[PATCH] selinux: fix sb_lock/sb_security_lock nesting
[linux/fpc-iii.git] / block / as-iosched.c
blobe25a5d79ab2715b2f3a07ce3331e46cd45ab86f1
1 /*
2 * Anticipatory & deadline i/o scheduler.
4 * Copyright (C) 2002 Jens Axboe <axboe@suse.de>
5 * Nick Piggin <nickpiggin@yahoo.com.au>
7 */
8 #include <linux/kernel.h>
9 #include <linux/fs.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/bio.h>
13 #include <linux/config.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/compiler.h>
18 #include <linux/hash.h>
19 #include <linux/rbtree.h>
20 #include <linux/interrupt.h>
22 #define REQ_SYNC 1
23 #define REQ_ASYNC 0
26 * See Documentation/block/as-iosched.txt
30 * max time before a read is submitted.
32 #define default_read_expire (HZ / 8)
35 * ditto for writes, these limits are not hard, even
36 * if the disk is capable of satisfying them.
38 #define default_write_expire (HZ / 4)
41 * read_batch_expire describes how long we will allow a stream of reads to
42 * persist before looking to see whether it is time to switch over to writes.
44 #define default_read_batch_expire (HZ / 2)
47 * write_batch_expire describes how long we want a stream of writes to run for.
48 * This is not a hard limit, but a target we set for the auto-tuning thingy.
49 * See, the problem is: we can send a lot of writes to disk cache / TCQ in
50 * a short amount of time...
52 #define default_write_batch_expire (HZ / 8)
55 * max time we may wait to anticipate a read (default around 6ms)
57 #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
60 * Keep track of up to 20ms thinktimes. We can go as big as we like here,
61 * however huge values tend to interfere and not decay fast enough. A program
62 * might be in a non-io phase of operation. Waiting on user input for example,
63 * or doing a lengthy computation. A small penalty can be justified there, and
64 * will still catch out those processes that constantly have large thinktimes.
66 #define MAX_THINKTIME (HZ/50UL)
68 /* Bits in as_io_context.state */
69 enum as_io_states {
70 AS_TASK_RUNNING=0, /* Process has not exited */
71 AS_TASK_IOSTARTED, /* Process has started some IO */
72 AS_TASK_IORUNNING, /* Process has completed some IO */
75 enum anticipation_status {
76 ANTIC_OFF=0, /* Not anticipating (normal operation) */
77 ANTIC_WAIT_REQ, /* The last read has not yet completed */
78 ANTIC_WAIT_NEXT, /* Currently anticipating a request vs
79 last read (which has completed) */
80 ANTIC_FINISHED, /* Anticipating but have found a candidate
81 * or timed out */
84 struct as_data {
86 * run time data
89 struct request_queue *q; /* the "owner" queue */
92 * requests (as_rq s) are present on both sort_list and fifo_list
94 struct rb_root sort_list[2];
95 struct list_head fifo_list[2];
97 struct as_rq *next_arq[2]; /* next in sort order */
98 sector_t last_sector[2]; /* last REQ_SYNC & REQ_ASYNC sectors */
99 struct list_head *hash; /* request hash */
101 unsigned long exit_prob; /* probability a task will exit while
102 being waited on */
103 unsigned long exit_no_coop; /* probablility an exited task will
104 not be part of a later cooperating
105 request */
106 unsigned long new_ttime_total; /* mean thinktime on new proc */
107 unsigned long new_ttime_mean;
108 u64 new_seek_total; /* mean seek on new proc */
109 sector_t new_seek_mean;
111 unsigned long current_batch_expires;
112 unsigned long last_check_fifo[2];
113 int changed_batch; /* 1: waiting for old batch to end */
114 int new_batch; /* 1: waiting on first read complete */
115 int batch_data_dir; /* current batch REQ_SYNC / REQ_ASYNC */
116 int write_batch_count; /* max # of reqs in a write batch */
117 int current_write_count; /* how many requests left this batch */
118 int write_batch_idled; /* has the write batch gone idle? */
119 mempool_t *arq_pool;
121 enum anticipation_status antic_status;
122 unsigned long antic_start; /* jiffies: when it started */
123 struct timer_list antic_timer; /* anticipatory scheduling timer */
124 struct work_struct antic_work; /* Deferred unplugging */
125 struct io_context *io_context; /* Identify the expected process */
126 int ioc_finished; /* IO associated with io_context is finished */
127 int nr_dispatched;
130 * settings that change how the i/o scheduler behaves
132 unsigned long fifo_expire[2];
133 unsigned long batch_expire[2];
134 unsigned long antic_expire;
137 #define list_entry_fifo(ptr) list_entry((ptr), struct as_rq, fifo)
140 * per-request data.
142 enum arq_state {
143 AS_RQ_NEW=0, /* New - not referenced and not on any lists */
144 AS_RQ_QUEUED, /* In the request queue. It belongs to the
145 scheduler */
146 AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the
147 driver now */
148 AS_RQ_PRESCHED, /* Debug poisoning for requests being used */
149 AS_RQ_REMOVED,
150 AS_RQ_MERGED,
151 AS_RQ_POSTSCHED, /* when they shouldn't be */
154 struct as_rq {
156 * rbtree index, key is the starting offset
158 struct rb_node rb_node;
159 sector_t rb_key;
161 struct request *request;
163 struct io_context *io_context; /* The submitting task */
166 * request hash, key is the ending offset (for back merge lookup)
168 struct list_head hash;
169 unsigned int on_hash;
172 * expire fifo
174 struct list_head fifo;
175 unsigned long expires;
177 unsigned int is_sync;
178 enum arq_state state;
181 #define RQ_DATA(rq) ((struct as_rq *) (rq)->elevator_private)
183 static kmem_cache_t *arq_pool;
185 static atomic_t ioc_count = ATOMIC_INIT(0);
186 static struct completion *ioc_gone;
188 static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq);
189 static void as_antic_stop(struct as_data *ad);
192 * IO Context helper functions
195 /* Called to deallocate the as_io_context */
196 static void free_as_io_context(struct as_io_context *aic)
198 kfree(aic);
199 if (atomic_dec_and_test(&ioc_count) && ioc_gone)
200 complete(ioc_gone);
203 static void as_trim(struct io_context *ioc)
205 if (ioc->aic)
206 free_as_io_context(ioc->aic);
207 ioc->aic = NULL;
210 /* Called when the task exits */
211 static void exit_as_io_context(struct as_io_context *aic)
213 WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state));
214 clear_bit(AS_TASK_RUNNING, &aic->state);
217 static struct as_io_context *alloc_as_io_context(void)
219 struct as_io_context *ret;
221 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
222 if (ret) {
223 ret->dtor = free_as_io_context;
224 ret->exit = exit_as_io_context;
225 ret->state = 1 << AS_TASK_RUNNING;
226 atomic_set(&ret->nr_queued, 0);
227 atomic_set(&ret->nr_dispatched, 0);
228 spin_lock_init(&ret->lock);
229 ret->ttime_total = 0;
230 ret->ttime_samples = 0;
231 ret->ttime_mean = 0;
232 ret->seek_total = 0;
233 ret->seek_samples = 0;
234 ret->seek_mean = 0;
235 atomic_inc(&ioc_count);
238 return ret;
242 * If the current task has no AS IO context then create one and initialise it.
243 * Then take a ref on the task's io context and return it.
245 static struct io_context *as_get_io_context(void)
247 struct io_context *ioc = get_io_context(GFP_ATOMIC);
248 if (ioc && !ioc->aic) {
249 ioc->aic = alloc_as_io_context();
250 if (!ioc->aic) {
251 put_io_context(ioc);
252 ioc = NULL;
255 return ioc;
258 static void as_put_io_context(struct as_rq *arq)
260 struct as_io_context *aic;
262 if (unlikely(!arq->io_context))
263 return;
265 aic = arq->io_context->aic;
267 if (arq->is_sync == REQ_SYNC && aic) {
268 spin_lock(&aic->lock);
269 set_bit(AS_TASK_IORUNNING, &aic->state);
270 aic->last_end_request = jiffies;
271 spin_unlock(&aic->lock);
274 put_io_context(arq->io_context);
278 * the back merge hash support functions
280 static const int as_hash_shift = 6;
281 #define AS_HASH_BLOCK(sec) ((sec) >> 3)
282 #define AS_HASH_FN(sec) (hash_long(AS_HASH_BLOCK((sec)), as_hash_shift))
283 #define AS_HASH_ENTRIES (1 << as_hash_shift)
284 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
285 #define list_entry_hash(ptr) list_entry((ptr), struct as_rq, hash)
287 static inline void __as_del_arq_hash(struct as_rq *arq)
289 arq->on_hash = 0;
290 list_del_init(&arq->hash);
293 static inline void as_del_arq_hash(struct as_rq *arq)
295 if (arq->on_hash)
296 __as_del_arq_hash(arq);
299 static void as_add_arq_hash(struct as_data *ad, struct as_rq *arq)
301 struct request *rq = arq->request;
303 BUG_ON(arq->on_hash);
305 arq->on_hash = 1;
306 list_add(&arq->hash, &ad->hash[AS_HASH_FN(rq_hash_key(rq))]);
310 * move hot entry to front of chain
312 static inline void as_hot_arq_hash(struct as_data *ad, struct as_rq *arq)
314 struct request *rq = arq->request;
315 struct list_head *head = &ad->hash[AS_HASH_FN(rq_hash_key(rq))];
317 if (!arq->on_hash) {
318 WARN_ON(1);
319 return;
322 if (arq->hash.prev != head) {
323 list_del(&arq->hash);
324 list_add(&arq->hash, head);
328 static struct request *as_find_arq_hash(struct as_data *ad, sector_t offset)
330 struct list_head *hash_list = &ad->hash[AS_HASH_FN(offset)];
331 struct list_head *entry, *next = hash_list->next;
333 while ((entry = next) != hash_list) {
334 struct as_rq *arq = list_entry_hash(entry);
335 struct request *__rq = arq->request;
337 next = entry->next;
339 BUG_ON(!arq->on_hash);
341 if (!rq_mergeable(__rq)) {
342 as_del_arq_hash(arq);
343 continue;
346 if (rq_hash_key(__rq) == offset)
347 return __rq;
350 return NULL;
354 * rb tree support functions
356 #define RB_NONE (2)
357 #define RB_EMPTY(root) ((root)->rb_node == NULL)
358 #define ON_RB(node) ((node)->rb_color != RB_NONE)
359 #define RB_CLEAR(node) ((node)->rb_color = RB_NONE)
360 #define rb_entry_arq(node) rb_entry((node), struct as_rq, rb_node)
361 #define ARQ_RB_ROOT(ad, arq) (&(ad)->sort_list[(arq)->is_sync])
362 #define rq_rb_key(rq) (rq)->sector
365 * as_find_first_arq finds the first (lowest sector numbered) request
366 * for the specified data_dir. Used to sweep back to the start of the disk
367 * (1-way elevator) after we process the last (highest sector) request.
369 static struct as_rq *as_find_first_arq(struct as_data *ad, int data_dir)
371 struct rb_node *n = ad->sort_list[data_dir].rb_node;
373 if (n == NULL)
374 return NULL;
376 for (;;) {
377 if (n->rb_left == NULL)
378 return rb_entry_arq(n);
380 n = n->rb_left;
385 * Add the request to the rb tree if it is unique. If there is an alias (an
386 * existing request against the same sector), which can happen when using
387 * direct IO, then return the alias.
389 static struct as_rq *__as_add_arq_rb(struct as_data *ad, struct as_rq *arq)
391 struct rb_node **p = &ARQ_RB_ROOT(ad, arq)->rb_node;
392 struct rb_node *parent = NULL;
393 struct as_rq *__arq;
394 struct request *rq = arq->request;
396 arq->rb_key = rq_rb_key(rq);
398 while (*p) {
399 parent = *p;
400 __arq = rb_entry_arq(parent);
402 if (arq->rb_key < __arq->rb_key)
403 p = &(*p)->rb_left;
404 else if (arq->rb_key > __arq->rb_key)
405 p = &(*p)->rb_right;
406 else
407 return __arq;
410 rb_link_node(&arq->rb_node, parent, p);
411 rb_insert_color(&arq->rb_node, ARQ_RB_ROOT(ad, arq));
413 return NULL;
416 static void as_add_arq_rb(struct as_data *ad, struct as_rq *arq)
418 struct as_rq *alias;
420 while ((unlikely(alias = __as_add_arq_rb(ad, arq)))) {
421 as_move_to_dispatch(ad, alias);
422 as_antic_stop(ad);
426 static inline void as_del_arq_rb(struct as_data *ad, struct as_rq *arq)
428 if (!ON_RB(&arq->rb_node)) {
429 WARN_ON(1);
430 return;
433 rb_erase(&arq->rb_node, ARQ_RB_ROOT(ad, arq));
434 RB_CLEAR(&arq->rb_node);
437 static struct request *
438 as_find_arq_rb(struct as_data *ad, sector_t sector, int data_dir)
440 struct rb_node *n = ad->sort_list[data_dir].rb_node;
441 struct as_rq *arq;
443 while (n) {
444 arq = rb_entry_arq(n);
446 if (sector < arq->rb_key)
447 n = n->rb_left;
448 else if (sector > arq->rb_key)
449 n = n->rb_right;
450 else
451 return arq->request;
454 return NULL;
458 * IO Scheduler proper
461 #define MAXBACK (1024 * 1024) /*
462 * Maximum distance the disk will go backward
463 * for a request.
466 #define BACK_PENALTY 2
469 * as_choose_req selects the preferred one of two requests of the same data_dir
470 * ignoring time - eg. timeouts, which is the job of as_dispatch_request
472 static struct as_rq *
473 as_choose_req(struct as_data *ad, struct as_rq *arq1, struct as_rq *arq2)
475 int data_dir;
476 sector_t last, s1, s2, d1, d2;
477 int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */
478 const sector_t maxback = MAXBACK;
480 if (arq1 == NULL || arq1 == arq2)
481 return arq2;
482 if (arq2 == NULL)
483 return arq1;
485 data_dir = arq1->is_sync;
487 last = ad->last_sector[data_dir];
488 s1 = arq1->request->sector;
489 s2 = arq2->request->sector;
491 BUG_ON(data_dir != arq2->is_sync);
494 * Strict one way elevator _except_ in the case where we allow
495 * short backward seeks which are biased as twice the cost of a
496 * similar forward seek.
498 if (s1 >= last)
499 d1 = s1 - last;
500 else if (s1+maxback >= last)
501 d1 = (last - s1)*BACK_PENALTY;
502 else {
503 r1_wrap = 1;
504 d1 = 0; /* shut up, gcc */
507 if (s2 >= last)
508 d2 = s2 - last;
509 else if (s2+maxback >= last)
510 d2 = (last - s2)*BACK_PENALTY;
511 else {
512 r2_wrap = 1;
513 d2 = 0;
516 /* Found required data */
517 if (!r1_wrap && r2_wrap)
518 return arq1;
519 else if (!r2_wrap && r1_wrap)
520 return arq2;
521 else if (r1_wrap && r2_wrap) {
522 /* both behind the head */
523 if (s1 <= s2)
524 return arq1;
525 else
526 return arq2;
529 /* Both requests in front of the head */
530 if (d1 < d2)
531 return arq1;
532 else if (d2 < d1)
533 return arq2;
534 else {
535 if (s1 >= s2)
536 return arq1;
537 else
538 return arq2;
543 * as_find_next_arq finds the next request after @prev in elevator order.
544 * this with as_choose_req form the basis for how the scheduler chooses
545 * what request to process next. Anticipation works on top of this.
547 static struct as_rq *as_find_next_arq(struct as_data *ad, struct as_rq *last)
549 const int data_dir = last->is_sync;
550 struct as_rq *ret;
551 struct rb_node *rbnext = rb_next(&last->rb_node);
552 struct rb_node *rbprev = rb_prev(&last->rb_node);
553 struct as_rq *arq_next, *arq_prev;
555 BUG_ON(!ON_RB(&last->rb_node));
557 if (rbprev)
558 arq_prev = rb_entry_arq(rbprev);
559 else
560 arq_prev = NULL;
562 if (rbnext)
563 arq_next = rb_entry_arq(rbnext);
564 else {
565 arq_next = as_find_first_arq(ad, data_dir);
566 if (arq_next == last)
567 arq_next = NULL;
570 ret = as_choose_req(ad, arq_next, arq_prev);
572 return ret;
576 * anticipatory scheduling functions follow
580 * as_antic_expired tells us when we have anticipated too long.
581 * The funny "absolute difference" math on the elapsed time is to handle
582 * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
584 static int as_antic_expired(struct as_data *ad)
586 long delta_jif;
588 delta_jif = jiffies - ad->antic_start;
589 if (unlikely(delta_jif < 0))
590 delta_jif = -delta_jif;
591 if (delta_jif < ad->antic_expire)
592 return 0;
594 return 1;
598 * as_antic_waitnext starts anticipating that a nice request will soon be
599 * submitted. See also as_antic_waitreq
601 static void as_antic_waitnext(struct as_data *ad)
603 unsigned long timeout;
605 BUG_ON(ad->antic_status != ANTIC_OFF
606 && ad->antic_status != ANTIC_WAIT_REQ);
608 timeout = ad->antic_start + ad->antic_expire;
610 mod_timer(&ad->antic_timer, timeout);
612 ad->antic_status = ANTIC_WAIT_NEXT;
616 * as_antic_waitreq starts anticipating. We don't start timing the anticipation
617 * until the request that we're anticipating on has finished. This means we
618 * are timing from when the candidate process wakes up hopefully.
620 static void as_antic_waitreq(struct as_data *ad)
622 BUG_ON(ad->antic_status == ANTIC_FINISHED);
623 if (ad->antic_status == ANTIC_OFF) {
624 if (!ad->io_context || ad->ioc_finished)
625 as_antic_waitnext(ad);
626 else
627 ad->antic_status = ANTIC_WAIT_REQ;
632 * This is called directly by the functions in this file to stop anticipation.
633 * We kill the timer and schedule a call to the request_fn asap.
635 static void as_antic_stop(struct as_data *ad)
637 int status = ad->antic_status;
639 if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) {
640 if (status == ANTIC_WAIT_NEXT)
641 del_timer(&ad->antic_timer);
642 ad->antic_status = ANTIC_FINISHED;
643 /* see as_work_handler */
644 kblockd_schedule_work(&ad->antic_work);
649 * as_antic_timeout is the timer function set by as_antic_waitnext.
651 static void as_antic_timeout(unsigned long data)
653 struct request_queue *q = (struct request_queue *)data;
654 struct as_data *ad = q->elevator->elevator_data;
655 unsigned long flags;
657 spin_lock_irqsave(q->queue_lock, flags);
658 if (ad->antic_status == ANTIC_WAIT_REQ
659 || ad->antic_status == ANTIC_WAIT_NEXT) {
660 struct as_io_context *aic = ad->io_context->aic;
662 ad->antic_status = ANTIC_FINISHED;
663 kblockd_schedule_work(&ad->antic_work);
665 if (aic->ttime_samples == 0) {
666 /* process anticipated on has exited or timed out*/
667 ad->exit_prob = (7*ad->exit_prob + 256)/8;
669 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
670 /* process not "saved" by a cooperating request */
671 ad->exit_no_coop = (7*ad->exit_no_coop + 256)/8;
674 spin_unlock_irqrestore(q->queue_lock, flags);
677 static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic,
678 unsigned long ttime)
680 /* fixed point: 1.0 == 1<<8 */
681 if (aic->ttime_samples == 0) {
682 ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8;
683 ad->new_ttime_mean = ad->new_ttime_total / 256;
685 ad->exit_prob = (7*ad->exit_prob)/8;
687 aic->ttime_samples = (7*aic->ttime_samples + 256) / 8;
688 aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8;
689 aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples;
692 static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic,
693 sector_t sdist)
695 u64 total;
697 if (aic->seek_samples == 0) {
698 ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8;
699 ad->new_seek_mean = ad->new_seek_total / 256;
703 * Don't allow the seek distance to get too large from the
704 * odd fragment, pagein, etc
706 if (aic->seek_samples <= 60) /* second&third seek */
707 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024);
708 else
709 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64);
711 aic->seek_samples = (7*aic->seek_samples + 256) / 8;
712 aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8;
713 total = aic->seek_total + (aic->seek_samples/2);
714 do_div(total, aic->seek_samples);
715 aic->seek_mean = (sector_t)total;
719 * as_update_iohist keeps a decaying histogram of IO thinktimes, and
720 * updates @aic->ttime_mean based on that. It is called when a new
721 * request is queued.
723 static void as_update_iohist(struct as_data *ad, struct as_io_context *aic,
724 struct request *rq)
726 struct as_rq *arq = RQ_DATA(rq);
727 int data_dir = arq->is_sync;
728 unsigned long thinktime = 0;
729 sector_t seek_dist;
731 if (aic == NULL)
732 return;
734 if (data_dir == REQ_SYNC) {
735 unsigned long in_flight = atomic_read(&aic->nr_queued)
736 + atomic_read(&aic->nr_dispatched);
737 spin_lock(&aic->lock);
738 if (test_bit(AS_TASK_IORUNNING, &aic->state) ||
739 test_bit(AS_TASK_IOSTARTED, &aic->state)) {
740 /* Calculate read -> read thinktime */
741 if (test_bit(AS_TASK_IORUNNING, &aic->state)
742 && in_flight == 0) {
743 thinktime = jiffies - aic->last_end_request;
744 thinktime = min(thinktime, MAX_THINKTIME-1);
746 as_update_thinktime(ad, aic, thinktime);
748 /* Calculate read -> read seek distance */
749 if (aic->last_request_pos < rq->sector)
750 seek_dist = rq->sector - aic->last_request_pos;
751 else
752 seek_dist = aic->last_request_pos - rq->sector;
753 as_update_seekdist(ad, aic, seek_dist);
755 aic->last_request_pos = rq->sector + rq->nr_sectors;
756 set_bit(AS_TASK_IOSTARTED, &aic->state);
757 spin_unlock(&aic->lock);
762 * as_close_req decides if one request is considered "close" to the
763 * previous one issued.
765 static int as_close_req(struct as_data *ad, struct as_io_context *aic,
766 struct as_rq *arq)
768 unsigned long delay; /* milliseconds */
769 sector_t last = ad->last_sector[ad->batch_data_dir];
770 sector_t next = arq->request->sector;
771 sector_t delta; /* acceptable close offset (in sectors) */
772 sector_t s;
774 if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished)
775 delay = 0;
776 else
777 delay = ((jiffies - ad->antic_start) * 1000) / HZ;
779 if (delay == 0)
780 delta = 8192;
781 else if (delay <= 20 && delay <= ad->antic_expire)
782 delta = 8192 << delay;
783 else
784 return 1;
786 if ((last <= next + (delta>>1)) && (next <= last + delta))
787 return 1;
789 if (last < next)
790 s = next - last;
791 else
792 s = last - next;
794 if (aic->seek_samples == 0) {
796 * Process has just started IO. Use past statistics to
797 * gauge success possibility
799 if (ad->new_seek_mean > s) {
800 /* this request is better than what we're expecting */
801 return 1;
804 } else {
805 if (aic->seek_mean > s) {
806 /* this request is better than what we're expecting */
807 return 1;
811 return 0;
815 * as_can_break_anticipation returns true if we have been anticipating this
816 * request.
818 * It also returns true if the process against which we are anticipating
819 * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
820 * dispatch it ASAP, because we know that application will not be submitting
821 * any new reads.
823 * If the task which has submitted the request has exited, break anticipation.
825 * If this task has queued some other IO, do not enter enticipation.
827 static int as_can_break_anticipation(struct as_data *ad, struct as_rq *arq)
829 struct io_context *ioc;
830 struct as_io_context *aic;
832 ioc = ad->io_context;
833 BUG_ON(!ioc);
835 if (arq && ioc == arq->io_context) {
836 /* request from same process */
837 return 1;
840 if (ad->ioc_finished && as_antic_expired(ad)) {
842 * In this situation status should really be FINISHED,
843 * however the timer hasn't had the chance to run yet.
845 return 1;
848 aic = ioc->aic;
849 if (!aic)
850 return 0;
852 if (atomic_read(&aic->nr_queued) > 0) {
853 /* process has more requests queued */
854 return 1;
857 if (atomic_read(&aic->nr_dispatched) > 0) {
858 /* process has more requests dispatched */
859 return 1;
862 if (arq && arq->is_sync == REQ_SYNC && as_close_req(ad, aic, arq)) {
864 * Found a close request that is not one of ours.
866 * This makes close requests from another process update
867 * our IO history. Is generally useful when there are
868 * two or more cooperating processes working in the same
869 * area.
871 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
872 if (aic->ttime_samples == 0)
873 ad->exit_prob = (7*ad->exit_prob + 256)/8;
875 ad->exit_no_coop = (7*ad->exit_no_coop)/8;
878 as_update_iohist(ad, aic, arq->request);
879 return 1;
882 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
883 /* process anticipated on has exited */
884 if (aic->ttime_samples == 0)
885 ad->exit_prob = (7*ad->exit_prob + 256)/8;
887 if (ad->exit_no_coop > 128)
888 return 1;
891 if (aic->ttime_samples == 0) {
892 if (ad->new_ttime_mean > ad->antic_expire)
893 return 1;
894 if (ad->exit_prob * ad->exit_no_coop > 128*256)
895 return 1;
896 } else if (aic->ttime_mean > ad->antic_expire) {
897 /* the process thinks too much between requests */
898 return 1;
901 return 0;
905 * as_can_anticipate indicates weather we should either run arq
906 * or keep anticipating a better request.
908 static int as_can_anticipate(struct as_data *ad, struct as_rq *arq)
910 if (!ad->io_context)
912 * Last request submitted was a write
914 return 0;
916 if (ad->antic_status == ANTIC_FINISHED)
918 * Don't restart if we have just finished. Run the next request
920 return 0;
922 if (as_can_break_anticipation(ad, arq))
924 * This request is a good candidate. Don't keep anticipating,
925 * run it.
927 return 0;
930 * OK from here, we haven't finished, and don't have a decent request!
931 * Status is either ANTIC_OFF so start waiting,
932 * ANTIC_WAIT_REQ so continue waiting for request to finish
933 * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
936 return 1;
940 * as_update_arq must be called whenever a request (arq) is added to
941 * the sort_list. This function keeps caches up to date, and checks if the
942 * request might be one we are "anticipating"
944 static void as_update_arq(struct as_data *ad, struct as_rq *arq)
946 const int data_dir = arq->is_sync;
948 /* keep the next_arq cache up to date */
949 ad->next_arq[data_dir] = as_choose_req(ad, arq, ad->next_arq[data_dir]);
952 * have we been anticipating this request?
953 * or does it come from the same process as the one we are anticipating
954 * for?
956 if (ad->antic_status == ANTIC_WAIT_REQ
957 || ad->antic_status == ANTIC_WAIT_NEXT) {
958 if (as_can_break_anticipation(ad, arq))
959 as_antic_stop(ad);
964 * Gathers timings and resizes the write batch automatically
966 static void update_write_batch(struct as_data *ad)
968 unsigned long batch = ad->batch_expire[REQ_ASYNC];
969 long write_time;
971 write_time = (jiffies - ad->current_batch_expires) + batch;
972 if (write_time < 0)
973 write_time = 0;
975 if (write_time > batch && !ad->write_batch_idled) {
976 if (write_time > batch * 3)
977 ad->write_batch_count /= 2;
978 else
979 ad->write_batch_count--;
980 } else if (write_time < batch && ad->current_write_count == 0) {
981 if (batch > write_time * 3)
982 ad->write_batch_count *= 2;
983 else
984 ad->write_batch_count++;
987 if (ad->write_batch_count < 1)
988 ad->write_batch_count = 1;
992 * as_completed_request is to be called when a request has completed and
993 * returned something to the requesting process, be it an error or data.
995 static void as_completed_request(request_queue_t *q, struct request *rq)
997 struct as_data *ad = q->elevator->elevator_data;
998 struct as_rq *arq = RQ_DATA(rq);
1000 WARN_ON(!list_empty(&rq->queuelist));
1002 if (arq->state != AS_RQ_REMOVED) {
1003 printk("arq->state %d\n", arq->state);
1004 WARN_ON(1);
1005 goto out;
1008 if (ad->changed_batch && ad->nr_dispatched == 1) {
1009 kblockd_schedule_work(&ad->antic_work);
1010 ad->changed_batch = 0;
1012 if (ad->batch_data_dir == REQ_SYNC)
1013 ad->new_batch = 1;
1015 WARN_ON(ad->nr_dispatched == 0);
1016 ad->nr_dispatched--;
1019 * Start counting the batch from when a request of that direction is
1020 * actually serviced. This should help devices with big TCQ windows
1021 * and writeback caches
1023 if (ad->new_batch && ad->batch_data_dir == arq->is_sync) {
1024 update_write_batch(ad);
1025 ad->current_batch_expires = jiffies +
1026 ad->batch_expire[REQ_SYNC];
1027 ad->new_batch = 0;
1030 if (ad->io_context == arq->io_context && ad->io_context) {
1031 ad->antic_start = jiffies;
1032 ad->ioc_finished = 1;
1033 if (ad->antic_status == ANTIC_WAIT_REQ) {
1035 * We were waiting on this request, now anticipate
1036 * the next one
1038 as_antic_waitnext(ad);
1042 as_put_io_context(arq);
1043 out:
1044 arq->state = AS_RQ_POSTSCHED;
1048 * as_remove_queued_request removes a request from the pre dispatch queue
1049 * without updating refcounts. It is expected the caller will drop the
1050 * reference unless it replaces the request at somepart of the elevator
1051 * (ie. the dispatch queue)
1053 static void as_remove_queued_request(request_queue_t *q, struct request *rq)
1055 struct as_rq *arq = RQ_DATA(rq);
1056 const int data_dir = arq->is_sync;
1057 struct as_data *ad = q->elevator->elevator_data;
1059 WARN_ON(arq->state != AS_RQ_QUEUED);
1061 if (arq->io_context && arq->io_context->aic) {
1062 BUG_ON(!atomic_read(&arq->io_context->aic->nr_queued));
1063 atomic_dec(&arq->io_context->aic->nr_queued);
1067 * Update the "next_arq" cache if we are about to remove its
1068 * entry
1070 if (ad->next_arq[data_dir] == arq)
1071 ad->next_arq[data_dir] = as_find_next_arq(ad, arq);
1073 list_del_init(&arq->fifo);
1074 as_del_arq_hash(arq);
1075 as_del_arq_rb(ad, arq);
1079 * as_fifo_expired returns 0 if there are no expired reads on the fifo,
1080 * 1 otherwise. It is ratelimited so that we only perform the check once per
1081 * `fifo_expire' interval. Otherwise a large number of expired requests
1082 * would create a hopeless seekstorm.
1084 * See as_antic_expired comment.
1086 static int as_fifo_expired(struct as_data *ad, int adir)
1088 struct as_rq *arq;
1089 long delta_jif;
1091 delta_jif = jiffies - ad->last_check_fifo[adir];
1092 if (unlikely(delta_jif < 0))
1093 delta_jif = -delta_jif;
1094 if (delta_jif < ad->fifo_expire[adir])
1095 return 0;
1097 ad->last_check_fifo[adir] = jiffies;
1099 if (list_empty(&ad->fifo_list[adir]))
1100 return 0;
1102 arq = list_entry_fifo(ad->fifo_list[adir].next);
1104 return time_after(jiffies, arq->expires);
1108 * as_batch_expired returns true if the current batch has expired. A batch
1109 * is a set of reads or a set of writes.
1111 static inline int as_batch_expired(struct as_data *ad)
1113 if (ad->changed_batch || ad->new_batch)
1114 return 0;
1116 if (ad->batch_data_dir == REQ_SYNC)
1117 /* TODO! add a check so a complete fifo gets written? */
1118 return time_after(jiffies, ad->current_batch_expires);
1120 return time_after(jiffies, ad->current_batch_expires)
1121 || ad->current_write_count == 0;
1125 * move an entry to dispatch queue
1127 static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq)
1129 struct request *rq = arq->request;
1130 const int data_dir = arq->is_sync;
1132 BUG_ON(!ON_RB(&arq->rb_node));
1134 as_antic_stop(ad);
1135 ad->antic_status = ANTIC_OFF;
1138 * This has to be set in order to be correctly updated by
1139 * as_find_next_arq
1141 ad->last_sector[data_dir] = rq->sector + rq->nr_sectors;
1143 if (data_dir == REQ_SYNC) {
1144 /* In case we have to anticipate after this */
1145 copy_io_context(&ad->io_context, &arq->io_context);
1146 } else {
1147 if (ad->io_context) {
1148 put_io_context(ad->io_context);
1149 ad->io_context = NULL;
1152 if (ad->current_write_count != 0)
1153 ad->current_write_count--;
1155 ad->ioc_finished = 0;
1157 ad->next_arq[data_dir] = as_find_next_arq(ad, arq);
1160 * take it off the sort and fifo list, add to dispatch queue
1162 as_remove_queued_request(ad->q, rq);
1163 WARN_ON(arq->state != AS_RQ_QUEUED);
1165 elv_dispatch_sort(ad->q, rq);
1167 arq->state = AS_RQ_DISPATCHED;
1168 if (arq->io_context && arq->io_context->aic)
1169 atomic_inc(&arq->io_context->aic->nr_dispatched);
1170 ad->nr_dispatched++;
1174 * as_dispatch_request selects the best request according to
1175 * read/write expire, batch expire, etc, and moves it to the dispatch
1176 * queue. Returns 1 if a request was found, 0 otherwise.
1178 static int as_dispatch_request(request_queue_t *q, int force)
1180 struct as_data *ad = q->elevator->elevator_data;
1181 struct as_rq *arq;
1182 const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]);
1183 const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]);
1185 if (unlikely(force)) {
1187 * Forced dispatch, accounting is useless. Reset
1188 * accounting states and dump fifo_lists. Note that
1189 * batch_data_dir is reset to REQ_SYNC to avoid
1190 * screwing write batch accounting as write batch
1191 * accounting occurs on W->R transition.
1193 int dispatched = 0;
1195 ad->batch_data_dir = REQ_SYNC;
1196 ad->changed_batch = 0;
1197 ad->new_batch = 0;
1199 while (ad->next_arq[REQ_SYNC]) {
1200 as_move_to_dispatch(ad, ad->next_arq[REQ_SYNC]);
1201 dispatched++;
1203 ad->last_check_fifo[REQ_SYNC] = jiffies;
1205 while (ad->next_arq[REQ_ASYNC]) {
1206 as_move_to_dispatch(ad, ad->next_arq[REQ_ASYNC]);
1207 dispatched++;
1209 ad->last_check_fifo[REQ_ASYNC] = jiffies;
1211 return dispatched;
1214 /* Signal that the write batch was uncontended, so we can't time it */
1215 if (ad->batch_data_dir == REQ_ASYNC && !reads) {
1216 if (ad->current_write_count == 0 || !writes)
1217 ad->write_batch_idled = 1;
1220 if (!(reads || writes)
1221 || ad->antic_status == ANTIC_WAIT_REQ
1222 || ad->antic_status == ANTIC_WAIT_NEXT
1223 || ad->changed_batch)
1224 return 0;
1226 if (!(reads && writes && as_batch_expired(ad))) {
1228 * batch is still running or no reads or no writes
1230 arq = ad->next_arq[ad->batch_data_dir];
1232 if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) {
1233 if (as_fifo_expired(ad, REQ_SYNC))
1234 goto fifo_expired;
1236 if (as_can_anticipate(ad, arq)) {
1237 as_antic_waitreq(ad);
1238 return 0;
1242 if (arq) {
1243 /* we have a "next request" */
1244 if (reads && !writes)
1245 ad->current_batch_expires =
1246 jiffies + ad->batch_expire[REQ_SYNC];
1247 goto dispatch_request;
1252 * at this point we are not running a batch. select the appropriate
1253 * data direction (read / write)
1256 if (reads) {
1257 BUG_ON(RB_EMPTY(&ad->sort_list[REQ_SYNC]));
1259 if (writes && ad->batch_data_dir == REQ_SYNC)
1261 * Last batch was a read, switch to writes
1263 goto dispatch_writes;
1265 if (ad->batch_data_dir == REQ_ASYNC) {
1266 WARN_ON(ad->new_batch);
1267 ad->changed_batch = 1;
1269 ad->batch_data_dir = REQ_SYNC;
1270 arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
1271 ad->last_check_fifo[ad->batch_data_dir] = jiffies;
1272 goto dispatch_request;
1276 * the last batch was a read
1279 if (writes) {
1280 dispatch_writes:
1281 BUG_ON(RB_EMPTY(&ad->sort_list[REQ_ASYNC]));
1283 if (ad->batch_data_dir == REQ_SYNC) {
1284 ad->changed_batch = 1;
1287 * new_batch might be 1 when the queue runs out of
1288 * reads. A subsequent submission of a write might
1289 * cause a change of batch before the read is finished.
1291 ad->new_batch = 0;
1293 ad->batch_data_dir = REQ_ASYNC;
1294 ad->current_write_count = ad->write_batch_count;
1295 ad->write_batch_idled = 0;
1296 arq = ad->next_arq[ad->batch_data_dir];
1297 goto dispatch_request;
1300 BUG();
1301 return 0;
1303 dispatch_request:
1305 * If a request has expired, service it.
1308 if (as_fifo_expired(ad, ad->batch_data_dir)) {
1309 fifo_expired:
1310 arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
1311 BUG_ON(arq == NULL);
1314 if (ad->changed_batch) {
1315 WARN_ON(ad->new_batch);
1317 if (ad->nr_dispatched)
1318 return 0;
1320 if (ad->batch_data_dir == REQ_ASYNC)
1321 ad->current_batch_expires = jiffies +
1322 ad->batch_expire[REQ_ASYNC];
1323 else
1324 ad->new_batch = 1;
1326 ad->changed_batch = 0;
1330 * arq is the selected appropriate request.
1332 as_move_to_dispatch(ad, arq);
1334 return 1;
1338 * add arq to rbtree and fifo
1340 static void as_add_request(request_queue_t *q, struct request *rq)
1342 struct as_data *ad = q->elevator->elevator_data;
1343 struct as_rq *arq = RQ_DATA(rq);
1344 int data_dir;
1346 arq->state = AS_RQ_NEW;
1348 if (rq_data_dir(arq->request) == READ
1349 || current->flags&PF_SYNCWRITE)
1350 arq->is_sync = 1;
1351 else
1352 arq->is_sync = 0;
1353 data_dir = arq->is_sync;
1355 arq->io_context = as_get_io_context();
1357 if (arq->io_context) {
1358 as_update_iohist(ad, arq->io_context->aic, arq->request);
1359 atomic_inc(&arq->io_context->aic->nr_queued);
1362 as_add_arq_rb(ad, arq);
1363 if (rq_mergeable(arq->request))
1364 as_add_arq_hash(ad, arq);
1367 * set expire time (only used for reads) and add to fifo list
1369 arq->expires = jiffies + ad->fifo_expire[data_dir];
1370 list_add_tail(&arq->fifo, &ad->fifo_list[data_dir]);
1372 as_update_arq(ad, arq); /* keep state machine up to date */
1373 arq->state = AS_RQ_QUEUED;
1376 static void as_activate_request(request_queue_t *q, struct request *rq)
1378 struct as_rq *arq = RQ_DATA(rq);
1380 WARN_ON(arq->state != AS_RQ_DISPATCHED);
1381 arq->state = AS_RQ_REMOVED;
1382 if (arq->io_context && arq->io_context->aic)
1383 atomic_dec(&arq->io_context->aic->nr_dispatched);
1386 static void as_deactivate_request(request_queue_t *q, struct request *rq)
1388 struct as_rq *arq = RQ_DATA(rq);
1390 WARN_ON(arq->state != AS_RQ_REMOVED);
1391 arq->state = AS_RQ_DISPATCHED;
1392 if (arq->io_context && arq->io_context->aic)
1393 atomic_inc(&arq->io_context->aic->nr_dispatched);
1397 * as_queue_empty tells us if there are requests left in the device. It may
1398 * not be the case that a driver can get the next request even if the queue
1399 * is not empty - it is used in the block layer to check for plugging and
1400 * merging opportunities
1402 static int as_queue_empty(request_queue_t *q)
1404 struct as_data *ad = q->elevator->elevator_data;
1406 return list_empty(&ad->fifo_list[REQ_ASYNC])
1407 && list_empty(&ad->fifo_list[REQ_SYNC]);
1410 static struct request *as_former_request(request_queue_t *q,
1411 struct request *rq)
1413 struct as_rq *arq = RQ_DATA(rq);
1414 struct rb_node *rbprev = rb_prev(&arq->rb_node);
1415 struct request *ret = NULL;
1417 if (rbprev)
1418 ret = rb_entry_arq(rbprev)->request;
1420 return ret;
1423 static struct request *as_latter_request(request_queue_t *q,
1424 struct request *rq)
1426 struct as_rq *arq = RQ_DATA(rq);
1427 struct rb_node *rbnext = rb_next(&arq->rb_node);
1428 struct request *ret = NULL;
1430 if (rbnext)
1431 ret = rb_entry_arq(rbnext)->request;
1433 return ret;
1436 static int
1437 as_merge(request_queue_t *q, struct request **req, struct bio *bio)
1439 struct as_data *ad = q->elevator->elevator_data;
1440 sector_t rb_key = bio->bi_sector + bio_sectors(bio);
1441 struct request *__rq;
1442 int ret;
1445 * see if the merge hash can satisfy a back merge
1447 __rq = as_find_arq_hash(ad, bio->bi_sector);
1448 if (__rq) {
1449 BUG_ON(__rq->sector + __rq->nr_sectors != bio->bi_sector);
1451 if (elv_rq_merge_ok(__rq, bio)) {
1452 ret = ELEVATOR_BACK_MERGE;
1453 goto out;
1458 * check for front merge
1460 __rq = as_find_arq_rb(ad, rb_key, bio_data_dir(bio));
1461 if (__rq) {
1462 BUG_ON(rb_key != rq_rb_key(__rq));
1464 if (elv_rq_merge_ok(__rq, bio)) {
1465 ret = ELEVATOR_FRONT_MERGE;
1466 goto out;
1470 return ELEVATOR_NO_MERGE;
1471 out:
1472 if (ret) {
1473 if (rq_mergeable(__rq))
1474 as_hot_arq_hash(ad, RQ_DATA(__rq));
1476 *req = __rq;
1477 return ret;
1480 static void as_merged_request(request_queue_t *q, struct request *req)
1482 struct as_data *ad = q->elevator->elevator_data;
1483 struct as_rq *arq = RQ_DATA(req);
1486 * hash always needs to be repositioned, key is end sector
1488 as_del_arq_hash(arq);
1489 as_add_arq_hash(ad, arq);
1492 * if the merge was a front merge, we need to reposition request
1494 if (rq_rb_key(req) != arq->rb_key) {
1495 as_del_arq_rb(ad, arq);
1496 as_add_arq_rb(ad, arq);
1498 * Note! At this stage of this and the next function, our next
1499 * request may not be optimal - eg the request may have "grown"
1500 * behind the disk head. We currently don't bother adjusting.
1505 static void as_merged_requests(request_queue_t *q, struct request *req,
1506 struct request *next)
1508 struct as_data *ad = q->elevator->elevator_data;
1509 struct as_rq *arq = RQ_DATA(req);
1510 struct as_rq *anext = RQ_DATA(next);
1512 BUG_ON(!arq);
1513 BUG_ON(!anext);
1516 * reposition arq (this is the merged request) in hash, and in rbtree
1517 * in case of a front merge
1519 as_del_arq_hash(arq);
1520 as_add_arq_hash(ad, arq);
1522 if (rq_rb_key(req) != arq->rb_key) {
1523 as_del_arq_rb(ad, arq);
1524 as_add_arq_rb(ad, arq);
1528 * if anext expires before arq, assign its expire time to arq
1529 * and move into anext position (anext will be deleted) in fifo
1531 if (!list_empty(&arq->fifo) && !list_empty(&anext->fifo)) {
1532 if (time_before(anext->expires, arq->expires)) {
1533 list_move(&arq->fifo, &anext->fifo);
1534 arq->expires = anext->expires;
1536 * Don't copy here but swap, because when anext is
1537 * removed below, it must contain the unused context
1539 swap_io_context(&arq->io_context, &anext->io_context);
1544 * kill knowledge of next, this one is a goner
1546 as_remove_queued_request(q, next);
1547 as_put_io_context(anext);
1549 anext->state = AS_RQ_MERGED;
1553 * This is executed in a "deferred" process context, by kblockd. It calls the
1554 * driver's request_fn so the driver can submit that request.
1556 * IMPORTANT! This guy will reenter the elevator, so set up all queue global
1557 * state before calling, and don't rely on any state over calls.
1559 * FIXME! dispatch queue is not a queue at all!
1561 static void as_work_handler(void *data)
1563 struct request_queue *q = data;
1564 unsigned long flags;
1566 spin_lock_irqsave(q->queue_lock, flags);
1567 if (!as_queue_empty(q))
1568 q->request_fn(q);
1569 spin_unlock_irqrestore(q->queue_lock, flags);
1572 static void as_put_request(request_queue_t *q, struct request *rq)
1574 struct as_data *ad = q->elevator->elevator_data;
1575 struct as_rq *arq = RQ_DATA(rq);
1577 if (!arq) {
1578 WARN_ON(1);
1579 return;
1582 if (unlikely(arq->state != AS_RQ_POSTSCHED &&
1583 arq->state != AS_RQ_PRESCHED &&
1584 arq->state != AS_RQ_MERGED)) {
1585 printk("arq->state %d\n", arq->state);
1586 WARN_ON(1);
1589 mempool_free(arq, ad->arq_pool);
1590 rq->elevator_private = NULL;
1593 static int as_set_request(request_queue_t *q, struct request *rq,
1594 struct bio *bio, gfp_t gfp_mask)
1596 struct as_data *ad = q->elevator->elevator_data;
1597 struct as_rq *arq = mempool_alloc(ad->arq_pool, gfp_mask);
1599 if (arq) {
1600 memset(arq, 0, sizeof(*arq));
1601 RB_CLEAR(&arq->rb_node);
1602 arq->request = rq;
1603 arq->state = AS_RQ_PRESCHED;
1604 arq->io_context = NULL;
1605 INIT_LIST_HEAD(&arq->hash);
1606 arq->on_hash = 0;
1607 INIT_LIST_HEAD(&arq->fifo);
1608 rq->elevator_private = arq;
1609 return 0;
1612 return 1;
1615 static int as_may_queue(request_queue_t *q, int rw, struct bio *bio)
1617 int ret = ELV_MQUEUE_MAY;
1618 struct as_data *ad = q->elevator->elevator_data;
1619 struct io_context *ioc;
1620 if (ad->antic_status == ANTIC_WAIT_REQ ||
1621 ad->antic_status == ANTIC_WAIT_NEXT) {
1622 ioc = as_get_io_context();
1623 if (ad->io_context == ioc)
1624 ret = ELV_MQUEUE_MUST;
1625 put_io_context(ioc);
1628 return ret;
1631 static void as_exit_queue(elevator_t *e)
1633 struct as_data *ad = e->elevator_data;
1635 del_timer_sync(&ad->antic_timer);
1636 kblockd_flush();
1638 BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC]));
1639 BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC]));
1641 mempool_destroy(ad->arq_pool);
1642 put_io_context(ad->io_context);
1643 kfree(ad->hash);
1644 kfree(ad);
1648 * initialize elevator private data (as_data), and alloc a arq for
1649 * each request on the free lists
1651 static int as_init_queue(request_queue_t *q, elevator_t *e)
1653 struct as_data *ad;
1654 int i;
1656 if (!arq_pool)
1657 return -ENOMEM;
1659 ad = kmalloc_node(sizeof(*ad), GFP_KERNEL, q->node);
1660 if (!ad)
1661 return -ENOMEM;
1662 memset(ad, 0, sizeof(*ad));
1664 ad->q = q; /* Identify what queue the data belongs to */
1666 ad->hash = kmalloc_node(sizeof(struct list_head)*AS_HASH_ENTRIES,
1667 GFP_KERNEL, q->node);
1668 if (!ad->hash) {
1669 kfree(ad);
1670 return -ENOMEM;
1673 ad->arq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1674 mempool_free_slab, arq_pool, q->node);
1675 if (!ad->arq_pool) {
1676 kfree(ad->hash);
1677 kfree(ad);
1678 return -ENOMEM;
1681 /* anticipatory scheduling helpers */
1682 ad->antic_timer.function = as_antic_timeout;
1683 ad->antic_timer.data = (unsigned long)q;
1684 init_timer(&ad->antic_timer);
1685 INIT_WORK(&ad->antic_work, as_work_handler, q);
1687 for (i = 0; i < AS_HASH_ENTRIES; i++)
1688 INIT_LIST_HEAD(&ad->hash[i]);
1690 INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]);
1691 INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]);
1692 ad->sort_list[REQ_SYNC] = RB_ROOT;
1693 ad->sort_list[REQ_ASYNC] = RB_ROOT;
1694 ad->fifo_expire[REQ_SYNC] = default_read_expire;
1695 ad->fifo_expire[REQ_ASYNC] = default_write_expire;
1696 ad->antic_expire = default_antic_expire;
1697 ad->batch_expire[REQ_SYNC] = default_read_batch_expire;
1698 ad->batch_expire[REQ_ASYNC] = default_write_batch_expire;
1699 e->elevator_data = ad;
1701 ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC];
1702 ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10;
1703 if (ad->write_batch_count < 2)
1704 ad->write_batch_count = 2;
1706 return 0;
1710 * sysfs parts below
1713 static ssize_t
1714 as_var_show(unsigned int var, char *page)
1716 return sprintf(page, "%d\n", var);
1719 static ssize_t
1720 as_var_store(unsigned long *var, const char *page, size_t count)
1722 char *p = (char *) page;
1724 *var = simple_strtoul(p, &p, 10);
1725 return count;
1728 static ssize_t est_time_show(elevator_t *e, char *page)
1730 struct as_data *ad = e->elevator_data;
1731 int pos = 0;
1733 pos += sprintf(page+pos, "%lu %% exit probability\n",
1734 100*ad->exit_prob/256);
1735 pos += sprintf(page+pos, "%lu %% probability of exiting without a "
1736 "cooperating process submitting IO\n",
1737 100*ad->exit_no_coop/256);
1738 pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean);
1739 pos += sprintf(page+pos, "%llu sectors new seek distance\n",
1740 (unsigned long long)ad->new_seek_mean);
1742 return pos;
1745 #define SHOW_FUNCTION(__FUNC, __VAR) \
1746 static ssize_t __FUNC(elevator_t *e, char *page) \
1748 struct as_data *ad = e->elevator_data; \
1749 return as_var_show(jiffies_to_msecs((__VAR)), (page)); \
1751 SHOW_FUNCTION(as_read_expire_show, ad->fifo_expire[REQ_SYNC]);
1752 SHOW_FUNCTION(as_write_expire_show, ad->fifo_expire[REQ_ASYNC]);
1753 SHOW_FUNCTION(as_antic_expire_show, ad->antic_expire);
1754 SHOW_FUNCTION(as_read_batch_expire_show, ad->batch_expire[REQ_SYNC]);
1755 SHOW_FUNCTION(as_write_batch_expire_show, ad->batch_expire[REQ_ASYNC]);
1756 #undef SHOW_FUNCTION
1758 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
1759 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
1761 struct as_data *ad = e->elevator_data; \
1762 int ret = as_var_store(__PTR, (page), count); \
1763 if (*(__PTR) < (MIN)) \
1764 *(__PTR) = (MIN); \
1765 else if (*(__PTR) > (MAX)) \
1766 *(__PTR) = (MAX); \
1767 *(__PTR) = msecs_to_jiffies(*(__PTR)); \
1768 return ret; \
1770 STORE_FUNCTION(as_read_expire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX);
1771 STORE_FUNCTION(as_write_expire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX);
1772 STORE_FUNCTION(as_antic_expire_store, &ad->antic_expire, 0, INT_MAX);
1773 STORE_FUNCTION(as_read_batch_expire_store,
1774 &ad->batch_expire[REQ_SYNC], 0, INT_MAX);
1775 STORE_FUNCTION(as_write_batch_expire_store,
1776 &ad->batch_expire[REQ_ASYNC], 0, INT_MAX);
1777 #undef STORE_FUNCTION
1779 #define AS_ATTR(name) \
1780 __ATTR(name, S_IRUGO|S_IWUSR, as_##name##_show, as_##name##_store)
1782 static struct elv_fs_entry as_attrs[] = {
1783 __ATTR_RO(est_time),
1784 AS_ATTR(read_expire),
1785 AS_ATTR(write_expire),
1786 AS_ATTR(antic_expire),
1787 AS_ATTR(read_batch_expire),
1788 AS_ATTR(write_batch_expire),
1789 __ATTR_NULL
1792 static struct elevator_type iosched_as = {
1793 .ops = {
1794 .elevator_merge_fn = as_merge,
1795 .elevator_merged_fn = as_merged_request,
1796 .elevator_merge_req_fn = as_merged_requests,
1797 .elevator_dispatch_fn = as_dispatch_request,
1798 .elevator_add_req_fn = as_add_request,
1799 .elevator_activate_req_fn = as_activate_request,
1800 .elevator_deactivate_req_fn = as_deactivate_request,
1801 .elevator_queue_empty_fn = as_queue_empty,
1802 .elevator_completed_req_fn = as_completed_request,
1803 .elevator_former_req_fn = as_former_request,
1804 .elevator_latter_req_fn = as_latter_request,
1805 .elevator_set_req_fn = as_set_request,
1806 .elevator_put_req_fn = as_put_request,
1807 .elevator_may_queue_fn = as_may_queue,
1808 .elevator_init_fn = as_init_queue,
1809 .elevator_exit_fn = as_exit_queue,
1810 .trim = as_trim,
1813 .elevator_attrs = as_attrs,
1814 .elevator_name = "anticipatory",
1815 .elevator_owner = THIS_MODULE,
1818 static int __init as_init(void)
1820 int ret;
1822 arq_pool = kmem_cache_create("as_arq", sizeof(struct as_rq),
1823 0, 0, NULL, NULL);
1824 if (!arq_pool)
1825 return -ENOMEM;
1827 ret = elv_register(&iosched_as);
1828 if (!ret) {
1830 * don't allow AS to get unregistered, since we would have
1831 * to browse all tasks in the system and release their
1832 * as_io_context first
1834 __module_get(THIS_MODULE);
1835 return 0;
1838 kmem_cache_destroy(arq_pool);
1839 return ret;
1842 static void __exit as_exit(void)
1844 DECLARE_COMPLETION(all_gone);
1845 elv_unregister(&iosched_as);
1846 ioc_gone = &all_gone;
1847 /* ioc_gone's update must be visible before reading ioc_count */
1848 smp_wmb();
1849 if (atomic_read(&ioc_count))
1850 wait_for_completion(ioc_gone);
1851 synchronize_rcu();
1852 kmem_cache_destroy(arq_pool);
1855 module_init(as_init);
1856 module_exit(as_exit);
1858 MODULE_AUTHOR("Nick Piggin");
1859 MODULE_LICENSE("GPL");
1860 MODULE_DESCRIPTION("anticipatory IO scheduler");