sysfs.h: add __ATTR_RW() macro
[linux/fpc-iii.git] / block / cfq-iosched.c
blobd5bbdcfd0dab5f56fa76f9ca08dc979fe16d1a35
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk.h"
18 #include "blk-cgroup.h"
21 * tunables
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
39 * offset from end of service tree
41 #define CFQ_IDLE_DELAY (HZ / 5)
44 * below this threshold, we consider thinktime immediate
46 #define CFQ_MIN_TT (2)
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
61 static struct kmem_cache *cfq_pool;
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
70 struct cfq_ttime {
71 unsigned long last_end_request;
73 unsigned long ttime_total;
74 unsigned long ttime_samples;
75 unsigned long ttime_mean;
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
84 struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 u64 min_vdisktime;
89 struct cfq_ttime ttime;
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
92 .ttime = {.last_end_request = jiffies,},}
95 * Per process-grouping structure
97 struct cfq_queue {
98 /* reference count */
99 int ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
125 unsigned int allocated_slice;
126 unsigned int slice_dispatch;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
129 unsigned long slice_end;
130 long slice_resid;
132 /* pending priority requests */
133 int prio_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class;
141 pid_t pid;
143 u32 seek_history;
144 sector_t last_request_pos;
146 struct cfq_rb_root *service_tree;
147 struct cfq_queue *new_cfqq;
148 struct cfq_group *cfqg;
149 /* Number of sectors dispatched from queue in single dispatch round */
150 unsigned long nr_sectors;
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
157 enum wl_class_t {
158 BE_WORKLOAD = 0,
159 RT_WORKLOAD = 1,
160 IDLE_WORKLOAD = 2,
161 CFQ_PRIO_NR,
165 * Second index in the service_trees.
167 enum wl_type_t {
168 ASYNC_WORKLOAD = 0,
169 SYNC_NOIDLE_WORKLOAD = 1,
170 SYNC_WORKLOAD = 2
173 struct cfqg_stats {
174 #ifdef CONFIG_CFQ_GROUP_IOSCHED
175 /* total bytes transferred */
176 struct blkg_rwstat service_bytes;
177 /* total IOs serviced, post merge */
178 struct blkg_rwstat serviced;
179 /* number of ios merged */
180 struct blkg_rwstat merged;
181 /* total time spent on device in ns, may not be accurate w/ queueing */
182 struct blkg_rwstat service_time;
183 /* total time spent waiting in scheduler queue in ns */
184 struct blkg_rwstat wait_time;
185 /* number of IOs queued up */
186 struct blkg_rwstat queued;
187 /* total sectors transferred */
188 struct blkg_stat sectors;
189 /* total disk time and nr sectors dispatched by this group */
190 struct blkg_stat time;
191 #ifdef CONFIG_DEBUG_BLK_CGROUP
192 /* time not charged to this cgroup */
193 struct blkg_stat unaccounted_time;
194 /* sum of number of ios queued across all samples */
195 struct blkg_stat avg_queue_size_sum;
196 /* count of samples taken for average */
197 struct blkg_stat avg_queue_size_samples;
198 /* how many times this group has been removed from service tree */
199 struct blkg_stat dequeue;
200 /* total time spent waiting for it to be assigned a timeslice. */
201 struct blkg_stat group_wait_time;
202 /* time spent idling for this blkcg_gq */
203 struct blkg_stat idle_time;
204 /* total time with empty current active q with other requests queued */
205 struct blkg_stat empty_time;
206 /* fields after this shouldn't be cleared on stat reset */
207 uint64_t start_group_wait_time;
208 uint64_t start_idle_time;
209 uint64_t start_empty_time;
210 uint16_t flags;
211 #endif /* CONFIG_DEBUG_BLK_CGROUP */
212 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
215 /* This is per cgroup per device grouping structure */
216 struct cfq_group {
217 /* must be the first member */
218 struct blkg_policy_data pd;
220 /* group service_tree member */
221 struct rb_node rb_node;
223 /* group service_tree key */
224 u64 vdisktime;
227 * The number of active cfqgs and sum of their weights under this
228 * cfqg. This covers this cfqg's leaf_weight and all children's
229 * weights, but does not cover weights of further descendants.
231 * If a cfqg is on the service tree, it's active. An active cfqg
232 * also activates its parent and contributes to the children_weight
233 * of the parent.
235 int nr_active;
236 unsigned int children_weight;
239 * vfraction is the fraction of vdisktime that the tasks in this
240 * cfqg are entitled to. This is determined by compounding the
241 * ratios walking up from this cfqg to the root.
243 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
244 * vfractions on a service tree is approximately 1. The sum may
245 * deviate a bit due to rounding errors and fluctuations caused by
246 * cfqgs entering and leaving the service tree.
248 unsigned int vfraction;
251 * There are two weights - (internal) weight is the weight of this
252 * cfqg against the sibling cfqgs. leaf_weight is the wight of
253 * this cfqg against the child cfqgs. For the root cfqg, both
254 * weights are kept in sync for backward compatibility.
256 unsigned int weight;
257 unsigned int new_weight;
258 unsigned int dev_weight;
260 unsigned int leaf_weight;
261 unsigned int new_leaf_weight;
262 unsigned int dev_leaf_weight;
264 /* number of cfqq currently on this group */
265 int nr_cfqq;
268 * Per group busy queues average. Useful for workload slice calc. We
269 * create the array for each prio class but at run time it is used
270 * only for RT and BE class and slot for IDLE class remains unused.
271 * This is primarily done to avoid confusion and a gcc warning.
273 unsigned int busy_queues_avg[CFQ_PRIO_NR];
275 * rr lists of queues with requests. We maintain service trees for
276 * RT and BE classes. These trees are subdivided in subclasses
277 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
278 * class there is no subclassification and all the cfq queues go on
279 * a single tree service_tree_idle.
280 * Counts are embedded in the cfq_rb_root
282 struct cfq_rb_root service_trees[2][3];
283 struct cfq_rb_root service_tree_idle;
285 unsigned long saved_wl_slice;
286 enum wl_type_t saved_wl_type;
287 enum wl_class_t saved_wl_class;
289 /* number of requests that are on the dispatch list or inside driver */
290 int dispatched;
291 struct cfq_ttime ttime;
292 struct cfqg_stats stats; /* stats for this cfqg */
293 struct cfqg_stats dead_stats; /* stats pushed from dead children */
296 struct cfq_io_cq {
297 struct io_cq icq; /* must be the first member */
298 struct cfq_queue *cfqq[2];
299 struct cfq_ttime ttime;
300 int ioprio; /* the current ioprio */
301 #ifdef CONFIG_CFQ_GROUP_IOSCHED
302 uint64_t blkcg_id; /* the current blkcg ID */
303 #endif
307 * Per block device queue structure
309 struct cfq_data {
310 struct request_queue *queue;
311 /* Root service tree for cfq_groups */
312 struct cfq_rb_root grp_service_tree;
313 struct cfq_group *root_group;
316 * The priority currently being served
318 enum wl_class_t serving_wl_class;
319 enum wl_type_t serving_wl_type;
320 unsigned long workload_expires;
321 struct cfq_group *serving_group;
324 * Each priority tree is sorted by next_request position. These
325 * trees are used when determining if two or more queues are
326 * interleaving requests (see cfq_close_cooperator).
328 struct rb_root prio_trees[CFQ_PRIO_LISTS];
330 unsigned int busy_queues;
331 unsigned int busy_sync_queues;
333 int rq_in_driver;
334 int rq_in_flight[2];
337 * queue-depth detection
339 int rq_queued;
340 int hw_tag;
342 * hw_tag can be
343 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
344 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
345 * 0 => no NCQ
347 int hw_tag_est_depth;
348 unsigned int hw_tag_samples;
351 * idle window management
353 struct timer_list idle_slice_timer;
354 struct work_struct unplug_work;
356 struct cfq_queue *active_queue;
357 struct cfq_io_cq *active_cic;
360 * async queue for each priority case
362 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
363 struct cfq_queue *async_idle_cfqq;
365 sector_t last_position;
368 * tunables, see top of file
370 unsigned int cfq_quantum;
371 unsigned int cfq_fifo_expire[2];
372 unsigned int cfq_back_penalty;
373 unsigned int cfq_back_max;
374 unsigned int cfq_slice[2];
375 unsigned int cfq_slice_async_rq;
376 unsigned int cfq_slice_idle;
377 unsigned int cfq_group_idle;
378 unsigned int cfq_latency;
379 unsigned int cfq_target_latency;
382 * Fallback dummy cfqq for extreme OOM conditions
384 struct cfq_queue oom_cfqq;
386 unsigned long last_delayed_sync;
389 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
391 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
392 enum wl_class_t class,
393 enum wl_type_t type)
395 if (!cfqg)
396 return NULL;
398 if (class == IDLE_WORKLOAD)
399 return &cfqg->service_tree_idle;
401 return &cfqg->service_trees[class][type];
404 enum cfqq_state_flags {
405 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
406 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
407 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
408 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
409 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
410 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
411 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
412 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
413 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
414 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
415 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
416 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
417 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
420 #define CFQ_CFQQ_FNS(name) \
421 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
423 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
425 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
427 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
429 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
431 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
434 CFQ_CFQQ_FNS(on_rr);
435 CFQ_CFQQ_FNS(wait_request);
436 CFQ_CFQQ_FNS(must_dispatch);
437 CFQ_CFQQ_FNS(must_alloc_slice);
438 CFQ_CFQQ_FNS(fifo_expire);
439 CFQ_CFQQ_FNS(idle_window);
440 CFQ_CFQQ_FNS(prio_changed);
441 CFQ_CFQQ_FNS(slice_new);
442 CFQ_CFQQ_FNS(sync);
443 CFQ_CFQQ_FNS(coop);
444 CFQ_CFQQ_FNS(split_coop);
445 CFQ_CFQQ_FNS(deep);
446 CFQ_CFQQ_FNS(wait_busy);
447 #undef CFQ_CFQQ_FNS
449 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
451 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
454 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
456 return pd_to_blkg(&cfqg->pd);
459 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
461 /* cfqg stats flags */
462 enum cfqg_stats_flags {
463 CFQG_stats_waiting = 0,
464 CFQG_stats_idling,
465 CFQG_stats_empty,
468 #define CFQG_FLAG_FNS(name) \
469 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
471 stats->flags |= (1 << CFQG_stats_##name); \
473 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
475 stats->flags &= ~(1 << CFQG_stats_##name); \
477 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
479 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
482 CFQG_FLAG_FNS(waiting)
483 CFQG_FLAG_FNS(idling)
484 CFQG_FLAG_FNS(empty)
485 #undef CFQG_FLAG_FNS
487 /* This should be called with the queue_lock held. */
488 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
490 unsigned long long now;
492 if (!cfqg_stats_waiting(stats))
493 return;
495 now = sched_clock();
496 if (time_after64(now, stats->start_group_wait_time))
497 blkg_stat_add(&stats->group_wait_time,
498 now - stats->start_group_wait_time);
499 cfqg_stats_clear_waiting(stats);
502 /* This should be called with the queue_lock held. */
503 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
504 struct cfq_group *curr_cfqg)
506 struct cfqg_stats *stats = &cfqg->stats;
508 if (cfqg_stats_waiting(stats))
509 return;
510 if (cfqg == curr_cfqg)
511 return;
512 stats->start_group_wait_time = sched_clock();
513 cfqg_stats_mark_waiting(stats);
516 /* This should be called with the queue_lock held. */
517 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
519 unsigned long long now;
521 if (!cfqg_stats_empty(stats))
522 return;
524 now = sched_clock();
525 if (time_after64(now, stats->start_empty_time))
526 blkg_stat_add(&stats->empty_time,
527 now - stats->start_empty_time);
528 cfqg_stats_clear_empty(stats);
531 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
533 blkg_stat_add(&cfqg->stats.dequeue, 1);
536 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
538 struct cfqg_stats *stats = &cfqg->stats;
540 if (blkg_rwstat_total(&stats->queued))
541 return;
544 * group is already marked empty. This can happen if cfqq got new
545 * request in parent group and moved to this group while being added
546 * to service tree. Just ignore the event and move on.
548 if (cfqg_stats_empty(stats))
549 return;
551 stats->start_empty_time = sched_clock();
552 cfqg_stats_mark_empty(stats);
555 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
557 struct cfqg_stats *stats = &cfqg->stats;
559 if (cfqg_stats_idling(stats)) {
560 unsigned long long now = sched_clock();
562 if (time_after64(now, stats->start_idle_time))
563 blkg_stat_add(&stats->idle_time,
564 now - stats->start_idle_time);
565 cfqg_stats_clear_idling(stats);
569 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
571 struct cfqg_stats *stats = &cfqg->stats;
573 BUG_ON(cfqg_stats_idling(stats));
575 stats->start_idle_time = sched_clock();
576 cfqg_stats_mark_idling(stats);
579 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
581 struct cfqg_stats *stats = &cfqg->stats;
583 blkg_stat_add(&stats->avg_queue_size_sum,
584 blkg_rwstat_total(&stats->queued));
585 blkg_stat_add(&stats->avg_queue_size_samples, 1);
586 cfqg_stats_update_group_wait_time(stats);
589 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
591 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
592 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
593 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
594 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
595 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
596 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
597 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
599 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
601 #ifdef CONFIG_CFQ_GROUP_IOSCHED
603 static struct blkcg_policy blkcg_policy_cfq;
605 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
607 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
610 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
612 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
614 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
617 static inline void cfqg_get(struct cfq_group *cfqg)
619 return blkg_get(cfqg_to_blkg(cfqg));
622 static inline void cfqg_put(struct cfq_group *cfqg)
624 return blkg_put(cfqg_to_blkg(cfqg));
627 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
628 char __pbuf[128]; \
630 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
631 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
632 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
633 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
634 __pbuf, ##args); \
635 } while (0)
637 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
638 char __pbuf[128]; \
640 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
641 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
642 } while (0)
644 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
645 struct cfq_group *curr_cfqg, int rw)
647 blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
648 cfqg_stats_end_empty_time(&cfqg->stats);
649 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
652 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
653 unsigned long time, unsigned long unaccounted_time)
655 blkg_stat_add(&cfqg->stats.time, time);
656 #ifdef CONFIG_DEBUG_BLK_CGROUP
657 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
658 #endif
661 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
663 blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
666 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
668 blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
671 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
672 uint64_t bytes, int rw)
674 blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
675 blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
676 blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
679 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
680 uint64_t start_time, uint64_t io_start_time, int rw)
682 struct cfqg_stats *stats = &cfqg->stats;
683 unsigned long long now = sched_clock();
685 if (time_after64(now, io_start_time))
686 blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
687 if (time_after64(io_start_time, start_time))
688 blkg_rwstat_add(&stats->wait_time, rw,
689 io_start_time - start_time);
692 /* @stats = 0 */
693 static void cfqg_stats_reset(struct cfqg_stats *stats)
695 /* queued stats shouldn't be cleared */
696 blkg_rwstat_reset(&stats->service_bytes);
697 blkg_rwstat_reset(&stats->serviced);
698 blkg_rwstat_reset(&stats->merged);
699 blkg_rwstat_reset(&stats->service_time);
700 blkg_rwstat_reset(&stats->wait_time);
701 blkg_stat_reset(&stats->time);
702 #ifdef CONFIG_DEBUG_BLK_CGROUP
703 blkg_stat_reset(&stats->unaccounted_time);
704 blkg_stat_reset(&stats->avg_queue_size_sum);
705 blkg_stat_reset(&stats->avg_queue_size_samples);
706 blkg_stat_reset(&stats->dequeue);
707 blkg_stat_reset(&stats->group_wait_time);
708 blkg_stat_reset(&stats->idle_time);
709 blkg_stat_reset(&stats->empty_time);
710 #endif
713 /* @to += @from */
714 static void cfqg_stats_merge(struct cfqg_stats *to, struct cfqg_stats *from)
716 /* queued stats shouldn't be cleared */
717 blkg_rwstat_merge(&to->service_bytes, &from->service_bytes);
718 blkg_rwstat_merge(&to->serviced, &from->serviced);
719 blkg_rwstat_merge(&to->merged, &from->merged);
720 blkg_rwstat_merge(&to->service_time, &from->service_time);
721 blkg_rwstat_merge(&to->wait_time, &from->wait_time);
722 blkg_stat_merge(&from->time, &from->time);
723 #ifdef CONFIG_DEBUG_BLK_CGROUP
724 blkg_stat_merge(&to->unaccounted_time, &from->unaccounted_time);
725 blkg_stat_merge(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
726 blkg_stat_merge(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
727 blkg_stat_merge(&to->dequeue, &from->dequeue);
728 blkg_stat_merge(&to->group_wait_time, &from->group_wait_time);
729 blkg_stat_merge(&to->idle_time, &from->idle_time);
730 blkg_stat_merge(&to->empty_time, &from->empty_time);
731 #endif
735 * Transfer @cfqg's stats to its parent's dead_stats so that the ancestors'
736 * recursive stats can still account for the amount used by this cfqg after
737 * it's gone.
739 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
741 struct cfq_group *parent = cfqg_parent(cfqg);
743 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
745 if (unlikely(!parent))
746 return;
748 cfqg_stats_merge(&parent->dead_stats, &cfqg->stats);
749 cfqg_stats_merge(&parent->dead_stats, &cfqg->dead_stats);
750 cfqg_stats_reset(&cfqg->stats);
751 cfqg_stats_reset(&cfqg->dead_stats);
754 #else /* CONFIG_CFQ_GROUP_IOSCHED */
756 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
757 static inline void cfqg_get(struct cfq_group *cfqg) { }
758 static inline void cfqg_put(struct cfq_group *cfqg) { }
760 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
761 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
762 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
763 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
764 ##args)
765 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
767 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
768 struct cfq_group *curr_cfqg, int rw) { }
769 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
770 unsigned long time, unsigned long unaccounted_time) { }
771 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
772 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
773 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
774 uint64_t bytes, int rw) { }
775 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
776 uint64_t start_time, uint64_t io_start_time, int rw) { }
778 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
780 #define cfq_log(cfqd, fmt, args...) \
781 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
783 /* Traverses through cfq group service trees */
784 #define for_each_cfqg_st(cfqg, i, j, st) \
785 for (i = 0; i <= IDLE_WORKLOAD; i++) \
786 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
787 : &cfqg->service_tree_idle; \
788 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
789 (i == IDLE_WORKLOAD && j == 0); \
790 j++, st = i < IDLE_WORKLOAD ? \
791 &cfqg->service_trees[i][j]: NULL) \
793 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
794 struct cfq_ttime *ttime, bool group_idle)
796 unsigned long slice;
797 if (!sample_valid(ttime->ttime_samples))
798 return false;
799 if (group_idle)
800 slice = cfqd->cfq_group_idle;
801 else
802 slice = cfqd->cfq_slice_idle;
803 return ttime->ttime_mean > slice;
806 static inline bool iops_mode(struct cfq_data *cfqd)
809 * If we are not idling on queues and it is a NCQ drive, parallel
810 * execution of requests is on and measuring time is not possible
811 * in most of the cases until and unless we drive shallower queue
812 * depths and that becomes a performance bottleneck. In such cases
813 * switch to start providing fairness in terms of number of IOs.
815 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
816 return true;
817 else
818 return false;
821 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
823 if (cfq_class_idle(cfqq))
824 return IDLE_WORKLOAD;
825 if (cfq_class_rt(cfqq))
826 return RT_WORKLOAD;
827 return BE_WORKLOAD;
831 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
833 if (!cfq_cfqq_sync(cfqq))
834 return ASYNC_WORKLOAD;
835 if (!cfq_cfqq_idle_window(cfqq))
836 return SYNC_NOIDLE_WORKLOAD;
837 return SYNC_WORKLOAD;
840 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
841 struct cfq_data *cfqd,
842 struct cfq_group *cfqg)
844 if (wl_class == IDLE_WORKLOAD)
845 return cfqg->service_tree_idle.count;
847 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
848 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
849 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
852 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
853 struct cfq_group *cfqg)
855 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
856 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
859 static void cfq_dispatch_insert(struct request_queue *, struct request *);
860 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
861 struct cfq_io_cq *cic, struct bio *bio,
862 gfp_t gfp_mask);
864 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
866 /* cic->icq is the first member, %NULL will convert to %NULL */
867 return container_of(icq, struct cfq_io_cq, icq);
870 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
871 struct io_context *ioc)
873 if (ioc)
874 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
875 return NULL;
878 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
880 return cic->cfqq[is_sync];
883 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
884 bool is_sync)
886 cic->cfqq[is_sync] = cfqq;
889 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
891 return cic->icq.q->elevator->elevator_data;
895 * We regard a request as SYNC, if it's either a read or has the SYNC bit
896 * set (in which case it could also be direct WRITE).
898 static inline bool cfq_bio_sync(struct bio *bio)
900 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
904 * scheduler run of queue, if there are requests pending and no one in the
905 * driver that will restart queueing
907 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
909 if (cfqd->busy_queues) {
910 cfq_log(cfqd, "schedule dispatch");
911 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
916 * Scale schedule slice based on io priority. Use the sync time slice only
917 * if a queue is marked sync and has sync io queued. A sync queue with async
918 * io only, should not get full sync slice length.
920 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
921 unsigned short prio)
923 const int base_slice = cfqd->cfq_slice[sync];
925 WARN_ON(prio >= IOPRIO_BE_NR);
927 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
930 static inline int
931 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
933 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
937 * cfqg_scale_charge - scale disk time charge according to cfqg weight
938 * @charge: disk time being charged
939 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
941 * Scale @charge according to @vfraction, which is in range (0, 1]. The
942 * scaling is inversely proportional.
944 * scaled = charge / vfraction
946 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
948 static inline u64 cfqg_scale_charge(unsigned long charge,
949 unsigned int vfraction)
951 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
953 /* charge / vfraction */
954 c <<= CFQ_SERVICE_SHIFT;
955 do_div(c, vfraction);
956 return c;
959 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
961 s64 delta = (s64)(vdisktime - min_vdisktime);
962 if (delta > 0)
963 min_vdisktime = vdisktime;
965 return min_vdisktime;
968 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
970 s64 delta = (s64)(vdisktime - min_vdisktime);
971 if (delta < 0)
972 min_vdisktime = vdisktime;
974 return min_vdisktime;
977 static void update_min_vdisktime(struct cfq_rb_root *st)
979 struct cfq_group *cfqg;
981 if (st->left) {
982 cfqg = rb_entry_cfqg(st->left);
983 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
984 cfqg->vdisktime);
989 * get averaged number of queues of RT/BE priority.
990 * average is updated, with a formula that gives more weight to higher numbers,
991 * to quickly follows sudden increases and decrease slowly
994 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
995 struct cfq_group *cfqg, bool rt)
997 unsigned min_q, max_q;
998 unsigned mult = cfq_hist_divisor - 1;
999 unsigned round = cfq_hist_divisor / 2;
1000 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1002 min_q = min(cfqg->busy_queues_avg[rt], busy);
1003 max_q = max(cfqg->busy_queues_avg[rt], busy);
1004 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1005 cfq_hist_divisor;
1006 return cfqg->busy_queues_avg[rt];
1009 static inline unsigned
1010 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1012 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1015 static inline unsigned
1016 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1018 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
1019 if (cfqd->cfq_latency) {
1021 * interested queues (we consider only the ones with the same
1022 * priority class in the cfq group)
1024 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1025 cfq_class_rt(cfqq));
1026 unsigned sync_slice = cfqd->cfq_slice[1];
1027 unsigned expect_latency = sync_slice * iq;
1028 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1030 if (expect_latency > group_slice) {
1031 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1032 /* scale low_slice according to IO priority
1033 * and sync vs async */
1034 unsigned low_slice =
1035 min(slice, base_low_slice * slice / sync_slice);
1036 /* the adapted slice value is scaled to fit all iqs
1037 * into the target latency */
1038 slice = max(slice * group_slice / expect_latency,
1039 low_slice);
1042 return slice;
1045 static inline void
1046 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1048 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1050 cfqq->slice_start = jiffies;
1051 cfqq->slice_end = jiffies + slice;
1052 cfqq->allocated_slice = slice;
1053 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1057 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1058 * isn't valid until the first request from the dispatch is activated
1059 * and the slice time set.
1061 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1063 if (cfq_cfqq_slice_new(cfqq))
1064 return false;
1065 if (time_before(jiffies, cfqq->slice_end))
1066 return false;
1068 return true;
1072 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1073 * We choose the request that is closest to the head right now. Distance
1074 * behind the head is penalized and only allowed to a certain extent.
1076 static struct request *
1077 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1079 sector_t s1, s2, d1 = 0, d2 = 0;
1080 unsigned long back_max;
1081 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1082 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1083 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1085 if (rq1 == NULL || rq1 == rq2)
1086 return rq2;
1087 if (rq2 == NULL)
1088 return rq1;
1090 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1091 return rq_is_sync(rq1) ? rq1 : rq2;
1093 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1094 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1096 s1 = blk_rq_pos(rq1);
1097 s2 = blk_rq_pos(rq2);
1100 * by definition, 1KiB is 2 sectors
1102 back_max = cfqd->cfq_back_max * 2;
1105 * Strict one way elevator _except_ in the case where we allow
1106 * short backward seeks which are biased as twice the cost of a
1107 * similar forward seek.
1109 if (s1 >= last)
1110 d1 = s1 - last;
1111 else if (s1 + back_max >= last)
1112 d1 = (last - s1) * cfqd->cfq_back_penalty;
1113 else
1114 wrap |= CFQ_RQ1_WRAP;
1116 if (s2 >= last)
1117 d2 = s2 - last;
1118 else if (s2 + back_max >= last)
1119 d2 = (last - s2) * cfqd->cfq_back_penalty;
1120 else
1121 wrap |= CFQ_RQ2_WRAP;
1123 /* Found required data */
1126 * By doing switch() on the bit mask "wrap" we avoid having to
1127 * check two variables for all permutations: --> faster!
1129 switch (wrap) {
1130 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1131 if (d1 < d2)
1132 return rq1;
1133 else if (d2 < d1)
1134 return rq2;
1135 else {
1136 if (s1 >= s2)
1137 return rq1;
1138 else
1139 return rq2;
1142 case CFQ_RQ2_WRAP:
1143 return rq1;
1144 case CFQ_RQ1_WRAP:
1145 return rq2;
1146 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1147 default:
1149 * Since both rqs are wrapped,
1150 * start with the one that's further behind head
1151 * (--> only *one* back seek required),
1152 * since back seek takes more time than forward.
1154 if (s1 <= s2)
1155 return rq1;
1156 else
1157 return rq2;
1162 * The below is leftmost cache rbtree addon
1164 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1166 /* Service tree is empty */
1167 if (!root->count)
1168 return NULL;
1170 if (!root->left)
1171 root->left = rb_first(&root->rb);
1173 if (root->left)
1174 return rb_entry(root->left, struct cfq_queue, rb_node);
1176 return NULL;
1179 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1181 if (!root->left)
1182 root->left = rb_first(&root->rb);
1184 if (root->left)
1185 return rb_entry_cfqg(root->left);
1187 return NULL;
1190 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1192 rb_erase(n, root);
1193 RB_CLEAR_NODE(n);
1196 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1198 if (root->left == n)
1199 root->left = NULL;
1200 rb_erase_init(n, &root->rb);
1201 --root->count;
1205 * would be nice to take fifo expire time into account as well
1207 static struct request *
1208 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1209 struct request *last)
1211 struct rb_node *rbnext = rb_next(&last->rb_node);
1212 struct rb_node *rbprev = rb_prev(&last->rb_node);
1213 struct request *next = NULL, *prev = NULL;
1215 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1217 if (rbprev)
1218 prev = rb_entry_rq(rbprev);
1220 if (rbnext)
1221 next = rb_entry_rq(rbnext);
1222 else {
1223 rbnext = rb_first(&cfqq->sort_list);
1224 if (rbnext && rbnext != &last->rb_node)
1225 next = rb_entry_rq(rbnext);
1228 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1231 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1232 struct cfq_queue *cfqq)
1235 * just an approximation, should be ok.
1237 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1238 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1241 static inline s64
1242 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1244 return cfqg->vdisktime - st->min_vdisktime;
1247 static void
1248 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1250 struct rb_node **node = &st->rb.rb_node;
1251 struct rb_node *parent = NULL;
1252 struct cfq_group *__cfqg;
1253 s64 key = cfqg_key(st, cfqg);
1254 int left = 1;
1256 while (*node != NULL) {
1257 parent = *node;
1258 __cfqg = rb_entry_cfqg(parent);
1260 if (key < cfqg_key(st, __cfqg))
1261 node = &parent->rb_left;
1262 else {
1263 node = &parent->rb_right;
1264 left = 0;
1268 if (left)
1269 st->left = &cfqg->rb_node;
1271 rb_link_node(&cfqg->rb_node, parent, node);
1272 rb_insert_color(&cfqg->rb_node, &st->rb);
1275 static void
1276 cfq_update_group_weight(struct cfq_group *cfqg)
1278 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1280 if (cfqg->new_weight) {
1281 cfqg->weight = cfqg->new_weight;
1282 cfqg->new_weight = 0;
1285 if (cfqg->new_leaf_weight) {
1286 cfqg->leaf_weight = cfqg->new_leaf_weight;
1287 cfqg->new_leaf_weight = 0;
1291 static void
1292 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1294 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1295 struct cfq_group *pos = cfqg;
1296 struct cfq_group *parent;
1297 bool propagate;
1299 /* add to the service tree */
1300 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1302 cfq_update_group_weight(cfqg);
1303 __cfq_group_service_tree_add(st, cfqg);
1306 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1307 * entitled to. vfraction is calculated by walking the tree
1308 * towards the root calculating the fraction it has at each level.
1309 * The compounded ratio is how much vfraction @cfqg owns.
1311 * Start with the proportion tasks in this cfqg has against active
1312 * children cfqgs - its leaf_weight against children_weight.
1314 propagate = !pos->nr_active++;
1315 pos->children_weight += pos->leaf_weight;
1316 vfr = vfr * pos->leaf_weight / pos->children_weight;
1319 * Compound ->weight walking up the tree. Both activation and
1320 * vfraction calculation are done in the same loop. Propagation
1321 * stops once an already activated node is met. vfraction
1322 * calculation should always continue to the root.
1324 while ((parent = cfqg_parent(pos))) {
1325 if (propagate) {
1326 propagate = !parent->nr_active++;
1327 parent->children_weight += pos->weight;
1329 vfr = vfr * pos->weight / parent->children_weight;
1330 pos = parent;
1333 cfqg->vfraction = max_t(unsigned, vfr, 1);
1336 static void
1337 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1339 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1340 struct cfq_group *__cfqg;
1341 struct rb_node *n;
1343 cfqg->nr_cfqq++;
1344 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1345 return;
1348 * Currently put the group at the end. Later implement something
1349 * so that groups get lesser vtime based on their weights, so that
1350 * if group does not loose all if it was not continuously backlogged.
1352 n = rb_last(&st->rb);
1353 if (n) {
1354 __cfqg = rb_entry_cfqg(n);
1355 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1356 } else
1357 cfqg->vdisktime = st->min_vdisktime;
1358 cfq_group_service_tree_add(st, cfqg);
1361 static void
1362 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1364 struct cfq_group *pos = cfqg;
1365 bool propagate;
1368 * Undo activation from cfq_group_service_tree_add(). Deactivate
1369 * @cfqg and propagate deactivation upwards.
1371 propagate = !--pos->nr_active;
1372 pos->children_weight -= pos->leaf_weight;
1374 while (propagate) {
1375 struct cfq_group *parent = cfqg_parent(pos);
1377 /* @pos has 0 nr_active at this point */
1378 WARN_ON_ONCE(pos->children_weight);
1379 pos->vfraction = 0;
1381 if (!parent)
1382 break;
1384 propagate = !--parent->nr_active;
1385 parent->children_weight -= pos->weight;
1386 pos = parent;
1389 /* remove from the service tree */
1390 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1391 cfq_rb_erase(&cfqg->rb_node, st);
1394 static void
1395 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1397 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1399 BUG_ON(cfqg->nr_cfqq < 1);
1400 cfqg->nr_cfqq--;
1402 /* If there are other cfq queues under this group, don't delete it */
1403 if (cfqg->nr_cfqq)
1404 return;
1406 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1407 cfq_group_service_tree_del(st, cfqg);
1408 cfqg->saved_wl_slice = 0;
1409 cfqg_stats_update_dequeue(cfqg);
1412 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1413 unsigned int *unaccounted_time)
1415 unsigned int slice_used;
1418 * Queue got expired before even a single request completed or
1419 * got expired immediately after first request completion.
1421 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1423 * Also charge the seek time incurred to the group, otherwise
1424 * if there are mutiple queues in the group, each can dispatch
1425 * a single request on seeky media and cause lots of seek time
1426 * and group will never know it.
1428 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1430 } else {
1431 slice_used = jiffies - cfqq->slice_start;
1432 if (slice_used > cfqq->allocated_slice) {
1433 *unaccounted_time = slice_used - cfqq->allocated_slice;
1434 slice_used = cfqq->allocated_slice;
1436 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1437 *unaccounted_time += cfqq->slice_start -
1438 cfqq->dispatch_start;
1441 return slice_used;
1444 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1445 struct cfq_queue *cfqq)
1447 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1448 unsigned int used_sl, charge, unaccounted_sl = 0;
1449 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1450 - cfqg->service_tree_idle.count;
1451 unsigned int vfr;
1453 BUG_ON(nr_sync < 0);
1454 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1456 if (iops_mode(cfqd))
1457 charge = cfqq->slice_dispatch;
1458 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1459 charge = cfqq->allocated_slice;
1462 * Can't update vdisktime while on service tree and cfqg->vfraction
1463 * is valid only while on it. Cache vfr, leave the service tree,
1464 * update vdisktime and go back on. The re-addition to the tree
1465 * will also update the weights as necessary.
1467 vfr = cfqg->vfraction;
1468 cfq_group_service_tree_del(st, cfqg);
1469 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1470 cfq_group_service_tree_add(st, cfqg);
1472 /* This group is being expired. Save the context */
1473 if (time_after(cfqd->workload_expires, jiffies)) {
1474 cfqg->saved_wl_slice = cfqd->workload_expires
1475 - jiffies;
1476 cfqg->saved_wl_type = cfqd->serving_wl_type;
1477 cfqg->saved_wl_class = cfqd->serving_wl_class;
1478 } else
1479 cfqg->saved_wl_slice = 0;
1481 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1482 st->min_vdisktime);
1483 cfq_log_cfqq(cfqq->cfqd, cfqq,
1484 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1485 used_sl, cfqq->slice_dispatch, charge,
1486 iops_mode(cfqd), cfqq->nr_sectors);
1487 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1488 cfqg_stats_set_start_empty_time(cfqg);
1492 * cfq_init_cfqg_base - initialize base part of a cfq_group
1493 * @cfqg: cfq_group to initialize
1495 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1496 * is enabled or not.
1498 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1500 struct cfq_rb_root *st;
1501 int i, j;
1503 for_each_cfqg_st(cfqg, i, j, st)
1504 *st = CFQ_RB_ROOT;
1505 RB_CLEAR_NODE(&cfqg->rb_node);
1507 cfqg->ttime.last_end_request = jiffies;
1510 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1511 static void cfq_pd_init(struct blkcg_gq *blkg)
1513 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1515 cfq_init_cfqg_base(cfqg);
1516 cfqg->weight = blkg->blkcg->cfq_weight;
1517 cfqg->leaf_weight = blkg->blkcg->cfq_leaf_weight;
1520 static void cfq_pd_offline(struct blkcg_gq *blkg)
1523 * @blkg is going offline and will be ignored by
1524 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1525 * that they don't get lost. If IOs complete after this point, the
1526 * stats for them will be lost. Oh well...
1528 cfqg_stats_xfer_dead(blkg_to_cfqg(blkg));
1531 /* offset delta from cfqg->stats to cfqg->dead_stats */
1532 static const int dead_stats_off_delta = offsetof(struct cfq_group, dead_stats) -
1533 offsetof(struct cfq_group, stats);
1535 /* to be used by recursive prfill, sums live and dead stats recursively */
1536 static u64 cfqg_stat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
1538 u64 sum = 0;
1540 sum += blkg_stat_recursive_sum(pd, off);
1541 sum += blkg_stat_recursive_sum(pd, off + dead_stats_off_delta);
1542 return sum;
1545 /* to be used by recursive prfill, sums live and dead rwstats recursively */
1546 static struct blkg_rwstat cfqg_rwstat_pd_recursive_sum(struct blkg_policy_data *pd,
1547 int off)
1549 struct blkg_rwstat a, b;
1551 a = blkg_rwstat_recursive_sum(pd, off);
1552 b = blkg_rwstat_recursive_sum(pd, off + dead_stats_off_delta);
1553 blkg_rwstat_merge(&a, &b);
1554 return a;
1557 static void cfq_pd_reset_stats(struct blkcg_gq *blkg)
1559 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1561 cfqg_stats_reset(&cfqg->stats);
1562 cfqg_stats_reset(&cfqg->dead_stats);
1566 * Search for the cfq group current task belongs to. request_queue lock must
1567 * be held.
1569 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1570 struct blkcg *blkcg)
1572 struct request_queue *q = cfqd->queue;
1573 struct cfq_group *cfqg = NULL;
1575 /* avoid lookup for the common case where there's no blkcg */
1576 if (blkcg == &blkcg_root) {
1577 cfqg = cfqd->root_group;
1578 } else {
1579 struct blkcg_gq *blkg;
1581 blkg = blkg_lookup_create(blkcg, q);
1582 if (!IS_ERR(blkg))
1583 cfqg = blkg_to_cfqg(blkg);
1586 return cfqg;
1589 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1591 /* Currently, all async queues are mapped to root group */
1592 if (!cfq_cfqq_sync(cfqq))
1593 cfqg = cfqq->cfqd->root_group;
1595 cfqq->cfqg = cfqg;
1596 /* cfqq reference on cfqg */
1597 cfqg_get(cfqg);
1600 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1601 struct blkg_policy_data *pd, int off)
1603 struct cfq_group *cfqg = pd_to_cfqg(pd);
1605 if (!cfqg->dev_weight)
1606 return 0;
1607 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1610 static int cfqg_print_weight_device(struct cgroup *cgrp, struct cftype *cft,
1611 struct seq_file *sf)
1613 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),
1614 cfqg_prfill_weight_device, &blkcg_policy_cfq, 0,
1615 false);
1616 return 0;
1619 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1620 struct blkg_policy_data *pd, int off)
1622 struct cfq_group *cfqg = pd_to_cfqg(pd);
1624 if (!cfqg->dev_leaf_weight)
1625 return 0;
1626 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1629 static int cfqg_print_leaf_weight_device(struct cgroup *cgrp,
1630 struct cftype *cft,
1631 struct seq_file *sf)
1633 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),
1634 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq, 0,
1635 false);
1636 return 0;
1639 static int cfq_print_weight(struct cgroup *cgrp, struct cftype *cft,
1640 struct seq_file *sf)
1642 seq_printf(sf, "%u\n", cgroup_to_blkcg(cgrp)->cfq_weight);
1643 return 0;
1646 static int cfq_print_leaf_weight(struct cgroup *cgrp, struct cftype *cft,
1647 struct seq_file *sf)
1649 seq_printf(sf, "%u\n",
1650 cgroup_to_blkcg(cgrp)->cfq_leaf_weight);
1651 return 0;
1654 static int __cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
1655 const char *buf, bool is_leaf_weight)
1657 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1658 struct blkg_conf_ctx ctx;
1659 struct cfq_group *cfqg;
1660 int ret;
1662 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1663 if (ret)
1664 return ret;
1666 ret = -EINVAL;
1667 cfqg = blkg_to_cfqg(ctx.blkg);
1668 if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1669 if (!is_leaf_weight) {
1670 cfqg->dev_weight = ctx.v;
1671 cfqg->new_weight = ctx.v ?: blkcg->cfq_weight;
1672 } else {
1673 cfqg->dev_leaf_weight = ctx.v;
1674 cfqg->new_leaf_weight = ctx.v ?: blkcg->cfq_leaf_weight;
1676 ret = 0;
1679 blkg_conf_finish(&ctx);
1680 return ret;
1683 static int cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
1684 const char *buf)
1686 return __cfqg_set_weight_device(cgrp, cft, buf, false);
1689 static int cfqg_set_leaf_weight_device(struct cgroup *cgrp, struct cftype *cft,
1690 const char *buf)
1692 return __cfqg_set_weight_device(cgrp, cft, buf, true);
1695 static int __cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val,
1696 bool is_leaf_weight)
1698 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1699 struct blkcg_gq *blkg;
1701 if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1702 return -EINVAL;
1704 spin_lock_irq(&blkcg->lock);
1706 if (!is_leaf_weight)
1707 blkcg->cfq_weight = val;
1708 else
1709 blkcg->cfq_leaf_weight = val;
1711 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1712 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1714 if (!cfqg)
1715 continue;
1717 if (!is_leaf_weight) {
1718 if (!cfqg->dev_weight)
1719 cfqg->new_weight = blkcg->cfq_weight;
1720 } else {
1721 if (!cfqg->dev_leaf_weight)
1722 cfqg->new_leaf_weight = blkcg->cfq_leaf_weight;
1726 spin_unlock_irq(&blkcg->lock);
1727 return 0;
1730 static int cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
1732 return __cfq_set_weight(cgrp, cft, val, false);
1735 static int cfq_set_leaf_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
1737 return __cfq_set_weight(cgrp, cft, val, true);
1740 static int cfqg_print_stat(struct cgroup *cgrp, struct cftype *cft,
1741 struct seq_file *sf)
1743 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1745 blkcg_print_blkgs(sf, blkcg, blkg_prfill_stat, &blkcg_policy_cfq,
1746 cft->private, false);
1747 return 0;
1750 static int cfqg_print_rwstat(struct cgroup *cgrp, struct cftype *cft,
1751 struct seq_file *sf)
1753 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1755 blkcg_print_blkgs(sf, blkcg, blkg_prfill_rwstat, &blkcg_policy_cfq,
1756 cft->private, true);
1757 return 0;
1760 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1761 struct blkg_policy_data *pd, int off)
1763 u64 sum = cfqg_stat_pd_recursive_sum(pd, off);
1765 return __blkg_prfill_u64(sf, pd, sum);
1768 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1769 struct blkg_policy_data *pd, int off)
1771 struct blkg_rwstat sum = cfqg_rwstat_pd_recursive_sum(pd, off);
1773 return __blkg_prfill_rwstat(sf, pd, &sum);
1776 static int cfqg_print_stat_recursive(struct cgroup *cgrp, struct cftype *cft,
1777 struct seq_file *sf)
1779 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1781 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_stat_recursive,
1782 &blkcg_policy_cfq, cft->private, false);
1783 return 0;
1786 static int cfqg_print_rwstat_recursive(struct cgroup *cgrp, struct cftype *cft,
1787 struct seq_file *sf)
1789 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1791 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_rwstat_recursive,
1792 &blkcg_policy_cfq, cft->private, true);
1793 return 0;
1796 #ifdef CONFIG_DEBUG_BLK_CGROUP
1797 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1798 struct blkg_policy_data *pd, int off)
1800 struct cfq_group *cfqg = pd_to_cfqg(pd);
1801 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1802 u64 v = 0;
1804 if (samples) {
1805 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1806 do_div(v, samples);
1808 __blkg_prfill_u64(sf, pd, v);
1809 return 0;
1812 /* print avg_queue_size */
1813 static int cfqg_print_avg_queue_size(struct cgroup *cgrp, struct cftype *cft,
1814 struct seq_file *sf)
1816 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1818 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_avg_queue_size,
1819 &blkcg_policy_cfq, 0, false);
1820 return 0;
1822 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1824 static struct cftype cfq_blkcg_files[] = {
1825 /* on root, weight is mapped to leaf_weight */
1827 .name = "weight_device",
1828 .flags = CFTYPE_ONLY_ON_ROOT,
1829 .read_seq_string = cfqg_print_leaf_weight_device,
1830 .write_string = cfqg_set_leaf_weight_device,
1831 .max_write_len = 256,
1834 .name = "weight",
1835 .flags = CFTYPE_ONLY_ON_ROOT,
1836 .read_seq_string = cfq_print_leaf_weight,
1837 .write_u64 = cfq_set_leaf_weight,
1840 /* no such mapping necessary for !roots */
1842 .name = "weight_device",
1843 .flags = CFTYPE_NOT_ON_ROOT,
1844 .read_seq_string = cfqg_print_weight_device,
1845 .write_string = cfqg_set_weight_device,
1846 .max_write_len = 256,
1849 .name = "weight",
1850 .flags = CFTYPE_NOT_ON_ROOT,
1851 .read_seq_string = cfq_print_weight,
1852 .write_u64 = cfq_set_weight,
1856 .name = "leaf_weight_device",
1857 .read_seq_string = cfqg_print_leaf_weight_device,
1858 .write_string = cfqg_set_leaf_weight_device,
1859 .max_write_len = 256,
1862 .name = "leaf_weight",
1863 .read_seq_string = cfq_print_leaf_weight,
1864 .write_u64 = cfq_set_leaf_weight,
1867 /* statistics, covers only the tasks in the cfqg */
1869 .name = "time",
1870 .private = offsetof(struct cfq_group, stats.time),
1871 .read_seq_string = cfqg_print_stat,
1874 .name = "sectors",
1875 .private = offsetof(struct cfq_group, stats.sectors),
1876 .read_seq_string = cfqg_print_stat,
1879 .name = "io_service_bytes",
1880 .private = offsetof(struct cfq_group, stats.service_bytes),
1881 .read_seq_string = cfqg_print_rwstat,
1884 .name = "io_serviced",
1885 .private = offsetof(struct cfq_group, stats.serviced),
1886 .read_seq_string = cfqg_print_rwstat,
1889 .name = "io_service_time",
1890 .private = offsetof(struct cfq_group, stats.service_time),
1891 .read_seq_string = cfqg_print_rwstat,
1894 .name = "io_wait_time",
1895 .private = offsetof(struct cfq_group, stats.wait_time),
1896 .read_seq_string = cfqg_print_rwstat,
1899 .name = "io_merged",
1900 .private = offsetof(struct cfq_group, stats.merged),
1901 .read_seq_string = cfqg_print_rwstat,
1904 .name = "io_queued",
1905 .private = offsetof(struct cfq_group, stats.queued),
1906 .read_seq_string = cfqg_print_rwstat,
1909 /* the same statictics which cover the cfqg and its descendants */
1911 .name = "time_recursive",
1912 .private = offsetof(struct cfq_group, stats.time),
1913 .read_seq_string = cfqg_print_stat_recursive,
1916 .name = "sectors_recursive",
1917 .private = offsetof(struct cfq_group, stats.sectors),
1918 .read_seq_string = cfqg_print_stat_recursive,
1921 .name = "io_service_bytes_recursive",
1922 .private = offsetof(struct cfq_group, stats.service_bytes),
1923 .read_seq_string = cfqg_print_rwstat_recursive,
1926 .name = "io_serviced_recursive",
1927 .private = offsetof(struct cfq_group, stats.serviced),
1928 .read_seq_string = cfqg_print_rwstat_recursive,
1931 .name = "io_service_time_recursive",
1932 .private = offsetof(struct cfq_group, stats.service_time),
1933 .read_seq_string = cfqg_print_rwstat_recursive,
1936 .name = "io_wait_time_recursive",
1937 .private = offsetof(struct cfq_group, stats.wait_time),
1938 .read_seq_string = cfqg_print_rwstat_recursive,
1941 .name = "io_merged_recursive",
1942 .private = offsetof(struct cfq_group, stats.merged),
1943 .read_seq_string = cfqg_print_rwstat_recursive,
1946 .name = "io_queued_recursive",
1947 .private = offsetof(struct cfq_group, stats.queued),
1948 .read_seq_string = cfqg_print_rwstat_recursive,
1950 #ifdef CONFIG_DEBUG_BLK_CGROUP
1952 .name = "avg_queue_size",
1953 .read_seq_string = cfqg_print_avg_queue_size,
1956 .name = "group_wait_time",
1957 .private = offsetof(struct cfq_group, stats.group_wait_time),
1958 .read_seq_string = cfqg_print_stat,
1961 .name = "idle_time",
1962 .private = offsetof(struct cfq_group, stats.idle_time),
1963 .read_seq_string = cfqg_print_stat,
1966 .name = "empty_time",
1967 .private = offsetof(struct cfq_group, stats.empty_time),
1968 .read_seq_string = cfqg_print_stat,
1971 .name = "dequeue",
1972 .private = offsetof(struct cfq_group, stats.dequeue),
1973 .read_seq_string = cfqg_print_stat,
1976 .name = "unaccounted_time",
1977 .private = offsetof(struct cfq_group, stats.unaccounted_time),
1978 .read_seq_string = cfqg_print_stat,
1980 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1981 { } /* terminate */
1983 #else /* GROUP_IOSCHED */
1984 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1985 struct blkcg *blkcg)
1987 return cfqd->root_group;
1990 static inline void
1991 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1992 cfqq->cfqg = cfqg;
1995 #endif /* GROUP_IOSCHED */
1998 * The cfqd->service_trees holds all pending cfq_queue's that have
1999 * requests waiting to be processed. It is sorted in the order that
2000 * we will service the queues.
2002 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2003 bool add_front)
2005 struct rb_node **p, *parent;
2006 struct cfq_queue *__cfqq;
2007 unsigned long rb_key;
2008 struct cfq_rb_root *st;
2009 int left;
2010 int new_cfqq = 1;
2012 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2013 if (cfq_class_idle(cfqq)) {
2014 rb_key = CFQ_IDLE_DELAY;
2015 parent = rb_last(&st->rb);
2016 if (parent && parent != &cfqq->rb_node) {
2017 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2018 rb_key += __cfqq->rb_key;
2019 } else
2020 rb_key += jiffies;
2021 } else if (!add_front) {
2023 * Get our rb key offset. Subtract any residual slice
2024 * value carried from last service. A negative resid
2025 * count indicates slice overrun, and this should position
2026 * the next service time further away in the tree.
2028 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
2029 rb_key -= cfqq->slice_resid;
2030 cfqq->slice_resid = 0;
2031 } else {
2032 rb_key = -HZ;
2033 __cfqq = cfq_rb_first(st);
2034 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
2037 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2038 new_cfqq = 0;
2040 * same position, nothing more to do
2042 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2043 return;
2045 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2046 cfqq->service_tree = NULL;
2049 left = 1;
2050 parent = NULL;
2051 cfqq->service_tree = st;
2052 p = &st->rb.rb_node;
2053 while (*p) {
2054 parent = *p;
2055 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2058 * sort by key, that represents service time.
2060 if (time_before(rb_key, __cfqq->rb_key))
2061 p = &parent->rb_left;
2062 else {
2063 p = &parent->rb_right;
2064 left = 0;
2068 if (left)
2069 st->left = &cfqq->rb_node;
2071 cfqq->rb_key = rb_key;
2072 rb_link_node(&cfqq->rb_node, parent, p);
2073 rb_insert_color(&cfqq->rb_node, &st->rb);
2074 st->count++;
2075 if (add_front || !new_cfqq)
2076 return;
2077 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2080 static struct cfq_queue *
2081 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2082 sector_t sector, struct rb_node **ret_parent,
2083 struct rb_node ***rb_link)
2085 struct rb_node **p, *parent;
2086 struct cfq_queue *cfqq = NULL;
2088 parent = NULL;
2089 p = &root->rb_node;
2090 while (*p) {
2091 struct rb_node **n;
2093 parent = *p;
2094 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2097 * Sort strictly based on sector. Smallest to the left,
2098 * largest to the right.
2100 if (sector > blk_rq_pos(cfqq->next_rq))
2101 n = &(*p)->rb_right;
2102 else if (sector < blk_rq_pos(cfqq->next_rq))
2103 n = &(*p)->rb_left;
2104 else
2105 break;
2106 p = n;
2107 cfqq = NULL;
2110 *ret_parent = parent;
2111 if (rb_link)
2112 *rb_link = p;
2113 return cfqq;
2116 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2118 struct rb_node **p, *parent;
2119 struct cfq_queue *__cfqq;
2121 if (cfqq->p_root) {
2122 rb_erase(&cfqq->p_node, cfqq->p_root);
2123 cfqq->p_root = NULL;
2126 if (cfq_class_idle(cfqq))
2127 return;
2128 if (!cfqq->next_rq)
2129 return;
2131 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2132 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2133 blk_rq_pos(cfqq->next_rq), &parent, &p);
2134 if (!__cfqq) {
2135 rb_link_node(&cfqq->p_node, parent, p);
2136 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2137 } else
2138 cfqq->p_root = NULL;
2142 * Update cfqq's position in the service tree.
2144 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2147 * Resorting requires the cfqq to be on the RR list already.
2149 if (cfq_cfqq_on_rr(cfqq)) {
2150 cfq_service_tree_add(cfqd, cfqq, 0);
2151 cfq_prio_tree_add(cfqd, cfqq);
2156 * add to busy list of queues for service, trying to be fair in ordering
2157 * the pending list according to last request service
2159 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2161 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2162 BUG_ON(cfq_cfqq_on_rr(cfqq));
2163 cfq_mark_cfqq_on_rr(cfqq);
2164 cfqd->busy_queues++;
2165 if (cfq_cfqq_sync(cfqq))
2166 cfqd->busy_sync_queues++;
2168 cfq_resort_rr_list(cfqd, cfqq);
2172 * Called when the cfqq no longer has requests pending, remove it from
2173 * the service tree.
2175 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2177 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2178 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2179 cfq_clear_cfqq_on_rr(cfqq);
2181 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2182 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2183 cfqq->service_tree = NULL;
2185 if (cfqq->p_root) {
2186 rb_erase(&cfqq->p_node, cfqq->p_root);
2187 cfqq->p_root = NULL;
2190 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2191 BUG_ON(!cfqd->busy_queues);
2192 cfqd->busy_queues--;
2193 if (cfq_cfqq_sync(cfqq))
2194 cfqd->busy_sync_queues--;
2198 * rb tree support functions
2200 static void cfq_del_rq_rb(struct request *rq)
2202 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2203 const int sync = rq_is_sync(rq);
2205 BUG_ON(!cfqq->queued[sync]);
2206 cfqq->queued[sync]--;
2208 elv_rb_del(&cfqq->sort_list, rq);
2210 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2212 * Queue will be deleted from service tree when we actually
2213 * expire it later. Right now just remove it from prio tree
2214 * as it is empty.
2216 if (cfqq->p_root) {
2217 rb_erase(&cfqq->p_node, cfqq->p_root);
2218 cfqq->p_root = NULL;
2223 static void cfq_add_rq_rb(struct request *rq)
2225 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2226 struct cfq_data *cfqd = cfqq->cfqd;
2227 struct request *prev;
2229 cfqq->queued[rq_is_sync(rq)]++;
2231 elv_rb_add(&cfqq->sort_list, rq);
2233 if (!cfq_cfqq_on_rr(cfqq))
2234 cfq_add_cfqq_rr(cfqd, cfqq);
2237 * check if this request is a better next-serve candidate
2239 prev = cfqq->next_rq;
2240 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2243 * adjust priority tree position, if ->next_rq changes
2245 if (prev != cfqq->next_rq)
2246 cfq_prio_tree_add(cfqd, cfqq);
2248 BUG_ON(!cfqq->next_rq);
2251 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2253 elv_rb_del(&cfqq->sort_list, rq);
2254 cfqq->queued[rq_is_sync(rq)]--;
2255 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2256 cfq_add_rq_rb(rq);
2257 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2258 rq->cmd_flags);
2261 static struct request *
2262 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2264 struct task_struct *tsk = current;
2265 struct cfq_io_cq *cic;
2266 struct cfq_queue *cfqq;
2268 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2269 if (!cic)
2270 return NULL;
2272 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2273 if (cfqq)
2274 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2276 return NULL;
2279 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2281 struct cfq_data *cfqd = q->elevator->elevator_data;
2283 cfqd->rq_in_driver++;
2284 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2285 cfqd->rq_in_driver);
2287 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2290 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2292 struct cfq_data *cfqd = q->elevator->elevator_data;
2294 WARN_ON(!cfqd->rq_in_driver);
2295 cfqd->rq_in_driver--;
2296 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2297 cfqd->rq_in_driver);
2300 static void cfq_remove_request(struct request *rq)
2302 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2304 if (cfqq->next_rq == rq)
2305 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2307 list_del_init(&rq->queuelist);
2308 cfq_del_rq_rb(rq);
2310 cfqq->cfqd->rq_queued--;
2311 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2312 if (rq->cmd_flags & REQ_PRIO) {
2313 WARN_ON(!cfqq->prio_pending);
2314 cfqq->prio_pending--;
2318 static int cfq_merge(struct request_queue *q, struct request **req,
2319 struct bio *bio)
2321 struct cfq_data *cfqd = q->elevator->elevator_data;
2322 struct request *__rq;
2324 __rq = cfq_find_rq_fmerge(cfqd, bio);
2325 if (__rq && elv_rq_merge_ok(__rq, bio)) {
2326 *req = __rq;
2327 return ELEVATOR_FRONT_MERGE;
2330 return ELEVATOR_NO_MERGE;
2333 static void cfq_merged_request(struct request_queue *q, struct request *req,
2334 int type)
2336 if (type == ELEVATOR_FRONT_MERGE) {
2337 struct cfq_queue *cfqq = RQ_CFQQ(req);
2339 cfq_reposition_rq_rb(cfqq, req);
2343 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2344 struct bio *bio)
2346 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2349 static void
2350 cfq_merged_requests(struct request_queue *q, struct request *rq,
2351 struct request *next)
2353 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2354 struct cfq_data *cfqd = q->elevator->elevator_data;
2357 * reposition in fifo if next is older than rq
2359 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2360 time_before(rq_fifo_time(next), rq_fifo_time(rq)) &&
2361 cfqq == RQ_CFQQ(next)) {
2362 list_move(&rq->queuelist, &next->queuelist);
2363 rq_set_fifo_time(rq, rq_fifo_time(next));
2366 if (cfqq->next_rq == next)
2367 cfqq->next_rq = rq;
2368 cfq_remove_request(next);
2369 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2371 cfqq = RQ_CFQQ(next);
2373 * all requests of this queue are merged to other queues, delete it
2374 * from the service tree. If it's the active_queue,
2375 * cfq_dispatch_requests() will choose to expire it or do idle
2377 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2378 cfqq != cfqd->active_queue)
2379 cfq_del_cfqq_rr(cfqd, cfqq);
2382 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2383 struct bio *bio)
2385 struct cfq_data *cfqd = q->elevator->elevator_data;
2386 struct cfq_io_cq *cic;
2387 struct cfq_queue *cfqq;
2390 * Disallow merge of a sync bio into an async request.
2392 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2393 return false;
2396 * Lookup the cfqq that this bio will be queued with and allow
2397 * merge only if rq is queued there.
2399 cic = cfq_cic_lookup(cfqd, current->io_context);
2400 if (!cic)
2401 return false;
2403 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2404 return cfqq == RQ_CFQQ(rq);
2407 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2409 del_timer(&cfqd->idle_slice_timer);
2410 cfqg_stats_update_idle_time(cfqq->cfqg);
2413 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2414 struct cfq_queue *cfqq)
2416 if (cfqq) {
2417 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2418 cfqd->serving_wl_class, cfqd->serving_wl_type);
2419 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2420 cfqq->slice_start = 0;
2421 cfqq->dispatch_start = jiffies;
2422 cfqq->allocated_slice = 0;
2423 cfqq->slice_end = 0;
2424 cfqq->slice_dispatch = 0;
2425 cfqq->nr_sectors = 0;
2427 cfq_clear_cfqq_wait_request(cfqq);
2428 cfq_clear_cfqq_must_dispatch(cfqq);
2429 cfq_clear_cfqq_must_alloc_slice(cfqq);
2430 cfq_clear_cfqq_fifo_expire(cfqq);
2431 cfq_mark_cfqq_slice_new(cfqq);
2433 cfq_del_timer(cfqd, cfqq);
2436 cfqd->active_queue = cfqq;
2440 * current cfqq expired its slice (or was too idle), select new one
2442 static void
2443 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2444 bool timed_out)
2446 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2448 if (cfq_cfqq_wait_request(cfqq))
2449 cfq_del_timer(cfqd, cfqq);
2451 cfq_clear_cfqq_wait_request(cfqq);
2452 cfq_clear_cfqq_wait_busy(cfqq);
2455 * If this cfqq is shared between multiple processes, check to
2456 * make sure that those processes are still issuing I/Os within
2457 * the mean seek distance. If not, it may be time to break the
2458 * queues apart again.
2460 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2461 cfq_mark_cfqq_split_coop(cfqq);
2464 * store what was left of this slice, if the queue idled/timed out
2466 if (timed_out) {
2467 if (cfq_cfqq_slice_new(cfqq))
2468 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2469 else
2470 cfqq->slice_resid = cfqq->slice_end - jiffies;
2471 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2474 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2476 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2477 cfq_del_cfqq_rr(cfqd, cfqq);
2479 cfq_resort_rr_list(cfqd, cfqq);
2481 if (cfqq == cfqd->active_queue)
2482 cfqd->active_queue = NULL;
2484 if (cfqd->active_cic) {
2485 put_io_context(cfqd->active_cic->icq.ioc);
2486 cfqd->active_cic = NULL;
2490 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2492 struct cfq_queue *cfqq = cfqd->active_queue;
2494 if (cfqq)
2495 __cfq_slice_expired(cfqd, cfqq, timed_out);
2499 * Get next queue for service. Unless we have a queue preemption,
2500 * we'll simply select the first cfqq in the service tree.
2502 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2504 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2505 cfqd->serving_wl_class, cfqd->serving_wl_type);
2507 if (!cfqd->rq_queued)
2508 return NULL;
2510 /* There is nothing to dispatch */
2511 if (!st)
2512 return NULL;
2513 if (RB_EMPTY_ROOT(&st->rb))
2514 return NULL;
2515 return cfq_rb_first(st);
2518 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2520 struct cfq_group *cfqg;
2521 struct cfq_queue *cfqq;
2522 int i, j;
2523 struct cfq_rb_root *st;
2525 if (!cfqd->rq_queued)
2526 return NULL;
2528 cfqg = cfq_get_next_cfqg(cfqd);
2529 if (!cfqg)
2530 return NULL;
2532 for_each_cfqg_st(cfqg, i, j, st)
2533 if ((cfqq = cfq_rb_first(st)) != NULL)
2534 return cfqq;
2535 return NULL;
2539 * Get and set a new active queue for service.
2541 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2542 struct cfq_queue *cfqq)
2544 if (!cfqq)
2545 cfqq = cfq_get_next_queue(cfqd);
2547 __cfq_set_active_queue(cfqd, cfqq);
2548 return cfqq;
2551 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2552 struct request *rq)
2554 if (blk_rq_pos(rq) >= cfqd->last_position)
2555 return blk_rq_pos(rq) - cfqd->last_position;
2556 else
2557 return cfqd->last_position - blk_rq_pos(rq);
2560 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2561 struct request *rq)
2563 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2566 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2567 struct cfq_queue *cur_cfqq)
2569 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2570 struct rb_node *parent, *node;
2571 struct cfq_queue *__cfqq;
2572 sector_t sector = cfqd->last_position;
2574 if (RB_EMPTY_ROOT(root))
2575 return NULL;
2578 * First, if we find a request starting at the end of the last
2579 * request, choose it.
2581 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2582 if (__cfqq)
2583 return __cfqq;
2586 * If the exact sector wasn't found, the parent of the NULL leaf
2587 * will contain the closest sector.
2589 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2590 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2591 return __cfqq;
2593 if (blk_rq_pos(__cfqq->next_rq) < sector)
2594 node = rb_next(&__cfqq->p_node);
2595 else
2596 node = rb_prev(&__cfqq->p_node);
2597 if (!node)
2598 return NULL;
2600 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2601 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2602 return __cfqq;
2604 return NULL;
2608 * cfqd - obvious
2609 * cur_cfqq - passed in so that we don't decide that the current queue is
2610 * closely cooperating with itself.
2612 * So, basically we're assuming that that cur_cfqq has dispatched at least
2613 * one request, and that cfqd->last_position reflects a position on the disk
2614 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2615 * assumption.
2617 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2618 struct cfq_queue *cur_cfqq)
2620 struct cfq_queue *cfqq;
2622 if (cfq_class_idle(cur_cfqq))
2623 return NULL;
2624 if (!cfq_cfqq_sync(cur_cfqq))
2625 return NULL;
2626 if (CFQQ_SEEKY(cur_cfqq))
2627 return NULL;
2630 * Don't search priority tree if it's the only queue in the group.
2632 if (cur_cfqq->cfqg->nr_cfqq == 1)
2633 return NULL;
2636 * We should notice if some of the queues are cooperating, eg
2637 * working closely on the same area of the disk. In that case,
2638 * we can group them together and don't waste time idling.
2640 cfqq = cfqq_close(cfqd, cur_cfqq);
2641 if (!cfqq)
2642 return NULL;
2644 /* If new queue belongs to different cfq_group, don't choose it */
2645 if (cur_cfqq->cfqg != cfqq->cfqg)
2646 return NULL;
2649 * It only makes sense to merge sync queues.
2651 if (!cfq_cfqq_sync(cfqq))
2652 return NULL;
2653 if (CFQQ_SEEKY(cfqq))
2654 return NULL;
2657 * Do not merge queues of different priority classes
2659 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2660 return NULL;
2662 return cfqq;
2666 * Determine whether we should enforce idle window for this queue.
2669 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2671 enum wl_class_t wl_class = cfqq_class(cfqq);
2672 struct cfq_rb_root *st = cfqq->service_tree;
2674 BUG_ON(!st);
2675 BUG_ON(!st->count);
2677 if (!cfqd->cfq_slice_idle)
2678 return false;
2680 /* We never do for idle class queues. */
2681 if (wl_class == IDLE_WORKLOAD)
2682 return false;
2684 /* We do for queues that were marked with idle window flag. */
2685 if (cfq_cfqq_idle_window(cfqq) &&
2686 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2687 return true;
2690 * Otherwise, we do only if they are the last ones
2691 * in their service tree.
2693 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2694 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2695 return true;
2696 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2697 return false;
2700 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2702 struct cfq_queue *cfqq = cfqd->active_queue;
2703 struct cfq_io_cq *cic;
2704 unsigned long sl, group_idle = 0;
2707 * SSD device without seek penalty, disable idling. But only do so
2708 * for devices that support queuing, otherwise we still have a problem
2709 * with sync vs async workloads.
2711 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2712 return;
2714 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2715 WARN_ON(cfq_cfqq_slice_new(cfqq));
2718 * idle is disabled, either manually or by past process history
2720 if (!cfq_should_idle(cfqd, cfqq)) {
2721 /* no queue idling. Check for group idling */
2722 if (cfqd->cfq_group_idle)
2723 group_idle = cfqd->cfq_group_idle;
2724 else
2725 return;
2729 * still active requests from this queue, don't idle
2731 if (cfqq->dispatched)
2732 return;
2735 * task has exited, don't wait
2737 cic = cfqd->active_cic;
2738 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2739 return;
2742 * If our average think time is larger than the remaining time
2743 * slice, then don't idle. This avoids overrunning the allotted
2744 * time slice.
2746 if (sample_valid(cic->ttime.ttime_samples) &&
2747 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2748 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2749 cic->ttime.ttime_mean);
2750 return;
2753 /* There are other queues in the group, don't do group idle */
2754 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2755 return;
2757 cfq_mark_cfqq_wait_request(cfqq);
2759 if (group_idle)
2760 sl = cfqd->cfq_group_idle;
2761 else
2762 sl = cfqd->cfq_slice_idle;
2764 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2765 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2766 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2767 group_idle ? 1 : 0);
2771 * Move request from internal lists to the request queue dispatch list.
2773 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2775 struct cfq_data *cfqd = q->elevator->elevator_data;
2776 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2778 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2780 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2781 cfq_remove_request(rq);
2782 cfqq->dispatched++;
2783 (RQ_CFQG(rq))->dispatched++;
2784 elv_dispatch_sort(q, rq);
2786 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2787 cfqq->nr_sectors += blk_rq_sectors(rq);
2788 cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2792 * return expired entry, or NULL to just start from scratch in rbtree
2794 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2796 struct request *rq = NULL;
2798 if (cfq_cfqq_fifo_expire(cfqq))
2799 return NULL;
2801 cfq_mark_cfqq_fifo_expire(cfqq);
2803 if (list_empty(&cfqq->fifo))
2804 return NULL;
2806 rq = rq_entry_fifo(cfqq->fifo.next);
2807 if (time_before(jiffies, rq_fifo_time(rq)))
2808 rq = NULL;
2810 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2811 return rq;
2814 static inline int
2815 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2817 const int base_rq = cfqd->cfq_slice_async_rq;
2819 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2821 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2825 * Must be called with the queue_lock held.
2827 static int cfqq_process_refs(struct cfq_queue *cfqq)
2829 int process_refs, io_refs;
2831 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2832 process_refs = cfqq->ref - io_refs;
2833 BUG_ON(process_refs < 0);
2834 return process_refs;
2837 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2839 int process_refs, new_process_refs;
2840 struct cfq_queue *__cfqq;
2843 * If there are no process references on the new_cfqq, then it is
2844 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2845 * chain may have dropped their last reference (not just their
2846 * last process reference).
2848 if (!cfqq_process_refs(new_cfqq))
2849 return;
2851 /* Avoid a circular list and skip interim queue merges */
2852 while ((__cfqq = new_cfqq->new_cfqq)) {
2853 if (__cfqq == cfqq)
2854 return;
2855 new_cfqq = __cfqq;
2858 process_refs = cfqq_process_refs(cfqq);
2859 new_process_refs = cfqq_process_refs(new_cfqq);
2861 * If the process for the cfqq has gone away, there is no
2862 * sense in merging the queues.
2864 if (process_refs == 0 || new_process_refs == 0)
2865 return;
2868 * Merge in the direction of the lesser amount of work.
2870 if (new_process_refs >= process_refs) {
2871 cfqq->new_cfqq = new_cfqq;
2872 new_cfqq->ref += process_refs;
2873 } else {
2874 new_cfqq->new_cfqq = cfqq;
2875 cfqq->ref += new_process_refs;
2879 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
2880 struct cfq_group *cfqg, enum wl_class_t wl_class)
2882 struct cfq_queue *queue;
2883 int i;
2884 bool key_valid = false;
2885 unsigned long lowest_key = 0;
2886 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2888 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2889 /* select the one with lowest rb_key */
2890 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
2891 if (queue &&
2892 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2893 lowest_key = queue->rb_key;
2894 cur_best = i;
2895 key_valid = true;
2899 return cur_best;
2902 static void
2903 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
2905 unsigned slice;
2906 unsigned count;
2907 struct cfq_rb_root *st;
2908 unsigned group_slice;
2909 enum wl_class_t original_class = cfqd->serving_wl_class;
2911 /* Choose next priority. RT > BE > IDLE */
2912 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2913 cfqd->serving_wl_class = RT_WORKLOAD;
2914 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2915 cfqd->serving_wl_class = BE_WORKLOAD;
2916 else {
2917 cfqd->serving_wl_class = IDLE_WORKLOAD;
2918 cfqd->workload_expires = jiffies + 1;
2919 return;
2922 if (original_class != cfqd->serving_wl_class)
2923 goto new_workload;
2926 * For RT and BE, we have to choose also the type
2927 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2928 * expiration time
2930 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2931 count = st->count;
2934 * check workload expiration, and that we still have other queues ready
2936 if (count && !time_after(jiffies, cfqd->workload_expires))
2937 return;
2939 new_workload:
2940 /* otherwise select new workload type */
2941 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
2942 cfqd->serving_wl_class);
2943 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2944 count = st->count;
2947 * the workload slice is computed as a fraction of target latency
2948 * proportional to the number of queues in that workload, over
2949 * all the queues in the same priority class
2951 group_slice = cfq_group_slice(cfqd, cfqg);
2953 slice = group_slice * count /
2954 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
2955 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
2956 cfqg));
2958 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
2959 unsigned int tmp;
2962 * Async queues are currently system wide. Just taking
2963 * proportion of queues with-in same group will lead to higher
2964 * async ratio system wide as generally root group is going
2965 * to have higher weight. A more accurate thing would be to
2966 * calculate system wide asnc/sync ratio.
2968 tmp = cfqd->cfq_target_latency *
2969 cfqg_busy_async_queues(cfqd, cfqg);
2970 tmp = tmp/cfqd->busy_queues;
2971 slice = min_t(unsigned, slice, tmp);
2973 /* async workload slice is scaled down according to
2974 * the sync/async slice ratio. */
2975 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2976 } else
2977 /* sync workload slice is at least 2 * cfq_slice_idle */
2978 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2980 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2981 cfq_log(cfqd, "workload slice:%d", slice);
2982 cfqd->workload_expires = jiffies + slice;
2985 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2987 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2988 struct cfq_group *cfqg;
2990 if (RB_EMPTY_ROOT(&st->rb))
2991 return NULL;
2992 cfqg = cfq_rb_first_group(st);
2993 update_min_vdisktime(st);
2994 return cfqg;
2997 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2999 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3001 cfqd->serving_group = cfqg;
3003 /* Restore the workload type data */
3004 if (cfqg->saved_wl_slice) {
3005 cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
3006 cfqd->serving_wl_type = cfqg->saved_wl_type;
3007 cfqd->serving_wl_class = cfqg->saved_wl_class;
3008 } else
3009 cfqd->workload_expires = jiffies - 1;
3011 choose_wl_class_and_type(cfqd, cfqg);
3015 * Select a queue for service. If we have a current active queue,
3016 * check whether to continue servicing it, or retrieve and set a new one.
3018 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3020 struct cfq_queue *cfqq, *new_cfqq = NULL;
3022 cfqq = cfqd->active_queue;
3023 if (!cfqq)
3024 goto new_queue;
3026 if (!cfqd->rq_queued)
3027 return NULL;
3030 * We were waiting for group to get backlogged. Expire the queue
3032 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3033 goto expire;
3036 * The active queue has run out of time, expire it and select new.
3038 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3040 * If slice had not expired at the completion of last request
3041 * we might not have turned on wait_busy flag. Don't expire
3042 * the queue yet. Allow the group to get backlogged.
3044 * The very fact that we have used the slice, that means we
3045 * have been idling all along on this queue and it should be
3046 * ok to wait for this request to complete.
3048 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3049 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3050 cfqq = NULL;
3051 goto keep_queue;
3052 } else
3053 goto check_group_idle;
3057 * The active queue has requests and isn't expired, allow it to
3058 * dispatch.
3060 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3061 goto keep_queue;
3064 * If another queue has a request waiting within our mean seek
3065 * distance, let it run. The expire code will check for close
3066 * cooperators and put the close queue at the front of the service
3067 * tree. If possible, merge the expiring queue with the new cfqq.
3069 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3070 if (new_cfqq) {
3071 if (!cfqq->new_cfqq)
3072 cfq_setup_merge(cfqq, new_cfqq);
3073 goto expire;
3077 * No requests pending. If the active queue still has requests in
3078 * flight or is idling for a new request, allow either of these
3079 * conditions to happen (or time out) before selecting a new queue.
3081 if (timer_pending(&cfqd->idle_slice_timer)) {
3082 cfqq = NULL;
3083 goto keep_queue;
3087 * This is a deep seek queue, but the device is much faster than
3088 * the queue can deliver, don't idle
3090 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3091 (cfq_cfqq_slice_new(cfqq) ||
3092 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
3093 cfq_clear_cfqq_deep(cfqq);
3094 cfq_clear_cfqq_idle_window(cfqq);
3097 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3098 cfqq = NULL;
3099 goto keep_queue;
3103 * If group idle is enabled and there are requests dispatched from
3104 * this group, wait for requests to complete.
3106 check_group_idle:
3107 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3108 cfqq->cfqg->dispatched &&
3109 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3110 cfqq = NULL;
3111 goto keep_queue;
3114 expire:
3115 cfq_slice_expired(cfqd, 0);
3116 new_queue:
3118 * Current queue expired. Check if we have to switch to a new
3119 * service tree
3121 if (!new_cfqq)
3122 cfq_choose_cfqg(cfqd);
3124 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3125 keep_queue:
3126 return cfqq;
3129 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3131 int dispatched = 0;
3133 while (cfqq->next_rq) {
3134 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3135 dispatched++;
3138 BUG_ON(!list_empty(&cfqq->fifo));
3140 /* By default cfqq is not expired if it is empty. Do it explicitly */
3141 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3142 return dispatched;
3146 * Drain our current requests. Used for barriers and when switching
3147 * io schedulers on-the-fly.
3149 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3151 struct cfq_queue *cfqq;
3152 int dispatched = 0;
3154 /* Expire the timeslice of the current active queue first */
3155 cfq_slice_expired(cfqd, 0);
3156 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3157 __cfq_set_active_queue(cfqd, cfqq);
3158 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3161 BUG_ON(cfqd->busy_queues);
3163 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3164 return dispatched;
3167 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3168 struct cfq_queue *cfqq)
3170 /* the queue hasn't finished any request, can't estimate */
3171 if (cfq_cfqq_slice_new(cfqq))
3172 return true;
3173 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3174 cfqq->slice_end))
3175 return true;
3177 return false;
3180 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3182 unsigned int max_dispatch;
3185 * Drain async requests before we start sync IO
3187 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3188 return false;
3191 * If this is an async queue and we have sync IO in flight, let it wait
3193 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3194 return false;
3196 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3197 if (cfq_class_idle(cfqq))
3198 max_dispatch = 1;
3201 * Does this cfqq already have too much IO in flight?
3203 if (cfqq->dispatched >= max_dispatch) {
3204 bool promote_sync = false;
3206 * idle queue must always only have a single IO in flight
3208 if (cfq_class_idle(cfqq))
3209 return false;
3212 * If there is only one sync queue
3213 * we can ignore async queue here and give the sync
3214 * queue no dispatch limit. The reason is a sync queue can
3215 * preempt async queue, limiting the sync queue doesn't make
3216 * sense. This is useful for aiostress test.
3218 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3219 promote_sync = true;
3222 * We have other queues, don't allow more IO from this one
3224 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3225 !promote_sync)
3226 return false;
3229 * Sole queue user, no limit
3231 if (cfqd->busy_queues == 1 || promote_sync)
3232 max_dispatch = -1;
3233 else
3235 * Normally we start throttling cfqq when cfq_quantum/2
3236 * requests have been dispatched. But we can drive
3237 * deeper queue depths at the beginning of slice
3238 * subjected to upper limit of cfq_quantum.
3239 * */
3240 max_dispatch = cfqd->cfq_quantum;
3244 * Async queues must wait a bit before being allowed dispatch.
3245 * We also ramp up the dispatch depth gradually for async IO,
3246 * based on the last sync IO we serviced
3248 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3249 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3250 unsigned int depth;
3252 depth = last_sync / cfqd->cfq_slice[1];
3253 if (!depth && !cfqq->dispatched)
3254 depth = 1;
3255 if (depth < max_dispatch)
3256 max_dispatch = depth;
3260 * If we're below the current max, allow a dispatch
3262 return cfqq->dispatched < max_dispatch;
3266 * Dispatch a request from cfqq, moving them to the request queue
3267 * dispatch list.
3269 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3271 struct request *rq;
3273 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3275 if (!cfq_may_dispatch(cfqd, cfqq))
3276 return false;
3279 * follow expired path, else get first next available
3281 rq = cfq_check_fifo(cfqq);
3282 if (!rq)
3283 rq = cfqq->next_rq;
3286 * insert request into driver dispatch list
3288 cfq_dispatch_insert(cfqd->queue, rq);
3290 if (!cfqd->active_cic) {
3291 struct cfq_io_cq *cic = RQ_CIC(rq);
3293 atomic_long_inc(&cic->icq.ioc->refcount);
3294 cfqd->active_cic = cic;
3297 return true;
3301 * Find the cfqq that we need to service and move a request from that to the
3302 * dispatch list
3304 static int cfq_dispatch_requests(struct request_queue *q, int force)
3306 struct cfq_data *cfqd = q->elevator->elevator_data;
3307 struct cfq_queue *cfqq;
3309 if (!cfqd->busy_queues)
3310 return 0;
3312 if (unlikely(force))
3313 return cfq_forced_dispatch(cfqd);
3315 cfqq = cfq_select_queue(cfqd);
3316 if (!cfqq)
3317 return 0;
3320 * Dispatch a request from this cfqq, if it is allowed
3322 if (!cfq_dispatch_request(cfqd, cfqq))
3323 return 0;
3325 cfqq->slice_dispatch++;
3326 cfq_clear_cfqq_must_dispatch(cfqq);
3329 * expire an async queue immediately if it has used up its slice. idle
3330 * queue always expire after 1 dispatch round.
3332 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3333 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3334 cfq_class_idle(cfqq))) {
3335 cfqq->slice_end = jiffies + 1;
3336 cfq_slice_expired(cfqd, 0);
3339 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3340 return 1;
3344 * task holds one reference to the queue, dropped when task exits. each rq
3345 * in-flight on this queue also holds a reference, dropped when rq is freed.
3347 * Each cfq queue took a reference on the parent group. Drop it now.
3348 * queue lock must be held here.
3350 static void cfq_put_queue(struct cfq_queue *cfqq)
3352 struct cfq_data *cfqd = cfqq->cfqd;
3353 struct cfq_group *cfqg;
3355 BUG_ON(cfqq->ref <= 0);
3357 cfqq->ref--;
3358 if (cfqq->ref)
3359 return;
3361 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3362 BUG_ON(rb_first(&cfqq->sort_list));
3363 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3364 cfqg = cfqq->cfqg;
3366 if (unlikely(cfqd->active_queue == cfqq)) {
3367 __cfq_slice_expired(cfqd, cfqq, 0);
3368 cfq_schedule_dispatch(cfqd);
3371 BUG_ON(cfq_cfqq_on_rr(cfqq));
3372 kmem_cache_free(cfq_pool, cfqq);
3373 cfqg_put(cfqg);
3376 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3378 struct cfq_queue *__cfqq, *next;
3381 * If this queue was scheduled to merge with another queue, be
3382 * sure to drop the reference taken on that queue (and others in
3383 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3385 __cfqq = cfqq->new_cfqq;
3386 while (__cfqq) {
3387 if (__cfqq == cfqq) {
3388 WARN(1, "cfqq->new_cfqq loop detected\n");
3389 break;
3391 next = __cfqq->new_cfqq;
3392 cfq_put_queue(__cfqq);
3393 __cfqq = next;
3397 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3399 if (unlikely(cfqq == cfqd->active_queue)) {
3400 __cfq_slice_expired(cfqd, cfqq, 0);
3401 cfq_schedule_dispatch(cfqd);
3404 cfq_put_cooperator(cfqq);
3406 cfq_put_queue(cfqq);
3409 static void cfq_init_icq(struct io_cq *icq)
3411 struct cfq_io_cq *cic = icq_to_cic(icq);
3413 cic->ttime.last_end_request = jiffies;
3416 static void cfq_exit_icq(struct io_cq *icq)
3418 struct cfq_io_cq *cic = icq_to_cic(icq);
3419 struct cfq_data *cfqd = cic_to_cfqd(cic);
3421 if (cic->cfqq[BLK_RW_ASYNC]) {
3422 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
3423 cic->cfqq[BLK_RW_ASYNC] = NULL;
3426 if (cic->cfqq[BLK_RW_SYNC]) {
3427 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
3428 cic->cfqq[BLK_RW_SYNC] = NULL;
3432 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3434 struct task_struct *tsk = current;
3435 int ioprio_class;
3437 if (!cfq_cfqq_prio_changed(cfqq))
3438 return;
3440 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3441 switch (ioprio_class) {
3442 default:
3443 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3444 case IOPRIO_CLASS_NONE:
3446 * no prio set, inherit CPU scheduling settings
3448 cfqq->ioprio = task_nice_ioprio(tsk);
3449 cfqq->ioprio_class = task_nice_ioclass(tsk);
3450 break;
3451 case IOPRIO_CLASS_RT:
3452 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3453 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3454 break;
3455 case IOPRIO_CLASS_BE:
3456 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3457 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3458 break;
3459 case IOPRIO_CLASS_IDLE:
3460 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3461 cfqq->ioprio = 7;
3462 cfq_clear_cfqq_idle_window(cfqq);
3463 break;
3467 * keep track of original prio settings in case we have to temporarily
3468 * elevate the priority of this queue
3470 cfqq->org_ioprio = cfqq->ioprio;
3471 cfq_clear_cfqq_prio_changed(cfqq);
3474 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3476 int ioprio = cic->icq.ioc->ioprio;
3477 struct cfq_data *cfqd = cic_to_cfqd(cic);
3478 struct cfq_queue *cfqq;
3481 * Check whether ioprio has changed. The condition may trigger
3482 * spuriously on a newly created cic but there's no harm.
3484 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3485 return;
3487 cfqq = cic->cfqq[BLK_RW_ASYNC];
3488 if (cfqq) {
3489 struct cfq_queue *new_cfqq;
3490 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
3491 GFP_ATOMIC);
3492 if (new_cfqq) {
3493 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
3494 cfq_put_queue(cfqq);
3498 cfqq = cic->cfqq[BLK_RW_SYNC];
3499 if (cfqq)
3500 cfq_mark_cfqq_prio_changed(cfqq);
3502 cic->ioprio = ioprio;
3505 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3506 pid_t pid, bool is_sync)
3508 RB_CLEAR_NODE(&cfqq->rb_node);
3509 RB_CLEAR_NODE(&cfqq->p_node);
3510 INIT_LIST_HEAD(&cfqq->fifo);
3512 cfqq->ref = 0;
3513 cfqq->cfqd = cfqd;
3515 cfq_mark_cfqq_prio_changed(cfqq);
3517 if (is_sync) {
3518 if (!cfq_class_idle(cfqq))
3519 cfq_mark_cfqq_idle_window(cfqq);
3520 cfq_mark_cfqq_sync(cfqq);
3522 cfqq->pid = pid;
3525 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3526 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3528 struct cfq_data *cfqd = cic_to_cfqd(cic);
3529 struct cfq_queue *sync_cfqq;
3530 uint64_t id;
3532 rcu_read_lock();
3533 id = bio_blkcg(bio)->id;
3534 rcu_read_unlock();
3537 * Check whether blkcg has changed. The condition may trigger
3538 * spuriously on a newly created cic but there's no harm.
3540 if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
3541 return;
3543 sync_cfqq = cic_to_cfqq(cic, 1);
3544 if (sync_cfqq) {
3546 * Drop reference to sync queue. A new sync queue will be
3547 * assigned in new group upon arrival of a fresh request.
3549 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3550 cic_set_cfqq(cic, NULL, 1);
3551 cfq_put_queue(sync_cfqq);
3554 cic->blkcg_id = id;
3556 #else
3557 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3558 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3560 static struct cfq_queue *
3561 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3562 struct bio *bio, gfp_t gfp_mask)
3564 struct blkcg *blkcg;
3565 struct cfq_queue *cfqq, *new_cfqq = NULL;
3566 struct cfq_group *cfqg;
3568 retry:
3569 rcu_read_lock();
3571 blkcg = bio_blkcg(bio);
3572 cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3573 cfqq = cic_to_cfqq(cic, is_sync);
3576 * Always try a new alloc if we fell back to the OOM cfqq
3577 * originally, since it should just be a temporary situation.
3579 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3580 cfqq = NULL;
3581 if (new_cfqq) {
3582 cfqq = new_cfqq;
3583 new_cfqq = NULL;
3584 } else if (gfp_mask & __GFP_WAIT) {
3585 rcu_read_unlock();
3586 spin_unlock_irq(cfqd->queue->queue_lock);
3587 new_cfqq = kmem_cache_alloc_node(cfq_pool,
3588 gfp_mask | __GFP_ZERO,
3589 cfqd->queue->node);
3590 spin_lock_irq(cfqd->queue->queue_lock);
3591 if (new_cfqq)
3592 goto retry;
3593 else
3594 return &cfqd->oom_cfqq;
3595 } else {
3596 cfqq = kmem_cache_alloc_node(cfq_pool,
3597 gfp_mask | __GFP_ZERO,
3598 cfqd->queue->node);
3601 if (cfqq) {
3602 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3603 cfq_init_prio_data(cfqq, cic);
3604 cfq_link_cfqq_cfqg(cfqq, cfqg);
3605 cfq_log_cfqq(cfqd, cfqq, "alloced");
3606 } else
3607 cfqq = &cfqd->oom_cfqq;
3610 if (new_cfqq)
3611 kmem_cache_free(cfq_pool, new_cfqq);
3613 rcu_read_unlock();
3614 return cfqq;
3617 static struct cfq_queue **
3618 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3620 switch (ioprio_class) {
3621 case IOPRIO_CLASS_RT:
3622 return &cfqd->async_cfqq[0][ioprio];
3623 case IOPRIO_CLASS_NONE:
3624 ioprio = IOPRIO_NORM;
3625 /* fall through */
3626 case IOPRIO_CLASS_BE:
3627 return &cfqd->async_cfqq[1][ioprio];
3628 case IOPRIO_CLASS_IDLE:
3629 return &cfqd->async_idle_cfqq;
3630 default:
3631 BUG();
3635 static struct cfq_queue *
3636 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3637 struct bio *bio, gfp_t gfp_mask)
3639 const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3640 const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3641 struct cfq_queue **async_cfqq = NULL;
3642 struct cfq_queue *cfqq = NULL;
3644 if (!is_sync) {
3645 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3646 cfqq = *async_cfqq;
3649 if (!cfqq)
3650 cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
3653 * pin the queue now that it's allocated, scheduler exit will prune it
3655 if (!is_sync && !(*async_cfqq)) {
3656 cfqq->ref++;
3657 *async_cfqq = cfqq;
3660 cfqq->ref++;
3661 return cfqq;
3664 static void
3665 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3667 unsigned long elapsed = jiffies - ttime->last_end_request;
3668 elapsed = min(elapsed, 2UL * slice_idle);
3670 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3671 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3672 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3675 static void
3676 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3677 struct cfq_io_cq *cic)
3679 if (cfq_cfqq_sync(cfqq)) {
3680 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3681 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3682 cfqd->cfq_slice_idle);
3684 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3685 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3686 #endif
3689 static void
3690 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3691 struct request *rq)
3693 sector_t sdist = 0;
3694 sector_t n_sec = blk_rq_sectors(rq);
3695 if (cfqq->last_request_pos) {
3696 if (cfqq->last_request_pos < blk_rq_pos(rq))
3697 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3698 else
3699 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3702 cfqq->seek_history <<= 1;
3703 if (blk_queue_nonrot(cfqd->queue))
3704 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3705 else
3706 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3710 * Disable idle window if the process thinks too long or seeks so much that
3711 * it doesn't matter
3713 static void
3714 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3715 struct cfq_io_cq *cic)
3717 int old_idle, enable_idle;
3720 * Don't idle for async or idle io prio class
3722 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3723 return;
3725 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3727 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3728 cfq_mark_cfqq_deep(cfqq);
3730 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3731 enable_idle = 0;
3732 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3733 !cfqd->cfq_slice_idle ||
3734 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3735 enable_idle = 0;
3736 else if (sample_valid(cic->ttime.ttime_samples)) {
3737 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3738 enable_idle = 0;
3739 else
3740 enable_idle = 1;
3743 if (old_idle != enable_idle) {
3744 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3745 if (enable_idle)
3746 cfq_mark_cfqq_idle_window(cfqq);
3747 else
3748 cfq_clear_cfqq_idle_window(cfqq);
3753 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3754 * no or if we aren't sure, a 1 will cause a preempt.
3756 static bool
3757 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3758 struct request *rq)
3760 struct cfq_queue *cfqq;
3762 cfqq = cfqd->active_queue;
3763 if (!cfqq)
3764 return false;
3766 if (cfq_class_idle(new_cfqq))
3767 return false;
3769 if (cfq_class_idle(cfqq))
3770 return true;
3773 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3775 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3776 return false;
3779 * if the new request is sync, but the currently running queue is
3780 * not, let the sync request have priority.
3782 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3783 return true;
3785 if (new_cfqq->cfqg != cfqq->cfqg)
3786 return false;
3788 if (cfq_slice_used(cfqq))
3789 return true;
3791 /* Allow preemption only if we are idling on sync-noidle tree */
3792 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3793 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3794 new_cfqq->service_tree->count == 2 &&
3795 RB_EMPTY_ROOT(&cfqq->sort_list))
3796 return true;
3799 * So both queues are sync. Let the new request get disk time if
3800 * it's a metadata request and the current queue is doing regular IO.
3802 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3803 return true;
3806 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3808 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3809 return true;
3811 /* An idle queue should not be idle now for some reason */
3812 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3813 return true;
3815 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3816 return false;
3819 * if this request is as-good as one we would expect from the
3820 * current cfqq, let it preempt
3822 if (cfq_rq_close(cfqd, cfqq, rq))
3823 return true;
3825 return false;
3829 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3830 * let it have half of its nominal slice.
3832 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3834 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3836 cfq_log_cfqq(cfqd, cfqq, "preempt");
3837 cfq_slice_expired(cfqd, 1);
3840 * workload type is changed, don't save slice, otherwise preempt
3841 * doesn't happen
3843 if (old_type != cfqq_type(cfqq))
3844 cfqq->cfqg->saved_wl_slice = 0;
3847 * Put the new queue at the front of the of the current list,
3848 * so we know that it will be selected next.
3850 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3852 cfq_service_tree_add(cfqd, cfqq, 1);
3854 cfqq->slice_end = 0;
3855 cfq_mark_cfqq_slice_new(cfqq);
3859 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3860 * something we should do about it
3862 static void
3863 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3864 struct request *rq)
3866 struct cfq_io_cq *cic = RQ_CIC(rq);
3868 cfqd->rq_queued++;
3869 if (rq->cmd_flags & REQ_PRIO)
3870 cfqq->prio_pending++;
3872 cfq_update_io_thinktime(cfqd, cfqq, cic);
3873 cfq_update_io_seektime(cfqd, cfqq, rq);
3874 cfq_update_idle_window(cfqd, cfqq, cic);
3876 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3878 if (cfqq == cfqd->active_queue) {
3880 * Remember that we saw a request from this process, but
3881 * don't start queuing just yet. Otherwise we risk seeing lots
3882 * of tiny requests, because we disrupt the normal plugging
3883 * and merging. If the request is already larger than a single
3884 * page, let it rip immediately. For that case we assume that
3885 * merging is already done. Ditto for a busy system that
3886 * has other work pending, don't risk delaying until the
3887 * idle timer unplug to continue working.
3889 if (cfq_cfqq_wait_request(cfqq)) {
3890 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3891 cfqd->busy_queues > 1) {
3892 cfq_del_timer(cfqd, cfqq);
3893 cfq_clear_cfqq_wait_request(cfqq);
3894 __blk_run_queue(cfqd->queue);
3895 } else {
3896 cfqg_stats_update_idle_time(cfqq->cfqg);
3897 cfq_mark_cfqq_must_dispatch(cfqq);
3900 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3902 * not the active queue - expire current slice if it is
3903 * idle and has expired it's mean thinktime or this new queue
3904 * has some old slice time left and is of higher priority or
3905 * this new queue is RT and the current one is BE
3907 cfq_preempt_queue(cfqd, cfqq);
3908 __blk_run_queue(cfqd->queue);
3912 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3914 struct cfq_data *cfqd = q->elevator->elevator_data;
3915 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3917 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3918 cfq_init_prio_data(cfqq, RQ_CIC(rq));
3920 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3921 list_add_tail(&rq->queuelist, &cfqq->fifo);
3922 cfq_add_rq_rb(rq);
3923 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
3924 rq->cmd_flags);
3925 cfq_rq_enqueued(cfqd, cfqq, rq);
3929 * Update hw_tag based on peak queue depth over 50 samples under
3930 * sufficient load.
3932 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3934 struct cfq_queue *cfqq = cfqd->active_queue;
3936 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3937 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3939 if (cfqd->hw_tag == 1)
3940 return;
3942 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3943 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3944 return;
3947 * If active queue hasn't enough requests and can idle, cfq might not
3948 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3949 * case
3951 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3952 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3953 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3954 return;
3956 if (cfqd->hw_tag_samples++ < 50)
3957 return;
3959 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3960 cfqd->hw_tag = 1;
3961 else
3962 cfqd->hw_tag = 0;
3965 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3967 struct cfq_io_cq *cic = cfqd->active_cic;
3969 /* If the queue already has requests, don't wait */
3970 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3971 return false;
3973 /* If there are other queues in the group, don't wait */
3974 if (cfqq->cfqg->nr_cfqq > 1)
3975 return false;
3977 /* the only queue in the group, but think time is big */
3978 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3979 return false;
3981 if (cfq_slice_used(cfqq))
3982 return true;
3984 /* if slice left is less than think time, wait busy */
3985 if (cic && sample_valid(cic->ttime.ttime_samples)
3986 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3987 return true;
3990 * If think times is less than a jiffy than ttime_mean=0 and above
3991 * will not be true. It might happen that slice has not expired yet
3992 * but will expire soon (4-5 ns) during select_queue(). To cover the
3993 * case where think time is less than a jiffy, mark the queue wait
3994 * busy if only 1 jiffy is left in the slice.
3996 if (cfqq->slice_end - jiffies == 1)
3997 return true;
3999 return false;
4002 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4004 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4005 struct cfq_data *cfqd = cfqq->cfqd;
4006 const int sync = rq_is_sync(rq);
4007 unsigned long now;
4009 now = jiffies;
4010 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4011 !!(rq->cmd_flags & REQ_NOIDLE));
4013 cfq_update_hw_tag(cfqd);
4015 WARN_ON(!cfqd->rq_in_driver);
4016 WARN_ON(!cfqq->dispatched);
4017 cfqd->rq_in_driver--;
4018 cfqq->dispatched--;
4019 (RQ_CFQG(rq))->dispatched--;
4020 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4021 rq_io_start_time_ns(rq), rq->cmd_flags);
4023 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4025 if (sync) {
4026 struct cfq_rb_root *st;
4028 RQ_CIC(rq)->ttime.last_end_request = now;
4030 if (cfq_cfqq_on_rr(cfqq))
4031 st = cfqq->service_tree;
4032 else
4033 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4034 cfqq_type(cfqq));
4036 st->ttime.last_end_request = now;
4037 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
4038 cfqd->last_delayed_sync = now;
4041 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4042 cfqq->cfqg->ttime.last_end_request = now;
4043 #endif
4046 * If this is the active queue, check if it needs to be expired,
4047 * or if we want to idle in case it has no pending requests.
4049 if (cfqd->active_queue == cfqq) {
4050 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4052 if (cfq_cfqq_slice_new(cfqq)) {
4053 cfq_set_prio_slice(cfqd, cfqq);
4054 cfq_clear_cfqq_slice_new(cfqq);
4058 * Should we wait for next request to come in before we expire
4059 * the queue.
4061 if (cfq_should_wait_busy(cfqd, cfqq)) {
4062 unsigned long extend_sl = cfqd->cfq_slice_idle;
4063 if (!cfqd->cfq_slice_idle)
4064 extend_sl = cfqd->cfq_group_idle;
4065 cfqq->slice_end = jiffies + extend_sl;
4066 cfq_mark_cfqq_wait_busy(cfqq);
4067 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4071 * Idling is not enabled on:
4072 * - expired queues
4073 * - idle-priority queues
4074 * - async queues
4075 * - queues with still some requests queued
4076 * - when there is a close cooperator
4078 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4079 cfq_slice_expired(cfqd, 1);
4080 else if (sync && cfqq_empty &&
4081 !cfq_close_cooperator(cfqd, cfqq)) {
4082 cfq_arm_slice_timer(cfqd);
4086 if (!cfqd->rq_in_driver)
4087 cfq_schedule_dispatch(cfqd);
4090 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4092 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4093 cfq_mark_cfqq_must_alloc_slice(cfqq);
4094 return ELV_MQUEUE_MUST;
4097 return ELV_MQUEUE_MAY;
4100 static int cfq_may_queue(struct request_queue *q, int rw)
4102 struct cfq_data *cfqd = q->elevator->elevator_data;
4103 struct task_struct *tsk = current;
4104 struct cfq_io_cq *cic;
4105 struct cfq_queue *cfqq;
4108 * don't force setup of a queue from here, as a call to may_queue
4109 * does not necessarily imply that a request actually will be queued.
4110 * so just lookup a possibly existing queue, or return 'may queue'
4111 * if that fails
4113 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4114 if (!cic)
4115 return ELV_MQUEUE_MAY;
4117 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
4118 if (cfqq) {
4119 cfq_init_prio_data(cfqq, cic);
4121 return __cfq_may_queue(cfqq);
4124 return ELV_MQUEUE_MAY;
4128 * queue lock held here
4130 static void cfq_put_request(struct request *rq)
4132 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4134 if (cfqq) {
4135 const int rw = rq_data_dir(rq);
4137 BUG_ON(!cfqq->allocated[rw]);
4138 cfqq->allocated[rw]--;
4140 /* Put down rq reference on cfqg */
4141 cfqg_put(RQ_CFQG(rq));
4142 rq->elv.priv[0] = NULL;
4143 rq->elv.priv[1] = NULL;
4145 cfq_put_queue(cfqq);
4149 static struct cfq_queue *
4150 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4151 struct cfq_queue *cfqq)
4153 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4154 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4155 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4156 cfq_put_queue(cfqq);
4157 return cic_to_cfqq(cic, 1);
4161 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4162 * was the last process referring to said cfqq.
4164 static struct cfq_queue *
4165 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4167 if (cfqq_process_refs(cfqq) == 1) {
4168 cfqq->pid = current->pid;
4169 cfq_clear_cfqq_coop(cfqq);
4170 cfq_clear_cfqq_split_coop(cfqq);
4171 return cfqq;
4174 cic_set_cfqq(cic, NULL, 1);
4176 cfq_put_cooperator(cfqq);
4178 cfq_put_queue(cfqq);
4179 return NULL;
4182 * Allocate cfq data structures associated with this request.
4184 static int
4185 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4186 gfp_t gfp_mask)
4188 struct cfq_data *cfqd = q->elevator->elevator_data;
4189 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4190 const int rw = rq_data_dir(rq);
4191 const bool is_sync = rq_is_sync(rq);
4192 struct cfq_queue *cfqq;
4194 might_sleep_if(gfp_mask & __GFP_WAIT);
4196 spin_lock_irq(q->queue_lock);
4198 check_ioprio_changed(cic, bio);
4199 check_blkcg_changed(cic, bio);
4200 new_queue:
4201 cfqq = cic_to_cfqq(cic, is_sync);
4202 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4203 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
4204 cic_set_cfqq(cic, cfqq, is_sync);
4205 } else {
4207 * If the queue was seeky for too long, break it apart.
4209 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4210 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4211 cfqq = split_cfqq(cic, cfqq);
4212 if (!cfqq)
4213 goto new_queue;
4217 * Check to see if this queue is scheduled to merge with
4218 * another, closely cooperating queue. The merging of
4219 * queues happens here as it must be done in process context.
4220 * The reference on new_cfqq was taken in merge_cfqqs.
4222 if (cfqq->new_cfqq)
4223 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4226 cfqq->allocated[rw]++;
4228 cfqq->ref++;
4229 cfqg_get(cfqq->cfqg);
4230 rq->elv.priv[0] = cfqq;
4231 rq->elv.priv[1] = cfqq->cfqg;
4232 spin_unlock_irq(q->queue_lock);
4233 return 0;
4236 static void cfq_kick_queue(struct work_struct *work)
4238 struct cfq_data *cfqd =
4239 container_of(work, struct cfq_data, unplug_work);
4240 struct request_queue *q = cfqd->queue;
4242 spin_lock_irq(q->queue_lock);
4243 __blk_run_queue(cfqd->queue);
4244 spin_unlock_irq(q->queue_lock);
4248 * Timer running if the active_queue is currently idling inside its time slice
4250 static void cfq_idle_slice_timer(unsigned long data)
4252 struct cfq_data *cfqd = (struct cfq_data *) data;
4253 struct cfq_queue *cfqq;
4254 unsigned long flags;
4255 int timed_out = 1;
4257 cfq_log(cfqd, "idle timer fired");
4259 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4261 cfqq = cfqd->active_queue;
4262 if (cfqq) {
4263 timed_out = 0;
4266 * We saw a request before the queue expired, let it through
4268 if (cfq_cfqq_must_dispatch(cfqq))
4269 goto out_kick;
4272 * expired
4274 if (cfq_slice_used(cfqq))
4275 goto expire;
4278 * only expire and reinvoke request handler, if there are
4279 * other queues with pending requests
4281 if (!cfqd->busy_queues)
4282 goto out_cont;
4285 * not expired and it has a request pending, let it dispatch
4287 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4288 goto out_kick;
4291 * Queue depth flag is reset only when the idle didn't succeed
4293 cfq_clear_cfqq_deep(cfqq);
4295 expire:
4296 cfq_slice_expired(cfqd, timed_out);
4297 out_kick:
4298 cfq_schedule_dispatch(cfqd);
4299 out_cont:
4300 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4303 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4305 del_timer_sync(&cfqd->idle_slice_timer);
4306 cancel_work_sync(&cfqd->unplug_work);
4309 static void cfq_put_async_queues(struct cfq_data *cfqd)
4311 int i;
4313 for (i = 0; i < IOPRIO_BE_NR; i++) {
4314 if (cfqd->async_cfqq[0][i])
4315 cfq_put_queue(cfqd->async_cfqq[0][i]);
4316 if (cfqd->async_cfqq[1][i])
4317 cfq_put_queue(cfqd->async_cfqq[1][i]);
4320 if (cfqd->async_idle_cfqq)
4321 cfq_put_queue(cfqd->async_idle_cfqq);
4324 static void cfq_exit_queue(struct elevator_queue *e)
4326 struct cfq_data *cfqd = e->elevator_data;
4327 struct request_queue *q = cfqd->queue;
4329 cfq_shutdown_timer_wq(cfqd);
4331 spin_lock_irq(q->queue_lock);
4333 if (cfqd->active_queue)
4334 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4336 cfq_put_async_queues(cfqd);
4338 spin_unlock_irq(q->queue_lock);
4340 cfq_shutdown_timer_wq(cfqd);
4342 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4343 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4344 #else
4345 kfree(cfqd->root_group);
4346 #endif
4347 kfree(cfqd);
4350 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4352 struct cfq_data *cfqd;
4353 struct blkcg_gq *blkg __maybe_unused;
4354 int i, ret;
4355 struct elevator_queue *eq;
4357 eq = elevator_alloc(q, e);
4358 if (!eq)
4359 return -ENOMEM;
4361 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
4362 if (!cfqd) {
4363 kobject_put(&eq->kobj);
4364 return -ENOMEM;
4366 eq->elevator_data = cfqd;
4368 cfqd->queue = q;
4369 spin_lock_irq(q->queue_lock);
4370 q->elevator = eq;
4371 spin_unlock_irq(q->queue_lock);
4373 /* Init root service tree */
4374 cfqd->grp_service_tree = CFQ_RB_ROOT;
4376 /* Init root group and prefer root group over other groups by default */
4377 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4378 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4379 if (ret)
4380 goto out_free;
4382 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4383 #else
4384 ret = -ENOMEM;
4385 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4386 GFP_KERNEL, cfqd->queue->node);
4387 if (!cfqd->root_group)
4388 goto out_free;
4390 cfq_init_cfqg_base(cfqd->root_group);
4391 #endif
4392 cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
4393 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
4396 * Not strictly needed (since RB_ROOT just clears the node and we
4397 * zeroed cfqd on alloc), but better be safe in case someone decides
4398 * to add magic to the rb code
4400 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4401 cfqd->prio_trees[i] = RB_ROOT;
4404 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4405 * Grab a permanent reference to it, so that the normal code flow
4406 * will not attempt to free it. oom_cfqq is linked to root_group
4407 * but shouldn't hold a reference as it'll never be unlinked. Lose
4408 * the reference from linking right away.
4410 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4411 cfqd->oom_cfqq.ref++;
4413 spin_lock_irq(q->queue_lock);
4414 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4415 cfqg_put(cfqd->root_group);
4416 spin_unlock_irq(q->queue_lock);
4418 init_timer(&cfqd->idle_slice_timer);
4419 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4420 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4422 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4424 cfqd->cfq_quantum = cfq_quantum;
4425 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4426 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4427 cfqd->cfq_back_max = cfq_back_max;
4428 cfqd->cfq_back_penalty = cfq_back_penalty;
4429 cfqd->cfq_slice[0] = cfq_slice_async;
4430 cfqd->cfq_slice[1] = cfq_slice_sync;
4431 cfqd->cfq_target_latency = cfq_target_latency;
4432 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4433 cfqd->cfq_slice_idle = cfq_slice_idle;
4434 cfqd->cfq_group_idle = cfq_group_idle;
4435 cfqd->cfq_latency = 1;
4436 cfqd->hw_tag = -1;
4438 * we optimistically start assuming sync ops weren't delayed in last
4439 * second, in order to have larger depth for async operations.
4441 cfqd->last_delayed_sync = jiffies - HZ;
4442 return 0;
4444 out_free:
4445 kfree(cfqd);
4446 kobject_put(&eq->kobj);
4447 return ret;
4451 * sysfs parts below -->
4453 static ssize_t
4454 cfq_var_show(unsigned int var, char *page)
4456 return sprintf(page, "%d\n", var);
4459 static ssize_t
4460 cfq_var_store(unsigned int *var, const char *page, size_t count)
4462 char *p = (char *) page;
4464 *var = simple_strtoul(p, &p, 10);
4465 return count;
4468 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4469 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4471 struct cfq_data *cfqd = e->elevator_data; \
4472 unsigned int __data = __VAR; \
4473 if (__CONV) \
4474 __data = jiffies_to_msecs(__data); \
4475 return cfq_var_show(__data, (page)); \
4477 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4478 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4479 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4480 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4481 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4482 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4483 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4484 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4485 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4486 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4487 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4488 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4489 #undef SHOW_FUNCTION
4491 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4492 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4494 struct cfq_data *cfqd = e->elevator_data; \
4495 unsigned int __data; \
4496 int ret = cfq_var_store(&__data, (page), count); \
4497 if (__data < (MIN)) \
4498 __data = (MIN); \
4499 else if (__data > (MAX)) \
4500 __data = (MAX); \
4501 if (__CONV) \
4502 *(__PTR) = msecs_to_jiffies(__data); \
4503 else \
4504 *(__PTR) = __data; \
4505 return ret; \
4507 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4508 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4509 UINT_MAX, 1);
4510 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4511 UINT_MAX, 1);
4512 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4513 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4514 UINT_MAX, 0);
4515 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4516 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4517 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4518 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4519 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4520 UINT_MAX, 0);
4521 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4522 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4523 #undef STORE_FUNCTION
4525 #define CFQ_ATTR(name) \
4526 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4528 static struct elv_fs_entry cfq_attrs[] = {
4529 CFQ_ATTR(quantum),
4530 CFQ_ATTR(fifo_expire_sync),
4531 CFQ_ATTR(fifo_expire_async),
4532 CFQ_ATTR(back_seek_max),
4533 CFQ_ATTR(back_seek_penalty),
4534 CFQ_ATTR(slice_sync),
4535 CFQ_ATTR(slice_async),
4536 CFQ_ATTR(slice_async_rq),
4537 CFQ_ATTR(slice_idle),
4538 CFQ_ATTR(group_idle),
4539 CFQ_ATTR(low_latency),
4540 CFQ_ATTR(target_latency),
4541 __ATTR_NULL
4544 static struct elevator_type iosched_cfq = {
4545 .ops = {
4546 .elevator_merge_fn = cfq_merge,
4547 .elevator_merged_fn = cfq_merged_request,
4548 .elevator_merge_req_fn = cfq_merged_requests,
4549 .elevator_allow_merge_fn = cfq_allow_merge,
4550 .elevator_bio_merged_fn = cfq_bio_merged,
4551 .elevator_dispatch_fn = cfq_dispatch_requests,
4552 .elevator_add_req_fn = cfq_insert_request,
4553 .elevator_activate_req_fn = cfq_activate_request,
4554 .elevator_deactivate_req_fn = cfq_deactivate_request,
4555 .elevator_completed_req_fn = cfq_completed_request,
4556 .elevator_former_req_fn = elv_rb_former_request,
4557 .elevator_latter_req_fn = elv_rb_latter_request,
4558 .elevator_init_icq_fn = cfq_init_icq,
4559 .elevator_exit_icq_fn = cfq_exit_icq,
4560 .elevator_set_req_fn = cfq_set_request,
4561 .elevator_put_req_fn = cfq_put_request,
4562 .elevator_may_queue_fn = cfq_may_queue,
4563 .elevator_init_fn = cfq_init_queue,
4564 .elevator_exit_fn = cfq_exit_queue,
4566 .icq_size = sizeof(struct cfq_io_cq),
4567 .icq_align = __alignof__(struct cfq_io_cq),
4568 .elevator_attrs = cfq_attrs,
4569 .elevator_name = "cfq",
4570 .elevator_owner = THIS_MODULE,
4573 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4574 static struct blkcg_policy blkcg_policy_cfq = {
4575 .pd_size = sizeof(struct cfq_group),
4576 .cftypes = cfq_blkcg_files,
4578 .pd_init_fn = cfq_pd_init,
4579 .pd_offline_fn = cfq_pd_offline,
4580 .pd_reset_stats_fn = cfq_pd_reset_stats,
4582 #endif
4584 static int __init cfq_init(void)
4586 int ret;
4589 * could be 0 on HZ < 1000 setups
4591 if (!cfq_slice_async)
4592 cfq_slice_async = 1;
4593 if (!cfq_slice_idle)
4594 cfq_slice_idle = 1;
4596 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4597 if (!cfq_group_idle)
4598 cfq_group_idle = 1;
4600 ret = blkcg_policy_register(&blkcg_policy_cfq);
4601 if (ret)
4602 return ret;
4603 #else
4604 cfq_group_idle = 0;
4605 #endif
4607 ret = -ENOMEM;
4608 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4609 if (!cfq_pool)
4610 goto err_pol_unreg;
4612 ret = elv_register(&iosched_cfq);
4613 if (ret)
4614 goto err_free_pool;
4616 return 0;
4618 err_free_pool:
4619 kmem_cache_destroy(cfq_pool);
4620 err_pol_unreg:
4621 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4622 blkcg_policy_unregister(&blkcg_policy_cfq);
4623 #endif
4624 return ret;
4627 static void __exit cfq_exit(void)
4629 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4630 blkcg_policy_unregister(&blkcg_policy_cfq);
4631 #endif
4632 elv_unregister(&iosched_cfq);
4633 kmem_cache_destroy(cfq_pool);
4636 module_init(cfq_init);
4637 module_exit(cfq_exit);
4639 MODULE_AUTHOR("Jens Axboe");
4640 MODULE_LICENSE("GPL");
4641 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");