1 // SPDX-License-Identifier: GPL-2.0
3 * Block multiqueue core code
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
30 #include <trace/events/block.h>
32 #include <linux/blk-mq.h>
33 #include <linux/t10-pi.h>
36 #include "blk-mq-debugfs.h"
37 #include "blk-mq-tag.h"
40 #include "blk-mq-sched.h"
41 #include "blk-rq-qos.h"
43 static void blk_mq_poll_stats_start(struct request_queue
*q
);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
);
46 static int blk_mq_poll_stats_bkt(const struct request
*rq
)
48 int ddir
, sectors
, bucket
;
50 ddir
= rq_data_dir(rq
);
51 sectors
= blk_rq_stats_sectors(rq
);
53 bucket
= ddir
+ 2 * ilog2(sectors
);
57 else if (bucket
>= BLK_MQ_POLL_STATS_BKTS
)
58 return ddir
+ BLK_MQ_POLL_STATS_BKTS
- 2;
64 * Check if any of the ctx, dispatch list or elevator
65 * have pending work in this hardware queue.
67 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
69 return !list_empty_careful(&hctx
->dispatch
) ||
70 sbitmap_any_bit_set(&hctx
->ctx_map
) ||
71 blk_mq_sched_has_work(hctx
);
75 * Mark this ctx as having pending work in this hardware queue
77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
78 struct blk_mq_ctx
*ctx
)
80 const int bit
= ctx
->index_hw
[hctx
->type
];
82 if (!sbitmap_test_bit(&hctx
->ctx_map
, bit
))
83 sbitmap_set_bit(&hctx
->ctx_map
, bit
);
86 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
87 struct blk_mq_ctx
*ctx
)
89 const int bit
= ctx
->index_hw
[hctx
->type
];
91 sbitmap_clear_bit(&hctx
->ctx_map
, bit
);
95 struct hd_struct
*part
;
96 unsigned int *inflight
;
99 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx
*hctx
,
100 struct request
*rq
, void *priv
,
103 struct mq_inflight
*mi
= priv
;
106 * index[0] counts the specific partition that was asked for.
108 if (rq
->part
== mi
->part
)
114 unsigned int blk_mq_in_flight(struct request_queue
*q
, struct hd_struct
*part
)
116 unsigned inflight
[2];
117 struct mq_inflight mi
= { .part
= part
, .inflight
= inflight
, };
119 inflight
[0] = inflight
[1] = 0;
120 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight
, &mi
);
125 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx
*hctx
,
126 struct request
*rq
, void *priv
,
129 struct mq_inflight
*mi
= priv
;
131 if (rq
->part
== mi
->part
)
132 mi
->inflight
[rq_data_dir(rq
)]++;
137 void blk_mq_in_flight_rw(struct request_queue
*q
, struct hd_struct
*part
,
138 unsigned int inflight
[2])
140 struct mq_inflight mi
= { .part
= part
, .inflight
= inflight
, };
142 inflight
[0] = inflight
[1] = 0;
143 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight_rw
, &mi
);
146 void blk_freeze_queue_start(struct request_queue
*q
)
148 mutex_lock(&q
->mq_freeze_lock
);
149 if (++q
->mq_freeze_depth
== 1) {
150 percpu_ref_kill(&q
->q_usage_counter
);
151 mutex_unlock(&q
->mq_freeze_lock
);
153 blk_mq_run_hw_queues(q
, false);
155 mutex_unlock(&q
->mq_freeze_lock
);
158 EXPORT_SYMBOL_GPL(blk_freeze_queue_start
);
160 void blk_mq_freeze_queue_wait(struct request_queue
*q
)
162 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
164 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait
);
166 int blk_mq_freeze_queue_wait_timeout(struct request_queue
*q
,
167 unsigned long timeout
)
169 return wait_event_timeout(q
->mq_freeze_wq
,
170 percpu_ref_is_zero(&q
->q_usage_counter
),
173 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout
);
176 * Guarantee no request is in use, so we can change any data structure of
177 * the queue afterward.
179 void blk_freeze_queue(struct request_queue
*q
)
182 * In the !blk_mq case we are only calling this to kill the
183 * q_usage_counter, otherwise this increases the freeze depth
184 * and waits for it to return to zero. For this reason there is
185 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
186 * exported to drivers as the only user for unfreeze is blk_mq.
188 blk_freeze_queue_start(q
);
189 blk_mq_freeze_queue_wait(q
);
192 void blk_mq_freeze_queue(struct request_queue
*q
)
195 * ...just an alias to keep freeze and unfreeze actions balanced
196 * in the blk_mq_* namespace
200 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
202 void blk_mq_unfreeze_queue(struct request_queue
*q
)
204 mutex_lock(&q
->mq_freeze_lock
);
205 q
->mq_freeze_depth
--;
206 WARN_ON_ONCE(q
->mq_freeze_depth
< 0);
207 if (!q
->mq_freeze_depth
) {
208 percpu_ref_resurrect(&q
->q_usage_counter
);
209 wake_up_all(&q
->mq_freeze_wq
);
211 mutex_unlock(&q
->mq_freeze_lock
);
213 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
216 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
217 * mpt3sas driver such that this function can be removed.
219 void blk_mq_quiesce_queue_nowait(struct request_queue
*q
)
221 blk_queue_flag_set(QUEUE_FLAG_QUIESCED
, q
);
223 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait
);
226 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
229 * Note: this function does not prevent that the struct request end_io()
230 * callback function is invoked. Once this function is returned, we make
231 * sure no dispatch can happen until the queue is unquiesced via
232 * blk_mq_unquiesce_queue().
234 void blk_mq_quiesce_queue(struct request_queue
*q
)
236 struct blk_mq_hw_ctx
*hctx
;
240 blk_mq_quiesce_queue_nowait(q
);
242 queue_for_each_hw_ctx(q
, hctx
, i
) {
243 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
244 synchronize_srcu(hctx
->srcu
);
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue
);
254 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
257 * This function recovers queue into the state before quiescing
258 * which is done by blk_mq_quiesce_queue.
260 void blk_mq_unquiesce_queue(struct request_queue
*q
)
262 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED
, q
);
264 /* dispatch requests which are inserted during quiescing */
265 blk_mq_run_hw_queues(q
, true);
267 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue
);
269 void blk_mq_wake_waiters(struct request_queue
*q
)
271 struct blk_mq_hw_ctx
*hctx
;
274 queue_for_each_hw_ctx(q
, hctx
, i
)
275 if (blk_mq_hw_queue_mapped(hctx
))
276 blk_mq_tag_wakeup_all(hctx
->tags
, true);
279 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
281 return blk_mq_has_free_tags(hctx
->tags
);
283 EXPORT_SYMBOL(blk_mq_can_queue
);
286 * Only need start/end time stamping if we have iostat or
287 * blk stats enabled, or using an IO scheduler.
289 static inline bool blk_mq_need_time_stamp(struct request
*rq
)
291 return (rq
->rq_flags
& (RQF_IO_STAT
| RQF_STATS
)) || rq
->q
->elevator
;
294 static struct request
*blk_mq_rq_ctx_init(struct blk_mq_alloc_data
*data
,
295 unsigned int tag
, unsigned int op
, u64 alloc_time_ns
)
297 struct blk_mq_tags
*tags
= blk_mq_tags_from_data(data
);
298 struct request
*rq
= tags
->static_rqs
[tag
];
299 req_flags_t rq_flags
= 0;
301 if (data
->flags
& BLK_MQ_REQ_INTERNAL
) {
303 rq
->internal_tag
= tag
;
305 if (data
->hctx
->flags
& BLK_MQ_F_TAG_SHARED
) {
306 rq_flags
= RQF_MQ_INFLIGHT
;
307 atomic_inc(&data
->hctx
->nr_active
);
310 rq
->internal_tag
= -1;
311 data
->hctx
->tags
->rqs
[rq
->tag
] = rq
;
314 /* csd/requeue_work/fifo_time is initialized before use */
316 rq
->mq_ctx
= data
->ctx
;
317 rq
->mq_hctx
= data
->hctx
;
318 rq
->rq_flags
= rq_flags
;
320 if (data
->flags
& BLK_MQ_REQ_PREEMPT
)
321 rq
->rq_flags
|= RQF_PREEMPT
;
322 if (blk_queue_io_stat(data
->q
))
323 rq
->rq_flags
|= RQF_IO_STAT
;
324 INIT_LIST_HEAD(&rq
->queuelist
);
325 INIT_HLIST_NODE(&rq
->hash
);
326 RB_CLEAR_NODE(&rq
->rb_node
);
329 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
330 rq
->alloc_time_ns
= alloc_time_ns
;
332 if (blk_mq_need_time_stamp(rq
))
333 rq
->start_time_ns
= ktime_get_ns();
335 rq
->start_time_ns
= 0;
336 rq
->io_start_time_ns
= 0;
337 rq
->stats_sectors
= 0;
338 rq
->nr_phys_segments
= 0;
339 #if defined(CONFIG_BLK_DEV_INTEGRITY)
340 rq
->nr_integrity_segments
= 0;
342 /* tag was already set */
344 WRITE_ONCE(rq
->deadline
, 0);
349 rq
->end_io_data
= NULL
;
351 data
->ctx
->rq_dispatched
[op_is_sync(op
)]++;
352 refcount_set(&rq
->ref
, 1);
356 static struct request
*blk_mq_get_request(struct request_queue
*q
,
358 struct blk_mq_alloc_data
*data
)
360 struct elevator_queue
*e
= q
->elevator
;
363 bool clear_ctx_on_error
= false;
364 u64 alloc_time_ns
= 0;
366 blk_queue_enter_live(q
);
368 /* alloc_time includes depth and tag waits */
369 if (blk_queue_rq_alloc_time(q
))
370 alloc_time_ns
= ktime_get_ns();
373 if (likely(!data
->ctx
)) {
374 data
->ctx
= blk_mq_get_ctx(q
);
375 clear_ctx_on_error
= true;
377 if (likely(!data
->hctx
))
378 data
->hctx
= blk_mq_map_queue(q
, data
->cmd_flags
,
380 if (data
->cmd_flags
& REQ_NOWAIT
)
381 data
->flags
|= BLK_MQ_REQ_NOWAIT
;
384 data
->flags
|= BLK_MQ_REQ_INTERNAL
;
387 * Flush requests are special and go directly to the
388 * dispatch list. Don't include reserved tags in the
389 * limiting, as it isn't useful.
391 if (!op_is_flush(data
->cmd_flags
) &&
392 e
->type
->ops
.limit_depth
&&
393 !(data
->flags
& BLK_MQ_REQ_RESERVED
))
394 e
->type
->ops
.limit_depth(data
->cmd_flags
, data
);
396 blk_mq_tag_busy(data
->hctx
);
399 tag
= blk_mq_get_tag(data
);
400 if (tag
== BLK_MQ_TAG_FAIL
) {
401 if (clear_ctx_on_error
)
407 rq
= blk_mq_rq_ctx_init(data
, tag
, data
->cmd_flags
, alloc_time_ns
);
408 if (!op_is_flush(data
->cmd_flags
)) {
410 if (e
&& e
->type
->ops
.prepare_request
) {
411 if (e
->type
->icq_cache
)
412 blk_mq_sched_assign_ioc(rq
);
414 e
->type
->ops
.prepare_request(rq
, bio
);
415 rq
->rq_flags
|= RQF_ELVPRIV
;
418 data
->hctx
->queued
++;
422 struct request
*blk_mq_alloc_request(struct request_queue
*q
, unsigned int op
,
423 blk_mq_req_flags_t flags
)
425 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
, .cmd_flags
= op
};
429 ret
= blk_queue_enter(q
, flags
);
433 rq
= blk_mq_get_request(q
, NULL
, &alloc_data
);
437 return ERR_PTR(-EWOULDBLOCK
);
440 rq
->__sector
= (sector_t
) -1;
441 rq
->bio
= rq
->biotail
= NULL
;
444 EXPORT_SYMBOL(blk_mq_alloc_request
);
446 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
,
447 unsigned int op
, blk_mq_req_flags_t flags
, unsigned int hctx_idx
)
449 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
, .cmd_flags
= op
};
455 * If the tag allocator sleeps we could get an allocation for a
456 * different hardware context. No need to complicate the low level
457 * allocator for this for the rare use case of a command tied to
460 if (WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_NOWAIT
)))
461 return ERR_PTR(-EINVAL
);
463 if (hctx_idx
>= q
->nr_hw_queues
)
464 return ERR_PTR(-EIO
);
466 ret
= blk_queue_enter(q
, flags
);
471 * Check if the hardware context is actually mapped to anything.
472 * If not tell the caller that it should skip this queue.
474 alloc_data
.hctx
= q
->queue_hw_ctx
[hctx_idx
];
475 if (!blk_mq_hw_queue_mapped(alloc_data
.hctx
)) {
477 return ERR_PTR(-EXDEV
);
479 cpu
= cpumask_first_and(alloc_data
.hctx
->cpumask
, cpu_online_mask
);
480 alloc_data
.ctx
= __blk_mq_get_ctx(q
, cpu
);
482 rq
= blk_mq_get_request(q
, NULL
, &alloc_data
);
486 return ERR_PTR(-EWOULDBLOCK
);
490 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx
);
492 static void __blk_mq_free_request(struct request
*rq
)
494 struct request_queue
*q
= rq
->q
;
495 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
496 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
497 const int sched_tag
= rq
->internal_tag
;
499 blk_pm_mark_last_busy(rq
);
502 blk_mq_put_tag(hctx
, hctx
->tags
, ctx
, rq
->tag
);
504 blk_mq_put_tag(hctx
, hctx
->sched_tags
, ctx
, sched_tag
);
505 blk_mq_sched_restart(hctx
);
509 void blk_mq_free_request(struct request
*rq
)
511 struct request_queue
*q
= rq
->q
;
512 struct elevator_queue
*e
= q
->elevator
;
513 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
514 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
516 if (rq
->rq_flags
& RQF_ELVPRIV
) {
517 if (e
&& e
->type
->ops
.finish_request
)
518 e
->type
->ops
.finish_request(rq
);
520 put_io_context(rq
->elv
.icq
->ioc
);
525 ctx
->rq_completed
[rq_is_sync(rq
)]++;
526 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
)
527 atomic_dec(&hctx
->nr_active
);
529 if (unlikely(laptop_mode
&& !blk_rq_is_passthrough(rq
)))
530 laptop_io_completion(q
->backing_dev_info
);
534 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
535 if (refcount_dec_and_test(&rq
->ref
))
536 __blk_mq_free_request(rq
);
538 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
540 inline void __blk_mq_end_request(struct request
*rq
, blk_status_t error
)
544 if (blk_mq_need_time_stamp(rq
))
545 now
= ktime_get_ns();
547 if (rq
->rq_flags
& RQF_STATS
) {
548 blk_mq_poll_stats_start(rq
->q
);
549 blk_stat_add(rq
, now
);
552 if (rq
->internal_tag
!= -1)
553 blk_mq_sched_completed_request(rq
, now
);
555 blk_account_io_done(rq
, now
);
558 rq_qos_done(rq
->q
, rq
);
559 rq
->end_io(rq
, error
);
561 blk_mq_free_request(rq
);
564 EXPORT_SYMBOL(__blk_mq_end_request
);
566 void blk_mq_end_request(struct request
*rq
, blk_status_t error
)
568 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
570 __blk_mq_end_request(rq
, error
);
572 EXPORT_SYMBOL(blk_mq_end_request
);
574 static void __blk_mq_complete_request_remote(void *data
)
576 struct request
*rq
= data
;
577 struct request_queue
*q
= rq
->q
;
579 q
->mq_ops
->complete(rq
);
582 static void __blk_mq_complete_request(struct request
*rq
)
584 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
585 struct request_queue
*q
= rq
->q
;
589 WRITE_ONCE(rq
->state
, MQ_RQ_COMPLETE
);
591 * Most of single queue controllers, there is only one irq vector
592 * for handling IO completion, and the only irq's affinity is set
593 * as all possible CPUs. On most of ARCHs, this affinity means the
594 * irq is handled on one specific CPU.
596 * So complete IO reqeust in softirq context in case of single queue
597 * for not degrading IO performance by irqsoff latency.
599 if (q
->nr_hw_queues
== 1) {
600 __blk_complete_request(rq
);
605 * For a polled request, always complete locallly, it's pointless
606 * to redirect the completion.
608 if ((rq
->cmd_flags
& REQ_HIPRI
) ||
609 !test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
)) {
610 q
->mq_ops
->complete(rq
);
615 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &q
->queue_flags
))
616 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
618 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
619 rq
->csd
.func
= __blk_mq_complete_request_remote
;
622 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
624 q
->mq_ops
->complete(rq
);
629 static void hctx_unlock(struct blk_mq_hw_ctx
*hctx
, int srcu_idx
)
630 __releases(hctx
->srcu
)
632 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
))
635 srcu_read_unlock(hctx
->srcu
, srcu_idx
);
638 static void hctx_lock(struct blk_mq_hw_ctx
*hctx
, int *srcu_idx
)
639 __acquires(hctx
->srcu
)
641 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
642 /* shut up gcc false positive */
646 *srcu_idx
= srcu_read_lock(hctx
->srcu
);
650 * blk_mq_complete_request - end I/O on a request
651 * @rq: the request being processed
654 * Ends all I/O on a request. It does not handle partial completions.
655 * The actual completion happens out-of-order, through a IPI handler.
657 bool blk_mq_complete_request(struct request
*rq
)
659 if (unlikely(blk_should_fake_timeout(rq
->q
)))
661 __blk_mq_complete_request(rq
);
664 EXPORT_SYMBOL(blk_mq_complete_request
);
666 int blk_mq_request_started(struct request
*rq
)
668 return blk_mq_rq_state(rq
) != MQ_RQ_IDLE
;
670 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
672 int blk_mq_request_completed(struct request
*rq
)
674 return blk_mq_rq_state(rq
) == MQ_RQ_COMPLETE
;
676 EXPORT_SYMBOL_GPL(blk_mq_request_completed
);
678 void blk_mq_start_request(struct request
*rq
)
680 struct request_queue
*q
= rq
->q
;
682 trace_block_rq_issue(q
, rq
);
684 if (test_bit(QUEUE_FLAG_STATS
, &q
->queue_flags
)) {
685 rq
->io_start_time_ns
= ktime_get_ns();
686 rq
->stats_sectors
= blk_rq_sectors(rq
);
687 rq
->rq_flags
|= RQF_STATS
;
691 WARN_ON_ONCE(blk_mq_rq_state(rq
) != MQ_RQ_IDLE
);
694 WRITE_ONCE(rq
->state
, MQ_RQ_IN_FLIGHT
);
696 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
698 * Make sure space for the drain appears. We know we can do
699 * this because max_hw_segments has been adjusted to be one
700 * fewer than the device can handle.
702 rq
->nr_phys_segments
++;
705 #ifdef CONFIG_BLK_DEV_INTEGRITY
706 if (blk_integrity_rq(rq
) && req_op(rq
) == REQ_OP_WRITE
)
707 q
->integrity
.profile
->prepare_fn(rq
);
710 EXPORT_SYMBOL(blk_mq_start_request
);
712 static void __blk_mq_requeue_request(struct request
*rq
)
714 struct request_queue
*q
= rq
->q
;
716 blk_mq_put_driver_tag(rq
);
718 trace_block_rq_requeue(q
, rq
);
719 rq_qos_requeue(q
, rq
);
721 if (blk_mq_request_started(rq
)) {
722 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
723 rq
->rq_flags
&= ~RQF_TIMED_OUT
;
724 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
725 rq
->nr_phys_segments
--;
729 void blk_mq_requeue_request(struct request
*rq
, bool kick_requeue_list
)
731 __blk_mq_requeue_request(rq
);
733 /* this request will be re-inserted to io scheduler queue */
734 blk_mq_sched_requeue_request(rq
);
736 BUG_ON(!list_empty(&rq
->queuelist
));
737 blk_mq_add_to_requeue_list(rq
, true, kick_requeue_list
);
739 EXPORT_SYMBOL(blk_mq_requeue_request
);
741 static void blk_mq_requeue_work(struct work_struct
*work
)
743 struct request_queue
*q
=
744 container_of(work
, struct request_queue
, requeue_work
.work
);
746 struct request
*rq
, *next
;
748 spin_lock_irq(&q
->requeue_lock
);
749 list_splice_init(&q
->requeue_list
, &rq_list
);
750 spin_unlock_irq(&q
->requeue_lock
);
752 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
753 if (!(rq
->rq_flags
& (RQF_SOFTBARRIER
| RQF_DONTPREP
)))
756 rq
->rq_flags
&= ~RQF_SOFTBARRIER
;
757 list_del_init(&rq
->queuelist
);
759 * If RQF_DONTPREP, rq has contained some driver specific
760 * data, so insert it to hctx dispatch list to avoid any
763 if (rq
->rq_flags
& RQF_DONTPREP
)
764 blk_mq_request_bypass_insert(rq
, false, false);
766 blk_mq_sched_insert_request(rq
, true, false, false);
769 while (!list_empty(&rq_list
)) {
770 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
771 list_del_init(&rq
->queuelist
);
772 blk_mq_sched_insert_request(rq
, false, false, false);
775 blk_mq_run_hw_queues(q
, false);
778 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
,
779 bool kick_requeue_list
)
781 struct request_queue
*q
= rq
->q
;
785 * We abuse this flag that is otherwise used by the I/O scheduler to
786 * request head insertion from the workqueue.
788 BUG_ON(rq
->rq_flags
& RQF_SOFTBARRIER
);
790 spin_lock_irqsave(&q
->requeue_lock
, flags
);
792 rq
->rq_flags
|= RQF_SOFTBARRIER
;
793 list_add(&rq
->queuelist
, &q
->requeue_list
);
795 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
797 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
799 if (kick_requeue_list
)
800 blk_mq_kick_requeue_list(q
);
803 void blk_mq_kick_requeue_list(struct request_queue
*q
)
805 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
, 0);
807 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
809 void blk_mq_delay_kick_requeue_list(struct request_queue
*q
,
812 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
,
813 msecs_to_jiffies(msecs
));
815 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list
);
817 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
819 if (tag
< tags
->nr_tags
) {
820 prefetch(tags
->rqs
[tag
]);
821 return tags
->rqs
[tag
];
826 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
828 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
,
829 void *priv
, bool reserved
)
832 * If we find a request that is inflight and the queue matches,
833 * we know the queue is busy. Return false to stop the iteration.
835 if (rq
->state
== MQ_RQ_IN_FLIGHT
&& rq
->q
== hctx
->queue
) {
845 bool blk_mq_queue_inflight(struct request_queue
*q
)
849 blk_mq_queue_tag_busy_iter(q
, blk_mq_rq_inflight
, &busy
);
852 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight
);
854 static void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
856 req
->rq_flags
|= RQF_TIMED_OUT
;
857 if (req
->q
->mq_ops
->timeout
) {
858 enum blk_eh_timer_return ret
;
860 ret
= req
->q
->mq_ops
->timeout(req
, reserved
);
861 if (ret
== BLK_EH_DONE
)
863 WARN_ON_ONCE(ret
!= BLK_EH_RESET_TIMER
);
869 static bool blk_mq_req_expired(struct request
*rq
, unsigned long *next
)
871 unsigned long deadline
;
873 if (blk_mq_rq_state(rq
) != MQ_RQ_IN_FLIGHT
)
875 if (rq
->rq_flags
& RQF_TIMED_OUT
)
878 deadline
= READ_ONCE(rq
->deadline
);
879 if (time_after_eq(jiffies
, deadline
))
884 else if (time_after(*next
, deadline
))
889 static bool blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
890 struct request
*rq
, void *priv
, bool reserved
)
892 unsigned long *next
= priv
;
895 * Just do a quick check if it is expired before locking the request in
896 * so we're not unnecessarilly synchronizing across CPUs.
898 if (!blk_mq_req_expired(rq
, next
))
902 * We have reason to believe the request may be expired. Take a
903 * reference on the request to lock this request lifetime into its
904 * currently allocated context to prevent it from being reallocated in
905 * the event the completion by-passes this timeout handler.
907 * If the reference was already released, then the driver beat the
908 * timeout handler to posting a natural completion.
910 if (!refcount_inc_not_zero(&rq
->ref
))
914 * The request is now locked and cannot be reallocated underneath the
915 * timeout handler's processing. Re-verify this exact request is truly
916 * expired; if it is not expired, then the request was completed and
917 * reallocated as a new request.
919 if (blk_mq_req_expired(rq
, next
))
920 blk_mq_rq_timed_out(rq
, reserved
);
922 if (is_flush_rq(rq
, hctx
))
924 else if (refcount_dec_and_test(&rq
->ref
))
925 __blk_mq_free_request(rq
);
930 static void blk_mq_timeout_work(struct work_struct
*work
)
932 struct request_queue
*q
=
933 container_of(work
, struct request_queue
, timeout_work
);
934 unsigned long next
= 0;
935 struct blk_mq_hw_ctx
*hctx
;
938 /* A deadlock might occur if a request is stuck requiring a
939 * timeout at the same time a queue freeze is waiting
940 * completion, since the timeout code would not be able to
941 * acquire the queue reference here.
943 * That's why we don't use blk_queue_enter here; instead, we use
944 * percpu_ref_tryget directly, because we need to be able to
945 * obtain a reference even in the short window between the queue
946 * starting to freeze, by dropping the first reference in
947 * blk_freeze_queue_start, and the moment the last request is
948 * consumed, marked by the instant q_usage_counter reaches
951 if (!percpu_ref_tryget(&q
->q_usage_counter
))
954 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &next
);
957 mod_timer(&q
->timeout
, next
);
960 * Request timeouts are handled as a forward rolling timer. If
961 * we end up here it means that no requests are pending and
962 * also that no request has been pending for a while. Mark
965 queue_for_each_hw_ctx(q
, hctx
, i
) {
966 /* the hctx may be unmapped, so check it here */
967 if (blk_mq_hw_queue_mapped(hctx
))
968 blk_mq_tag_idle(hctx
);
974 struct flush_busy_ctx_data
{
975 struct blk_mq_hw_ctx
*hctx
;
976 struct list_head
*list
;
979 static bool flush_busy_ctx(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
981 struct flush_busy_ctx_data
*flush_data
= data
;
982 struct blk_mq_hw_ctx
*hctx
= flush_data
->hctx
;
983 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
984 enum hctx_type type
= hctx
->type
;
986 spin_lock(&ctx
->lock
);
987 list_splice_tail_init(&ctx
->rq_lists
[type
], flush_data
->list
);
988 sbitmap_clear_bit(sb
, bitnr
);
989 spin_unlock(&ctx
->lock
);
994 * Process software queues that have been marked busy, splicing them
995 * to the for-dispatch
997 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
999 struct flush_busy_ctx_data data
= {
1004 sbitmap_for_each_set(&hctx
->ctx_map
, flush_busy_ctx
, &data
);
1006 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs
);
1008 struct dispatch_rq_data
{
1009 struct blk_mq_hw_ctx
*hctx
;
1013 static bool dispatch_rq_from_ctx(struct sbitmap
*sb
, unsigned int bitnr
,
1016 struct dispatch_rq_data
*dispatch_data
= data
;
1017 struct blk_mq_hw_ctx
*hctx
= dispatch_data
->hctx
;
1018 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
1019 enum hctx_type type
= hctx
->type
;
1021 spin_lock(&ctx
->lock
);
1022 if (!list_empty(&ctx
->rq_lists
[type
])) {
1023 dispatch_data
->rq
= list_entry_rq(ctx
->rq_lists
[type
].next
);
1024 list_del_init(&dispatch_data
->rq
->queuelist
);
1025 if (list_empty(&ctx
->rq_lists
[type
]))
1026 sbitmap_clear_bit(sb
, bitnr
);
1028 spin_unlock(&ctx
->lock
);
1030 return !dispatch_data
->rq
;
1033 struct request
*blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx
*hctx
,
1034 struct blk_mq_ctx
*start
)
1036 unsigned off
= start
? start
->index_hw
[hctx
->type
] : 0;
1037 struct dispatch_rq_data data
= {
1042 __sbitmap_for_each_set(&hctx
->ctx_map
, off
,
1043 dispatch_rq_from_ctx
, &data
);
1048 static inline unsigned int queued_to_index(unsigned int queued
)
1053 return min(BLK_MQ_MAX_DISPATCH_ORDER
- 1, ilog2(queued
) + 1);
1056 bool blk_mq_get_driver_tag(struct request
*rq
)
1058 struct blk_mq_alloc_data data
= {
1060 .hctx
= rq
->mq_hctx
,
1061 .flags
= BLK_MQ_REQ_NOWAIT
,
1062 .cmd_flags
= rq
->cmd_flags
,
1069 if (blk_mq_tag_is_reserved(data
.hctx
->sched_tags
, rq
->internal_tag
))
1070 data
.flags
|= BLK_MQ_REQ_RESERVED
;
1072 shared
= blk_mq_tag_busy(data
.hctx
);
1073 rq
->tag
= blk_mq_get_tag(&data
);
1076 rq
->rq_flags
|= RQF_MQ_INFLIGHT
;
1077 atomic_inc(&data
.hctx
->nr_active
);
1079 data
.hctx
->tags
->rqs
[rq
->tag
] = rq
;
1083 return rq
->tag
!= -1;
1086 static int blk_mq_dispatch_wake(wait_queue_entry_t
*wait
, unsigned mode
,
1087 int flags
, void *key
)
1089 struct blk_mq_hw_ctx
*hctx
;
1091 hctx
= container_of(wait
, struct blk_mq_hw_ctx
, dispatch_wait
);
1093 spin_lock(&hctx
->dispatch_wait_lock
);
1094 if (!list_empty(&wait
->entry
)) {
1095 struct sbitmap_queue
*sbq
;
1097 list_del_init(&wait
->entry
);
1098 sbq
= &hctx
->tags
->bitmap_tags
;
1099 atomic_dec(&sbq
->ws_active
);
1101 spin_unlock(&hctx
->dispatch_wait_lock
);
1103 blk_mq_run_hw_queue(hctx
, true);
1108 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1109 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1110 * restart. For both cases, take care to check the condition again after
1111 * marking us as waiting.
1113 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx
*hctx
,
1116 struct sbitmap_queue
*sbq
= &hctx
->tags
->bitmap_tags
;
1117 struct wait_queue_head
*wq
;
1118 wait_queue_entry_t
*wait
;
1121 if (!(hctx
->flags
& BLK_MQ_F_TAG_SHARED
)) {
1122 blk_mq_sched_mark_restart_hctx(hctx
);
1125 * It's possible that a tag was freed in the window between the
1126 * allocation failure and adding the hardware queue to the wait
1129 * Don't clear RESTART here, someone else could have set it.
1130 * At most this will cost an extra queue run.
1132 return blk_mq_get_driver_tag(rq
);
1135 wait
= &hctx
->dispatch_wait
;
1136 if (!list_empty_careful(&wait
->entry
))
1139 wq
= &bt_wait_ptr(sbq
, hctx
)->wait
;
1141 spin_lock_irq(&wq
->lock
);
1142 spin_lock(&hctx
->dispatch_wait_lock
);
1143 if (!list_empty(&wait
->entry
)) {
1144 spin_unlock(&hctx
->dispatch_wait_lock
);
1145 spin_unlock_irq(&wq
->lock
);
1149 atomic_inc(&sbq
->ws_active
);
1150 wait
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
1151 __add_wait_queue(wq
, wait
);
1154 * It's possible that a tag was freed in the window between the
1155 * allocation failure and adding the hardware queue to the wait
1158 ret
= blk_mq_get_driver_tag(rq
);
1160 spin_unlock(&hctx
->dispatch_wait_lock
);
1161 spin_unlock_irq(&wq
->lock
);
1166 * We got a tag, remove ourselves from the wait queue to ensure
1167 * someone else gets the wakeup.
1169 list_del_init(&wait
->entry
);
1170 atomic_dec(&sbq
->ws_active
);
1171 spin_unlock(&hctx
->dispatch_wait_lock
);
1172 spin_unlock_irq(&wq
->lock
);
1177 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1178 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1180 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1181 * - EWMA is one simple way to compute running average value
1182 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1183 * - take 4 as factor for avoiding to get too small(0) result, and this
1184 * factor doesn't matter because EWMA decreases exponentially
1186 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx
*hctx
, bool busy
)
1190 if (hctx
->queue
->elevator
)
1193 ewma
= hctx
->dispatch_busy
;
1198 ewma
*= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT
- 1;
1200 ewma
+= 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR
;
1201 ewma
/= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT
;
1203 hctx
->dispatch_busy
= ewma
;
1206 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1209 * Returns true if we did some work AND can potentially do more.
1211 bool blk_mq_dispatch_rq_list(struct request_queue
*q
, struct list_head
*list
,
1214 struct blk_mq_hw_ctx
*hctx
;
1215 struct request
*rq
, *nxt
;
1216 bool no_tag
= false;
1218 blk_status_t ret
= BLK_STS_OK
;
1220 if (list_empty(list
))
1223 WARN_ON(!list_is_singular(list
) && got_budget
);
1226 * Now process all the entries, sending them to the driver.
1228 errors
= queued
= 0;
1230 struct blk_mq_queue_data bd
;
1232 rq
= list_first_entry(list
, struct request
, queuelist
);
1235 if (!got_budget
&& !blk_mq_get_dispatch_budget(hctx
))
1238 if (!blk_mq_get_driver_tag(rq
)) {
1240 * The initial allocation attempt failed, so we need to
1241 * rerun the hardware queue when a tag is freed. The
1242 * waitqueue takes care of that. If the queue is run
1243 * before we add this entry back on the dispatch list,
1244 * we'll re-run it below.
1246 if (!blk_mq_mark_tag_wait(hctx
, rq
)) {
1247 blk_mq_put_dispatch_budget(hctx
);
1249 * For non-shared tags, the RESTART check
1252 if (hctx
->flags
& BLK_MQ_F_TAG_SHARED
)
1258 list_del_init(&rq
->queuelist
);
1263 * Flag last if we have no more requests, or if we have more
1264 * but can't assign a driver tag to it.
1266 if (list_empty(list
))
1269 nxt
= list_first_entry(list
, struct request
, queuelist
);
1270 bd
.last
= !blk_mq_get_driver_tag(nxt
);
1273 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1274 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
) {
1276 * If an I/O scheduler has been configured and we got a
1277 * driver tag for the next request already, free it
1280 if (!list_empty(list
)) {
1281 nxt
= list_first_entry(list
, struct request
, queuelist
);
1282 blk_mq_put_driver_tag(nxt
);
1284 list_add(&rq
->queuelist
, list
);
1285 __blk_mq_requeue_request(rq
);
1289 if (unlikely(ret
!= BLK_STS_OK
)) {
1291 blk_mq_end_request(rq
, BLK_STS_IOERR
);
1296 } while (!list_empty(list
));
1298 hctx
->dispatched
[queued_to_index(queued
)]++;
1301 * Any items that need requeuing? Stuff them into hctx->dispatch,
1302 * that is where we will continue on next queue run.
1304 if (!list_empty(list
)) {
1308 * If we didn't flush the entire list, we could have told
1309 * the driver there was more coming, but that turned out to
1312 if (q
->mq_ops
->commit_rqs
)
1313 q
->mq_ops
->commit_rqs(hctx
);
1315 spin_lock(&hctx
->lock
);
1316 list_splice_tail_init(list
, &hctx
->dispatch
);
1317 spin_unlock(&hctx
->lock
);
1320 * If SCHED_RESTART was set by the caller of this function and
1321 * it is no longer set that means that it was cleared by another
1322 * thread and hence that a queue rerun is needed.
1324 * If 'no_tag' is set, that means that we failed getting
1325 * a driver tag with an I/O scheduler attached. If our dispatch
1326 * waitqueue is no longer active, ensure that we run the queue
1327 * AFTER adding our entries back to the list.
1329 * If no I/O scheduler has been configured it is possible that
1330 * the hardware queue got stopped and restarted before requests
1331 * were pushed back onto the dispatch list. Rerun the queue to
1332 * avoid starvation. Notes:
1333 * - blk_mq_run_hw_queue() checks whether or not a queue has
1334 * been stopped before rerunning a queue.
1335 * - Some but not all block drivers stop a queue before
1336 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1339 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1340 * bit is set, run queue after a delay to avoid IO stalls
1341 * that could otherwise occur if the queue is idle.
1343 needs_restart
= blk_mq_sched_needs_restart(hctx
);
1344 if (!needs_restart
||
1345 (no_tag
&& list_empty_careful(&hctx
->dispatch_wait
.entry
)))
1346 blk_mq_run_hw_queue(hctx
, true);
1347 else if (needs_restart
&& (ret
== BLK_STS_RESOURCE
))
1348 blk_mq_delay_run_hw_queue(hctx
, BLK_MQ_RESOURCE_DELAY
);
1350 blk_mq_update_dispatch_busy(hctx
, true);
1353 blk_mq_update_dispatch_busy(hctx
, false);
1356 * If the host/device is unable to accept more work, inform the
1359 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
)
1362 return (queued
+ errors
) != 0;
1365 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1370 * We should be running this queue from one of the CPUs that
1373 * There are at least two related races now between setting
1374 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1375 * __blk_mq_run_hw_queue():
1377 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1378 * but later it becomes online, then this warning is harmless
1381 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1382 * but later it becomes offline, then the warning can't be
1383 * triggered, and we depend on blk-mq timeout handler to
1384 * handle dispatched requests to this hctx
1386 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
) &&
1387 cpu_online(hctx
->next_cpu
)) {
1388 printk(KERN_WARNING
"run queue from wrong CPU %d, hctx %s\n",
1389 raw_smp_processor_id(),
1390 cpumask_empty(hctx
->cpumask
) ? "inactive": "active");
1395 * We can't run the queue inline with ints disabled. Ensure that
1396 * we catch bad users of this early.
1398 WARN_ON_ONCE(in_interrupt());
1400 might_sleep_if(hctx
->flags
& BLK_MQ_F_BLOCKING
);
1402 hctx_lock(hctx
, &srcu_idx
);
1403 blk_mq_sched_dispatch_requests(hctx
);
1404 hctx_unlock(hctx
, srcu_idx
);
1407 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx
*hctx
)
1409 int cpu
= cpumask_first_and(hctx
->cpumask
, cpu_online_mask
);
1411 if (cpu
>= nr_cpu_ids
)
1412 cpu
= cpumask_first(hctx
->cpumask
);
1417 * It'd be great if the workqueue API had a way to pass
1418 * in a mask and had some smarts for more clever placement.
1419 * For now we just round-robin here, switching for every
1420 * BLK_MQ_CPU_WORK_BATCH queued items.
1422 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
1425 int next_cpu
= hctx
->next_cpu
;
1427 if (hctx
->queue
->nr_hw_queues
== 1)
1428 return WORK_CPU_UNBOUND
;
1430 if (--hctx
->next_cpu_batch
<= 0) {
1432 next_cpu
= cpumask_next_and(next_cpu
, hctx
->cpumask
,
1434 if (next_cpu
>= nr_cpu_ids
)
1435 next_cpu
= blk_mq_first_mapped_cpu(hctx
);
1436 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1440 * Do unbound schedule if we can't find a online CPU for this hctx,
1441 * and it should only happen in the path of handling CPU DEAD.
1443 if (!cpu_online(next_cpu
)) {
1450 * Make sure to re-select CPU next time once after CPUs
1451 * in hctx->cpumask become online again.
1453 hctx
->next_cpu
= next_cpu
;
1454 hctx
->next_cpu_batch
= 1;
1455 return WORK_CPU_UNBOUND
;
1458 hctx
->next_cpu
= next_cpu
;
1462 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
,
1463 unsigned long msecs
)
1465 if (unlikely(blk_mq_hctx_stopped(hctx
)))
1468 if (!async
&& !(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1469 int cpu
= get_cpu();
1470 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
1471 __blk_mq_run_hw_queue(hctx
);
1479 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx
), &hctx
->run_work
,
1480 msecs_to_jiffies(msecs
));
1483 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1485 __blk_mq_delay_run_hw_queue(hctx
, true, msecs
);
1487 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue
);
1489 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1495 * When queue is quiesced, we may be switching io scheduler, or
1496 * updating nr_hw_queues, or other things, and we can't run queue
1497 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1499 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1502 hctx_lock(hctx
, &srcu_idx
);
1503 need_run
= !blk_queue_quiesced(hctx
->queue
) &&
1504 blk_mq_hctx_has_pending(hctx
);
1505 hctx_unlock(hctx
, srcu_idx
);
1508 __blk_mq_delay_run_hw_queue(hctx
, async
, 0);
1514 EXPORT_SYMBOL(blk_mq_run_hw_queue
);
1516 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
1518 struct blk_mq_hw_ctx
*hctx
;
1521 queue_for_each_hw_ctx(q
, hctx
, i
) {
1522 if (blk_mq_hctx_stopped(hctx
))
1525 blk_mq_run_hw_queue(hctx
, async
);
1528 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
1531 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1532 * @q: request queue.
1534 * The caller is responsible for serializing this function against
1535 * blk_mq_{start,stop}_hw_queue().
1537 bool blk_mq_queue_stopped(struct request_queue
*q
)
1539 struct blk_mq_hw_ctx
*hctx
;
1542 queue_for_each_hw_ctx(q
, hctx
, i
)
1543 if (blk_mq_hctx_stopped(hctx
))
1548 EXPORT_SYMBOL(blk_mq_queue_stopped
);
1551 * This function is often used for pausing .queue_rq() by driver when
1552 * there isn't enough resource or some conditions aren't satisfied, and
1553 * BLK_STS_RESOURCE is usually returned.
1555 * We do not guarantee that dispatch can be drained or blocked
1556 * after blk_mq_stop_hw_queue() returns. Please use
1557 * blk_mq_quiesce_queue() for that requirement.
1559 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1561 cancel_delayed_work(&hctx
->run_work
);
1563 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1565 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
1568 * This function is often used for pausing .queue_rq() by driver when
1569 * there isn't enough resource or some conditions aren't satisfied, and
1570 * BLK_STS_RESOURCE is usually returned.
1572 * We do not guarantee that dispatch can be drained or blocked
1573 * after blk_mq_stop_hw_queues() returns. Please use
1574 * blk_mq_quiesce_queue() for that requirement.
1576 void blk_mq_stop_hw_queues(struct request_queue
*q
)
1578 struct blk_mq_hw_ctx
*hctx
;
1581 queue_for_each_hw_ctx(q
, hctx
, i
)
1582 blk_mq_stop_hw_queue(hctx
);
1584 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
1586 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1588 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1590 blk_mq_run_hw_queue(hctx
, false);
1592 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
1594 void blk_mq_start_hw_queues(struct request_queue
*q
)
1596 struct blk_mq_hw_ctx
*hctx
;
1599 queue_for_each_hw_ctx(q
, hctx
, i
)
1600 blk_mq_start_hw_queue(hctx
);
1602 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
1604 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1606 if (!blk_mq_hctx_stopped(hctx
))
1609 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1610 blk_mq_run_hw_queue(hctx
, async
);
1612 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue
);
1614 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
1616 struct blk_mq_hw_ctx
*hctx
;
1619 queue_for_each_hw_ctx(q
, hctx
, i
)
1620 blk_mq_start_stopped_hw_queue(hctx
, async
);
1622 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
1624 static void blk_mq_run_work_fn(struct work_struct
*work
)
1626 struct blk_mq_hw_ctx
*hctx
;
1628 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
1631 * If we are stopped, don't run the queue.
1633 if (test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
1636 __blk_mq_run_hw_queue(hctx
);
1639 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx
*hctx
,
1643 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1644 enum hctx_type type
= hctx
->type
;
1646 lockdep_assert_held(&ctx
->lock
);
1648 trace_block_rq_insert(hctx
->queue
, rq
);
1651 list_add(&rq
->queuelist
, &ctx
->rq_lists
[type
]);
1653 list_add_tail(&rq
->queuelist
, &ctx
->rq_lists
[type
]);
1656 void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
,
1659 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1661 lockdep_assert_held(&ctx
->lock
);
1663 __blk_mq_insert_req_list(hctx
, rq
, at_head
);
1664 blk_mq_hctx_mark_pending(hctx
, ctx
);
1668 * Should only be used carefully, when the caller knows we want to
1669 * bypass a potential IO scheduler on the target device.
1671 void blk_mq_request_bypass_insert(struct request
*rq
, bool at_head
,
1674 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
1676 spin_lock(&hctx
->lock
);
1678 list_add(&rq
->queuelist
, &hctx
->dispatch
);
1680 list_add_tail(&rq
->queuelist
, &hctx
->dispatch
);
1681 spin_unlock(&hctx
->lock
);
1684 blk_mq_run_hw_queue(hctx
, false);
1687 void blk_mq_insert_requests(struct blk_mq_hw_ctx
*hctx
, struct blk_mq_ctx
*ctx
,
1688 struct list_head
*list
)
1692 enum hctx_type type
= hctx
->type
;
1695 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1698 list_for_each_entry(rq
, list
, queuelist
) {
1699 BUG_ON(rq
->mq_ctx
!= ctx
);
1700 trace_block_rq_insert(hctx
->queue
, rq
);
1703 spin_lock(&ctx
->lock
);
1704 list_splice_tail_init(list
, &ctx
->rq_lists
[type
]);
1705 blk_mq_hctx_mark_pending(hctx
, ctx
);
1706 spin_unlock(&ctx
->lock
);
1709 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1711 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1712 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1714 if (rqa
->mq_ctx
< rqb
->mq_ctx
)
1716 else if (rqa
->mq_ctx
> rqb
->mq_ctx
)
1718 else if (rqa
->mq_hctx
< rqb
->mq_hctx
)
1720 else if (rqa
->mq_hctx
> rqb
->mq_hctx
)
1723 return blk_rq_pos(rqa
) > blk_rq_pos(rqb
);
1726 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1728 struct blk_mq_hw_ctx
*this_hctx
;
1729 struct blk_mq_ctx
*this_ctx
;
1730 struct request_queue
*this_q
;
1736 list_splice_init(&plug
->mq_list
, &list
);
1738 if (plug
->rq_count
> 2 && plug
->multiple_queues
)
1739 list_sort(NULL
, &list
, plug_rq_cmp
);
1748 while (!list_empty(&list
)) {
1749 rq
= list_entry_rq(list
.next
);
1750 list_del_init(&rq
->queuelist
);
1752 if (rq
->mq_hctx
!= this_hctx
|| rq
->mq_ctx
!= this_ctx
) {
1754 trace_block_unplug(this_q
, depth
, !from_schedule
);
1755 blk_mq_sched_insert_requests(this_hctx
, this_ctx
,
1761 this_ctx
= rq
->mq_ctx
;
1762 this_hctx
= rq
->mq_hctx
;
1767 list_add_tail(&rq
->queuelist
, &rq_list
);
1771 * If 'this_hctx' is set, we know we have entries to complete
1772 * on 'rq_list'. Do those.
1775 trace_block_unplug(this_q
, depth
, !from_schedule
);
1776 blk_mq_sched_insert_requests(this_hctx
, this_ctx
, &rq_list
,
1781 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
,
1782 unsigned int nr_segs
)
1784 if (bio
->bi_opf
& REQ_RAHEAD
)
1785 rq
->cmd_flags
|= REQ_FAILFAST_MASK
;
1787 rq
->__sector
= bio
->bi_iter
.bi_sector
;
1788 rq
->write_hint
= bio
->bi_write_hint
;
1789 blk_rq_bio_prep(rq
, bio
, nr_segs
);
1791 blk_account_io_start(rq
, true);
1794 static blk_status_t
__blk_mq_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1796 blk_qc_t
*cookie
, bool last
)
1798 struct request_queue
*q
= rq
->q
;
1799 struct blk_mq_queue_data bd
= {
1803 blk_qc_t new_cookie
;
1806 new_cookie
= request_to_qc_t(hctx
, rq
);
1809 * For OK queue, we are done. For error, caller may kill it.
1810 * Any other error (busy), just add it to our list as we
1811 * previously would have done.
1813 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1816 blk_mq_update_dispatch_busy(hctx
, false);
1817 *cookie
= new_cookie
;
1819 case BLK_STS_RESOURCE
:
1820 case BLK_STS_DEV_RESOURCE
:
1821 blk_mq_update_dispatch_busy(hctx
, true);
1822 __blk_mq_requeue_request(rq
);
1825 blk_mq_update_dispatch_busy(hctx
, false);
1826 *cookie
= BLK_QC_T_NONE
;
1833 static blk_status_t
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1836 bool bypass_insert
, bool last
)
1838 struct request_queue
*q
= rq
->q
;
1839 bool run_queue
= true;
1842 * RCU or SRCU read lock is needed before checking quiesced flag.
1844 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1845 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1846 * and avoid driver to try to dispatch again.
1848 if (blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(q
)) {
1850 bypass_insert
= false;
1854 if (q
->elevator
&& !bypass_insert
)
1857 if (!blk_mq_get_dispatch_budget(hctx
))
1860 if (!blk_mq_get_driver_tag(rq
)) {
1861 blk_mq_put_dispatch_budget(hctx
);
1865 return __blk_mq_issue_directly(hctx
, rq
, cookie
, last
);
1868 return BLK_STS_RESOURCE
;
1870 blk_mq_request_bypass_insert(rq
, false, run_queue
);
1874 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1875 struct request
*rq
, blk_qc_t
*cookie
)
1880 might_sleep_if(hctx
->flags
& BLK_MQ_F_BLOCKING
);
1882 hctx_lock(hctx
, &srcu_idx
);
1884 ret
= __blk_mq_try_issue_directly(hctx
, rq
, cookie
, false, true);
1885 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
)
1886 blk_mq_request_bypass_insert(rq
, false, true);
1887 else if (ret
!= BLK_STS_OK
)
1888 blk_mq_end_request(rq
, ret
);
1890 hctx_unlock(hctx
, srcu_idx
);
1893 blk_status_t
blk_mq_request_issue_directly(struct request
*rq
, bool last
)
1897 blk_qc_t unused_cookie
;
1898 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
1900 hctx_lock(hctx
, &srcu_idx
);
1901 ret
= __blk_mq_try_issue_directly(hctx
, rq
, &unused_cookie
, true, last
);
1902 hctx_unlock(hctx
, srcu_idx
);
1907 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx
*hctx
,
1908 struct list_head
*list
)
1910 while (!list_empty(list
)) {
1912 struct request
*rq
= list_first_entry(list
, struct request
,
1915 list_del_init(&rq
->queuelist
);
1916 ret
= blk_mq_request_issue_directly(rq
, list_empty(list
));
1917 if (ret
!= BLK_STS_OK
) {
1918 if (ret
== BLK_STS_RESOURCE
||
1919 ret
== BLK_STS_DEV_RESOURCE
) {
1920 blk_mq_request_bypass_insert(rq
, false,
1924 blk_mq_end_request(rq
, ret
);
1929 * If we didn't flush the entire list, we could have told
1930 * the driver there was more coming, but that turned out to
1933 if (!list_empty(list
) && hctx
->queue
->mq_ops
->commit_rqs
)
1934 hctx
->queue
->mq_ops
->commit_rqs(hctx
);
1937 static void blk_add_rq_to_plug(struct blk_plug
*plug
, struct request
*rq
)
1939 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1941 if (!plug
->multiple_queues
&& !list_is_singular(&plug
->mq_list
)) {
1942 struct request
*tmp
;
1944 tmp
= list_first_entry(&plug
->mq_list
, struct request
,
1946 if (tmp
->q
!= rq
->q
)
1947 plug
->multiple_queues
= true;
1951 static blk_qc_t
blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1953 const int is_sync
= op_is_sync(bio
->bi_opf
);
1954 const int is_flush_fua
= op_is_flush(bio
->bi_opf
);
1955 struct blk_mq_alloc_data data
= { .flags
= 0};
1957 struct blk_plug
*plug
;
1958 struct request
*same_queue_rq
= NULL
;
1959 unsigned int nr_segs
;
1962 blk_queue_bounce(q
, &bio
);
1963 __blk_queue_split(q
, &bio
, &nr_segs
);
1965 if (!bio_integrity_prep(bio
))
1966 return BLK_QC_T_NONE
;
1968 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1969 blk_attempt_plug_merge(q
, bio
, nr_segs
, &same_queue_rq
))
1970 return BLK_QC_T_NONE
;
1972 if (blk_mq_sched_bio_merge(q
, bio
, nr_segs
))
1973 return BLK_QC_T_NONE
;
1975 rq_qos_throttle(q
, bio
);
1977 data
.cmd_flags
= bio
->bi_opf
;
1978 rq
= blk_mq_get_request(q
, bio
, &data
);
1979 if (unlikely(!rq
)) {
1980 rq_qos_cleanup(q
, bio
);
1981 if (bio
->bi_opf
& REQ_NOWAIT
)
1982 bio_wouldblock_error(bio
);
1983 return BLK_QC_T_NONE
;
1986 trace_block_getrq(q
, bio
, bio
->bi_opf
);
1988 rq_qos_track(q
, rq
, bio
);
1990 cookie
= request_to_qc_t(data
.hctx
, rq
);
1992 blk_mq_bio_to_request(rq
, bio
, nr_segs
);
1994 plug
= blk_mq_plug(q
, bio
);
1995 if (unlikely(is_flush_fua
)) {
1996 /* bypass scheduler for flush rq */
1997 blk_insert_flush(rq
);
1998 blk_mq_run_hw_queue(data
.hctx
, true);
1999 } else if (plug
&& (q
->nr_hw_queues
== 1 || q
->mq_ops
->commit_rqs
||
2000 !blk_queue_nonrot(q
))) {
2002 * Use plugging if we have a ->commit_rqs() hook as well, as
2003 * we know the driver uses bd->last in a smart fashion.
2005 * Use normal plugging if this disk is slow HDD, as sequential
2006 * IO may benefit a lot from plug merging.
2008 unsigned int request_count
= plug
->rq_count
;
2009 struct request
*last
= NULL
;
2012 trace_block_plug(q
);
2014 last
= list_entry_rq(plug
->mq_list
.prev
);
2016 if (request_count
>= BLK_MAX_REQUEST_COUNT
|| (last
&&
2017 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
)) {
2018 blk_flush_plug_list(plug
, false);
2019 trace_block_plug(q
);
2022 blk_add_rq_to_plug(plug
, rq
);
2023 } else if (q
->elevator
) {
2024 blk_mq_sched_insert_request(rq
, false, true, true);
2025 } else if (plug
&& !blk_queue_nomerges(q
)) {
2027 * We do limited plugging. If the bio can be merged, do that.
2028 * Otherwise the existing request in the plug list will be
2029 * issued. So the plug list will have one request at most
2030 * The plug list might get flushed before this. If that happens,
2031 * the plug list is empty, and same_queue_rq is invalid.
2033 if (list_empty(&plug
->mq_list
))
2034 same_queue_rq
= NULL
;
2035 if (same_queue_rq
) {
2036 list_del_init(&same_queue_rq
->queuelist
);
2039 blk_add_rq_to_plug(plug
, rq
);
2040 trace_block_plug(q
);
2042 if (same_queue_rq
) {
2043 data
.hctx
= same_queue_rq
->mq_hctx
;
2044 trace_block_unplug(q
, 1, true);
2045 blk_mq_try_issue_directly(data
.hctx
, same_queue_rq
,
2048 } else if ((q
->nr_hw_queues
> 1 && is_sync
) ||
2049 !data
.hctx
->dispatch_busy
) {
2050 blk_mq_try_issue_directly(data
.hctx
, rq
, &cookie
);
2052 blk_mq_sched_insert_request(rq
, false, true, true);
2058 void blk_mq_free_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
2059 unsigned int hctx_idx
)
2063 if (tags
->rqs
&& set
->ops
->exit_request
) {
2066 for (i
= 0; i
< tags
->nr_tags
; i
++) {
2067 struct request
*rq
= tags
->static_rqs
[i
];
2071 set
->ops
->exit_request(set
, rq
, hctx_idx
);
2072 tags
->static_rqs
[i
] = NULL
;
2076 while (!list_empty(&tags
->page_list
)) {
2077 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
2078 list_del_init(&page
->lru
);
2080 * Remove kmemleak object previously allocated in
2081 * blk_mq_alloc_rqs().
2083 kmemleak_free(page_address(page
));
2084 __free_pages(page
, page
->private);
2088 void blk_mq_free_rq_map(struct blk_mq_tags
*tags
)
2092 kfree(tags
->static_rqs
);
2093 tags
->static_rqs
= NULL
;
2095 blk_mq_free_tags(tags
);
2098 struct blk_mq_tags
*blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
,
2099 unsigned int hctx_idx
,
2100 unsigned int nr_tags
,
2101 unsigned int reserved_tags
)
2103 struct blk_mq_tags
*tags
;
2106 node
= blk_mq_hw_queue_to_node(&set
->map
[HCTX_TYPE_DEFAULT
], hctx_idx
);
2107 if (node
== NUMA_NO_NODE
)
2108 node
= set
->numa_node
;
2110 tags
= blk_mq_init_tags(nr_tags
, reserved_tags
, node
,
2111 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
2115 tags
->rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
2116 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
2119 blk_mq_free_tags(tags
);
2123 tags
->static_rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
2124 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
2126 if (!tags
->static_rqs
) {
2128 blk_mq_free_tags(tags
);
2135 static size_t order_to_size(unsigned int order
)
2137 return (size_t)PAGE_SIZE
<< order
;
2140 static int blk_mq_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
2141 unsigned int hctx_idx
, int node
)
2145 if (set
->ops
->init_request
) {
2146 ret
= set
->ops
->init_request(set
, rq
, hctx_idx
, node
);
2151 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
2155 int blk_mq_alloc_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
2156 unsigned int hctx_idx
, unsigned int depth
)
2158 unsigned int i
, j
, entries_per_page
, max_order
= 4;
2159 size_t rq_size
, left
;
2162 node
= blk_mq_hw_queue_to_node(&set
->map
[HCTX_TYPE_DEFAULT
], hctx_idx
);
2163 if (node
== NUMA_NO_NODE
)
2164 node
= set
->numa_node
;
2166 INIT_LIST_HEAD(&tags
->page_list
);
2169 * rq_size is the size of the request plus driver payload, rounded
2170 * to the cacheline size
2172 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
2174 left
= rq_size
* depth
;
2176 for (i
= 0; i
< depth
; ) {
2177 int this_order
= max_order
;
2182 while (this_order
&& left
< order_to_size(this_order
- 1))
2186 page
= alloc_pages_node(node
,
2187 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
2193 if (order_to_size(this_order
) < rq_size
)
2200 page
->private = this_order
;
2201 list_add_tail(&page
->lru
, &tags
->page_list
);
2203 p
= page_address(page
);
2205 * Allow kmemleak to scan these pages as they contain pointers
2206 * to additional allocations like via ops->init_request().
2208 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_NOIO
);
2209 entries_per_page
= order_to_size(this_order
) / rq_size
;
2210 to_do
= min(entries_per_page
, depth
- i
);
2211 left
-= to_do
* rq_size
;
2212 for (j
= 0; j
< to_do
; j
++) {
2213 struct request
*rq
= p
;
2215 tags
->static_rqs
[i
] = rq
;
2216 if (blk_mq_init_request(set
, rq
, hctx_idx
, node
)) {
2217 tags
->static_rqs
[i
] = NULL
;
2228 blk_mq_free_rqs(set
, tags
, hctx_idx
);
2233 * 'cpu' is going away. splice any existing rq_list entries from this
2234 * software queue to the hw queue dispatch list, and ensure that it
2237 static int blk_mq_hctx_notify_dead(unsigned int cpu
, struct hlist_node
*node
)
2239 struct blk_mq_hw_ctx
*hctx
;
2240 struct blk_mq_ctx
*ctx
;
2242 enum hctx_type type
;
2244 hctx
= hlist_entry_safe(node
, struct blk_mq_hw_ctx
, cpuhp_dead
);
2245 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
2248 spin_lock(&ctx
->lock
);
2249 if (!list_empty(&ctx
->rq_lists
[type
])) {
2250 list_splice_init(&ctx
->rq_lists
[type
], &tmp
);
2251 blk_mq_hctx_clear_pending(hctx
, ctx
);
2253 spin_unlock(&ctx
->lock
);
2255 if (list_empty(&tmp
))
2258 spin_lock(&hctx
->lock
);
2259 list_splice_tail_init(&tmp
, &hctx
->dispatch
);
2260 spin_unlock(&hctx
->lock
);
2262 blk_mq_run_hw_queue(hctx
, true);
2266 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx
*hctx
)
2268 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD
,
2272 /* hctx->ctxs will be freed in queue's release handler */
2273 static void blk_mq_exit_hctx(struct request_queue
*q
,
2274 struct blk_mq_tag_set
*set
,
2275 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
2277 if (blk_mq_hw_queue_mapped(hctx
))
2278 blk_mq_tag_idle(hctx
);
2280 if (set
->ops
->exit_request
)
2281 set
->ops
->exit_request(set
, hctx
->fq
->flush_rq
, hctx_idx
);
2283 if (set
->ops
->exit_hctx
)
2284 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2286 blk_mq_remove_cpuhp(hctx
);
2288 spin_lock(&q
->unused_hctx_lock
);
2289 list_add(&hctx
->hctx_list
, &q
->unused_hctx_list
);
2290 spin_unlock(&q
->unused_hctx_lock
);
2293 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
2294 struct blk_mq_tag_set
*set
, int nr_queue
)
2296 struct blk_mq_hw_ctx
*hctx
;
2299 queue_for_each_hw_ctx(q
, hctx
, i
) {
2302 blk_mq_debugfs_unregister_hctx(hctx
);
2303 blk_mq_exit_hctx(q
, set
, hctx
, i
);
2307 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set
*tag_set
)
2309 int hw_ctx_size
= sizeof(struct blk_mq_hw_ctx
);
2311 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx
, srcu
),
2312 __alignof__(struct blk_mq_hw_ctx
)) !=
2313 sizeof(struct blk_mq_hw_ctx
));
2315 if (tag_set
->flags
& BLK_MQ_F_BLOCKING
)
2316 hw_ctx_size
+= sizeof(struct srcu_struct
);
2321 static int blk_mq_init_hctx(struct request_queue
*q
,
2322 struct blk_mq_tag_set
*set
,
2323 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
2325 hctx
->queue_num
= hctx_idx
;
2327 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD
, &hctx
->cpuhp_dead
);
2329 hctx
->tags
= set
->tags
[hctx_idx
];
2331 if (set
->ops
->init_hctx
&&
2332 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
2333 goto unregister_cpu_notifier
;
2335 if (blk_mq_init_request(set
, hctx
->fq
->flush_rq
, hctx_idx
,
2341 if (set
->ops
->exit_hctx
)
2342 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2343 unregister_cpu_notifier
:
2344 blk_mq_remove_cpuhp(hctx
);
2348 static struct blk_mq_hw_ctx
*
2349 blk_mq_alloc_hctx(struct request_queue
*q
, struct blk_mq_tag_set
*set
,
2352 struct blk_mq_hw_ctx
*hctx
;
2353 gfp_t gfp
= GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
;
2355 hctx
= kzalloc_node(blk_mq_hw_ctx_size(set
), gfp
, node
);
2357 goto fail_alloc_hctx
;
2359 if (!zalloc_cpumask_var_node(&hctx
->cpumask
, gfp
, node
))
2362 atomic_set(&hctx
->nr_active
, 0);
2363 if (node
== NUMA_NO_NODE
)
2364 node
= set
->numa_node
;
2365 hctx
->numa_node
= node
;
2367 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
2368 spin_lock_init(&hctx
->lock
);
2369 INIT_LIST_HEAD(&hctx
->dispatch
);
2371 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_SHARED
;
2373 INIT_LIST_HEAD(&hctx
->hctx_list
);
2376 * Allocate space for all possible cpus to avoid allocation at
2379 hctx
->ctxs
= kmalloc_array_node(nr_cpu_ids
, sizeof(void *),
2384 if (sbitmap_init_node(&hctx
->ctx_map
, nr_cpu_ids
, ilog2(8),
2389 spin_lock_init(&hctx
->dispatch_wait_lock
);
2390 init_waitqueue_func_entry(&hctx
->dispatch_wait
, blk_mq_dispatch_wake
);
2391 INIT_LIST_HEAD(&hctx
->dispatch_wait
.entry
);
2393 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
,
2398 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
2399 init_srcu_struct(hctx
->srcu
);
2400 blk_mq_hctx_kobj_init(hctx
);
2405 sbitmap_free(&hctx
->ctx_map
);
2409 free_cpumask_var(hctx
->cpumask
);
2416 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
2417 unsigned int nr_hw_queues
)
2419 struct blk_mq_tag_set
*set
= q
->tag_set
;
2422 for_each_possible_cpu(i
) {
2423 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2424 struct blk_mq_hw_ctx
*hctx
;
2428 spin_lock_init(&__ctx
->lock
);
2429 for (k
= HCTX_TYPE_DEFAULT
; k
< HCTX_MAX_TYPES
; k
++)
2430 INIT_LIST_HEAD(&__ctx
->rq_lists
[k
]);
2435 * Set local node, IFF we have more than one hw queue. If
2436 * not, we remain on the home node of the device
2438 for (j
= 0; j
< set
->nr_maps
; j
++) {
2439 hctx
= blk_mq_map_queue_type(q
, j
, i
);
2440 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
2441 hctx
->numa_node
= local_memory_node(cpu_to_node(i
));
2446 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
, int hctx_idx
)
2450 set
->tags
[hctx_idx
] = blk_mq_alloc_rq_map(set
, hctx_idx
,
2451 set
->queue_depth
, set
->reserved_tags
);
2452 if (!set
->tags
[hctx_idx
])
2455 ret
= blk_mq_alloc_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
,
2460 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2461 set
->tags
[hctx_idx
] = NULL
;
2465 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set
*set
,
2466 unsigned int hctx_idx
)
2468 if (set
->tags
&& set
->tags
[hctx_idx
]) {
2469 blk_mq_free_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
);
2470 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2471 set
->tags
[hctx_idx
] = NULL
;
2475 static void blk_mq_map_swqueue(struct request_queue
*q
)
2477 unsigned int i
, j
, hctx_idx
;
2478 struct blk_mq_hw_ctx
*hctx
;
2479 struct blk_mq_ctx
*ctx
;
2480 struct blk_mq_tag_set
*set
= q
->tag_set
;
2482 queue_for_each_hw_ctx(q
, hctx
, i
) {
2483 cpumask_clear(hctx
->cpumask
);
2485 hctx
->dispatch_from
= NULL
;
2489 * Map software to hardware queues.
2491 * If the cpu isn't present, the cpu is mapped to first hctx.
2493 for_each_possible_cpu(i
) {
2494 hctx_idx
= set
->map
[HCTX_TYPE_DEFAULT
].mq_map
[i
];
2495 /* unmapped hw queue can be remapped after CPU topo changed */
2496 if (!set
->tags
[hctx_idx
] &&
2497 !__blk_mq_alloc_rq_map(set
, hctx_idx
)) {
2499 * If tags initialization fail for some hctx,
2500 * that hctx won't be brought online. In this
2501 * case, remap the current ctx to hctx[0] which
2502 * is guaranteed to always have tags allocated
2504 set
->map
[HCTX_TYPE_DEFAULT
].mq_map
[i
] = 0;
2507 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2508 for (j
= 0; j
< set
->nr_maps
; j
++) {
2509 if (!set
->map
[j
].nr_queues
) {
2510 ctx
->hctxs
[j
] = blk_mq_map_queue_type(q
,
2511 HCTX_TYPE_DEFAULT
, i
);
2515 hctx
= blk_mq_map_queue_type(q
, j
, i
);
2516 ctx
->hctxs
[j
] = hctx
;
2518 * If the CPU is already set in the mask, then we've
2519 * mapped this one already. This can happen if
2520 * devices share queues across queue maps.
2522 if (cpumask_test_cpu(i
, hctx
->cpumask
))
2525 cpumask_set_cpu(i
, hctx
->cpumask
);
2527 ctx
->index_hw
[hctx
->type
] = hctx
->nr_ctx
;
2528 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
2531 * If the nr_ctx type overflows, we have exceeded the
2532 * amount of sw queues we can support.
2534 BUG_ON(!hctx
->nr_ctx
);
2537 for (; j
< HCTX_MAX_TYPES
; j
++)
2538 ctx
->hctxs
[j
] = blk_mq_map_queue_type(q
,
2539 HCTX_TYPE_DEFAULT
, i
);
2542 queue_for_each_hw_ctx(q
, hctx
, i
) {
2544 * If no software queues are mapped to this hardware queue,
2545 * disable it and free the request entries.
2547 if (!hctx
->nr_ctx
) {
2548 /* Never unmap queue 0. We need it as a
2549 * fallback in case of a new remap fails
2552 if (i
&& set
->tags
[i
])
2553 blk_mq_free_map_and_requests(set
, i
);
2559 hctx
->tags
= set
->tags
[i
];
2560 WARN_ON(!hctx
->tags
);
2563 * Set the map size to the number of mapped software queues.
2564 * This is more accurate and more efficient than looping
2565 * over all possibly mapped software queues.
2567 sbitmap_resize(&hctx
->ctx_map
, hctx
->nr_ctx
);
2570 * Initialize batch roundrobin counts
2572 hctx
->next_cpu
= blk_mq_first_mapped_cpu(hctx
);
2573 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
2578 * Caller needs to ensure that we're either frozen/quiesced, or that
2579 * the queue isn't live yet.
2581 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
2583 struct blk_mq_hw_ctx
*hctx
;
2586 queue_for_each_hw_ctx(q
, hctx
, i
) {
2588 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
2590 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2594 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
,
2597 struct request_queue
*q
;
2599 lockdep_assert_held(&set
->tag_list_lock
);
2601 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2602 blk_mq_freeze_queue(q
);
2603 queue_set_hctx_shared(q
, shared
);
2604 blk_mq_unfreeze_queue(q
);
2608 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
2610 struct blk_mq_tag_set
*set
= q
->tag_set
;
2612 mutex_lock(&set
->tag_list_lock
);
2613 list_del_rcu(&q
->tag_set_list
);
2614 if (list_is_singular(&set
->tag_list
)) {
2615 /* just transitioned to unshared */
2616 set
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2617 /* update existing queue */
2618 blk_mq_update_tag_set_depth(set
, false);
2620 mutex_unlock(&set
->tag_list_lock
);
2621 INIT_LIST_HEAD(&q
->tag_set_list
);
2624 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
2625 struct request_queue
*q
)
2627 mutex_lock(&set
->tag_list_lock
);
2630 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2632 if (!list_empty(&set
->tag_list
) &&
2633 !(set
->flags
& BLK_MQ_F_TAG_SHARED
)) {
2634 set
->flags
|= BLK_MQ_F_TAG_SHARED
;
2635 /* update existing queue */
2636 blk_mq_update_tag_set_depth(set
, true);
2638 if (set
->flags
& BLK_MQ_F_TAG_SHARED
)
2639 queue_set_hctx_shared(q
, true);
2640 list_add_tail_rcu(&q
->tag_set_list
, &set
->tag_list
);
2642 mutex_unlock(&set
->tag_list_lock
);
2645 /* All allocations will be freed in release handler of q->mq_kobj */
2646 static int blk_mq_alloc_ctxs(struct request_queue
*q
)
2648 struct blk_mq_ctxs
*ctxs
;
2651 ctxs
= kzalloc(sizeof(*ctxs
), GFP_KERNEL
);
2655 ctxs
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
2656 if (!ctxs
->queue_ctx
)
2659 for_each_possible_cpu(cpu
) {
2660 struct blk_mq_ctx
*ctx
= per_cpu_ptr(ctxs
->queue_ctx
, cpu
);
2664 q
->mq_kobj
= &ctxs
->kobj
;
2665 q
->queue_ctx
= ctxs
->queue_ctx
;
2674 * It is the actual release handler for mq, but we do it from
2675 * request queue's release handler for avoiding use-after-free
2676 * and headache because q->mq_kobj shouldn't have been introduced,
2677 * but we can't group ctx/kctx kobj without it.
2679 void blk_mq_release(struct request_queue
*q
)
2681 struct blk_mq_hw_ctx
*hctx
, *next
;
2684 queue_for_each_hw_ctx(q
, hctx
, i
)
2685 WARN_ON_ONCE(hctx
&& list_empty(&hctx
->hctx_list
));
2687 /* all hctx are in .unused_hctx_list now */
2688 list_for_each_entry_safe(hctx
, next
, &q
->unused_hctx_list
, hctx_list
) {
2689 list_del_init(&hctx
->hctx_list
);
2690 kobject_put(&hctx
->kobj
);
2693 kfree(q
->queue_hw_ctx
);
2696 * release .mq_kobj and sw queue's kobject now because
2697 * both share lifetime with request queue.
2699 blk_mq_sysfs_deinit(q
);
2702 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
2704 struct request_queue
*uninit_q
, *q
;
2706 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
2708 return ERR_PTR(-ENOMEM
);
2711 * Initialize the queue without an elevator. device_add_disk() will do
2712 * the initialization.
2714 q
= blk_mq_init_allocated_queue(set
, uninit_q
, false);
2716 blk_cleanup_queue(uninit_q
);
2720 EXPORT_SYMBOL(blk_mq_init_queue
);
2723 * Helper for setting up a queue with mq ops, given queue depth, and
2724 * the passed in mq ops flags.
2726 struct request_queue
*blk_mq_init_sq_queue(struct blk_mq_tag_set
*set
,
2727 const struct blk_mq_ops
*ops
,
2728 unsigned int queue_depth
,
2729 unsigned int set_flags
)
2731 struct request_queue
*q
;
2734 memset(set
, 0, sizeof(*set
));
2736 set
->nr_hw_queues
= 1;
2738 set
->queue_depth
= queue_depth
;
2739 set
->numa_node
= NUMA_NO_NODE
;
2740 set
->flags
= set_flags
;
2742 ret
= blk_mq_alloc_tag_set(set
);
2744 return ERR_PTR(ret
);
2746 q
= blk_mq_init_queue(set
);
2748 blk_mq_free_tag_set(set
);
2754 EXPORT_SYMBOL(blk_mq_init_sq_queue
);
2756 static struct blk_mq_hw_ctx
*blk_mq_alloc_and_init_hctx(
2757 struct blk_mq_tag_set
*set
, struct request_queue
*q
,
2758 int hctx_idx
, int node
)
2760 struct blk_mq_hw_ctx
*hctx
= NULL
, *tmp
;
2762 /* reuse dead hctx first */
2763 spin_lock(&q
->unused_hctx_lock
);
2764 list_for_each_entry(tmp
, &q
->unused_hctx_list
, hctx_list
) {
2765 if (tmp
->numa_node
== node
) {
2771 list_del_init(&hctx
->hctx_list
);
2772 spin_unlock(&q
->unused_hctx_lock
);
2775 hctx
= blk_mq_alloc_hctx(q
, set
, node
);
2779 if (blk_mq_init_hctx(q
, set
, hctx
, hctx_idx
))
2785 kobject_put(&hctx
->kobj
);
2790 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
2791 struct request_queue
*q
)
2794 struct blk_mq_hw_ctx
**hctxs
= q
->queue_hw_ctx
;
2796 /* protect against switching io scheduler */
2797 mutex_lock(&q
->sysfs_lock
);
2798 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2800 struct blk_mq_hw_ctx
*hctx
;
2802 node
= blk_mq_hw_queue_to_node(&set
->map
[HCTX_TYPE_DEFAULT
], i
);
2804 * If the hw queue has been mapped to another numa node,
2805 * we need to realloc the hctx. If allocation fails, fallback
2806 * to use the previous one.
2808 if (hctxs
[i
] && (hctxs
[i
]->numa_node
== node
))
2811 hctx
= blk_mq_alloc_and_init_hctx(set
, q
, i
, node
);
2814 blk_mq_exit_hctx(q
, set
, hctxs
[i
], i
);
2818 pr_warn("Allocate new hctx on node %d fails,\
2819 fallback to previous one on node %d\n",
2820 node
, hctxs
[i
]->numa_node
);
2826 * Increasing nr_hw_queues fails. Free the newly allocated
2827 * hctxs and keep the previous q->nr_hw_queues.
2829 if (i
!= set
->nr_hw_queues
) {
2830 j
= q
->nr_hw_queues
;
2834 end
= q
->nr_hw_queues
;
2835 q
->nr_hw_queues
= set
->nr_hw_queues
;
2838 for (; j
< end
; j
++) {
2839 struct blk_mq_hw_ctx
*hctx
= hctxs
[j
];
2843 blk_mq_free_map_and_requests(set
, j
);
2844 blk_mq_exit_hctx(q
, set
, hctx
, j
);
2848 mutex_unlock(&q
->sysfs_lock
);
2852 * Maximum number of hardware queues we support. For single sets, we'll never
2853 * have more than the CPUs (software queues). For multiple sets, the tag_set
2854 * user may have set ->nr_hw_queues larger.
2856 static unsigned int nr_hw_queues(struct blk_mq_tag_set
*set
)
2858 if (set
->nr_maps
== 1)
2861 return max(set
->nr_hw_queues
, nr_cpu_ids
);
2864 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
2865 struct request_queue
*q
,
2868 /* mark the queue as mq asap */
2869 q
->mq_ops
= set
->ops
;
2871 q
->poll_cb
= blk_stat_alloc_callback(blk_mq_poll_stats_fn
,
2872 blk_mq_poll_stats_bkt
,
2873 BLK_MQ_POLL_STATS_BKTS
, q
);
2877 if (blk_mq_alloc_ctxs(q
))
2880 /* init q->mq_kobj and sw queues' kobjects */
2881 blk_mq_sysfs_init(q
);
2883 q
->nr_queues
= nr_hw_queues(set
);
2884 q
->queue_hw_ctx
= kcalloc_node(q
->nr_queues
, sizeof(*(q
->queue_hw_ctx
)),
2885 GFP_KERNEL
, set
->numa_node
);
2886 if (!q
->queue_hw_ctx
)
2889 INIT_LIST_HEAD(&q
->unused_hctx_list
);
2890 spin_lock_init(&q
->unused_hctx_lock
);
2892 blk_mq_realloc_hw_ctxs(set
, q
);
2893 if (!q
->nr_hw_queues
)
2896 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
2897 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
2901 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
2902 if (set
->nr_maps
> HCTX_TYPE_POLL
&&
2903 set
->map
[HCTX_TYPE_POLL
].nr_queues
)
2904 blk_queue_flag_set(QUEUE_FLAG_POLL
, q
);
2906 q
->sg_reserved_size
= INT_MAX
;
2908 INIT_DELAYED_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
2909 INIT_LIST_HEAD(&q
->requeue_list
);
2910 spin_lock_init(&q
->requeue_lock
);
2912 blk_queue_make_request(q
, blk_mq_make_request
);
2915 * Do this after blk_queue_make_request() overrides it...
2917 q
->nr_requests
= set
->queue_depth
;
2920 * Default to classic polling
2922 q
->poll_nsec
= BLK_MQ_POLL_CLASSIC
;
2924 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2925 blk_mq_add_queue_tag_set(set
, q
);
2926 blk_mq_map_swqueue(q
);
2929 elevator_init_mq(q
);
2934 kfree(q
->queue_hw_ctx
);
2935 q
->nr_hw_queues
= 0;
2937 blk_mq_sysfs_deinit(q
);
2939 blk_stat_free_callback(q
->poll_cb
);
2943 return ERR_PTR(-ENOMEM
);
2945 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2947 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2948 void blk_mq_exit_queue(struct request_queue
*q
)
2950 struct blk_mq_tag_set
*set
= q
->tag_set
;
2952 blk_mq_del_queue_tag_set(q
);
2953 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2956 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2960 for (i
= 0; i
< set
->nr_hw_queues
; i
++)
2961 if (!__blk_mq_alloc_rq_map(set
, i
))
2968 blk_mq_free_rq_map(set
->tags
[i
]);
2974 * Allocate the request maps associated with this tag_set. Note that this
2975 * may reduce the depth asked for, if memory is tight. set->queue_depth
2976 * will be updated to reflect the allocated depth.
2978 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2983 depth
= set
->queue_depth
;
2985 err
= __blk_mq_alloc_rq_maps(set
);
2989 set
->queue_depth
>>= 1;
2990 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2994 } while (set
->queue_depth
);
2996 if (!set
->queue_depth
|| err
) {
2997 pr_err("blk-mq: failed to allocate request map\n");
3001 if (depth
!= set
->queue_depth
)
3002 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3003 depth
, set
->queue_depth
);
3008 static int blk_mq_update_queue_map(struct blk_mq_tag_set
*set
)
3011 * blk_mq_map_queues() and multiple .map_queues() implementations
3012 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3013 * number of hardware queues.
3015 if (set
->nr_maps
== 1)
3016 set
->map
[HCTX_TYPE_DEFAULT
].nr_queues
= set
->nr_hw_queues
;
3018 if (set
->ops
->map_queues
&& !is_kdump_kernel()) {
3022 * transport .map_queues is usually done in the following
3025 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3026 * mask = get_cpu_mask(queue)
3027 * for_each_cpu(cpu, mask)
3028 * set->map[x].mq_map[cpu] = queue;
3031 * When we need to remap, the table has to be cleared for
3032 * killing stale mapping since one CPU may not be mapped
3035 for (i
= 0; i
< set
->nr_maps
; i
++)
3036 blk_mq_clear_mq_map(&set
->map
[i
]);
3038 return set
->ops
->map_queues(set
);
3040 BUG_ON(set
->nr_maps
> 1);
3041 return blk_mq_map_queues(&set
->map
[HCTX_TYPE_DEFAULT
]);
3046 * Alloc a tag set to be associated with one or more request queues.
3047 * May fail with EINVAL for various error conditions. May adjust the
3048 * requested depth down, if it's too large. In that case, the set
3049 * value will be stored in set->queue_depth.
3051 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
3055 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
3057 if (!set
->nr_hw_queues
)
3059 if (!set
->queue_depth
)
3061 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
3064 if (!set
->ops
->queue_rq
)
3067 if (!set
->ops
->get_budget
^ !set
->ops
->put_budget
)
3070 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
3071 pr_info("blk-mq: reduced tag depth to %u\n",
3073 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
3078 else if (set
->nr_maps
> HCTX_MAX_TYPES
)
3082 * If a crashdump is active, then we are potentially in a very
3083 * memory constrained environment. Limit us to 1 queue and
3084 * 64 tags to prevent using too much memory.
3086 if (is_kdump_kernel()) {
3087 set
->nr_hw_queues
= 1;
3089 set
->queue_depth
= min(64U, set
->queue_depth
);
3092 * There is no use for more h/w queues than cpus if we just have
3095 if (set
->nr_maps
== 1 && set
->nr_hw_queues
> nr_cpu_ids
)
3096 set
->nr_hw_queues
= nr_cpu_ids
;
3098 set
->tags
= kcalloc_node(nr_hw_queues(set
), sizeof(struct blk_mq_tags
*),
3099 GFP_KERNEL
, set
->numa_node
);
3104 for (i
= 0; i
< set
->nr_maps
; i
++) {
3105 set
->map
[i
].mq_map
= kcalloc_node(nr_cpu_ids
,
3106 sizeof(set
->map
[i
].mq_map
[0]),
3107 GFP_KERNEL
, set
->numa_node
);
3108 if (!set
->map
[i
].mq_map
)
3109 goto out_free_mq_map
;
3110 set
->map
[i
].nr_queues
= is_kdump_kernel() ? 1 : set
->nr_hw_queues
;
3113 ret
= blk_mq_update_queue_map(set
);
3115 goto out_free_mq_map
;
3117 ret
= blk_mq_alloc_rq_maps(set
);
3119 goto out_free_mq_map
;
3121 mutex_init(&set
->tag_list_lock
);
3122 INIT_LIST_HEAD(&set
->tag_list
);
3127 for (i
= 0; i
< set
->nr_maps
; i
++) {
3128 kfree(set
->map
[i
].mq_map
);
3129 set
->map
[i
].mq_map
= NULL
;
3135 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
3137 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
3141 for (i
= 0; i
< nr_hw_queues(set
); i
++)
3142 blk_mq_free_map_and_requests(set
, i
);
3144 for (j
= 0; j
< set
->nr_maps
; j
++) {
3145 kfree(set
->map
[j
].mq_map
);
3146 set
->map
[j
].mq_map
= NULL
;
3152 EXPORT_SYMBOL(blk_mq_free_tag_set
);
3154 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
3156 struct blk_mq_tag_set
*set
= q
->tag_set
;
3157 struct blk_mq_hw_ctx
*hctx
;
3163 if (q
->nr_requests
== nr
)
3166 blk_mq_freeze_queue(q
);
3167 blk_mq_quiesce_queue(q
);
3170 queue_for_each_hw_ctx(q
, hctx
, i
) {
3174 * If we're using an MQ scheduler, just update the scheduler
3175 * queue depth. This is similar to what the old code would do.
3177 if (!hctx
->sched_tags
) {
3178 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->tags
, nr
,
3181 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->sched_tags
,
3186 if (q
->elevator
&& q
->elevator
->type
->ops
.depth_updated
)
3187 q
->elevator
->type
->ops
.depth_updated(hctx
);
3191 q
->nr_requests
= nr
;
3193 blk_mq_unquiesce_queue(q
);
3194 blk_mq_unfreeze_queue(q
);
3200 * request_queue and elevator_type pair.
3201 * It is just used by __blk_mq_update_nr_hw_queues to cache
3202 * the elevator_type associated with a request_queue.
3204 struct blk_mq_qe_pair
{
3205 struct list_head node
;
3206 struct request_queue
*q
;
3207 struct elevator_type
*type
;
3211 * Cache the elevator_type in qe pair list and switch the
3212 * io scheduler to 'none'
3214 static bool blk_mq_elv_switch_none(struct list_head
*head
,
3215 struct request_queue
*q
)
3217 struct blk_mq_qe_pair
*qe
;
3222 qe
= kmalloc(sizeof(*qe
), GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
);
3226 INIT_LIST_HEAD(&qe
->node
);
3228 qe
->type
= q
->elevator
->type
;
3229 list_add(&qe
->node
, head
);
3231 mutex_lock(&q
->sysfs_lock
);
3233 * After elevator_switch_mq, the previous elevator_queue will be
3234 * released by elevator_release. The reference of the io scheduler
3235 * module get by elevator_get will also be put. So we need to get
3236 * a reference of the io scheduler module here to prevent it to be
3239 __module_get(qe
->type
->elevator_owner
);
3240 elevator_switch_mq(q
, NULL
);
3241 mutex_unlock(&q
->sysfs_lock
);
3246 static void blk_mq_elv_switch_back(struct list_head
*head
,
3247 struct request_queue
*q
)
3249 struct blk_mq_qe_pair
*qe
;
3250 struct elevator_type
*t
= NULL
;
3252 list_for_each_entry(qe
, head
, node
)
3261 list_del(&qe
->node
);
3264 mutex_lock(&q
->sysfs_lock
);
3265 elevator_switch_mq(q
, t
);
3266 mutex_unlock(&q
->sysfs_lock
);
3269 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
,
3272 struct request_queue
*q
;
3274 int prev_nr_hw_queues
;
3276 lockdep_assert_held(&set
->tag_list_lock
);
3278 if (set
->nr_maps
== 1 && nr_hw_queues
> nr_cpu_ids
)
3279 nr_hw_queues
= nr_cpu_ids
;
3280 if (nr_hw_queues
< 1 || nr_hw_queues
== set
->nr_hw_queues
)
3283 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3284 blk_mq_freeze_queue(q
);
3286 * Sync with blk_mq_queue_tag_busy_iter.
3290 * Switch IO scheduler to 'none', cleaning up the data associated
3291 * with the previous scheduler. We will switch back once we are done
3292 * updating the new sw to hw queue mappings.
3294 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3295 if (!blk_mq_elv_switch_none(&head
, q
))
3298 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
3299 blk_mq_debugfs_unregister_hctxs(q
);
3300 blk_mq_sysfs_unregister(q
);
3303 prev_nr_hw_queues
= set
->nr_hw_queues
;
3304 set
->nr_hw_queues
= nr_hw_queues
;
3305 blk_mq_update_queue_map(set
);
3307 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
3308 blk_mq_realloc_hw_ctxs(set
, q
);
3309 if (q
->nr_hw_queues
!= set
->nr_hw_queues
) {
3310 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3311 nr_hw_queues
, prev_nr_hw_queues
);
3312 set
->nr_hw_queues
= prev_nr_hw_queues
;
3313 blk_mq_map_queues(&set
->map
[HCTX_TYPE_DEFAULT
]);
3316 blk_mq_map_swqueue(q
);
3319 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
3320 blk_mq_sysfs_register(q
);
3321 blk_mq_debugfs_register_hctxs(q
);
3325 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3326 blk_mq_elv_switch_back(&head
, q
);
3328 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3329 blk_mq_unfreeze_queue(q
);
3332 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
3334 mutex_lock(&set
->tag_list_lock
);
3335 __blk_mq_update_nr_hw_queues(set
, nr_hw_queues
);
3336 mutex_unlock(&set
->tag_list_lock
);
3338 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
3340 /* Enable polling stats and return whether they were already enabled. */
3341 static bool blk_poll_stats_enable(struct request_queue
*q
)
3343 if (test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
3344 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS
, q
))
3346 blk_stat_add_callback(q
, q
->poll_cb
);
3350 static void blk_mq_poll_stats_start(struct request_queue
*q
)
3353 * We don't arm the callback if polling stats are not enabled or the
3354 * callback is already active.
3356 if (!test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
3357 blk_stat_is_active(q
->poll_cb
))
3360 blk_stat_activate_msecs(q
->poll_cb
, 100);
3363 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
)
3365 struct request_queue
*q
= cb
->data
;
3368 for (bucket
= 0; bucket
< BLK_MQ_POLL_STATS_BKTS
; bucket
++) {
3369 if (cb
->stat
[bucket
].nr_samples
)
3370 q
->poll_stat
[bucket
] = cb
->stat
[bucket
];
3374 static unsigned long blk_mq_poll_nsecs(struct request_queue
*q
,
3375 struct blk_mq_hw_ctx
*hctx
,
3378 unsigned long ret
= 0;
3382 * If stats collection isn't on, don't sleep but turn it on for
3385 if (!blk_poll_stats_enable(q
))
3389 * As an optimistic guess, use half of the mean service time
3390 * for this type of request. We can (and should) make this smarter.
3391 * For instance, if the completion latencies are tight, we can
3392 * get closer than just half the mean. This is especially
3393 * important on devices where the completion latencies are longer
3394 * than ~10 usec. We do use the stats for the relevant IO size
3395 * if available which does lead to better estimates.
3397 bucket
= blk_mq_poll_stats_bkt(rq
);
3401 if (q
->poll_stat
[bucket
].nr_samples
)
3402 ret
= (q
->poll_stat
[bucket
].mean
+ 1) / 2;
3407 static bool blk_mq_poll_hybrid_sleep(struct request_queue
*q
,
3408 struct blk_mq_hw_ctx
*hctx
,
3411 struct hrtimer_sleeper hs
;
3412 enum hrtimer_mode mode
;
3416 if (rq
->rq_flags
& RQF_MQ_POLL_SLEPT
)
3420 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3422 * 0: use half of prev avg
3423 * >0: use this specific value
3425 if (q
->poll_nsec
> 0)
3426 nsecs
= q
->poll_nsec
;
3428 nsecs
= blk_mq_poll_nsecs(q
, hctx
, rq
);
3433 rq
->rq_flags
|= RQF_MQ_POLL_SLEPT
;
3436 * This will be replaced with the stats tracking code, using
3437 * 'avg_completion_time / 2' as the pre-sleep target.
3441 mode
= HRTIMER_MODE_REL
;
3442 hrtimer_init_sleeper_on_stack(&hs
, CLOCK_MONOTONIC
, mode
);
3443 hrtimer_set_expires(&hs
.timer
, kt
);
3446 if (blk_mq_rq_state(rq
) == MQ_RQ_COMPLETE
)
3448 set_current_state(TASK_UNINTERRUPTIBLE
);
3449 hrtimer_sleeper_start_expires(&hs
, mode
);
3452 hrtimer_cancel(&hs
.timer
);
3453 mode
= HRTIMER_MODE_ABS
;
3454 } while (hs
.task
&& !signal_pending(current
));
3456 __set_current_state(TASK_RUNNING
);
3457 destroy_hrtimer_on_stack(&hs
.timer
);
3461 static bool blk_mq_poll_hybrid(struct request_queue
*q
,
3462 struct blk_mq_hw_ctx
*hctx
, blk_qc_t cookie
)
3466 if (q
->poll_nsec
== BLK_MQ_POLL_CLASSIC
)
3469 if (!blk_qc_t_is_internal(cookie
))
3470 rq
= blk_mq_tag_to_rq(hctx
->tags
, blk_qc_t_to_tag(cookie
));
3472 rq
= blk_mq_tag_to_rq(hctx
->sched_tags
, blk_qc_t_to_tag(cookie
));
3474 * With scheduling, if the request has completed, we'll
3475 * get a NULL return here, as we clear the sched tag when
3476 * that happens. The request still remains valid, like always,
3477 * so we should be safe with just the NULL check.
3483 return blk_mq_poll_hybrid_sleep(q
, hctx
, rq
);
3487 * blk_poll - poll for IO completions
3489 * @cookie: cookie passed back at IO submission time
3490 * @spin: whether to spin for completions
3493 * Poll for completions on the passed in queue. Returns number of
3494 * completed entries found. If @spin is true, then blk_poll will continue
3495 * looping until at least one completion is found, unless the task is
3496 * otherwise marked running (or we need to reschedule).
3498 int blk_poll(struct request_queue
*q
, blk_qc_t cookie
, bool spin
)
3500 struct blk_mq_hw_ctx
*hctx
;
3503 if (!blk_qc_t_valid(cookie
) ||
3504 !test_bit(QUEUE_FLAG_POLL
, &q
->queue_flags
))
3508 blk_flush_plug_list(current
->plug
, false);
3510 hctx
= q
->queue_hw_ctx
[blk_qc_t_to_queue_num(cookie
)];
3513 * If we sleep, have the caller restart the poll loop to reset
3514 * the state. Like for the other success return cases, the
3515 * caller is responsible for checking if the IO completed. If
3516 * the IO isn't complete, we'll get called again and will go
3517 * straight to the busy poll loop.
3519 if (blk_mq_poll_hybrid(q
, hctx
, cookie
))
3522 hctx
->poll_considered
++;
3524 state
= current
->state
;
3528 hctx
->poll_invoked
++;
3530 ret
= q
->mq_ops
->poll(hctx
);
3532 hctx
->poll_success
++;
3533 __set_current_state(TASK_RUNNING
);
3537 if (signal_pending_state(state
, current
))
3538 __set_current_state(TASK_RUNNING
);
3540 if (current
->state
== TASK_RUNNING
)
3542 if (ret
< 0 || !spin
)
3545 } while (!need_resched());
3547 __set_current_state(TASK_RUNNING
);
3550 EXPORT_SYMBOL_GPL(blk_poll
);
3552 unsigned int blk_mq_rq_cpu(struct request
*rq
)
3554 return rq
->mq_ctx
->cpu
;
3556 EXPORT_SYMBOL(blk_mq_rq_cpu
);
3558 static int __init
blk_mq_init(void)
3560 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD
, "block/mq:dead", NULL
,
3561 blk_mq_hctx_notify_dead
);
3564 subsys_initcall(blk_mq_init
);