4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/fs_context.h>
43 #include <linux/namei.h>
44 #include <linux/pagemap.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
47 #include <linux/sched.h>
48 #include <linux/sched/deadline.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/seq_file.h>
52 #include <linux/security.h>
53 #include <linux/slab.h>
54 #include <linux/spinlock.h>
55 #include <linux/stat.h>
56 #include <linux/string.h>
57 #include <linux/time.h>
58 #include <linux/time64.h>
59 #include <linux/backing-dev.h>
60 #include <linux/sort.h>
61 #include <linux/oom.h>
62 #include <linux/sched/isolation.h>
63 #include <linux/uaccess.h>
64 #include <linux/atomic.h>
65 #include <linux/mutex.h>
66 #include <linux/cgroup.h>
67 #include <linux/wait.h>
69 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key
);
70 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key
);
72 /* See "Frequency meter" comments, below. */
75 int cnt
; /* unprocessed events count */
76 int val
; /* most recent output value */
77 time64_t time
; /* clock (secs) when val computed */
78 spinlock_t lock
; /* guards read or write of above */
82 struct cgroup_subsys_state css
;
84 unsigned long flags
; /* "unsigned long" so bitops work */
87 * On default hierarchy:
89 * The user-configured masks can only be changed by writing to
90 * cpuset.cpus and cpuset.mems, and won't be limited by the
93 * The effective masks is the real masks that apply to the tasks
94 * in the cpuset. They may be changed if the configured masks are
95 * changed or hotplug happens.
97 * effective_mask == configured_mask & parent's effective_mask,
98 * and if it ends up empty, it will inherit the parent's mask.
101 * On legacy hierachy:
103 * The user-configured masks are always the same with effective masks.
106 /* user-configured CPUs and Memory Nodes allow to tasks */
107 cpumask_var_t cpus_allowed
;
108 nodemask_t mems_allowed
;
110 /* effective CPUs and Memory Nodes allow to tasks */
111 cpumask_var_t effective_cpus
;
112 nodemask_t effective_mems
;
115 * CPUs allocated to child sub-partitions (default hierarchy only)
116 * - CPUs granted by the parent = effective_cpus U subparts_cpus
117 * - effective_cpus and subparts_cpus are mutually exclusive.
119 * effective_cpus contains only onlined CPUs, but subparts_cpus
120 * may have offlined ones.
122 cpumask_var_t subparts_cpus
;
125 * This is old Memory Nodes tasks took on.
127 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
128 * - A new cpuset's old_mems_allowed is initialized when some
129 * task is moved into it.
130 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
131 * cpuset.mems_allowed and have tasks' nodemask updated, and
132 * then old_mems_allowed is updated to mems_allowed.
134 nodemask_t old_mems_allowed
;
136 struct fmeter fmeter
; /* memory_pressure filter */
139 * Tasks are being attached to this cpuset. Used to prevent
140 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
142 int attach_in_progress
;
144 /* partition number for rebuild_sched_domains() */
147 /* for custom sched domain */
148 int relax_domain_level
;
150 /* number of CPUs in subparts_cpus */
151 int nr_subparts_cpus
;
153 /* partition root state */
154 int partition_root_state
;
157 * Default hierarchy only:
158 * use_parent_ecpus - set if using parent's effective_cpus
159 * child_ecpus_count - # of children with use_parent_ecpus set
161 int use_parent_ecpus
;
162 int child_ecpus_count
;
166 * Partition root states:
168 * 0 - not a partition root
172 * -1 - invalid partition root
173 * None of the cpus in cpus_allowed can be put into the parent's
174 * subparts_cpus. In this case, the cpuset is not a real partition
175 * root anymore. However, the CPU_EXCLUSIVE bit will still be set
176 * and the cpuset can be restored back to a partition root if the
177 * parent cpuset can give more CPUs back to this child cpuset.
179 #define PRS_DISABLED 0
180 #define PRS_ENABLED 1
184 * Temporary cpumasks for working with partitions that are passed among
185 * functions to avoid memory allocation in inner functions.
188 cpumask_var_t addmask
, delmask
; /* For partition root */
189 cpumask_var_t new_cpus
; /* For update_cpumasks_hier() */
192 static inline struct cpuset
*css_cs(struct cgroup_subsys_state
*css
)
194 return css
? container_of(css
, struct cpuset
, css
) : NULL
;
197 /* Retrieve the cpuset for a task */
198 static inline struct cpuset
*task_cs(struct task_struct
*task
)
200 return css_cs(task_css(task
, cpuset_cgrp_id
));
203 static inline struct cpuset
*parent_cs(struct cpuset
*cs
)
205 return css_cs(cs
->css
.parent
);
208 /* bits in struct cpuset flags field */
215 CS_SCHED_LOAD_BALANCE
,
220 /* convenient tests for these bits */
221 static inline bool is_cpuset_online(struct cpuset
*cs
)
223 return test_bit(CS_ONLINE
, &cs
->flags
) && !css_is_dying(&cs
->css
);
226 static inline int is_cpu_exclusive(const struct cpuset
*cs
)
228 return test_bit(CS_CPU_EXCLUSIVE
, &cs
->flags
);
231 static inline int is_mem_exclusive(const struct cpuset
*cs
)
233 return test_bit(CS_MEM_EXCLUSIVE
, &cs
->flags
);
236 static inline int is_mem_hardwall(const struct cpuset
*cs
)
238 return test_bit(CS_MEM_HARDWALL
, &cs
->flags
);
241 static inline int is_sched_load_balance(const struct cpuset
*cs
)
243 return test_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
246 static inline int is_memory_migrate(const struct cpuset
*cs
)
248 return test_bit(CS_MEMORY_MIGRATE
, &cs
->flags
);
251 static inline int is_spread_page(const struct cpuset
*cs
)
253 return test_bit(CS_SPREAD_PAGE
, &cs
->flags
);
256 static inline int is_spread_slab(const struct cpuset
*cs
)
258 return test_bit(CS_SPREAD_SLAB
, &cs
->flags
);
261 static inline int is_partition_root(const struct cpuset
*cs
)
263 return cs
->partition_root_state
> 0;
266 static struct cpuset top_cpuset
= {
267 .flags
= ((1 << CS_ONLINE
) | (1 << CS_CPU_EXCLUSIVE
) |
268 (1 << CS_MEM_EXCLUSIVE
)),
269 .partition_root_state
= PRS_ENABLED
,
273 * cpuset_for_each_child - traverse online children of a cpuset
274 * @child_cs: loop cursor pointing to the current child
275 * @pos_css: used for iteration
276 * @parent_cs: target cpuset to walk children of
278 * Walk @child_cs through the online children of @parent_cs. Must be used
279 * with RCU read locked.
281 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
282 css_for_each_child((pos_css), &(parent_cs)->css) \
283 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
286 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
287 * @des_cs: loop cursor pointing to the current descendant
288 * @pos_css: used for iteration
289 * @root_cs: target cpuset to walk ancestor of
291 * Walk @des_cs through the online descendants of @root_cs. Must be used
292 * with RCU read locked. The caller may modify @pos_css by calling
293 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
294 * iteration and the first node to be visited.
296 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
297 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
298 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
301 * There are two global locks guarding cpuset structures - cpuset_mutex and
302 * callback_lock. We also require taking task_lock() when dereferencing a
303 * task's cpuset pointer. See "The task_lock() exception", at the end of this
306 * A task must hold both locks to modify cpusets. If a task holds
307 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
308 * is the only task able to also acquire callback_lock and be able to
309 * modify cpusets. It can perform various checks on the cpuset structure
310 * first, knowing nothing will change. It can also allocate memory while
311 * just holding cpuset_mutex. While it is performing these checks, various
312 * callback routines can briefly acquire callback_lock to query cpusets.
313 * Once it is ready to make the changes, it takes callback_lock, blocking
316 * Calls to the kernel memory allocator can not be made while holding
317 * callback_lock, as that would risk double tripping on callback_lock
318 * from one of the callbacks into the cpuset code from within
321 * If a task is only holding callback_lock, then it has read-only
324 * Now, the task_struct fields mems_allowed and mempolicy may be changed
325 * by other task, we use alloc_lock in the task_struct fields to protect
328 * The cpuset_common_file_read() handlers only hold callback_lock across
329 * small pieces of code, such as when reading out possibly multi-word
330 * cpumasks and nodemasks.
332 * Accessing a task's cpuset should be done in accordance with the
333 * guidelines for accessing subsystem state in kernel/cgroup.c
336 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem
);
338 void cpuset_read_lock(void)
340 percpu_down_read(&cpuset_rwsem
);
343 void cpuset_read_unlock(void)
345 percpu_up_read(&cpuset_rwsem
);
348 static DEFINE_SPINLOCK(callback_lock
);
350 static struct workqueue_struct
*cpuset_migrate_mm_wq
;
353 * CPU / memory hotplug is handled asynchronously.
355 static void cpuset_hotplug_workfn(struct work_struct
*work
);
356 static DECLARE_WORK(cpuset_hotplug_work
, cpuset_hotplug_workfn
);
358 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq
);
361 * Cgroup v2 behavior is used when on default hierarchy or the
362 * cgroup_v2_mode flag is set.
364 static inline bool is_in_v2_mode(void)
366 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys
) ||
367 (cpuset_cgrp_subsys
.root
->flags
& CGRP_ROOT_CPUSET_V2_MODE
);
371 * Return in pmask the portion of a cpusets's cpus_allowed that
372 * are online. If none are online, walk up the cpuset hierarchy
373 * until we find one that does have some online cpus.
375 * One way or another, we guarantee to return some non-empty subset
376 * of cpu_online_mask.
378 * Call with callback_lock or cpuset_mutex held.
380 static void guarantee_online_cpus(struct cpuset
*cs
, struct cpumask
*pmask
)
382 while (!cpumask_intersects(cs
->effective_cpus
, cpu_online_mask
)) {
386 * The top cpuset doesn't have any online cpu as a
387 * consequence of a race between cpuset_hotplug_work
388 * and cpu hotplug notifier. But we know the top
389 * cpuset's effective_cpus is on its way to to be
390 * identical to cpu_online_mask.
392 cpumask_copy(pmask
, cpu_online_mask
);
396 cpumask_and(pmask
, cs
->effective_cpus
, cpu_online_mask
);
400 * Return in *pmask the portion of a cpusets's mems_allowed that
401 * are online, with memory. If none are online with memory, walk
402 * up the cpuset hierarchy until we find one that does have some
403 * online mems. The top cpuset always has some mems online.
405 * One way or another, we guarantee to return some non-empty subset
406 * of node_states[N_MEMORY].
408 * Call with callback_lock or cpuset_mutex held.
410 static void guarantee_online_mems(struct cpuset
*cs
, nodemask_t
*pmask
)
412 while (!nodes_intersects(cs
->effective_mems
, node_states
[N_MEMORY
]))
414 nodes_and(*pmask
, cs
->effective_mems
, node_states
[N_MEMORY
]);
418 * update task's spread flag if cpuset's page/slab spread flag is set
420 * Call with callback_lock or cpuset_mutex held.
422 static void cpuset_update_task_spread_flag(struct cpuset
*cs
,
423 struct task_struct
*tsk
)
425 if (is_spread_page(cs
))
426 task_set_spread_page(tsk
);
428 task_clear_spread_page(tsk
);
430 if (is_spread_slab(cs
))
431 task_set_spread_slab(tsk
);
433 task_clear_spread_slab(tsk
);
437 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
439 * One cpuset is a subset of another if all its allowed CPUs and
440 * Memory Nodes are a subset of the other, and its exclusive flags
441 * are only set if the other's are set. Call holding cpuset_mutex.
444 static int is_cpuset_subset(const struct cpuset
*p
, const struct cpuset
*q
)
446 return cpumask_subset(p
->cpus_allowed
, q
->cpus_allowed
) &&
447 nodes_subset(p
->mems_allowed
, q
->mems_allowed
) &&
448 is_cpu_exclusive(p
) <= is_cpu_exclusive(q
) &&
449 is_mem_exclusive(p
) <= is_mem_exclusive(q
);
453 * alloc_cpumasks - allocate three cpumasks for cpuset
454 * @cs: the cpuset that have cpumasks to be allocated.
455 * @tmp: the tmpmasks structure pointer
456 * Return: 0 if successful, -ENOMEM otherwise.
458 * Only one of the two input arguments should be non-NULL.
460 static inline int alloc_cpumasks(struct cpuset
*cs
, struct tmpmasks
*tmp
)
462 cpumask_var_t
*pmask1
, *pmask2
, *pmask3
;
465 pmask1
= &cs
->cpus_allowed
;
466 pmask2
= &cs
->effective_cpus
;
467 pmask3
= &cs
->subparts_cpus
;
469 pmask1
= &tmp
->new_cpus
;
470 pmask2
= &tmp
->addmask
;
471 pmask3
= &tmp
->delmask
;
474 if (!zalloc_cpumask_var(pmask1
, GFP_KERNEL
))
477 if (!zalloc_cpumask_var(pmask2
, GFP_KERNEL
))
480 if (!zalloc_cpumask_var(pmask3
, GFP_KERNEL
))
486 free_cpumask_var(*pmask2
);
488 free_cpumask_var(*pmask1
);
493 * free_cpumasks - free cpumasks in a tmpmasks structure
494 * @cs: the cpuset that have cpumasks to be free.
495 * @tmp: the tmpmasks structure pointer
497 static inline void free_cpumasks(struct cpuset
*cs
, struct tmpmasks
*tmp
)
500 free_cpumask_var(cs
->cpus_allowed
);
501 free_cpumask_var(cs
->effective_cpus
);
502 free_cpumask_var(cs
->subparts_cpus
);
505 free_cpumask_var(tmp
->new_cpus
);
506 free_cpumask_var(tmp
->addmask
);
507 free_cpumask_var(tmp
->delmask
);
512 * alloc_trial_cpuset - allocate a trial cpuset
513 * @cs: the cpuset that the trial cpuset duplicates
515 static struct cpuset
*alloc_trial_cpuset(struct cpuset
*cs
)
517 struct cpuset
*trial
;
519 trial
= kmemdup(cs
, sizeof(*cs
), GFP_KERNEL
);
523 if (alloc_cpumasks(trial
, NULL
)) {
528 cpumask_copy(trial
->cpus_allowed
, cs
->cpus_allowed
);
529 cpumask_copy(trial
->effective_cpus
, cs
->effective_cpus
);
534 * free_cpuset - free the cpuset
535 * @cs: the cpuset to be freed
537 static inline void free_cpuset(struct cpuset
*cs
)
539 free_cpumasks(cs
, NULL
);
544 * validate_change() - Used to validate that any proposed cpuset change
545 * follows the structural rules for cpusets.
547 * If we replaced the flag and mask values of the current cpuset
548 * (cur) with those values in the trial cpuset (trial), would
549 * our various subset and exclusive rules still be valid? Presumes
552 * 'cur' is the address of an actual, in-use cpuset. Operations
553 * such as list traversal that depend on the actual address of the
554 * cpuset in the list must use cur below, not trial.
556 * 'trial' is the address of bulk structure copy of cur, with
557 * perhaps one or more of the fields cpus_allowed, mems_allowed,
558 * or flags changed to new, trial values.
560 * Return 0 if valid, -errno if not.
563 static int validate_change(struct cpuset
*cur
, struct cpuset
*trial
)
565 struct cgroup_subsys_state
*css
;
566 struct cpuset
*c
, *par
;
571 /* Each of our child cpusets must be a subset of us */
573 cpuset_for_each_child(c
, css
, cur
)
574 if (!is_cpuset_subset(c
, trial
))
577 /* Remaining checks don't apply to root cpuset */
579 if (cur
== &top_cpuset
)
582 par
= parent_cs(cur
);
584 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
586 if (!is_in_v2_mode() && !is_cpuset_subset(trial
, par
))
590 * If either I or some sibling (!= me) is exclusive, we can't
594 cpuset_for_each_child(c
, css
, par
) {
595 if ((is_cpu_exclusive(trial
) || is_cpu_exclusive(c
)) &&
597 cpumask_intersects(trial
->cpus_allowed
, c
->cpus_allowed
))
599 if ((is_mem_exclusive(trial
) || is_mem_exclusive(c
)) &&
601 nodes_intersects(trial
->mems_allowed
, c
->mems_allowed
))
606 * Cpusets with tasks - existing or newly being attached - can't
607 * be changed to have empty cpus_allowed or mems_allowed.
610 if ((cgroup_is_populated(cur
->css
.cgroup
) || cur
->attach_in_progress
)) {
611 if (!cpumask_empty(cur
->cpus_allowed
) &&
612 cpumask_empty(trial
->cpus_allowed
))
614 if (!nodes_empty(cur
->mems_allowed
) &&
615 nodes_empty(trial
->mems_allowed
))
620 * We can't shrink if we won't have enough room for SCHED_DEADLINE
624 if (is_cpu_exclusive(cur
) &&
625 !cpuset_cpumask_can_shrink(cur
->cpus_allowed
,
626 trial
->cpus_allowed
))
637 * Helper routine for generate_sched_domains().
638 * Do cpusets a, b have overlapping effective cpus_allowed masks?
640 static int cpusets_overlap(struct cpuset
*a
, struct cpuset
*b
)
642 return cpumask_intersects(a
->effective_cpus
, b
->effective_cpus
);
646 update_domain_attr(struct sched_domain_attr
*dattr
, struct cpuset
*c
)
648 if (dattr
->relax_domain_level
< c
->relax_domain_level
)
649 dattr
->relax_domain_level
= c
->relax_domain_level
;
653 static void update_domain_attr_tree(struct sched_domain_attr
*dattr
,
654 struct cpuset
*root_cs
)
657 struct cgroup_subsys_state
*pos_css
;
660 cpuset_for_each_descendant_pre(cp
, pos_css
, root_cs
) {
661 /* skip the whole subtree if @cp doesn't have any CPU */
662 if (cpumask_empty(cp
->cpus_allowed
)) {
663 pos_css
= css_rightmost_descendant(pos_css
);
667 if (is_sched_load_balance(cp
))
668 update_domain_attr(dattr
, cp
);
673 /* Must be called with cpuset_mutex held. */
674 static inline int nr_cpusets(void)
676 /* jump label reference count + the top-level cpuset */
677 return static_key_count(&cpusets_enabled_key
.key
) + 1;
681 * generate_sched_domains()
683 * This function builds a partial partition of the systems CPUs
684 * A 'partial partition' is a set of non-overlapping subsets whose
685 * union is a subset of that set.
686 * The output of this function needs to be passed to kernel/sched/core.c
687 * partition_sched_domains() routine, which will rebuild the scheduler's
688 * load balancing domains (sched domains) as specified by that partial
691 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
692 * for a background explanation of this.
694 * Does not return errors, on the theory that the callers of this
695 * routine would rather not worry about failures to rebuild sched
696 * domains when operating in the severe memory shortage situations
697 * that could cause allocation failures below.
699 * Must be called with cpuset_mutex held.
701 * The three key local variables below are:
702 * cp - cpuset pointer, used (together with pos_css) to perform a
703 * top-down scan of all cpusets. For our purposes, rebuilding
704 * the schedulers sched domains, we can ignore !is_sched_load_
706 * csa - (for CpuSet Array) Array of pointers to all the cpusets
707 * that need to be load balanced, for convenient iterative
708 * access by the subsequent code that finds the best partition,
709 * i.e the set of domains (subsets) of CPUs such that the
710 * cpus_allowed of every cpuset marked is_sched_load_balance
711 * is a subset of one of these domains, while there are as
712 * many such domains as possible, each as small as possible.
713 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
714 * the kernel/sched/core.c routine partition_sched_domains() in a
715 * convenient format, that can be easily compared to the prior
716 * value to determine what partition elements (sched domains)
717 * were changed (added or removed.)
719 * Finding the best partition (set of domains):
720 * The triple nested loops below over i, j, k scan over the
721 * load balanced cpusets (using the array of cpuset pointers in
722 * csa[]) looking for pairs of cpusets that have overlapping
723 * cpus_allowed, but which don't have the same 'pn' partition
724 * number and gives them in the same partition number. It keeps
725 * looping on the 'restart' label until it can no longer find
728 * The union of the cpus_allowed masks from the set of
729 * all cpusets having the same 'pn' value then form the one
730 * element of the partition (one sched domain) to be passed to
731 * partition_sched_domains().
733 static int generate_sched_domains(cpumask_var_t
**domains
,
734 struct sched_domain_attr
**attributes
)
736 struct cpuset
*cp
; /* top-down scan of cpusets */
737 struct cpuset
**csa
; /* array of all cpuset ptrs */
738 int csn
; /* how many cpuset ptrs in csa so far */
739 int i
, j
, k
; /* indices for partition finding loops */
740 cpumask_var_t
*doms
; /* resulting partition; i.e. sched domains */
741 struct sched_domain_attr
*dattr
; /* attributes for custom domains */
742 int ndoms
= 0; /* number of sched domains in result */
743 int nslot
; /* next empty doms[] struct cpumask slot */
744 struct cgroup_subsys_state
*pos_css
;
745 bool root_load_balance
= is_sched_load_balance(&top_cpuset
);
751 /* Special case for the 99% of systems with one, full, sched domain */
752 if (root_load_balance
&& !top_cpuset
.nr_subparts_cpus
) {
754 doms
= alloc_sched_domains(ndoms
);
758 dattr
= kmalloc(sizeof(struct sched_domain_attr
), GFP_KERNEL
);
760 *dattr
= SD_ATTR_INIT
;
761 update_domain_attr_tree(dattr
, &top_cpuset
);
763 cpumask_and(doms
[0], top_cpuset
.effective_cpus
,
764 housekeeping_cpumask(HK_FLAG_DOMAIN
));
769 csa
= kmalloc_array(nr_cpusets(), sizeof(cp
), GFP_KERNEL
);
775 if (root_load_balance
)
776 csa
[csn
++] = &top_cpuset
;
777 cpuset_for_each_descendant_pre(cp
, pos_css
, &top_cpuset
) {
778 if (cp
== &top_cpuset
)
781 * Continue traversing beyond @cp iff @cp has some CPUs and
782 * isn't load balancing. The former is obvious. The
783 * latter: All child cpusets contain a subset of the
784 * parent's cpus, so just skip them, and then we call
785 * update_domain_attr_tree() to calc relax_domain_level of
786 * the corresponding sched domain.
788 * If root is load-balancing, we can skip @cp if it
789 * is a subset of the root's effective_cpus.
791 if (!cpumask_empty(cp
->cpus_allowed
) &&
792 !(is_sched_load_balance(cp
) &&
793 cpumask_intersects(cp
->cpus_allowed
,
794 housekeeping_cpumask(HK_FLAG_DOMAIN
))))
797 if (root_load_balance
&&
798 cpumask_subset(cp
->cpus_allowed
, top_cpuset
.effective_cpus
))
801 if (is_sched_load_balance(cp
) &&
802 !cpumask_empty(cp
->effective_cpus
))
805 /* skip @cp's subtree if not a partition root */
806 if (!is_partition_root(cp
))
807 pos_css
= css_rightmost_descendant(pos_css
);
811 for (i
= 0; i
< csn
; i
++)
816 /* Find the best partition (set of sched domains) */
817 for (i
= 0; i
< csn
; i
++) {
818 struct cpuset
*a
= csa
[i
];
821 for (j
= 0; j
< csn
; j
++) {
822 struct cpuset
*b
= csa
[j
];
825 if (apn
!= bpn
&& cpusets_overlap(a
, b
)) {
826 for (k
= 0; k
< csn
; k
++) {
827 struct cpuset
*c
= csa
[k
];
832 ndoms
--; /* one less element */
839 * Now we know how many domains to create.
840 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
842 doms
= alloc_sched_domains(ndoms
);
847 * The rest of the code, including the scheduler, can deal with
848 * dattr==NULL case. No need to abort if alloc fails.
850 dattr
= kmalloc_array(ndoms
, sizeof(struct sched_domain_attr
),
853 for (nslot
= 0, i
= 0; i
< csn
; i
++) {
854 struct cpuset
*a
= csa
[i
];
859 /* Skip completed partitions */
865 if (nslot
== ndoms
) {
866 static int warnings
= 10;
868 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
869 nslot
, ndoms
, csn
, i
, apn
);
877 *(dattr
+ nslot
) = SD_ATTR_INIT
;
878 for (j
= i
; j
< csn
; j
++) {
879 struct cpuset
*b
= csa
[j
];
882 cpumask_or(dp
, dp
, b
->effective_cpus
);
883 cpumask_and(dp
, dp
, housekeeping_cpumask(HK_FLAG_DOMAIN
));
885 update_domain_attr_tree(dattr
+ nslot
, b
);
887 /* Done with this partition */
893 BUG_ON(nslot
!= ndoms
);
899 * Fallback to the default domain if kmalloc() failed.
900 * See comments in partition_sched_domains().
910 static void update_tasks_root_domain(struct cpuset
*cs
)
912 struct css_task_iter it
;
913 struct task_struct
*task
;
915 css_task_iter_start(&cs
->css
, 0, &it
);
917 while ((task
= css_task_iter_next(&it
)))
918 dl_add_task_root_domain(task
);
920 css_task_iter_end(&it
);
923 static void rebuild_root_domains(void)
925 struct cpuset
*cs
= NULL
;
926 struct cgroup_subsys_state
*pos_css
;
928 percpu_rwsem_assert_held(&cpuset_rwsem
);
929 lockdep_assert_cpus_held();
930 lockdep_assert_held(&sched_domains_mutex
);
932 cgroup_enable_task_cg_lists();
937 * Clear default root domain DL accounting, it will be computed again
938 * if a task belongs to it.
940 dl_clear_root_domain(&def_root_domain
);
942 cpuset_for_each_descendant_pre(cs
, pos_css
, &top_cpuset
) {
944 if (cpumask_empty(cs
->effective_cpus
)) {
945 pos_css
= css_rightmost_descendant(pos_css
);
953 update_tasks_root_domain(cs
);
962 partition_and_rebuild_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
963 struct sched_domain_attr
*dattr_new
)
965 mutex_lock(&sched_domains_mutex
);
966 partition_sched_domains_locked(ndoms_new
, doms_new
, dattr_new
);
967 rebuild_root_domains();
968 mutex_unlock(&sched_domains_mutex
);
972 * Rebuild scheduler domains.
974 * If the flag 'sched_load_balance' of any cpuset with non-empty
975 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
976 * which has that flag enabled, or if any cpuset with a non-empty
977 * 'cpus' is removed, then call this routine to rebuild the
978 * scheduler's dynamic sched domains.
980 * Call with cpuset_mutex held. Takes get_online_cpus().
982 static void rebuild_sched_domains_locked(void)
984 struct sched_domain_attr
*attr
;
988 lockdep_assert_cpus_held();
989 percpu_rwsem_assert_held(&cpuset_rwsem
);
992 * We have raced with CPU hotplug. Don't do anything to avoid
993 * passing doms with offlined cpu to partition_sched_domains().
994 * Anyways, hotplug work item will rebuild sched domains.
996 if (!top_cpuset
.nr_subparts_cpus
&&
997 !cpumask_equal(top_cpuset
.effective_cpus
, cpu_active_mask
))
1000 if (top_cpuset
.nr_subparts_cpus
&&
1001 !cpumask_subset(top_cpuset
.effective_cpus
, cpu_active_mask
))
1004 /* Generate domain masks and attrs */
1005 ndoms
= generate_sched_domains(&doms
, &attr
);
1007 /* Have scheduler rebuild the domains */
1008 partition_and_rebuild_sched_domains(ndoms
, doms
, attr
);
1010 #else /* !CONFIG_SMP */
1011 static void rebuild_sched_domains_locked(void)
1014 #endif /* CONFIG_SMP */
1016 void rebuild_sched_domains(void)
1019 percpu_down_write(&cpuset_rwsem
);
1020 rebuild_sched_domains_locked();
1021 percpu_up_write(&cpuset_rwsem
);
1026 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1027 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1029 * Iterate through each task of @cs updating its cpus_allowed to the
1030 * effective cpuset's. As this function is called with cpuset_mutex held,
1031 * cpuset membership stays stable.
1033 static void update_tasks_cpumask(struct cpuset
*cs
)
1035 struct css_task_iter it
;
1036 struct task_struct
*task
;
1038 css_task_iter_start(&cs
->css
, 0, &it
);
1039 while ((task
= css_task_iter_next(&it
)))
1040 set_cpus_allowed_ptr(task
, cs
->effective_cpus
);
1041 css_task_iter_end(&it
);
1045 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1046 * @new_cpus: the temp variable for the new effective_cpus mask
1047 * @cs: the cpuset the need to recompute the new effective_cpus mask
1048 * @parent: the parent cpuset
1050 * If the parent has subpartition CPUs, include them in the list of
1051 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1052 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1053 * to mask those out.
1055 static void compute_effective_cpumask(struct cpumask
*new_cpus
,
1056 struct cpuset
*cs
, struct cpuset
*parent
)
1058 if (parent
->nr_subparts_cpus
) {
1059 cpumask_or(new_cpus
, parent
->effective_cpus
,
1060 parent
->subparts_cpus
);
1061 cpumask_and(new_cpus
, new_cpus
, cs
->cpus_allowed
);
1062 cpumask_and(new_cpus
, new_cpus
, cpu_active_mask
);
1064 cpumask_and(new_cpus
, cs
->cpus_allowed
, parent
->effective_cpus
);
1069 * Commands for update_parent_subparts_cpumask
1072 partcmd_enable
, /* Enable partition root */
1073 partcmd_disable
, /* Disable partition root */
1074 partcmd_update
, /* Update parent's subparts_cpus */
1078 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1079 * @cpuset: The cpuset that requests change in partition root state
1080 * @cmd: Partition root state change command
1081 * @newmask: Optional new cpumask for partcmd_update
1082 * @tmp: Temporary addmask and delmask
1083 * Return: 0, 1 or an error code
1085 * For partcmd_enable, the cpuset is being transformed from a non-partition
1086 * root to a partition root. The cpus_allowed mask of the given cpuset will
1087 * be put into parent's subparts_cpus and taken away from parent's
1088 * effective_cpus. The function will return 0 if all the CPUs listed in
1089 * cpus_allowed can be granted or an error code will be returned.
1091 * For partcmd_disable, the cpuset is being transofrmed from a partition
1092 * root back to a non-partition root. any CPUs in cpus_allowed that are in
1093 * parent's subparts_cpus will be taken away from that cpumask and put back
1094 * into parent's effective_cpus. 0 should always be returned.
1096 * For partcmd_update, if the optional newmask is specified, the cpu
1097 * list is to be changed from cpus_allowed to newmask. Otherwise,
1098 * cpus_allowed is assumed to remain the same. The cpuset should either
1099 * be a partition root or an invalid partition root. The partition root
1100 * state may change if newmask is NULL and none of the requested CPUs can
1101 * be granted by the parent. The function will return 1 if changes to
1102 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1103 * Error code should only be returned when newmask is non-NULL.
1105 * The partcmd_enable and partcmd_disable commands are used by
1106 * update_prstate(). The partcmd_update command is used by
1107 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1110 * The checking is more strict when enabling partition root than the
1111 * other two commands.
1113 * Because of the implicit cpu exclusive nature of a partition root,
1114 * cpumask changes that violates the cpu exclusivity rule will not be
1115 * permitted when checked by validate_change(). The validate_change()
1116 * function will also prevent any changes to the cpu list if it is not
1117 * a superset of children's cpu lists.
1119 static int update_parent_subparts_cpumask(struct cpuset
*cpuset
, int cmd
,
1120 struct cpumask
*newmask
,
1121 struct tmpmasks
*tmp
)
1123 struct cpuset
*parent
= parent_cs(cpuset
);
1124 int adding
; /* Moving cpus from effective_cpus to subparts_cpus */
1125 int deleting
; /* Moving cpus from subparts_cpus to effective_cpus */
1126 bool part_error
= false; /* Partition error? */
1128 percpu_rwsem_assert_held(&cpuset_rwsem
);
1131 * The parent must be a partition root.
1132 * The new cpumask, if present, or the current cpus_allowed must
1135 if (!is_partition_root(parent
) ||
1136 (newmask
&& cpumask_empty(newmask
)) ||
1137 (!newmask
&& cpumask_empty(cpuset
->cpus_allowed
)))
1141 * Enabling/disabling partition root is not allowed if there are
1144 if ((cmd
!= partcmd_update
) && css_has_online_children(&cpuset
->css
))
1148 * Enabling partition root is not allowed if not all the CPUs
1149 * can be granted from parent's effective_cpus or at least one
1150 * CPU will be left after that.
1152 if ((cmd
== partcmd_enable
) &&
1153 (!cpumask_subset(cpuset
->cpus_allowed
, parent
->effective_cpus
) ||
1154 cpumask_equal(cpuset
->cpus_allowed
, parent
->effective_cpus
)))
1158 * A cpumask update cannot make parent's effective_cpus become empty.
1160 adding
= deleting
= false;
1161 if (cmd
== partcmd_enable
) {
1162 cpumask_copy(tmp
->addmask
, cpuset
->cpus_allowed
);
1164 } else if (cmd
== partcmd_disable
) {
1165 deleting
= cpumask_and(tmp
->delmask
, cpuset
->cpus_allowed
,
1166 parent
->subparts_cpus
);
1167 } else if (newmask
) {
1169 * partcmd_update with newmask:
1171 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1172 * addmask = newmask & parent->effective_cpus
1173 * & ~parent->subparts_cpus
1175 cpumask_andnot(tmp
->delmask
, cpuset
->cpus_allowed
, newmask
);
1176 deleting
= cpumask_and(tmp
->delmask
, tmp
->delmask
,
1177 parent
->subparts_cpus
);
1179 cpumask_and(tmp
->addmask
, newmask
, parent
->effective_cpus
);
1180 adding
= cpumask_andnot(tmp
->addmask
, tmp
->addmask
,
1181 parent
->subparts_cpus
);
1183 * Return error if the new effective_cpus could become empty.
1186 cpumask_equal(parent
->effective_cpus
, tmp
->addmask
)) {
1190 * As some of the CPUs in subparts_cpus might have
1191 * been offlined, we need to compute the real delmask
1194 if (!cpumask_and(tmp
->addmask
, tmp
->delmask
,
1197 cpumask_copy(tmp
->addmask
, parent
->effective_cpus
);
1201 * partcmd_update w/o newmask:
1203 * addmask = cpus_allowed & parent->effectiveb_cpus
1205 * Note that parent's subparts_cpus may have been
1206 * pre-shrunk in case there is a change in the cpu list.
1207 * So no deletion is needed.
1209 adding
= cpumask_and(tmp
->addmask
, cpuset
->cpus_allowed
,
1210 parent
->effective_cpus
);
1211 part_error
= cpumask_equal(tmp
->addmask
,
1212 parent
->effective_cpus
);
1215 if (cmd
== partcmd_update
) {
1216 int prev_prs
= cpuset
->partition_root_state
;
1219 * Check for possible transition between PRS_ENABLED
1222 switch (cpuset
->partition_root_state
) {
1225 cpuset
->partition_root_state
= PRS_ERROR
;
1229 cpuset
->partition_root_state
= PRS_ENABLED
;
1233 * Set part_error if previously in invalid state.
1235 part_error
= (prev_prs
== PRS_ERROR
);
1238 if (!part_error
&& (cpuset
->partition_root_state
== PRS_ERROR
))
1239 return 0; /* Nothing need to be done */
1241 if (cpuset
->partition_root_state
== PRS_ERROR
) {
1243 * Remove all its cpus from parent's subparts_cpus.
1246 deleting
= cpumask_and(tmp
->delmask
, cpuset
->cpus_allowed
,
1247 parent
->subparts_cpus
);
1250 if (!adding
&& !deleting
)
1254 * Change the parent's subparts_cpus.
1255 * Newly added CPUs will be removed from effective_cpus and
1256 * newly deleted ones will be added back to effective_cpus.
1258 spin_lock_irq(&callback_lock
);
1260 cpumask_or(parent
->subparts_cpus
,
1261 parent
->subparts_cpus
, tmp
->addmask
);
1262 cpumask_andnot(parent
->effective_cpus
,
1263 parent
->effective_cpus
, tmp
->addmask
);
1266 cpumask_andnot(parent
->subparts_cpus
,
1267 parent
->subparts_cpus
, tmp
->delmask
);
1269 * Some of the CPUs in subparts_cpus might have been offlined.
1271 cpumask_and(tmp
->delmask
, tmp
->delmask
, cpu_active_mask
);
1272 cpumask_or(parent
->effective_cpus
,
1273 parent
->effective_cpus
, tmp
->delmask
);
1276 parent
->nr_subparts_cpus
= cpumask_weight(parent
->subparts_cpus
);
1277 spin_unlock_irq(&callback_lock
);
1279 return cmd
== partcmd_update
;
1283 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1284 * @cs: the cpuset to consider
1285 * @tmp: temp variables for calculating effective_cpus & partition setup
1287 * When congifured cpumask is changed, the effective cpumasks of this cpuset
1288 * and all its descendants need to be updated.
1290 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1292 * Called with cpuset_mutex held
1294 static void update_cpumasks_hier(struct cpuset
*cs
, struct tmpmasks
*tmp
)
1297 struct cgroup_subsys_state
*pos_css
;
1298 bool need_rebuild_sched_domains
= false;
1301 cpuset_for_each_descendant_pre(cp
, pos_css
, cs
) {
1302 struct cpuset
*parent
= parent_cs(cp
);
1304 compute_effective_cpumask(tmp
->new_cpus
, cp
, parent
);
1307 * If it becomes empty, inherit the effective mask of the
1308 * parent, which is guaranteed to have some CPUs.
1310 if (is_in_v2_mode() && cpumask_empty(tmp
->new_cpus
)) {
1311 cpumask_copy(tmp
->new_cpus
, parent
->effective_cpus
);
1312 if (!cp
->use_parent_ecpus
) {
1313 cp
->use_parent_ecpus
= true;
1314 parent
->child_ecpus_count
++;
1316 } else if (cp
->use_parent_ecpus
) {
1317 cp
->use_parent_ecpus
= false;
1318 WARN_ON_ONCE(!parent
->child_ecpus_count
);
1319 parent
->child_ecpus_count
--;
1323 * Skip the whole subtree if the cpumask remains the same
1324 * and has no partition root state.
1326 if (!cp
->partition_root_state
&&
1327 cpumask_equal(tmp
->new_cpus
, cp
->effective_cpus
)) {
1328 pos_css
= css_rightmost_descendant(pos_css
);
1333 * update_parent_subparts_cpumask() should have been called
1334 * for cs already in update_cpumask(). We should also call
1335 * update_tasks_cpumask() again for tasks in the parent
1336 * cpuset if the parent's subparts_cpus changes.
1338 if ((cp
!= cs
) && cp
->partition_root_state
) {
1339 switch (parent
->partition_root_state
) {
1342 * If parent is not a partition root or an
1343 * invalid partition root, clear the state
1344 * state and the CS_CPU_EXCLUSIVE flag.
1346 WARN_ON_ONCE(cp
->partition_root_state
1348 cp
->partition_root_state
= 0;
1351 * clear_bit() is an atomic operation and
1352 * readers aren't interested in the state
1353 * of CS_CPU_EXCLUSIVE anyway. So we can
1354 * just update the flag without holding
1355 * the callback_lock.
1357 clear_bit(CS_CPU_EXCLUSIVE
, &cp
->flags
);
1361 if (update_parent_subparts_cpumask(cp
, partcmd_update
, NULL
, tmp
))
1362 update_tasks_cpumask(parent
);
1367 * When parent is invalid, it has to be too.
1369 cp
->partition_root_state
= PRS_ERROR
;
1370 if (cp
->nr_subparts_cpus
) {
1371 cp
->nr_subparts_cpus
= 0;
1372 cpumask_clear(cp
->subparts_cpus
);
1378 if (!css_tryget_online(&cp
->css
))
1382 spin_lock_irq(&callback_lock
);
1384 cpumask_copy(cp
->effective_cpus
, tmp
->new_cpus
);
1385 if (cp
->nr_subparts_cpus
&&
1386 (cp
->partition_root_state
!= PRS_ENABLED
)) {
1387 cp
->nr_subparts_cpus
= 0;
1388 cpumask_clear(cp
->subparts_cpus
);
1389 } else if (cp
->nr_subparts_cpus
) {
1391 * Make sure that effective_cpus & subparts_cpus
1392 * are mutually exclusive.
1394 * In the unlikely event that effective_cpus
1395 * becomes empty. we clear cp->nr_subparts_cpus and
1396 * let its child partition roots to compete for
1399 cpumask_andnot(cp
->effective_cpus
, cp
->effective_cpus
,
1401 if (cpumask_empty(cp
->effective_cpus
)) {
1402 cpumask_copy(cp
->effective_cpus
, tmp
->new_cpus
);
1403 cpumask_clear(cp
->subparts_cpus
);
1404 cp
->nr_subparts_cpus
= 0;
1405 } else if (!cpumask_subset(cp
->subparts_cpus
,
1407 cpumask_andnot(cp
->subparts_cpus
,
1408 cp
->subparts_cpus
, tmp
->new_cpus
);
1409 cp
->nr_subparts_cpus
1410 = cpumask_weight(cp
->subparts_cpus
);
1413 spin_unlock_irq(&callback_lock
);
1415 WARN_ON(!is_in_v2_mode() &&
1416 !cpumask_equal(cp
->cpus_allowed
, cp
->effective_cpus
));
1418 update_tasks_cpumask(cp
);
1421 * On legacy hierarchy, if the effective cpumask of any non-
1422 * empty cpuset is changed, we need to rebuild sched domains.
1423 * On default hierarchy, the cpuset needs to be a partition
1426 if (!cpumask_empty(cp
->cpus_allowed
) &&
1427 is_sched_load_balance(cp
) &&
1428 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys
) ||
1429 is_partition_root(cp
)))
1430 need_rebuild_sched_domains
= true;
1437 if (need_rebuild_sched_domains
)
1438 rebuild_sched_domains_locked();
1442 * update_sibling_cpumasks - Update siblings cpumasks
1443 * @parent: Parent cpuset
1444 * @cs: Current cpuset
1445 * @tmp: Temp variables
1447 static void update_sibling_cpumasks(struct cpuset
*parent
, struct cpuset
*cs
,
1448 struct tmpmasks
*tmp
)
1450 struct cpuset
*sibling
;
1451 struct cgroup_subsys_state
*pos_css
;
1454 * Check all its siblings and call update_cpumasks_hier()
1455 * if their use_parent_ecpus flag is set in order for them
1456 * to use the right effective_cpus value.
1459 cpuset_for_each_child(sibling
, pos_css
, parent
) {
1462 if (!sibling
->use_parent_ecpus
)
1465 update_cpumasks_hier(sibling
, tmp
);
1471 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1472 * @cs: the cpuset to consider
1473 * @trialcs: trial cpuset
1474 * @buf: buffer of cpu numbers written to this cpuset
1476 static int update_cpumask(struct cpuset
*cs
, struct cpuset
*trialcs
,
1480 struct tmpmasks tmp
;
1482 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1483 if (cs
== &top_cpuset
)
1487 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1488 * Since cpulist_parse() fails on an empty mask, we special case
1489 * that parsing. The validate_change() call ensures that cpusets
1490 * with tasks have cpus.
1493 cpumask_clear(trialcs
->cpus_allowed
);
1495 retval
= cpulist_parse(buf
, trialcs
->cpus_allowed
);
1499 if (!cpumask_subset(trialcs
->cpus_allowed
,
1500 top_cpuset
.cpus_allowed
))
1504 /* Nothing to do if the cpus didn't change */
1505 if (cpumask_equal(cs
->cpus_allowed
, trialcs
->cpus_allowed
))
1508 retval
= validate_change(cs
, trialcs
);
1512 #ifdef CONFIG_CPUMASK_OFFSTACK
1514 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1515 * to allocated cpumasks.
1517 tmp
.addmask
= trialcs
->subparts_cpus
;
1518 tmp
.delmask
= trialcs
->effective_cpus
;
1519 tmp
.new_cpus
= trialcs
->cpus_allowed
;
1522 if (cs
->partition_root_state
) {
1523 /* Cpumask of a partition root cannot be empty */
1524 if (cpumask_empty(trialcs
->cpus_allowed
))
1526 if (update_parent_subparts_cpumask(cs
, partcmd_update
,
1527 trialcs
->cpus_allowed
, &tmp
) < 0)
1531 spin_lock_irq(&callback_lock
);
1532 cpumask_copy(cs
->cpus_allowed
, trialcs
->cpus_allowed
);
1535 * Make sure that subparts_cpus is a subset of cpus_allowed.
1537 if (cs
->nr_subparts_cpus
) {
1538 cpumask_andnot(cs
->subparts_cpus
, cs
->subparts_cpus
,
1540 cs
->nr_subparts_cpus
= cpumask_weight(cs
->subparts_cpus
);
1542 spin_unlock_irq(&callback_lock
);
1544 update_cpumasks_hier(cs
, &tmp
);
1546 if (cs
->partition_root_state
) {
1547 struct cpuset
*parent
= parent_cs(cs
);
1550 * For partition root, update the cpumasks of sibling
1551 * cpusets if they use parent's effective_cpus.
1553 if (parent
->child_ecpus_count
)
1554 update_sibling_cpumasks(parent
, cs
, &tmp
);
1560 * Migrate memory region from one set of nodes to another. This is
1561 * performed asynchronously as it can be called from process migration path
1562 * holding locks involved in process management. All mm migrations are
1563 * performed in the queued order and can be waited for by flushing
1564 * cpuset_migrate_mm_wq.
1567 struct cpuset_migrate_mm_work
{
1568 struct work_struct work
;
1569 struct mm_struct
*mm
;
1574 static void cpuset_migrate_mm_workfn(struct work_struct
*work
)
1576 struct cpuset_migrate_mm_work
*mwork
=
1577 container_of(work
, struct cpuset_migrate_mm_work
, work
);
1579 /* on a wq worker, no need to worry about %current's mems_allowed */
1580 do_migrate_pages(mwork
->mm
, &mwork
->from
, &mwork
->to
, MPOL_MF_MOVE_ALL
);
1585 static void cpuset_migrate_mm(struct mm_struct
*mm
, const nodemask_t
*from
,
1586 const nodemask_t
*to
)
1588 struct cpuset_migrate_mm_work
*mwork
;
1590 mwork
= kzalloc(sizeof(*mwork
), GFP_KERNEL
);
1593 mwork
->from
= *from
;
1595 INIT_WORK(&mwork
->work
, cpuset_migrate_mm_workfn
);
1596 queue_work(cpuset_migrate_mm_wq
, &mwork
->work
);
1602 static void cpuset_post_attach(void)
1604 flush_workqueue(cpuset_migrate_mm_wq
);
1608 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1609 * @tsk: the task to change
1610 * @newmems: new nodes that the task will be set
1612 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1613 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1614 * parallel, it might temporarily see an empty intersection, which results in
1615 * a seqlock check and retry before OOM or allocation failure.
1617 static void cpuset_change_task_nodemask(struct task_struct
*tsk
,
1618 nodemask_t
*newmems
)
1622 local_irq_disable();
1623 write_seqcount_begin(&tsk
->mems_allowed_seq
);
1625 nodes_or(tsk
->mems_allowed
, tsk
->mems_allowed
, *newmems
);
1626 mpol_rebind_task(tsk
, newmems
);
1627 tsk
->mems_allowed
= *newmems
;
1629 write_seqcount_end(&tsk
->mems_allowed_seq
);
1635 static void *cpuset_being_rebound
;
1638 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1639 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1641 * Iterate through each task of @cs updating its mems_allowed to the
1642 * effective cpuset's. As this function is called with cpuset_mutex held,
1643 * cpuset membership stays stable.
1645 static void update_tasks_nodemask(struct cpuset
*cs
)
1647 static nodemask_t newmems
; /* protected by cpuset_mutex */
1648 struct css_task_iter it
;
1649 struct task_struct
*task
;
1651 cpuset_being_rebound
= cs
; /* causes mpol_dup() rebind */
1653 guarantee_online_mems(cs
, &newmems
);
1656 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1657 * take while holding tasklist_lock. Forks can happen - the
1658 * mpol_dup() cpuset_being_rebound check will catch such forks,
1659 * and rebind their vma mempolicies too. Because we still hold
1660 * the global cpuset_mutex, we know that no other rebind effort
1661 * will be contending for the global variable cpuset_being_rebound.
1662 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1663 * is idempotent. Also migrate pages in each mm to new nodes.
1665 css_task_iter_start(&cs
->css
, 0, &it
);
1666 while ((task
= css_task_iter_next(&it
))) {
1667 struct mm_struct
*mm
;
1670 cpuset_change_task_nodemask(task
, &newmems
);
1672 mm
= get_task_mm(task
);
1676 migrate
= is_memory_migrate(cs
);
1678 mpol_rebind_mm(mm
, &cs
->mems_allowed
);
1680 cpuset_migrate_mm(mm
, &cs
->old_mems_allowed
, &newmems
);
1684 css_task_iter_end(&it
);
1687 * All the tasks' nodemasks have been updated, update
1688 * cs->old_mems_allowed.
1690 cs
->old_mems_allowed
= newmems
;
1692 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1693 cpuset_being_rebound
= NULL
;
1697 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1698 * @cs: the cpuset to consider
1699 * @new_mems: a temp variable for calculating new effective_mems
1701 * When configured nodemask is changed, the effective nodemasks of this cpuset
1702 * and all its descendants need to be updated.
1704 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1706 * Called with cpuset_mutex held
1708 static void update_nodemasks_hier(struct cpuset
*cs
, nodemask_t
*new_mems
)
1711 struct cgroup_subsys_state
*pos_css
;
1714 cpuset_for_each_descendant_pre(cp
, pos_css
, cs
) {
1715 struct cpuset
*parent
= parent_cs(cp
);
1717 nodes_and(*new_mems
, cp
->mems_allowed
, parent
->effective_mems
);
1720 * If it becomes empty, inherit the effective mask of the
1721 * parent, which is guaranteed to have some MEMs.
1723 if (is_in_v2_mode() && nodes_empty(*new_mems
))
1724 *new_mems
= parent
->effective_mems
;
1726 /* Skip the whole subtree if the nodemask remains the same. */
1727 if (nodes_equal(*new_mems
, cp
->effective_mems
)) {
1728 pos_css
= css_rightmost_descendant(pos_css
);
1732 if (!css_tryget_online(&cp
->css
))
1736 spin_lock_irq(&callback_lock
);
1737 cp
->effective_mems
= *new_mems
;
1738 spin_unlock_irq(&callback_lock
);
1740 WARN_ON(!is_in_v2_mode() &&
1741 !nodes_equal(cp
->mems_allowed
, cp
->effective_mems
));
1743 update_tasks_nodemask(cp
);
1752 * Handle user request to change the 'mems' memory placement
1753 * of a cpuset. Needs to validate the request, update the
1754 * cpusets mems_allowed, and for each task in the cpuset,
1755 * update mems_allowed and rebind task's mempolicy and any vma
1756 * mempolicies and if the cpuset is marked 'memory_migrate',
1757 * migrate the tasks pages to the new memory.
1759 * Call with cpuset_mutex held. May take callback_lock during call.
1760 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1761 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1762 * their mempolicies to the cpusets new mems_allowed.
1764 static int update_nodemask(struct cpuset
*cs
, struct cpuset
*trialcs
,
1770 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1773 if (cs
== &top_cpuset
) {
1779 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1780 * Since nodelist_parse() fails on an empty mask, we special case
1781 * that parsing. The validate_change() call ensures that cpusets
1782 * with tasks have memory.
1785 nodes_clear(trialcs
->mems_allowed
);
1787 retval
= nodelist_parse(buf
, trialcs
->mems_allowed
);
1791 if (!nodes_subset(trialcs
->mems_allowed
,
1792 top_cpuset
.mems_allowed
)) {
1798 if (nodes_equal(cs
->mems_allowed
, trialcs
->mems_allowed
)) {
1799 retval
= 0; /* Too easy - nothing to do */
1802 retval
= validate_change(cs
, trialcs
);
1806 spin_lock_irq(&callback_lock
);
1807 cs
->mems_allowed
= trialcs
->mems_allowed
;
1808 spin_unlock_irq(&callback_lock
);
1810 /* use trialcs->mems_allowed as a temp variable */
1811 update_nodemasks_hier(cs
, &trialcs
->mems_allowed
);
1816 bool current_cpuset_is_being_rebound(void)
1821 ret
= task_cs(current
) == cpuset_being_rebound
;
1827 static int update_relax_domain_level(struct cpuset
*cs
, s64 val
)
1830 if (val
< -1 || val
>= sched_domain_level_max
)
1834 if (val
!= cs
->relax_domain_level
) {
1835 cs
->relax_domain_level
= val
;
1836 if (!cpumask_empty(cs
->cpus_allowed
) &&
1837 is_sched_load_balance(cs
))
1838 rebuild_sched_domains_locked();
1845 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1846 * @cs: the cpuset in which each task's spread flags needs to be changed
1848 * Iterate through each task of @cs updating its spread flags. As this
1849 * function is called with cpuset_mutex held, cpuset membership stays
1852 static void update_tasks_flags(struct cpuset
*cs
)
1854 struct css_task_iter it
;
1855 struct task_struct
*task
;
1857 css_task_iter_start(&cs
->css
, 0, &it
);
1858 while ((task
= css_task_iter_next(&it
)))
1859 cpuset_update_task_spread_flag(cs
, task
);
1860 css_task_iter_end(&it
);
1864 * update_flag - read a 0 or a 1 in a file and update associated flag
1865 * bit: the bit to update (see cpuset_flagbits_t)
1866 * cs: the cpuset to update
1867 * turning_on: whether the flag is being set or cleared
1869 * Call with cpuset_mutex held.
1872 static int update_flag(cpuset_flagbits_t bit
, struct cpuset
*cs
,
1875 struct cpuset
*trialcs
;
1876 int balance_flag_changed
;
1877 int spread_flag_changed
;
1880 trialcs
= alloc_trial_cpuset(cs
);
1885 set_bit(bit
, &trialcs
->flags
);
1887 clear_bit(bit
, &trialcs
->flags
);
1889 err
= validate_change(cs
, trialcs
);
1893 balance_flag_changed
= (is_sched_load_balance(cs
) !=
1894 is_sched_load_balance(trialcs
));
1896 spread_flag_changed
= ((is_spread_slab(cs
) != is_spread_slab(trialcs
))
1897 || (is_spread_page(cs
) != is_spread_page(trialcs
)));
1899 spin_lock_irq(&callback_lock
);
1900 cs
->flags
= trialcs
->flags
;
1901 spin_unlock_irq(&callback_lock
);
1903 if (!cpumask_empty(trialcs
->cpus_allowed
) && balance_flag_changed
)
1904 rebuild_sched_domains_locked();
1906 if (spread_flag_changed
)
1907 update_tasks_flags(cs
);
1909 free_cpuset(trialcs
);
1914 * update_prstate - update partititon_root_state
1915 * cs: the cpuset to update
1916 * val: 0 - disabled, 1 - enabled
1918 * Call with cpuset_mutex held.
1920 static int update_prstate(struct cpuset
*cs
, int val
)
1923 struct cpuset
*parent
= parent_cs(cs
);
1924 struct tmpmasks tmp
;
1926 if ((val
!= 0) && (val
!= 1))
1928 if (val
== cs
->partition_root_state
)
1932 * Cannot force a partial or invalid partition root to a full
1935 if (val
&& cs
->partition_root_state
)
1938 if (alloc_cpumasks(NULL
, &tmp
))
1942 if (!cs
->partition_root_state
) {
1944 * Turning on partition root requires setting the
1945 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1948 if (cpumask_empty(cs
->cpus_allowed
))
1951 err
= update_flag(CS_CPU_EXCLUSIVE
, cs
, 1);
1955 err
= update_parent_subparts_cpumask(cs
, partcmd_enable
,
1958 update_flag(CS_CPU_EXCLUSIVE
, cs
, 0);
1961 cs
->partition_root_state
= PRS_ENABLED
;
1964 * Turning off partition root will clear the
1965 * CS_CPU_EXCLUSIVE bit.
1967 if (cs
->partition_root_state
== PRS_ERROR
) {
1968 cs
->partition_root_state
= 0;
1969 update_flag(CS_CPU_EXCLUSIVE
, cs
, 0);
1974 err
= update_parent_subparts_cpumask(cs
, partcmd_disable
,
1979 cs
->partition_root_state
= 0;
1981 /* Turning off CS_CPU_EXCLUSIVE will not return error */
1982 update_flag(CS_CPU_EXCLUSIVE
, cs
, 0);
1986 * Update cpumask of parent's tasks except when it is the top
1987 * cpuset as some system daemons cannot be mapped to other CPUs.
1989 if (parent
!= &top_cpuset
)
1990 update_tasks_cpumask(parent
);
1992 if (parent
->child_ecpus_count
)
1993 update_sibling_cpumasks(parent
, cs
, &tmp
);
1995 rebuild_sched_domains_locked();
1997 free_cpumasks(NULL
, &tmp
);
2002 * Frequency meter - How fast is some event occurring?
2004 * These routines manage a digitally filtered, constant time based,
2005 * event frequency meter. There are four routines:
2006 * fmeter_init() - initialize a frequency meter.
2007 * fmeter_markevent() - called each time the event happens.
2008 * fmeter_getrate() - returns the recent rate of such events.
2009 * fmeter_update() - internal routine used to update fmeter.
2011 * A common data structure is passed to each of these routines,
2012 * which is used to keep track of the state required to manage the
2013 * frequency meter and its digital filter.
2015 * The filter works on the number of events marked per unit time.
2016 * The filter is single-pole low-pass recursive (IIR). The time unit
2017 * is 1 second. Arithmetic is done using 32-bit integers scaled to
2018 * simulate 3 decimal digits of precision (multiplied by 1000).
2020 * With an FM_COEF of 933, and a time base of 1 second, the filter
2021 * has a half-life of 10 seconds, meaning that if the events quit
2022 * happening, then the rate returned from the fmeter_getrate()
2023 * will be cut in half each 10 seconds, until it converges to zero.
2025 * It is not worth doing a real infinitely recursive filter. If more
2026 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2027 * just compute FM_MAXTICKS ticks worth, by which point the level
2030 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2031 * arithmetic overflow in the fmeter_update() routine.
2033 * Given the simple 32 bit integer arithmetic used, this meter works
2034 * best for reporting rates between one per millisecond (msec) and
2035 * one per 32 (approx) seconds. At constant rates faster than one
2036 * per msec it maxes out at values just under 1,000,000. At constant
2037 * rates between one per msec, and one per second it will stabilize
2038 * to a value N*1000, where N is the rate of events per second.
2039 * At constant rates between one per second and one per 32 seconds,
2040 * it will be choppy, moving up on the seconds that have an event,
2041 * and then decaying until the next event. At rates slower than
2042 * about one in 32 seconds, it decays all the way back to zero between
2046 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
2047 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
2048 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
2049 #define FM_SCALE 1000 /* faux fixed point scale */
2051 /* Initialize a frequency meter */
2052 static void fmeter_init(struct fmeter
*fmp
)
2057 spin_lock_init(&fmp
->lock
);
2060 /* Internal meter update - process cnt events and update value */
2061 static void fmeter_update(struct fmeter
*fmp
)
2066 now
= ktime_get_seconds();
2067 ticks
= now
- fmp
->time
;
2072 ticks
= min(FM_MAXTICKS
, ticks
);
2074 fmp
->val
= (FM_COEF
* fmp
->val
) / FM_SCALE
;
2077 fmp
->val
+= ((FM_SCALE
- FM_COEF
) * fmp
->cnt
) / FM_SCALE
;
2081 /* Process any previous ticks, then bump cnt by one (times scale). */
2082 static void fmeter_markevent(struct fmeter
*fmp
)
2084 spin_lock(&fmp
->lock
);
2086 fmp
->cnt
= min(FM_MAXCNT
, fmp
->cnt
+ FM_SCALE
);
2087 spin_unlock(&fmp
->lock
);
2090 /* Process any previous ticks, then return current value. */
2091 static int fmeter_getrate(struct fmeter
*fmp
)
2095 spin_lock(&fmp
->lock
);
2098 spin_unlock(&fmp
->lock
);
2102 static struct cpuset
*cpuset_attach_old_cs
;
2104 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2105 static int cpuset_can_attach(struct cgroup_taskset
*tset
)
2107 struct cgroup_subsys_state
*css
;
2109 struct task_struct
*task
;
2112 /* used later by cpuset_attach() */
2113 cpuset_attach_old_cs
= task_cs(cgroup_taskset_first(tset
, &css
));
2116 percpu_down_write(&cpuset_rwsem
);
2118 /* allow moving tasks into an empty cpuset if on default hierarchy */
2120 if (!is_in_v2_mode() &&
2121 (cpumask_empty(cs
->cpus_allowed
) || nodes_empty(cs
->mems_allowed
)))
2124 cgroup_taskset_for_each(task
, css
, tset
) {
2125 ret
= task_can_attach(task
, cs
->cpus_allowed
);
2128 ret
= security_task_setscheduler(task
);
2134 * Mark attach is in progress. This makes validate_change() fail
2135 * changes which zero cpus/mems_allowed.
2137 cs
->attach_in_progress
++;
2140 percpu_up_write(&cpuset_rwsem
);
2144 static void cpuset_cancel_attach(struct cgroup_taskset
*tset
)
2146 struct cgroup_subsys_state
*css
;
2148 cgroup_taskset_first(tset
, &css
);
2150 percpu_down_write(&cpuset_rwsem
);
2151 css_cs(css
)->attach_in_progress
--;
2152 percpu_up_write(&cpuset_rwsem
);
2156 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
2157 * but we can't allocate it dynamically there. Define it global and
2158 * allocate from cpuset_init().
2160 static cpumask_var_t cpus_attach
;
2162 static void cpuset_attach(struct cgroup_taskset
*tset
)
2164 /* static buf protected by cpuset_mutex */
2165 static nodemask_t cpuset_attach_nodemask_to
;
2166 struct task_struct
*task
;
2167 struct task_struct
*leader
;
2168 struct cgroup_subsys_state
*css
;
2170 struct cpuset
*oldcs
= cpuset_attach_old_cs
;
2172 cgroup_taskset_first(tset
, &css
);
2175 percpu_down_write(&cpuset_rwsem
);
2177 /* prepare for attach */
2178 if (cs
== &top_cpuset
)
2179 cpumask_copy(cpus_attach
, cpu_possible_mask
);
2181 guarantee_online_cpus(cs
, cpus_attach
);
2183 guarantee_online_mems(cs
, &cpuset_attach_nodemask_to
);
2185 cgroup_taskset_for_each(task
, css
, tset
) {
2187 * can_attach beforehand should guarantee that this doesn't
2188 * fail. TODO: have a better way to handle failure here
2190 WARN_ON_ONCE(set_cpus_allowed_ptr(task
, cpus_attach
));
2192 cpuset_change_task_nodemask(task
, &cpuset_attach_nodemask_to
);
2193 cpuset_update_task_spread_flag(cs
, task
);
2197 * Change mm for all threadgroup leaders. This is expensive and may
2198 * sleep and should be moved outside migration path proper.
2200 cpuset_attach_nodemask_to
= cs
->effective_mems
;
2201 cgroup_taskset_for_each_leader(leader
, css
, tset
) {
2202 struct mm_struct
*mm
= get_task_mm(leader
);
2205 mpol_rebind_mm(mm
, &cpuset_attach_nodemask_to
);
2208 * old_mems_allowed is the same with mems_allowed
2209 * here, except if this task is being moved
2210 * automatically due to hotplug. In that case
2211 * @mems_allowed has been updated and is empty, so
2212 * @old_mems_allowed is the right nodesets that we
2215 if (is_memory_migrate(cs
))
2216 cpuset_migrate_mm(mm
, &oldcs
->old_mems_allowed
,
2217 &cpuset_attach_nodemask_to
);
2223 cs
->old_mems_allowed
= cpuset_attach_nodemask_to
;
2225 cs
->attach_in_progress
--;
2226 if (!cs
->attach_in_progress
)
2227 wake_up(&cpuset_attach_wq
);
2229 percpu_up_write(&cpuset_rwsem
);
2232 /* The various types of files and directories in a cpuset file system */
2235 FILE_MEMORY_MIGRATE
,
2238 FILE_EFFECTIVE_CPULIST
,
2239 FILE_EFFECTIVE_MEMLIST
,
2240 FILE_SUBPARTS_CPULIST
,
2244 FILE_SCHED_LOAD_BALANCE
,
2245 FILE_PARTITION_ROOT
,
2246 FILE_SCHED_RELAX_DOMAIN_LEVEL
,
2247 FILE_MEMORY_PRESSURE_ENABLED
,
2248 FILE_MEMORY_PRESSURE
,
2251 } cpuset_filetype_t
;
2253 static int cpuset_write_u64(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
2256 struct cpuset
*cs
= css_cs(css
);
2257 cpuset_filetype_t type
= cft
->private;
2261 percpu_down_write(&cpuset_rwsem
);
2262 if (!is_cpuset_online(cs
)) {
2268 case FILE_CPU_EXCLUSIVE
:
2269 retval
= update_flag(CS_CPU_EXCLUSIVE
, cs
, val
);
2271 case FILE_MEM_EXCLUSIVE
:
2272 retval
= update_flag(CS_MEM_EXCLUSIVE
, cs
, val
);
2274 case FILE_MEM_HARDWALL
:
2275 retval
= update_flag(CS_MEM_HARDWALL
, cs
, val
);
2277 case FILE_SCHED_LOAD_BALANCE
:
2278 retval
= update_flag(CS_SCHED_LOAD_BALANCE
, cs
, val
);
2280 case FILE_MEMORY_MIGRATE
:
2281 retval
= update_flag(CS_MEMORY_MIGRATE
, cs
, val
);
2283 case FILE_MEMORY_PRESSURE_ENABLED
:
2284 cpuset_memory_pressure_enabled
= !!val
;
2286 case FILE_SPREAD_PAGE
:
2287 retval
= update_flag(CS_SPREAD_PAGE
, cs
, val
);
2289 case FILE_SPREAD_SLAB
:
2290 retval
= update_flag(CS_SPREAD_SLAB
, cs
, val
);
2297 percpu_up_write(&cpuset_rwsem
);
2302 static int cpuset_write_s64(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
2305 struct cpuset
*cs
= css_cs(css
);
2306 cpuset_filetype_t type
= cft
->private;
2307 int retval
= -ENODEV
;
2310 percpu_down_write(&cpuset_rwsem
);
2311 if (!is_cpuset_online(cs
))
2315 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
2316 retval
= update_relax_domain_level(cs
, val
);
2323 percpu_up_write(&cpuset_rwsem
);
2329 * Common handling for a write to a "cpus" or "mems" file.
2331 static ssize_t
cpuset_write_resmask(struct kernfs_open_file
*of
,
2332 char *buf
, size_t nbytes
, loff_t off
)
2334 struct cpuset
*cs
= css_cs(of_css(of
));
2335 struct cpuset
*trialcs
;
2336 int retval
= -ENODEV
;
2338 buf
= strstrip(buf
);
2341 * CPU or memory hotunplug may leave @cs w/o any execution
2342 * resources, in which case the hotplug code asynchronously updates
2343 * configuration and transfers all tasks to the nearest ancestor
2344 * which can execute.
2346 * As writes to "cpus" or "mems" may restore @cs's execution
2347 * resources, wait for the previously scheduled operations before
2348 * proceeding, so that we don't end up keep removing tasks added
2349 * after execution capability is restored.
2351 * cpuset_hotplug_work calls back into cgroup core via
2352 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2353 * operation like this one can lead to a deadlock through kernfs
2354 * active_ref protection. Let's break the protection. Losing the
2355 * protection is okay as we check whether @cs is online after
2356 * grabbing cpuset_mutex anyway. This only happens on the legacy
2360 kernfs_break_active_protection(of
->kn
);
2361 flush_work(&cpuset_hotplug_work
);
2364 percpu_down_write(&cpuset_rwsem
);
2365 if (!is_cpuset_online(cs
))
2368 trialcs
= alloc_trial_cpuset(cs
);
2374 switch (of_cft(of
)->private) {
2376 retval
= update_cpumask(cs
, trialcs
, buf
);
2379 retval
= update_nodemask(cs
, trialcs
, buf
);
2386 free_cpuset(trialcs
);
2388 percpu_up_write(&cpuset_rwsem
);
2390 kernfs_unbreak_active_protection(of
->kn
);
2392 flush_workqueue(cpuset_migrate_mm_wq
);
2393 return retval
?: nbytes
;
2397 * These ascii lists should be read in a single call, by using a user
2398 * buffer large enough to hold the entire map. If read in smaller
2399 * chunks, there is no guarantee of atomicity. Since the display format
2400 * used, list of ranges of sequential numbers, is variable length,
2401 * and since these maps can change value dynamically, one could read
2402 * gibberish by doing partial reads while a list was changing.
2404 static int cpuset_common_seq_show(struct seq_file
*sf
, void *v
)
2406 struct cpuset
*cs
= css_cs(seq_css(sf
));
2407 cpuset_filetype_t type
= seq_cft(sf
)->private;
2410 spin_lock_irq(&callback_lock
);
2414 seq_printf(sf
, "%*pbl\n", cpumask_pr_args(cs
->cpus_allowed
));
2417 seq_printf(sf
, "%*pbl\n", nodemask_pr_args(&cs
->mems_allowed
));
2419 case FILE_EFFECTIVE_CPULIST
:
2420 seq_printf(sf
, "%*pbl\n", cpumask_pr_args(cs
->effective_cpus
));
2422 case FILE_EFFECTIVE_MEMLIST
:
2423 seq_printf(sf
, "%*pbl\n", nodemask_pr_args(&cs
->effective_mems
));
2425 case FILE_SUBPARTS_CPULIST
:
2426 seq_printf(sf
, "%*pbl\n", cpumask_pr_args(cs
->subparts_cpus
));
2432 spin_unlock_irq(&callback_lock
);
2436 static u64
cpuset_read_u64(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
2438 struct cpuset
*cs
= css_cs(css
);
2439 cpuset_filetype_t type
= cft
->private;
2441 case FILE_CPU_EXCLUSIVE
:
2442 return is_cpu_exclusive(cs
);
2443 case FILE_MEM_EXCLUSIVE
:
2444 return is_mem_exclusive(cs
);
2445 case FILE_MEM_HARDWALL
:
2446 return is_mem_hardwall(cs
);
2447 case FILE_SCHED_LOAD_BALANCE
:
2448 return is_sched_load_balance(cs
);
2449 case FILE_MEMORY_MIGRATE
:
2450 return is_memory_migrate(cs
);
2451 case FILE_MEMORY_PRESSURE_ENABLED
:
2452 return cpuset_memory_pressure_enabled
;
2453 case FILE_MEMORY_PRESSURE
:
2454 return fmeter_getrate(&cs
->fmeter
);
2455 case FILE_SPREAD_PAGE
:
2456 return is_spread_page(cs
);
2457 case FILE_SPREAD_SLAB
:
2458 return is_spread_slab(cs
);
2463 /* Unreachable but makes gcc happy */
2467 static s64
cpuset_read_s64(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
2469 struct cpuset
*cs
= css_cs(css
);
2470 cpuset_filetype_t type
= cft
->private;
2472 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
2473 return cs
->relax_domain_level
;
2478 /* Unrechable but makes gcc happy */
2482 static int sched_partition_show(struct seq_file
*seq
, void *v
)
2484 struct cpuset
*cs
= css_cs(seq_css(seq
));
2486 switch (cs
->partition_root_state
) {
2488 seq_puts(seq
, "root\n");
2491 seq_puts(seq
, "member\n");
2494 seq_puts(seq
, "root invalid\n");
2500 static ssize_t
sched_partition_write(struct kernfs_open_file
*of
, char *buf
,
2501 size_t nbytes
, loff_t off
)
2503 struct cpuset
*cs
= css_cs(of_css(of
));
2505 int retval
= -ENODEV
;
2507 buf
= strstrip(buf
);
2510 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2512 if (!strcmp(buf
, "root"))
2514 else if (!strcmp(buf
, "member"))
2521 percpu_down_write(&cpuset_rwsem
);
2522 if (!is_cpuset_online(cs
))
2525 retval
= update_prstate(cs
, val
);
2527 percpu_up_write(&cpuset_rwsem
);
2530 return retval
?: nbytes
;
2534 * for the common functions, 'private' gives the type of file
2537 static struct cftype legacy_files
[] = {
2540 .seq_show
= cpuset_common_seq_show
,
2541 .write
= cpuset_write_resmask
,
2542 .max_write_len
= (100U + 6 * NR_CPUS
),
2543 .private = FILE_CPULIST
,
2548 .seq_show
= cpuset_common_seq_show
,
2549 .write
= cpuset_write_resmask
,
2550 .max_write_len
= (100U + 6 * MAX_NUMNODES
),
2551 .private = FILE_MEMLIST
,
2555 .name
= "effective_cpus",
2556 .seq_show
= cpuset_common_seq_show
,
2557 .private = FILE_EFFECTIVE_CPULIST
,
2561 .name
= "effective_mems",
2562 .seq_show
= cpuset_common_seq_show
,
2563 .private = FILE_EFFECTIVE_MEMLIST
,
2567 .name
= "cpu_exclusive",
2568 .read_u64
= cpuset_read_u64
,
2569 .write_u64
= cpuset_write_u64
,
2570 .private = FILE_CPU_EXCLUSIVE
,
2574 .name
= "mem_exclusive",
2575 .read_u64
= cpuset_read_u64
,
2576 .write_u64
= cpuset_write_u64
,
2577 .private = FILE_MEM_EXCLUSIVE
,
2581 .name
= "mem_hardwall",
2582 .read_u64
= cpuset_read_u64
,
2583 .write_u64
= cpuset_write_u64
,
2584 .private = FILE_MEM_HARDWALL
,
2588 .name
= "sched_load_balance",
2589 .read_u64
= cpuset_read_u64
,
2590 .write_u64
= cpuset_write_u64
,
2591 .private = FILE_SCHED_LOAD_BALANCE
,
2595 .name
= "sched_relax_domain_level",
2596 .read_s64
= cpuset_read_s64
,
2597 .write_s64
= cpuset_write_s64
,
2598 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL
,
2602 .name
= "memory_migrate",
2603 .read_u64
= cpuset_read_u64
,
2604 .write_u64
= cpuset_write_u64
,
2605 .private = FILE_MEMORY_MIGRATE
,
2609 .name
= "memory_pressure",
2610 .read_u64
= cpuset_read_u64
,
2611 .private = FILE_MEMORY_PRESSURE
,
2615 .name
= "memory_spread_page",
2616 .read_u64
= cpuset_read_u64
,
2617 .write_u64
= cpuset_write_u64
,
2618 .private = FILE_SPREAD_PAGE
,
2622 .name
= "memory_spread_slab",
2623 .read_u64
= cpuset_read_u64
,
2624 .write_u64
= cpuset_write_u64
,
2625 .private = FILE_SPREAD_SLAB
,
2629 .name
= "memory_pressure_enabled",
2630 .flags
= CFTYPE_ONLY_ON_ROOT
,
2631 .read_u64
= cpuset_read_u64
,
2632 .write_u64
= cpuset_write_u64
,
2633 .private = FILE_MEMORY_PRESSURE_ENABLED
,
2640 * This is currently a minimal set for the default hierarchy. It can be
2641 * expanded later on by migrating more features and control files from v1.
2643 static struct cftype dfl_files
[] = {
2646 .seq_show
= cpuset_common_seq_show
,
2647 .write
= cpuset_write_resmask
,
2648 .max_write_len
= (100U + 6 * NR_CPUS
),
2649 .private = FILE_CPULIST
,
2650 .flags
= CFTYPE_NOT_ON_ROOT
,
2655 .seq_show
= cpuset_common_seq_show
,
2656 .write
= cpuset_write_resmask
,
2657 .max_write_len
= (100U + 6 * MAX_NUMNODES
),
2658 .private = FILE_MEMLIST
,
2659 .flags
= CFTYPE_NOT_ON_ROOT
,
2663 .name
= "cpus.effective",
2664 .seq_show
= cpuset_common_seq_show
,
2665 .private = FILE_EFFECTIVE_CPULIST
,
2669 .name
= "mems.effective",
2670 .seq_show
= cpuset_common_seq_show
,
2671 .private = FILE_EFFECTIVE_MEMLIST
,
2675 .name
= "cpus.partition",
2676 .seq_show
= sched_partition_show
,
2677 .write
= sched_partition_write
,
2678 .private = FILE_PARTITION_ROOT
,
2679 .flags
= CFTYPE_NOT_ON_ROOT
,
2683 .name
= "cpus.subpartitions",
2684 .seq_show
= cpuset_common_seq_show
,
2685 .private = FILE_SUBPARTS_CPULIST
,
2686 .flags
= CFTYPE_DEBUG
,
2694 * cpuset_css_alloc - allocate a cpuset css
2695 * cgrp: control group that the new cpuset will be part of
2698 static struct cgroup_subsys_state
*
2699 cpuset_css_alloc(struct cgroup_subsys_state
*parent_css
)
2704 return &top_cpuset
.css
;
2706 cs
= kzalloc(sizeof(*cs
), GFP_KERNEL
);
2708 return ERR_PTR(-ENOMEM
);
2710 if (alloc_cpumasks(cs
, NULL
)) {
2712 return ERR_PTR(-ENOMEM
);
2715 set_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
2716 nodes_clear(cs
->mems_allowed
);
2717 nodes_clear(cs
->effective_mems
);
2718 fmeter_init(&cs
->fmeter
);
2719 cs
->relax_domain_level
= -1;
2724 static int cpuset_css_online(struct cgroup_subsys_state
*css
)
2726 struct cpuset
*cs
= css_cs(css
);
2727 struct cpuset
*parent
= parent_cs(cs
);
2728 struct cpuset
*tmp_cs
;
2729 struct cgroup_subsys_state
*pos_css
;
2735 percpu_down_write(&cpuset_rwsem
);
2737 set_bit(CS_ONLINE
, &cs
->flags
);
2738 if (is_spread_page(parent
))
2739 set_bit(CS_SPREAD_PAGE
, &cs
->flags
);
2740 if (is_spread_slab(parent
))
2741 set_bit(CS_SPREAD_SLAB
, &cs
->flags
);
2745 spin_lock_irq(&callback_lock
);
2746 if (is_in_v2_mode()) {
2747 cpumask_copy(cs
->effective_cpus
, parent
->effective_cpus
);
2748 cs
->effective_mems
= parent
->effective_mems
;
2749 cs
->use_parent_ecpus
= true;
2750 parent
->child_ecpus_count
++;
2752 spin_unlock_irq(&callback_lock
);
2754 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
))
2758 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2759 * set. This flag handling is implemented in cgroup core for
2760 * histrical reasons - the flag may be specified during mount.
2762 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2763 * refuse to clone the configuration - thereby refusing the task to
2764 * be entered, and as a result refusing the sys_unshare() or
2765 * clone() which initiated it. If this becomes a problem for some
2766 * users who wish to allow that scenario, then this could be
2767 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2768 * (and likewise for mems) to the new cgroup.
2771 cpuset_for_each_child(tmp_cs
, pos_css
, parent
) {
2772 if (is_mem_exclusive(tmp_cs
) || is_cpu_exclusive(tmp_cs
)) {
2779 spin_lock_irq(&callback_lock
);
2780 cs
->mems_allowed
= parent
->mems_allowed
;
2781 cs
->effective_mems
= parent
->mems_allowed
;
2782 cpumask_copy(cs
->cpus_allowed
, parent
->cpus_allowed
);
2783 cpumask_copy(cs
->effective_cpus
, parent
->cpus_allowed
);
2784 spin_unlock_irq(&callback_lock
);
2786 percpu_up_write(&cpuset_rwsem
);
2792 * If the cpuset being removed has its flag 'sched_load_balance'
2793 * enabled, then simulate turning sched_load_balance off, which
2794 * will call rebuild_sched_domains_locked(). That is not needed
2795 * in the default hierarchy where only changes in partition
2796 * will cause repartitioning.
2798 * If the cpuset has the 'sched.partition' flag enabled, simulate
2799 * turning 'sched.partition" off.
2802 static void cpuset_css_offline(struct cgroup_subsys_state
*css
)
2804 struct cpuset
*cs
= css_cs(css
);
2807 percpu_down_write(&cpuset_rwsem
);
2809 if (is_partition_root(cs
))
2810 update_prstate(cs
, 0);
2812 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys
) &&
2813 is_sched_load_balance(cs
))
2814 update_flag(CS_SCHED_LOAD_BALANCE
, cs
, 0);
2816 if (cs
->use_parent_ecpus
) {
2817 struct cpuset
*parent
= parent_cs(cs
);
2819 cs
->use_parent_ecpus
= false;
2820 parent
->child_ecpus_count
--;
2824 clear_bit(CS_ONLINE
, &cs
->flags
);
2826 percpu_up_write(&cpuset_rwsem
);
2830 static void cpuset_css_free(struct cgroup_subsys_state
*css
)
2832 struct cpuset
*cs
= css_cs(css
);
2837 static void cpuset_bind(struct cgroup_subsys_state
*root_css
)
2839 percpu_down_write(&cpuset_rwsem
);
2840 spin_lock_irq(&callback_lock
);
2842 if (is_in_v2_mode()) {
2843 cpumask_copy(top_cpuset
.cpus_allowed
, cpu_possible_mask
);
2844 top_cpuset
.mems_allowed
= node_possible_map
;
2846 cpumask_copy(top_cpuset
.cpus_allowed
,
2847 top_cpuset
.effective_cpus
);
2848 top_cpuset
.mems_allowed
= top_cpuset
.effective_mems
;
2851 spin_unlock_irq(&callback_lock
);
2852 percpu_up_write(&cpuset_rwsem
);
2856 * Make sure the new task conform to the current state of its parent,
2857 * which could have been changed by cpuset just after it inherits the
2858 * state from the parent and before it sits on the cgroup's task list.
2860 static void cpuset_fork(struct task_struct
*task
)
2862 if (task_css_is_root(task
, cpuset_cgrp_id
))
2865 set_cpus_allowed_ptr(task
, current
->cpus_ptr
);
2866 task
->mems_allowed
= current
->mems_allowed
;
2869 struct cgroup_subsys cpuset_cgrp_subsys
= {
2870 .css_alloc
= cpuset_css_alloc
,
2871 .css_online
= cpuset_css_online
,
2872 .css_offline
= cpuset_css_offline
,
2873 .css_free
= cpuset_css_free
,
2874 .can_attach
= cpuset_can_attach
,
2875 .cancel_attach
= cpuset_cancel_attach
,
2876 .attach
= cpuset_attach
,
2877 .post_attach
= cpuset_post_attach
,
2878 .bind
= cpuset_bind
,
2879 .fork
= cpuset_fork
,
2880 .legacy_cftypes
= legacy_files
,
2881 .dfl_cftypes
= dfl_files
,
2887 * cpuset_init - initialize cpusets at system boot
2889 * Description: Initialize top_cpuset
2892 int __init
cpuset_init(void)
2894 BUG_ON(percpu_init_rwsem(&cpuset_rwsem
));
2896 BUG_ON(!alloc_cpumask_var(&top_cpuset
.cpus_allowed
, GFP_KERNEL
));
2897 BUG_ON(!alloc_cpumask_var(&top_cpuset
.effective_cpus
, GFP_KERNEL
));
2898 BUG_ON(!zalloc_cpumask_var(&top_cpuset
.subparts_cpus
, GFP_KERNEL
));
2900 cpumask_setall(top_cpuset
.cpus_allowed
);
2901 nodes_setall(top_cpuset
.mems_allowed
);
2902 cpumask_setall(top_cpuset
.effective_cpus
);
2903 nodes_setall(top_cpuset
.effective_mems
);
2905 fmeter_init(&top_cpuset
.fmeter
);
2906 set_bit(CS_SCHED_LOAD_BALANCE
, &top_cpuset
.flags
);
2907 top_cpuset
.relax_domain_level
= -1;
2909 BUG_ON(!alloc_cpumask_var(&cpus_attach
, GFP_KERNEL
));
2915 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2916 * or memory nodes, we need to walk over the cpuset hierarchy,
2917 * removing that CPU or node from all cpusets. If this removes the
2918 * last CPU or node from a cpuset, then move the tasks in the empty
2919 * cpuset to its next-highest non-empty parent.
2921 static void remove_tasks_in_empty_cpuset(struct cpuset
*cs
)
2923 struct cpuset
*parent
;
2926 * Find its next-highest non-empty parent, (top cpuset
2927 * has online cpus, so can't be empty).
2929 parent
= parent_cs(cs
);
2930 while (cpumask_empty(parent
->cpus_allowed
) ||
2931 nodes_empty(parent
->mems_allowed
))
2932 parent
= parent_cs(parent
);
2934 if (cgroup_transfer_tasks(parent
->css
.cgroup
, cs
->css
.cgroup
)) {
2935 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2936 pr_cont_cgroup_name(cs
->css
.cgroup
);
2942 hotplug_update_tasks_legacy(struct cpuset
*cs
,
2943 struct cpumask
*new_cpus
, nodemask_t
*new_mems
,
2944 bool cpus_updated
, bool mems_updated
)
2948 spin_lock_irq(&callback_lock
);
2949 cpumask_copy(cs
->cpus_allowed
, new_cpus
);
2950 cpumask_copy(cs
->effective_cpus
, new_cpus
);
2951 cs
->mems_allowed
= *new_mems
;
2952 cs
->effective_mems
= *new_mems
;
2953 spin_unlock_irq(&callback_lock
);
2956 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2957 * as the tasks will be migratecd to an ancestor.
2959 if (cpus_updated
&& !cpumask_empty(cs
->cpus_allowed
))
2960 update_tasks_cpumask(cs
);
2961 if (mems_updated
&& !nodes_empty(cs
->mems_allowed
))
2962 update_tasks_nodemask(cs
);
2964 is_empty
= cpumask_empty(cs
->cpus_allowed
) ||
2965 nodes_empty(cs
->mems_allowed
);
2967 percpu_up_write(&cpuset_rwsem
);
2970 * Move tasks to the nearest ancestor with execution resources,
2971 * This is full cgroup operation which will also call back into
2972 * cpuset. Should be done outside any lock.
2975 remove_tasks_in_empty_cpuset(cs
);
2977 percpu_down_write(&cpuset_rwsem
);
2981 hotplug_update_tasks(struct cpuset
*cs
,
2982 struct cpumask
*new_cpus
, nodemask_t
*new_mems
,
2983 bool cpus_updated
, bool mems_updated
)
2985 if (cpumask_empty(new_cpus
))
2986 cpumask_copy(new_cpus
, parent_cs(cs
)->effective_cpus
);
2987 if (nodes_empty(*new_mems
))
2988 *new_mems
= parent_cs(cs
)->effective_mems
;
2990 spin_lock_irq(&callback_lock
);
2991 cpumask_copy(cs
->effective_cpus
, new_cpus
);
2992 cs
->effective_mems
= *new_mems
;
2993 spin_unlock_irq(&callback_lock
);
2996 update_tasks_cpumask(cs
);
2998 update_tasks_nodemask(cs
);
3001 static bool force_rebuild
;
3003 void cpuset_force_rebuild(void)
3005 force_rebuild
= true;
3009 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3010 * @cs: cpuset in interest
3011 * @tmp: the tmpmasks structure pointer
3013 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3014 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
3015 * all its tasks are moved to the nearest ancestor with both resources.
3017 static void cpuset_hotplug_update_tasks(struct cpuset
*cs
, struct tmpmasks
*tmp
)
3019 static cpumask_t new_cpus
;
3020 static nodemask_t new_mems
;
3023 struct cpuset
*parent
;
3025 wait_event(cpuset_attach_wq
, cs
->attach_in_progress
== 0);
3027 percpu_down_write(&cpuset_rwsem
);
3030 * We have raced with task attaching. We wait until attaching
3031 * is finished, so we won't attach a task to an empty cpuset.
3033 if (cs
->attach_in_progress
) {
3034 percpu_up_write(&cpuset_rwsem
);
3038 parent
= parent_cs(cs
);
3039 compute_effective_cpumask(&new_cpus
, cs
, parent
);
3040 nodes_and(new_mems
, cs
->mems_allowed
, parent
->effective_mems
);
3042 if (cs
->nr_subparts_cpus
)
3044 * Make sure that CPUs allocated to child partitions
3045 * do not show up in effective_cpus.
3047 cpumask_andnot(&new_cpus
, &new_cpus
, cs
->subparts_cpus
);
3049 if (!tmp
|| !cs
->partition_root_state
)
3053 * In the unlikely event that a partition root has empty
3054 * effective_cpus or its parent becomes erroneous, we have to
3055 * transition it to the erroneous state.
3057 if (is_partition_root(cs
) && (cpumask_empty(&new_cpus
) ||
3058 (parent
->partition_root_state
== PRS_ERROR
))) {
3059 if (cs
->nr_subparts_cpus
) {
3060 cs
->nr_subparts_cpus
= 0;
3061 cpumask_clear(cs
->subparts_cpus
);
3062 compute_effective_cpumask(&new_cpus
, cs
, parent
);
3066 * If the effective_cpus is empty because the child
3067 * partitions take away all the CPUs, we can keep
3068 * the current partition and let the child partitions
3069 * fight for available CPUs.
3071 if ((parent
->partition_root_state
== PRS_ERROR
) ||
3072 cpumask_empty(&new_cpus
)) {
3073 update_parent_subparts_cpumask(cs
, partcmd_disable
,
3075 cs
->partition_root_state
= PRS_ERROR
;
3077 cpuset_force_rebuild();
3081 * On the other hand, an erroneous partition root may be transitioned
3082 * back to a regular one or a partition root with no CPU allocated
3083 * from the parent may change to erroneous.
3085 if (is_partition_root(parent
) &&
3086 ((cs
->partition_root_state
== PRS_ERROR
) ||
3087 !cpumask_intersects(&new_cpus
, parent
->subparts_cpus
)) &&
3088 update_parent_subparts_cpumask(cs
, partcmd_update
, NULL
, tmp
))
3089 cpuset_force_rebuild();
3092 cpus_updated
= !cpumask_equal(&new_cpus
, cs
->effective_cpus
);
3093 mems_updated
= !nodes_equal(new_mems
, cs
->effective_mems
);
3095 if (is_in_v2_mode())
3096 hotplug_update_tasks(cs
, &new_cpus
, &new_mems
,
3097 cpus_updated
, mems_updated
);
3099 hotplug_update_tasks_legacy(cs
, &new_cpus
, &new_mems
,
3100 cpus_updated
, mems_updated
);
3102 percpu_up_write(&cpuset_rwsem
);
3106 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3108 * This function is called after either CPU or memory configuration has
3109 * changed and updates cpuset accordingly. The top_cpuset is always
3110 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3111 * order to make cpusets transparent (of no affect) on systems that are
3112 * actively using CPU hotplug but making no active use of cpusets.
3114 * Non-root cpusets are only affected by offlining. If any CPUs or memory
3115 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3118 * Note that CPU offlining during suspend is ignored. We don't modify
3119 * cpusets across suspend/resume cycles at all.
3121 static void cpuset_hotplug_workfn(struct work_struct
*work
)
3123 static cpumask_t new_cpus
;
3124 static nodemask_t new_mems
;
3125 bool cpus_updated
, mems_updated
;
3126 bool on_dfl
= is_in_v2_mode();
3127 struct tmpmasks tmp
, *ptmp
= NULL
;
3129 if (on_dfl
&& !alloc_cpumasks(NULL
, &tmp
))
3132 percpu_down_write(&cpuset_rwsem
);
3134 /* fetch the available cpus/mems and find out which changed how */
3135 cpumask_copy(&new_cpus
, cpu_active_mask
);
3136 new_mems
= node_states
[N_MEMORY
];
3139 * If subparts_cpus is populated, it is likely that the check below
3140 * will produce a false positive on cpus_updated when the cpu list
3141 * isn't changed. It is extra work, but it is better to be safe.
3143 cpus_updated
= !cpumask_equal(top_cpuset
.effective_cpus
, &new_cpus
);
3144 mems_updated
= !nodes_equal(top_cpuset
.effective_mems
, new_mems
);
3146 /* synchronize cpus_allowed to cpu_active_mask */
3148 spin_lock_irq(&callback_lock
);
3150 cpumask_copy(top_cpuset
.cpus_allowed
, &new_cpus
);
3152 * Make sure that CPUs allocated to child partitions
3153 * do not show up in effective_cpus. If no CPU is left,
3154 * we clear the subparts_cpus & let the child partitions
3155 * fight for the CPUs again.
3157 if (top_cpuset
.nr_subparts_cpus
) {
3158 if (cpumask_subset(&new_cpus
,
3159 top_cpuset
.subparts_cpus
)) {
3160 top_cpuset
.nr_subparts_cpus
= 0;
3161 cpumask_clear(top_cpuset
.subparts_cpus
);
3163 cpumask_andnot(&new_cpus
, &new_cpus
,
3164 top_cpuset
.subparts_cpus
);
3167 cpumask_copy(top_cpuset
.effective_cpus
, &new_cpus
);
3168 spin_unlock_irq(&callback_lock
);
3169 /* we don't mess with cpumasks of tasks in top_cpuset */
3172 /* synchronize mems_allowed to N_MEMORY */
3174 spin_lock_irq(&callback_lock
);
3176 top_cpuset
.mems_allowed
= new_mems
;
3177 top_cpuset
.effective_mems
= new_mems
;
3178 spin_unlock_irq(&callback_lock
);
3179 update_tasks_nodemask(&top_cpuset
);
3182 percpu_up_write(&cpuset_rwsem
);
3184 /* if cpus or mems changed, we need to propagate to descendants */
3185 if (cpus_updated
|| mems_updated
) {
3187 struct cgroup_subsys_state
*pos_css
;
3190 cpuset_for_each_descendant_pre(cs
, pos_css
, &top_cpuset
) {
3191 if (cs
== &top_cpuset
|| !css_tryget_online(&cs
->css
))
3195 cpuset_hotplug_update_tasks(cs
, ptmp
);
3203 /* rebuild sched domains if cpus_allowed has changed */
3204 if (cpus_updated
|| force_rebuild
) {
3205 force_rebuild
= false;
3206 rebuild_sched_domains();
3209 free_cpumasks(NULL
, ptmp
);
3212 void cpuset_update_active_cpus(void)
3215 * We're inside cpu hotplug critical region which usually nests
3216 * inside cgroup synchronization. Bounce actual hotplug processing
3217 * to a work item to avoid reverse locking order.
3219 schedule_work(&cpuset_hotplug_work
);
3222 void cpuset_wait_for_hotplug(void)
3224 flush_work(&cpuset_hotplug_work
);
3228 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3229 * Call this routine anytime after node_states[N_MEMORY] changes.
3230 * See cpuset_update_active_cpus() for CPU hotplug handling.
3232 static int cpuset_track_online_nodes(struct notifier_block
*self
,
3233 unsigned long action
, void *arg
)
3235 schedule_work(&cpuset_hotplug_work
);
3239 static struct notifier_block cpuset_track_online_nodes_nb
= {
3240 .notifier_call
= cpuset_track_online_nodes
,
3241 .priority
= 10, /* ??! */
3245 * cpuset_init_smp - initialize cpus_allowed
3247 * Description: Finish top cpuset after cpu, node maps are initialized
3249 void __init
cpuset_init_smp(void)
3251 cpumask_copy(top_cpuset
.cpus_allowed
, cpu_active_mask
);
3252 top_cpuset
.mems_allowed
= node_states
[N_MEMORY
];
3253 top_cpuset
.old_mems_allowed
= top_cpuset
.mems_allowed
;
3255 cpumask_copy(top_cpuset
.effective_cpus
, cpu_active_mask
);
3256 top_cpuset
.effective_mems
= node_states
[N_MEMORY
];
3258 register_hotmemory_notifier(&cpuset_track_online_nodes_nb
);
3260 cpuset_migrate_mm_wq
= alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3261 BUG_ON(!cpuset_migrate_mm_wq
);
3265 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3266 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3267 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3269 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3270 * attached to the specified @tsk. Guaranteed to return some non-empty
3271 * subset of cpu_online_mask, even if this means going outside the
3275 void cpuset_cpus_allowed(struct task_struct
*tsk
, struct cpumask
*pmask
)
3277 unsigned long flags
;
3279 spin_lock_irqsave(&callback_lock
, flags
);
3281 guarantee_online_cpus(task_cs(tsk
), pmask
);
3283 spin_unlock_irqrestore(&callback_lock
, flags
);
3287 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3288 * @tsk: pointer to task_struct with which the scheduler is struggling
3290 * Description: In the case that the scheduler cannot find an allowed cpu in
3291 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3292 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3293 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3294 * This is the absolute last resort for the scheduler and it is only used if
3295 * _every_ other avenue has been traveled.
3298 void cpuset_cpus_allowed_fallback(struct task_struct
*tsk
)
3301 do_set_cpus_allowed(tsk
, is_in_v2_mode() ?
3302 task_cs(tsk
)->cpus_allowed
: cpu_possible_mask
);
3306 * We own tsk->cpus_allowed, nobody can change it under us.
3308 * But we used cs && cs->cpus_allowed lockless and thus can
3309 * race with cgroup_attach_task() or update_cpumask() and get
3310 * the wrong tsk->cpus_allowed. However, both cases imply the
3311 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3312 * which takes task_rq_lock().
3314 * If we are called after it dropped the lock we must see all
3315 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3316 * set any mask even if it is not right from task_cs() pov,
3317 * the pending set_cpus_allowed_ptr() will fix things.
3319 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3324 void __init
cpuset_init_current_mems_allowed(void)
3326 nodes_setall(current
->mems_allowed
);
3330 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3331 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3333 * Description: Returns the nodemask_t mems_allowed of the cpuset
3334 * attached to the specified @tsk. Guaranteed to return some non-empty
3335 * subset of node_states[N_MEMORY], even if this means going outside the
3339 nodemask_t
cpuset_mems_allowed(struct task_struct
*tsk
)
3342 unsigned long flags
;
3344 spin_lock_irqsave(&callback_lock
, flags
);
3346 guarantee_online_mems(task_cs(tsk
), &mask
);
3348 spin_unlock_irqrestore(&callback_lock
, flags
);
3354 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3355 * @nodemask: the nodemask to be checked
3357 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3359 int cpuset_nodemask_valid_mems_allowed(nodemask_t
*nodemask
)
3361 return nodes_intersects(*nodemask
, current
->mems_allowed
);
3365 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3366 * mem_hardwall ancestor to the specified cpuset. Call holding
3367 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
3368 * (an unusual configuration), then returns the root cpuset.
3370 static struct cpuset
*nearest_hardwall_ancestor(struct cpuset
*cs
)
3372 while (!(is_mem_exclusive(cs
) || is_mem_hardwall(cs
)) && parent_cs(cs
))
3378 * cpuset_node_allowed - Can we allocate on a memory node?
3379 * @node: is this an allowed node?
3380 * @gfp_mask: memory allocation flags
3382 * If we're in interrupt, yes, we can always allocate. If @node is set in
3383 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
3384 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3385 * yes. If current has access to memory reserves as an oom victim, yes.
3388 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3389 * and do not allow allocations outside the current tasks cpuset
3390 * unless the task has been OOM killed.
3391 * GFP_KERNEL allocations are not so marked, so can escape to the
3392 * nearest enclosing hardwalled ancestor cpuset.
3394 * Scanning up parent cpusets requires callback_lock. The
3395 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3396 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3397 * current tasks mems_allowed came up empty on the first pass over
3398 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
3399 * cpuset are short of memory, might require taking the callback_lock.
3401 * The first call here from mm/page_alloc:get_page_from_freelist()
3402 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3403 * so no allocation on a node outside the cpuset is allowed (unless
3404 * in interrupt, of course).
3406 * The second pass through get_page_from_freelist() doesn't even call
3407 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
3408 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3409 * in alloc_flags. That logic and the checks below have the combined
3411 * in_interrupt - any node ok (current task context irrelevant)
3412 * GFP_ATOMIC - any node ok
3413 * tsk_is_oom_victim - any node ok
3414 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
3415 * GFP_USER - only nodes in current tasks mems allowed ok.
3417 bool __cpuset_node_allowed(int node
, gfp_t gfp_mask
)
3419 struct cpuset
*cs
; /* current cpuset ancestors */
3420 int allowed
; /* is allocation in zone z allowed? */
3421 unsigned long flags
;
3425 if (node_isset(node
, current
->mems_allowed
))
3428 * Allow tasks that have access to memory reserves because they have
3429 * been OOM killed to get memory anywhere.
3431 if (unlikely(tsk_is_oom_victim(current
)))
3433 if (gfp_mask
& __GFP_HARDWALL
) /* If hardwall request, stop here */
3436 if (current
->flags
& PF_EXITING
) /* Let dying task have memory */
3439 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3440 spin_lock_irqsave(&callback_lock
, flags
);
3443 cs
= nearest_hardwall_ancestor(task_cs(current
));
3444 allowed
= node_isset(node
, cs
->mems_allowed
);
3447 spin_unlock_irqrestore(&callback_lock
, flags
);
3452 * cpuset_mem_spread_node() - On which node to begin search for a file page
3453 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3455 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3456 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3457 * and if the memory allocation used cpuset_mem_spread_node()
3458 * to determine on which node to start looking, as it will for
3459 * certain page cache or slab cache pages such as used for file
3460 * system buffers and inode caches, then instead of starting on the
3461 * local node to look for a free page, rather spread the starting
3462 * node around the tasks mems_allowed nodes.
3464 * We don't have to worry about the returned node being offline
3465 * because "it can't happen", and even if it did, it would be ok.
3467 * The routines calling guarantee_online_mems() are careful to
3468 * only set nodes in task->mems_allowed that are online. So it
3469 * should not be possible for the following code to return an
3470 * offline node. But if it did, that would be ok, as this routine
3471 * is not returning the node where the allocation must be, only
3472 * the node where the search should start. The zonelist passed to
3473 * __alloc_pages() will include all nodes. If the slab allocator
3474 * is passed an offline node, it will fall back to the local node.
3475 * See kmem_cache_alloc_node().
3478 static int cpuset_spread_node(int *rotor
)
3480 return *rotor
= next_node_in(*rotor
, current
->mems_allowed
);
3483 int cpuset_mem_spread_node(void)
3485 if (current
->cpuset_mem_spread_rotor
== NUMA_NO_NODE
)
3486 current
->cpuset_mem_spread_rotor
=
3487 node_random(¤t
->mems_allowed
);
3489 return cpuset_spread_node(¤t
->cpuset_mem_spread_rotor
);
3492 int cpuset_slab_spread_node(void)
3494 if (current
->cpuset_slab_spread_rotor
== NUMA_NO_NODE
)
3495 current
->cpuset_slab_spread_rotor
=
3496 node_random(¤t
->mems_allowed
);
3498 return cpuset_spread_node(¤t
->cpuset_slab_spread_rotor
);
3501 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node
);
3504 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3505 * @tsk1: pointer to task_struct of some task.
3506 * @tsk2: pointer to task_struct of some other task.
3508 * Description: Return true if @tsk1's mems_allowed intersects the
3509 * mems_allowed of @tsk2. Used by the OOM killer to determine if
3510 * one of the task's memory usage might impact the memory available
3514 int cpuset_mems_allowed_intersects(const struct task_struct
*tsk1
,
3515 const struct task_struct
*tsk2
)
3517 return nodes_intersects(tsk1
->mems_allowed
, tsk2
->mems_allowed
);
3521 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3523 * Description: Prints current's name, cpuset name, and cached copy of its
3524 * mems_allowed to the kernel log.
3526 void cpuset_print_current_mems_allowed(void)
3528 struct cgroup
*cgrp
;
3532 cgrp
= task_cs(current
)->css
.cgroup
;
3533 pr_cont(",cpuset=");
3534 pr_cont_cgroup_name(cgrp
);
3535 pr_cont(",mems_allowed=%*pbl",
3536 nodemask_pr_args(¤t
->mems_allowed
));
3542 * Collection of memory_pressure is suppressed unless
3543 * this flag is enabled by writing "1" to the special
3544 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3547 int cpuset_memory_pressure_enabled __read_mostly
;
3550 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3552 * Keep a running average of the rate of synchronous (direct)
3553 * page reclaim efforts initiated by tasks in each cpuset.
3555 * This represents the rate at which some task in the cpuset
3556 * ran low on memory on all nodes it was allowed to use, and
3557 * had to enter the kernels page reclaim code in an effort to
3558 * create more free memory by tossing clean pages or swapping
3559 * or writing dirty pages.
3561 * Display to user space in the per-cpuset read-only file
3562 * "memory_pressure". Value displayed is an integer
3563 * representing the recent rate of entry into the synchronous
3564 * (direct) page reclaim by any task attached to the cpuset.
3567 void __cpuset_memory_pressure_bump(void)
3570 fmeter_markevent(&task_cs(current
)->fmeter
);
3574 #ifdef CONFIG_PROC_PID_CPUSET
3576 * proc_cpuset_show()
3577 * - Print tasks cpuset path into seq_file.
3578 * - Used for /proc/<pid>/cpuset.
3579 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3580 * doesn't really matter if tsk->cpuset changes after we read it,
3581 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
3584 int proc_cpuset_show(struct seq_file
*m
, struct pid_namespace
*ns
,
3585 struct pid
*pid
, struct task_struct
*tsk
)
3588 struct cgroup_subsys_state
*css
;
3592 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
3596 css
= task_get_css(tsk
, cpuset_cgrp_id
);
3597 retval
= cgroup_path_ns(css
->cgroup
, buf
, PATH_MAX
,
3598 current
->nsproxy
->cgroup_ns
);
3600 if (retval
>= PATH_MAX
)
3601 retval
= -ENAMETOOLONG
;
3612 #endif /* CONFIG_PROC_PID_CPUSET */
3614 /* Display task mems_allowed in /proc/<pid>/status file. */
3615 void cpuset_task_status_allowed(struct seq_file
*m
, struct task_struct
*task
)
3617 seq_printf(m
, "Mems_allowed:\t%*pb\n",
3618 nodemask_pr_args(&task
->mems_allowed
));
3619 seq_printf(m
, "Mems_allowed_list:\t%*pbl\n",
3620 nodemask_pr_args(&task
->mems_allowed
));