
1035 if (!(journal
->j_flags
& JFS_BARRIER
))
1036 write_op
&= ~(REQ_FUA
| REQ_FLUSH
);
1038 if (buffer_write_io_error(bh
)) {
1039 char b
[BDEVNAME_SIZE
];
1041 * Oh, dear. A previous attempt to write the journal
1042 * superblock failed. This could happen because the
1043 * USB device was yanked out. Or it could happen to
1044 * be a transient write error and maybe the block will
1045 * be remapped. Nothing we can do but to retry the
1046 * write and hope for the best.
1048 printk(KERN_ERR
"JBD: previous I/O error detected "
1049 "for journal superblock update for %s.\n",
1050 journal_dev_name(journal
, b
));
1051 clear_buffer_write_io_error(bh
);
1052 set_buffer_uptodate(bh
);
1056 bh
->b_end_io
= end_buffer_write_sync
;
1057 ret
= submit_bh(write_op
, bh
);
1059 if (buffer_write_io_error(bh
)) {
1060 clear_buffer_write_io_error(bh
);
1061 set_buffer_uptodate(bh
);
1065 char b
[BDEVNAME_SIZE
];
1066 printk(KERN_ERR
"JBD: Error %d detected "
1067 "when updating journal superblock for %s.\n",
1068 ret
, journal_dev_name(journal
, b
));
1073 * journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1074 * @journal: The journal to update.
1075 * @tail_tid: TID of the new transaction at the tail of the log
1076 * @tail_block: The first block of the transaction at the tail of the log
1077 * @write_op: With which operation should we write the journal sb
1079 * Update a journal's superblock information about log tail and write it to
1080 * disk, waiting for the IO to complete.
1082 void journal_update_sb_log_tail(journal_t
*journal
, tid_t tail_tid
,
1083 unsigned int tail_block
, int write_op
)
1085 journal_superblock_t
*sb
= journal
->j_superblock
;
1087 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
1088 jbd_debug(1,"JBD: updating superblock (start %u, seq %u)\n",
1089 tail_block
, tail_tid
);
1091 sb
->s_sequence
= cpu_to_be32(tail_tid
);
1092 sb
->s_start
= cpu_to_be32(tail_block
);
1094 journal_write_superblock(journal
, write_op
);
1096 /* Log is no longer empty */
1097 spin_lock(&journal
->j_state_lock
);
1098 WARN_ON(!sb
->s_sequence
);
1099 journal
->j_flags
&= ~JFS_FLUSHED
;
1100 spin_unlock(&journal
->j_state_lock
);
1104 * mark_journal_empty() - Mark on disk journal as empty.
1105 * @journal: The journal to update.
1107 * Update a journal's dynamic superblock fields to show that journal is empty.
1108 * Write updated superblock to disk waiting for IO to complete.
1110 static void mark_journal_empty(journal_t
*journal
)
1112 journal_superblock_t
*sb
= journal
->j_superblock
;
1114 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
1115 spin_lock(&journal
->j_state_lock
);
1116 jbd_debug(1, "JBD: Marking journal as empty (seq %d)\n",
1117 journal
->j_tail_sequence
);
1119 sb
->s_sequence
= cpu_to_be32(journal
->j_tail_sequence
);
1120 sb
->s_start
= cpu_to_be32(0);
1121 spin_unlock(&journal
->j_state_lock
);
1123 journal_write_superblock(journal
, WRITE_FUA
);
1125 spin_lock(&journal
->j_state_lock
);
1127 journal
->j_flags
|= JFS_FLUSHED
;
1128 spin_unlock(&journal
->j_state_lock
);
1132 * journal_update_sb_errno() - Update error in the journal.
1133 * @journal: The journal to update.
1135 * Update a journal's errno. Write updated superblock to disk waiting for IO
1138 static void journal_update_sb_errno(journal_t
*journal
)
1140 journal_superblock_t
*sb
= journal
->j_superblock
;
1142 spin_lock(&journal
->j_state_lock
);
1143 jbd_debug(1, "JBD: updating superblock error (errno %d)\n",
1145 sb
->s_errno
= cpu_to_be32(journal
->j_errno
);
1146 spin_unlock(&journal
->j_state_lock
);
1148 journal_write_superblock(journal
, WRITE_SYNC
);
1152 * Read the superblock for a given journal, performing initial
1153 * validation of the format.
1156 static int journal_get_superblock(journal_t
*journal
)
1158 struct buffer_head
*bh
;
1159 journal_superblock_t
*sb
;
1162 bh
= journal
->j_sb_buffer
;
1164 J_ASSERT(bh
!= NULL
);
1165 if (!buffer_uptodate(bh
)) {
1166 ll_rw_block(READ
, 1, &bh
);
1168 if (!buffer_uptodate(bh
)) {
1170 "JBD: IO error reading journal superblock\n");
1175 sb
= journal
->j_superblock
;
1179 if (sb
->s_header
.h_magic
!= cpu_to_be32(JFS_MAGIC_NUMBER
) ||
1180 sb
->s_blocksize
!= cpu_to_be32(journal
->j_blocksize
)) {
1181 printk(KERN_WARNING
"JBD: no valid journal superblock found\n");
1185 switch(be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1186 case JFS_SUPERBLOCK_V1
:
1187 journal
->j_format_version
= 1;
1189 case JFS_SUPERBLOCK_V2
:
1190 journal
->j_format_version
= 2;
1193 printk(KERN_WARNING
"JBD: unrecognised superblock format ID\n");
1197 if (be32_to_cpu(sb
->s_maxlen
) < journal
->j_maxlen
)
1198 journal
->j_maxlen
= be32_to_cpu(sb
->s_maxlen
);
1199 else if (be32_to_cpu(sb
->s_maxlen
) > journal
->j_maxlen
) {
1200 printk (KERN_WARNING
"JBD: journal file too short\n");
1204 if (be32_to_cpu(sb
->s_first
) == 0 ||
1205 be32_to_cpu(sb
->s_first
) >= journal
->j_maxlen
) {
1207 "JBD: Invalid start block of journal: %u\n",
1208 be32_to_cpu(sb
->s_first
));
1215 journal_fail_superblock(journal
);
1220 * Load the on-disk journal superblock and read the key fields into the
1224 static int load_superblock(journal_t
*journal
)
1227 journal_superblock_t
*sb
;
1229 err
= journal_get_superblock(journal
);
1233 sb
= journal
->j_superblock
;
1235 journal
->j_tail_sequence
= be32_to_cpu(sb
->s_sequence
);
1236 journal
->j_tail
= be32_to_cpu(sb
->s_start
);
1237 journal
->j_first
= be32_to_cpu(sb
->s_first
);
1238 journal
->j_last
= be32_to_cpu(sb
->s_maxlen
);
1239 journal
->j_errno
= be32_to_cpu(sb
->s_errno
);
1246 * int journal_load() - Read journal from disk.
1247 * @journal: Journal to act on.
1249 * Given a journal_t structure which tells us which disk blocks contain
1250 * a journal, read the journal from disk to initialise the in-memory
1253 int journal_load(journal_t
*journal
)
1256 journal_superblock_t
*sb
;
1258 err
= load_superblock(journal
);
1262 sb
= journal
->j_superblock
;
1263 /* If this is a V2 superblock, then we have to check the
1264 * features flags on it. */
1266 if (journal
->j_format_version
>= 2) {
1267 if ((sb
->s_feature_ro_compat
&
1268 ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES
)) ||
1269 (sb
->s_feature_incompat
&
1270 ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES
))) {
1271 printk (KERN_WARNING
1272 "JBD: Unrecognised features on journal\n");
1277 /* Let the recovery code check whether it needs to recover any
1278 * data from the journal. */
1279 if (journal_recover(journal
))
1280 goto recovery_error
;
1282 /* OK, we've finished with the dynamic journal bits:
1283 * reinitialise the dynamic contents of the superblock in memory
1284 * and reset them on disk. */
1285 if (journal_reset(journal
))
1286 goto recovery_error
;
1288 journal
->j_flags
&= ~JFS_ABORT
;
1289 journal
->j_flags
|= JFS_LOADED
;
1293 printk (KERN_WARNING
"JBD: recovery failed\n");
1298 * void journal_destroy() - Release a journal_t structure.
1299 * @journal: Journal to act on.
1301 * Release a journal_t structure once it is no longer in use by the
1303 * Return <0 if we couldn't clean up the journal.
1305 int journal_destroy(journal_t
*journal
)
1310 /* Wait for the commit thread to wake up and die. */
1311 journal_kill_thread(journal
);
1313 /* Force a final log commit */
1314 if (journal
->j_running_transaction
)
1315 journal_commit_transaction(journal
);
1317 /* Force any old transactions to disk */
1319 /* We cannot race with anybody but must keep assertions happy */
1320 mutex_lock(&journal
->j_checkpoint_mutex
);
1321 /* Totally anal locking here... */
1322 spin_lock(&journal
->j_list_lock
);
1323 while (journal
->j_checkpoint_transactions
!= NULL
) {
1324 spin_unlock(&journal
->j_list_lock
);
1325 log_do_checkpoint(journal
);
1326 spin_lock(&journal
->j_list_lock
);
1329 J_ASSERT(journal
->j_running_transaction
== NULL
);
1330 J_ASSERT(journal
->j_committing_transaction
== NULL
);
1331 J_ASSERT(journal
->j_checkpoint_transactions
== NULL
);
1332 spin_unlock(&journal
->j_list_lock
);
1334 if (journal
->j_sb_buffer
) {
1335 if (!is_journal_aborted(journal
)) {
1336 journal
->j_tail_sequence
=
1337 ++journal
->j_transaction_sequence
;
1338 mark_journal_empty(journal
);
1341 brelse(journal
->j_sb_buffer
);
1343 mutex_unlock(&journal
->j_checkpoint_mutex
);
1345 if (journal
->j_inode
)
1346 iput(journal
->j_inode
);
1347 if (journal
->j_revoke
)
1348 journal_destroy_revoke(journal
);
1349 kfree(journal
->j_wbuf
);
1357 *int journal_check_used_features () - Check if features specified are used.
1358 * @journal: Journal to check.
1359 * @compat: bitmask of compatible features
1360 * @ro: bitmask of features that force read-only mount
1361 * @incompat: bitmask of incompatible features
1363 * Check whether the journal uses all of a given set of
1364 * features. Return true (non-zero) if it does.
1367 int journal_check_used_features (journal_t
*journal
, unsigned long compat
,
1368 unsigned long ro
, unsigned long incompat
)
1370 journal_superblock_t
*sb
;
1372 if (!compat
&& !ro
&& !incompat
)
1374 if (journal
->j_format_version
== 1)
1377 sb
= journal
->j_superblock
;
1379 if (((be32_to_cpu(sb
->s_feature_compat
) & compat
) == compat
) &&
1380 ((be32_to_cpu(sb
->s_feature_ro_compat
) & ro
) == ro
) &&
1381 ((be32_to_cpu(sb
->s_feature_incompat
) & incompat
) == incompat
))
1388 * int journal_check_available_features() - Check feature set in journalling layer
1389 * @journal: Journal to check.
1390 * @compat: bitmask of compatible features
1391 * @ro: bitmask of features that force read-only mount
1392 * @incompat: bitmask of incompatible features
1394 * Check whether the journaling code supports the use of
1395 * all of a given set of features on this journal. Return true
1396 * (non-zero) if it can. */
1398 int journal_check_available_features (journal_t
*journal
, unsigned long compat
,
1399 unsigned long ro
, unsigned long incompat
)
1401 if (!compat
&& !ro
&& !incompat
)
1404 /* We can support any known requested features iff the
1405 * superblock is in version 2. Otherwise we fail to support any
1406 * extended sb features. */
1408 if (journal
->j_format_version
!= 2)
1411 if ((compat
& JFS_KNOWN_COMPAT_FEATURES
) == compat
&&
1412 (ro
& JFS_KNOWN_ROCOMPAT_FEATURES
) == ro
&&
1413 (incompat
& JFS_KNOWN_INCOMPAT_FEATURES
) == incompat
)
1420 * int journal_set_features () - Mark a given journal feature in the superblock
1421 * @journal: Journal to act on.
1422 * @compat: bitmask of compatible features
1423 * @ro: bitmask of features that force read-only mount
1424 * @incompat: bitmask of incompatible features
1426 * Mark a given journal feature as present on the
1427 * superblock. Returns true if the requested features could be set.
1431 int journal_set_features (journal_t
*journal
, unsigned long compat
,
1432 unsigned long ro
, unsigned long incompat
)
1434 journal_superblock_t
*sb
;
1436 if (journal_check_used_features(journal
, compat
, ro
, incompat
))
1439 if (!journal_check_available_features(journal
, compat
, ro
, incompat
))
1442 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1443 compat
, ro
, incompat
);
1445 sb
= journal
->j_superblock
;
1447 sb
->s_feature_compat
|= cpu_to_be32(compat
);
1448 sb
->s_feature_ro_compat
|= cpu_to_be32(ro
);
1449 sb
->s_feature_incompat
|= cpu_to_be32(incompat
);
1456 * int journal_update_format () - Update on-disk journal structure.
1457 * @journal: Journal to act on.
1459 * Given an initialised but unloaded journal struct, poke about in the
1460 * on-disk structure to update it to the most recent supported version.
1462 int journal_update_format (journal_t
*journal
)
1464 journal_superblock_t
*sb
;
1467 err
= journal_get_superblock(journal
);
1471 sb
= journal
->j_superblock
;
1473 switch (be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1474 case JFS_SUPERBLOCK_V2
:
1476 case JFS_SUPERBLOCK_V1
:
1477 return journal_convert_superblock_v1(journal
, sb
);
1484 static int journal_convert_superblock_v1(journal_t
*journal
,
1485 journal_superblock_t
*sb
)
1487 int offset
, blocksize
;
1488 struct buffer_head
*bh
;
1491 "JBD: Converting superblock from version 1 to 2.\n");
1493 /* Pre-initialise new fields to zero */
1494 offset
= ((char *) &(sb
->s_feature_compat
)) - ((char *) sb
);
1495 blocksize
= be32_to_cpu(sb
->s_blocksize
);
1496 memset(&sb
->s_feature_compat
, 0, blocksize
-offset
);
1498 sb
->s_nr_users
= cpu_to_be32(1);
1499 sb
->s_header
.h_blocktype
= cpu_to_be32(JFS_SUPERBLOCK_V2
);
1500 journal
->j_format_version
= 2;
1502 bh
= journal
->j_sb_buffer
;
1503 BUFFER_TRACE(bh
, "marking dirty");
1504 mark_buffer_dirty(bh
);
1505 sync_dirty_buffer(bh
);
1511 * int journal_flush () - Flush journal
1512 * @journal: Journal to act on.
1514 * Flush all data for a given journal to disk and empty the journal.
1515 * Filesystems can use this when remounting readonly to ensure that
1516 * recovery does not need to happen on remount.
1519 int journal_flush(journal_t
*journal
)
1522 transaction_t
*transaction
= NULL
;
1524 spin_lock(&journal
->j_state_lock
);
1526 /* Force everything buffered to the log... */
1527 if (journal
->j_running_transaction
) {
1528 transaction
= journal
->j_running_transaction
;
1529 __log_start_commit(journal
, transaction
->t_tid
);
1530 } else if (journal
->j_committing_transaction
)
1531 transaction
= journal
->j_committing_transaction
;
1533 /* Wait for the log commit to complete... */
1535 tid_t tid
= transaction
->t_tid
;
1537 spin_unlock(&journal
->j_state_lock
);
1538 log_wait_commit(journal
, tid
);
1540 spin_unlock(&journal
->j_state_lock
);
1543 /* ...and flush everything in the log out to disk. */
1544 spin_lock(&journal
->j_list_lock
);
1545 while (!err
&& journal
->j_checkpoint_transactions
!= NULL
) {
1546 spin_unlock(&journal
->j_list_lock
);
1547 mutex_lock(&journal
->j_checkpoint_mutex
);
1548 err
= log_do_checkpoint(journal
);
1549 mutex_unlock(&journal
->j_checkpoint_mutex
);
1550 spin_lock(&journal
->j_list_lock
);
1552 spin_unlock(&journal
->j_list_lock
);
1554 if (is_journal_aborted(journal
))
1557 mutex_lock(&journal
->j_checkpoint_mutex
);
1558 cleanup_journal_tail(journal
);
1560 /* Finally, mark the journal as really needing no recovery.
1561 * This sets s_start==0 in the underlying superblock, which is
1562 * the magic code for a fully-recovered superblock. Any future
1563 * commits of data to the journal will restore the current
1565 mark_journal_empty(journal
);
1566 mutex_unlock(&journal
->j_checkpoint_mutex
);
1567 spin_lock(&journal
->j_state_lock
);
1568 J_ASSERT(!journal
->j_running_transaction
);
1569 J_ASSERT(!journal
->j_committing_transaction
);
1570 J_ASSERT(!journal
->j_checkpoint_transactions
);
1571 J_ASSERT(journal
->j_head
== journal
->j_tail
);
1572 J_ASSERT(journal
->j_tail_sequence
== journal
->j_transaction_sequence
);
1573 spin_unlock(&journal
->j_state_lock
);
1578 * int journal_wipe() - Wipe journal contents
1579 * @journal: Journal to act on.
1580 * @write: flag (see below)
1582 * Wipe out all of the contents of a journal, safely. This will produce
1583 * a warning if the journal contains any valid recovery information.
1584 * Must be called between journal_init_*() and journal_load().
1586 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1587 * we merely suppress recovery.
1590 int journal_wipe(journal_t
*journal
, int write
)
1594 J_ASSERT (!(journal
->j_flags
& JFS_LOADED
));
1596 err
= load_superblock(journal
);
1600 if (!journal
->j_tail
)
1603 printk (KERN_WARNING
"JBD: %s recovery information on journal\n",
1604 write
? "Clearing" : "Ignoring");
1606 err
= journal_skip_recovery(journal
);
1608 /* Lock to make assertions happy... */
1609 mutex_lock(&journal
->j_checkpoint_mutex
);
1610 mark_journal_empty(journal
);
1611 mutex_unlock(&journal
->j_checkpoint_mutex
);
1619 * journal_dev_name: format a character string to describe on what
1620 * device this journal is present.
1623 static const char *journal_dev_name(journal_t
*journal
, char *buffer
)
1625 struct block_device
*bdev
;
1627 if (journal
->j_inode
)
1628 bdev
= journal
->j_inode
->i_sb
->s_bdev
;
1630 bdev
= journal
->j_dev
;
1632 return bdevname(bdev
, buffer
);
1636 * Journal abort has very specific semantics, which we describe
1637 * for journal abort.
1639 * Two internal function, which provide abort to te jbd layer
1644 * Quick version for internal journal use (doesn't lock the journal).
1645 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1646 * and don't attempt to make any other journal updates.
1648 static void __journal_abort_hard(journal_t
*journal
)
1650 transaction_t
*transaction
;
1651 char b
[BDEVNAME_SIZE
];
1653 if (journal
->j_flags
& JFS_ABORT
)
1656 printk(KERN_ERR
"Aborting journal on device %s.\n",
1657 journal_dev_name(journal
, b
));
1659 spin_lock(&journal
->j_state_lock
);
1660 journal
->j_flags
|= JFS_ABORT
;
1661 transaction
= journal
->j_running_transaction
;
1663 __log_start_commit(journal
, transaction
->t_tid
);
1664 spin_unlock(&journal
->j_state_lock
);
1667 /* Soft abort: record the abort error status in the journal superblock,
1668 * but don't do any other IO. */
1669 static void __journal_abort_soft (journal_t
*journal
, int errno
)
1671 if (journal
->j_flags
& JFS_ABORT
)
1674 if (!journal
->j_errno
)
1675 journal
->j_errno
= errno
;
1677 __journal_abort_hard(journal
);
1680 journal_update_sb_errno(journal
);
1684 * void journal_abort () - Shutdown the journal immediately.
1685 * @journal: the journal to shutdown.
1686 * @errno: an error number to record in the journal indicating
1687 * the reason for the shutdown.
1689 * Perform a complete, immediate shutdown of the ENTIRE
1690 * journal (not of a single transaction). This operation cannot be
1691 * undone without closing and reopening the journal.
1693 * The journal_abort function is intended to support higher level error
1694 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1697 * Journal abort has very specific semantics. Any existing dirty,
1698 * unjournaled buffers in the main filesystem will still be written to
1699 * disk by bdflush, but the journaling mechanism will be suspended
1700 * immediately and no further transaction commits will be honoured.
1702 * Any dirty, journaled buffers will be written back to disk without
1703 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1704 * filesystem, but we _do_ attempt to leave as much data as possible
1705 * behind for fsck to use for cleanup.
1707 * Any attempt to get a new transaction handle on a journal which is in
1708 * ABORT state will just result in an -EROFS error return. A
1709 * journal_stop on an existing handle will return -EIO if we have
1710 * entered abort state during the update.
1712 * Recursive transactions are not disturbed by journal abort until the
1713 * final journal_stop, which will receive the -EIO error.
1715 * Finally, the journal_abort call allows the caller to supply an errno
1716 * which will be recorded (if possible) in the journal superblock. This
1717 * allows a client to record failure conditions in the middle of a
1718 * transaction without having to complete the transaction to record the
1719 * failure to disk. ext3_error, for example, now uses this
1722 * Errors which originate from within the journaling layer will NOT
1723 * supply an errno; a null errno implies that absolutely no further
1724 * writes are done to the journal (unless there are any already in
1729 void journal_abort(journal_t
*journal
, int errno
)
1731 __journal_abort_soft(journal
, errno
);
1735 * int journal_errno () - returns the journal's error state.
1736 * @journal: journal to examine.
1738 * This is the errno numbet set with journal_abort(), the last
1739 * time the journal was mounted - if the journal was stopped
1740 * without calling abort this will be 0.
1742 * If the journal has been aborted on this mount time -EROFS will
1745 int journal_errno(journal_t
*journal
)
1749 spin_lock(&journal
->j_state_lock
);
1750 if (journal
->j_flags
& JFS_ABORT
)
1753 err
= journal
->j_errno
;
1754 spin_unlock(&journal
->j_state_lock
);
1759 * int journal_clear_err () - clears the journal's error state
1760 * @journal: journal to act on.
1762 * An error must be cleared or Acked to take a FS out of readonly
1765 int journal_clear_err(journal_t
*journal
)
1769 spin_lock(&journal
->j_state_lock
);
1770 if (journal
->j_flags
& JFS_ABORT
)
1773 journal
->j_errno
= 0;
1774 spin_unlock(&journal
->j_state_lock
);
1779 * void journal_ack_err() - Ack journal err.
1780 * @journal: journal to act on.
1782 * An error must be cleared or Acked to take a FS out of readonly
1785 void journal_ack_err(journal_t
*journal
)
1787 spin_lock(&journal
->j_state_lock
);
1788 if (journal
->j_errno
)
1789 journal
->j_flags
|= JFS_ACK_ERR
;
1790 spin_unlock(&journal
->j_state_lock
);
1793 int journal_blocks_per_page(struct inode
*inode
)
1795 return 1 << (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
1799 * Journal_head storage management
1801 static struct kmem_cache
*journal_head_cache
;
1802 #ifdef CONFIG_JBD_DEBUG
1803 static atomic_t nr_journal_heads
= ATOMIC_INIT(0);
1806 static int journal_init_journal_head_cache(void)
1810 J_ASSERT(journal_head_cache
== NULL
);
1811 journal_head_cache
= kmem_cache_create("journal_head",
1812 sizeof(struct journal_head
),
1814 SLAB_TEMPORARY
, /* flags */
1817 if (!journal_head_cache
) {
1819 printk(KERN_EMERG
"JBD: no memory for journal_head cache\n");
1824 static void journal_destroy_journal_head_cache(void)
1826 if (journal_head_cache
) {
1827 kmem_cache_destroy(journal_head_cache
);
1828 journal_head_cache
= NULL
;
1833 * journal_head splicing and dicing
1835 static struct journal_head
*journal_alloc_journal_head(void)
1837 struct journal_head
*ret
;
1839 #ifdef CONFIG_JBD_DEBUG
1840 atomic_inc(&nr_journal_heads
);
1842 ret
= kmem_cache_alloc(journal_head_cache
, GFP_NOFS
);
1844 jbd_debug(1, "out of memory for journal_head\n");
1845 printk_ratelimited(KERN_NOTICE
"ENOMEM in %s, retrying.\n",
1848 while (ret
== NULL
) {
1850 ret
= kmem_cache_alloc(journal_head_cache
, GFP_NOFS
);
1856 static void journal_free_journal_head(struct journal_head
*jh
)
1858 #ifdef CONFIG_JBD_DEBUG
1859 atomic_dec(&nr_journal_heads
);
1860 memset(jh
, JBD_POISON_FREE
, sizeof(*jh
));
1862 kmem_cache_free(journal_head_cache
, jh
);
1866 * A journal_head is attached to a buffer_head whenever JBD has an
1867 * interest in the buffer.
1869 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1870 * is set. This bit is tested in core kernel code where we need to take
1871 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
1874 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1876 * When a buffer has its BH_JBD bit set it is immune from being released by
1877 * core kernel code, mainly via ->b_count.
1879 * A journal_head is detached from its buffer_head when the journal_head's
1880 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
1881 * transaction (b_cp_transaction) hold their references to b_jcount.
1883 * Various places in the kernel want to attach a journal_head to a buffer_head
1884 * _before_ attaching the journal_head to a transaction. To protect the
1885 * journal_head in this situation, journal_add_journal_head elevates the
1886 * journal_head's b_jcount refcount by one. The caller must call
1887 * journal_put_journal_head() to undo this.
1889 * So the typical usage would be:
1891 * (Attach a journal_head if needed. Increments b_jcount)
1892 * struct journal_head *jh = journal_add_journal_head(bh);
1894 * (Get another reference for transaction)
1895 * journal_grab_journal_head(bh);
1896 * jh->b_transaction = xxx;
1897 * (Put original reference)
1898 * journal_put_journal_head(jh);
1902 * Give a buffer_head a journal_head.
1906 struct journal_head
*journal_add_journal_head(struct buffer_head
*bh
)
1908 struct journal_head
*jh
;
1909 struct journal_head
*new_jh
= NULL
;
1912 if (!buffer_jbd(bh
)) {
1913 new_jh
= journal_alloc_journal_head();
1914 memset(new_jh
, 0, sizeof(*new_jh
));
1917 jbd_lock_bh_journal_head(bh
);
1918 if (buffer_jbd(bh
)) {
1922 (atomic_read(&bh
->b_count
) > 0) ||
1923 (bh
->b_page
&& bh
->b_page
->mapping
));
1926 jbd_unlock_bh_journal_head(bh
);
1931 new_jh
= NULL
; /* We consumed it */
1936 BUFFER_TRACE(bh
, "added journal_head");
1939 jbd_unlock_bh_journal_head(bh
);
1941 journal_free_journal_head(new_jh
);
1942 return bh
->b_private
;
1946 * Grab a ref against this buffer_head's journal_head. If it ended up not
1947 * having a journal_head, return NULL
1949 struct journal_head
*journal_grab_journal_head(struct buffer_head
*bh
)
1951 struct journal_head
*jh
= NULL
;
1953 jbd_lock_bh_journal_head(bh
);
1954 if (buffer_jbd(bh
)) {
1958 jbd_unlock_bh_journal_head(bh
);
1962 static void __journal_remove_journal_head(struct buffer_head
*bh
)
1964 struct journal_head
*jh
= bh2jh(bh
);
1966 J_ASSERT_JH(jh
, jh
->b_jcount
>= 0);
1967 J_ASSERT_JH(jh
, jh
->b_transaction
== NULL
);
1968 J_ASSERT_JH(jh
, jh
->b_next_transaction
== NULL
);
1969 J_ASSERT_JH(jh
, jh
->b_cp_transaction
== NULL
);
1970 J_ASSERT_JH(jh
, jh
->b_jlist
== BJ_None
);
1971 J_ASSERT_BH(bh
, buffer_jbd(bh
));
1972 J_ASSERT_BH(bh
, jh2bh(jh
) == bh
);
1973 BUFFER_TRACE(bh
, "remove journal_head");
1974 if (jh
->b_frozen_data
) {
1975 printk(KERN_WARNING
"%s: freeing b_frozen_data\n", __func__
);
1976 jbd_free(jh
->b_frozen_data
, bh
->b_size
);
1978 if (jh
->b_committed_data
) {
1979 printk(KERN_WARNING
"%s: freeing b_committed_data\n", __func__
);
1980 jbd_free(jh
->b_committed_data
, bh
->b_size
);
1982 bh
->b_private
= NULL
;
1983 jh
->b_bh
= NULL
; /* debug, really */
1984 clear_buffer_jbd(bh
);
1985 journal_free_journal_head(jh
);
1989 * Drop a reference on the passed journal_head. If it fell to zero then
1990 * release the journal_head from the buffer_head.
1992 void journal_put_journal_head(struct journal_head
*jh
)
1994 struct buffer_head
*bh
= jh2bh(jh
);
1996 jbd_lock_bh_journal_head(bh
);
1997 J_ASSERT_JH(jh
, jh
->b_jcount
> 0);
1999 if (!jh
->b_jcount
) {
2000 __journal_remove_journal_head(bh
);
2001 jbd_unlock_bh_journal_head(bh
);
2004 jbd_unlock_bh_journal_head(bh
);
2010 #ifdef CONFIG_JBD_DEBUG
2012 u8 journal_enable_debug __read_mostly
;
2013 EXPORT_SYMBOL(journal_enable_debug
);
2015 static struct dentry
*jbd_debugfs_dir
;
2016 static struct dentry
*jbd_debug
;
2018 static void __init
jbd_create_debugfs_entry(void)
2020 jbd_debugfs_dir
= debugfs_create_dir("jbd", NULL
);
2021 if (jbd_debugfs_dir
)
2022 jbd_debug
= debugfs_create_u8("jbd-debug", S_IRUGO
| S_IWUSR
,
2024 &journal_enable_debug
);
2027 static void __exit
jbd_remove_debugfs_entry(void)
2029 debugfs_remove(jbd_debug
);
2030 debugfs_remove(jbd_debugfs_dir
);
2035 static inline void jbd_create_debugfs_entry(void)
2039 static inline void jbd_remove_debugfs_entry(void)
2045 struct kmem_cache
*jbd_handle_cache
;
2047 static int __init
journal_init_handle_cache(void)
2049 jbd_handle_cache
= kmem_cache_create("journal_handle",
2052 SLAB_TEMPORARY
, /* flags */
2054 if (jbd_handle_cache
== NULL
) {
2055 printk(KERN_EMERG
"JBD: failed to create handle cache\n");
2061 static void journal_destroy_handle_cache(void)
2063 if (jbd_handle_cache
)
2064 kmem_cache_destroy(jbd_handle_cache
);
2068 * Module startup and shutdown
2071 static int __init
journal_init_caches(void)
2075 ret
= journal_init_revoke_caches();
2077 ret
= journal_init_journal_head_cache();
2079 ret
= journal_init_handle_cache();
2083 static void journal_destroy_caches(void)
2085 journal_destroy_revoke_caches();
2086 journal_destroy_journal_head_cache();
2087 journal_destroy_handle_cache();
2090 static int __init
journal_init(void)
2094 BUILD_BUG_ON(sizeof(struct journal_superblock_s
) != 1024);
2096 ret
= journal_init_caches();
2098 journal_destroy_caches();
2099 jbd_create_debugfs_entry();
2103 static void __exit
journal_exit(void)
2105 #ifdef CONFIG_JBD_DEBUG
2106 int n
= atomic_read(&nr_journal_heads
);
2108 printk(KERN_EMERG
"JBD: leaked %d journal_heads!\n", n
);
2110 jbd_remove_debugfs_entry();
2111 journal_destroy_caches();
2114 MODULE_LICENSE("GPL");
2115 module_init(journal_init
);
2116 module_exit(journal_exit
);