btrfs: propagate error to btrfs_cmp_data_prepare caller
[linux/fpc-iii.git] / mm / ksm.c
blobcaa54a55a3579247870f9e81a97b50b9aca78b88
1 /*
2 * Memory merging support.
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
14 * This work is licensed under the terms of the GNU GPL, version 2.
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
41 #include <asm/tlbflush.h>
42 #include "internal.h"
44 #ifdef CONFIG_NUMA
45 #define NUMA(x) (x)
46 #define DO_NUMA(x) do { (x); } while (0)
47 #else
48 #define NUMA(x) (0)
49 #define DO_NUMA(x) do { } while (0)
50 #endif
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
75 * KSM solves this problem by several techniques:
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
95 /**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100 * @mm: the mm that this information is valid for
102 struct mm_slot {
103 struct hlist_node link;
104 struct list_head mm_list;
105 struct rmap_item *rmap_list;
106 struct mm_struct *mm;
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
114 * @seqnr: count of completed full scans (needed when removing unstable node)
116 * There is only the one ksm_scan instance of this cursor structure.
118 struct ksm_scan {
119 struct mm_slot *mm_slot;
120 unsigned long address;
121 struct rmap_item **rmap_list;
122 unsigned long seqnr;
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129 * @list: linked into migrate_nodes, pending placement in the proper node tree
130 * @hlist: hlist head of rmap_items using this ksm page
131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
134 struct stable_node {
135 union {
136 struct rb_node node; /* when node of stable tree */
137 struct { /* when listed for migration */
138 struct list_head *head;
139 struct list_head list;
142 struct hlist_head hlist;
143 unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145 int nid;
146 #endif
150 * struct rmap_item - reverse mapping item for virtual addresses
151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
154 * @mm: the memory structure this rmap_item is pointing into
155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156 * @oldchecksum: previous checksum of the page at that virtual address
157 * @node: rb node of this rmap_item in the unstable tree
158 * @head: pointer to stable_node heading this list in the stable tree
159 * @hlist: link into hlist of rmap_items hanging off that stable_node
161 struct rmap_item {
162 struct rmap_item *rmap_list;
163 union {
164 struct anon_vma *anon_vma; /* when stable */
165 #ifdef CONFIG_NUMA
166 int nid; /* when node of unstable tree */
167 #endif
169 struct mm_struct *mm;
170 unsigned long address; /* + low bits used for flags below */
171 unsigned int oldchecksum; /* when unstable */
172 union {
173 struct rb_node node; /* when node of unstable tree */
174 struct { /* when listed from stable tree */
175 struct stable_node *head;
176 struct hlist_node hlist;
181 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
183 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
197 static struct mm_slot ksm_mm_head = {
198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
200 static struct ksm_scan ksm_scan = {
201 .mm_slot = &ksm_mm_head,
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes 1U
232 #define ksm_nr_node_ids 1
233 #endif
235 #define KSM_RUN_STOP 0
236 #define KSM_RUN_MERGE 1
237 #define KSM_RUN_UNMERGE 2
238 #define KSM_RUN_OFFLINE 4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247 sizeof(struct __struct), __alignof__(struct __struct),\
248 (__flags), NULL)
250 static int __init ksm_slab_init(void)
252 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253 if (!rmap_item_cache)
254 goto out;
256 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257 if (!stable_node_cache)
258 goto out_free1;
260 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261 if (!mm_slot_cache)
262 goto out_free2;
264 return 0;
266 out_free2:
267 kmem_cache_destroy(stable_node_cache);
268 out_free1:
269 kmem_cache_destroy(rmap_item_cache);
270 out:
271 return -ENOMEM;
274 static void __init ksm_slab_free(void)
276 kmem_cache_destroy(mm_slot_cache);
277 kmem_cache_destroy(stable_node_cache);
278 kmem_cache_destroy(rmap_item_cache);
279 mm_slot_cache = NULL;
282 static inline struct rmap_item *alloc_rmap_item(void)
284 struct rmap_item *rmap_item;
286 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
287 __GFP_NORETRY | __GFP_NOWARN);
288 if (rmap_item)
289 ksm_rmap_items++;
290 return rmap_item;
293 static inline void free_rmap_item(struct rmap_item *rmap_item)
295 ksm_rmap_items--;
296 rmap_item->mm = NULL; /* debug safety */
297 kmem_cache_free(rmap_item_cache, rmap_item);
300 static inline struct stable_node *alloc_stable_node(void)
303 * The allocation can take too long with GFP_KERNEL when memory is under
304 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
305 * grants access to memory reserves, helping to avoid this problem.
307 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
310 static inline void free_stable_node(struct stable_node *stable_node)
312 kmem_cache_free(stable_node_cache, stable_node);
315 static inline struct mm_slot *alloc_mm_slot(void)
317 if (!mm_slot_cache) /* initialization failed */
318 return NULL;
319 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
322 static inline void free_mm_slot(struct mm_slot *mm_slot)
324 kmem_cache_free(mm_slot_cache, mm_slot);
327 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
329 struct mm_slot *slot;
331 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
332 if (slot->mm == mm)
333 return slot;
335 return NULL;
338 static void insert_to_mm_slots_hash(struct mm_struct *mm,
339 struct mm_slot *mm_slot)
341 mm_slot->mm = mm;
342 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
346 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
347 * page tables after it has passed through ksm_exit() - which, if necessary,
348 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
349 * a special flag: they can just back out as soon as mm_users goes to zero.
350 * ksm_test_exit() is used throughout to make this test for exit: in some
351 * places for correctness, in some places just to avoid unnecessary work.
353 static inline bool ksm_test_exit(struct mm_struct *mm)
355 return atomic_read(&mm->mm_users) == 0;
359 * We use break_ksm to break COW on a ksm page: it's a stripped down
361 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
362 * put_page(page);
364 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
365 * in case the application has unmapped and remapped mm,addr meanwhile.
366 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
367 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
369 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
370 * of the process that owns 'vma'. We also do not want to enforce
371 * protection keys here anyway.
373 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
375 struct page *page;
376 int ret = 0;
378 do {
379 cond_resched();
380 page = follow_page(vma, addr,
381 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
382 if (IS_ERR_OR_NULL(page))
383 break;
384 if (PageKsm(page))
385 ret = handle_mm_fault(vma, addr,
386 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
387 else
388 ret = VM_FAULT_WRITE;
389 put_page(page);
390 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
392 * We must loop because handle_mm_fault() may back out if there's
393 * any difficulty e.g. if pte accessed bit gets updated concurrently.
395 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
396 * COW has been broken, even if the vma does not permit VM_WRITE;
397 * but note that a concurrent fault might break PageKsm for us.
399 * VM_FAULT_SIGBUS could occur if we race with truncation of the
400 * backing file, which also invalidates anonymous pages: that's
401 * okay, that truncation will have unmapped the PageKsm for us.
403 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
404 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
405 * current task has TIF_MEMDIE set, and will be OOM killed on return
406 * to user; and ksmd, having no mm, would never be chosen for that.
408 * But if the mm is in a limited mem_cgroup, then the fault may fail
409 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
410 * even ksmd can fail in this way - though it's usually breaking ksm
411 * just to undo a merge it made a moment before, so unlikely to oom.
413 * That's a pity: we might therefore have more kernel pages allocated
414 * than we're counting as nodes in the stable tree; but ksm_do_scan
415 * will retry to break_cow on each pass, so should recover the page
416 * in due course. The important thing is to not let VM_MERGEABLE
417 * be cleared while any such pages might remain in the area.
419 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
422 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
423 unsigned long addr)
425 struct vm_area_struct *vma;
426 if (ksm_test_exit(mm))
427 return NULL;
428 vma = find_vma(mm, addr);
429 if (!vma || vma->vm_start > addr)
430 return NULL;
431 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
432 return NULL;
433 return vma;
436 static void break_cow(struct rmap_item *rmap_item)
438 struct mm_struct *mm = rmap_item->mm;
439 unsigned long addr = rmap_item->address;
440 struct vm_area_struct *vma;
443 * It is not an accident that whenever we want to break COW
444 * to undo, we also need to drop a reference to the anon_vma.
446 put_anon_vma(rmap_item->anon_vma);
448 down_read(&mm->mmap_sem);
449 vma = find_mergeable_vma(mm, addr);
450 if (vma)
451 break_ksm(vma, addr);
452 up_read(&mm->mmap_sem);
455 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
457 struct mm_struct *mm = rmap_item->mm;
458 unsigned long addr = rmap_item->address;
459 struct vm_area_struct *vma;
460 struct page *page;
462 down_read(&mm->mmap_sem);
463 vma = find_mergeable_vma(mm, addr);
464 if (!vma)
465 goto out;
467 page = follow_page(vma, addr, FOLL_GET);
468 if (IS_ERR_OR_NULL(page))
469 goto out;
470 if (PageAnon(page)) {
471 flush_anon_page(vma, page, addr);
472 flush_dcache_page(page);
473 } else {
474 put_page(page);
475 out:
476 page = NULL;
478 up_read(&mm->mmap_sem);
479 return page;
483 * This helper is used for getting right index into array of tree roots.
484 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
485 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
486 * every node has its own stable and unstable tree.
488 static inline int get_kpfn_nid(unsigned long kpfn)
490 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
493 static void remove_node_from_stable_tree(struct stable_node *stable_node)
495 struct rmap_item *rmap_item;
497 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
498 if (rmap_item->hlist.next)
499 ksm_pages_sharing--;
500 else
501 ksm_pages_shared--;
502 put_anon_vma(rmap_item->anon_vma);
503 rmap_item->address &= PAGE_MASK;
504 cond_resched();
507 if (stable_node->head == &migrate_nodes)
508 list_del(&stable_node->list);
509 else
510 rb_erase(&stable_node->node,
511 root_stable_tree + NUMA(stable_node->nid));
512 free_stable_node(stable_node);
516 * get_ksm_page: checks if the page indicated by the stable node
517 * is still its ksm page, despite having held no reference to it.
518 * In which case we can trust the content of the page, and it
519 * returns the gotten page; but if the page has now been zapped,
520 * remove the stale node from the stable tree and return NULL.
521 * But beware, the stable node's page might be being migrated.
523 * You would expect the stable_node to hold a reference to the ksm page.
524 * But if it increments the page's count, swapping out has to wait for
525 * ksmd to come around again before it can free the page, which may take
526 * seconds or even minutes: much too unresponsive. So instead we use a
527 * "keyhole reference": access to the ksm page from the stable node peeps
528 * out through its keyhole to see if that page still holds the right key,
529 * pointing back to this stable node. This relies on freeing a PageAnon
530 * page to reset its page->mapping to NULL, and relies on no other use of
531 * a page to put something that might look like our key in page->mapping.
532 * is on its way to being freed; but it is an anomaly to bear in mind.
534 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
536 struct page *page;
537 void *expected_mapping;
538 unsigned long kpfn;
540 expected_mapping = (void *)((unsigned long)stable_node |
541 PAGE_MAPPING_KSM);
542 again:
543 kpfn = READ_ONCE(stable_node->kpfn);
544 page = pfn_to_page(kpfn);
547 * page is computed from kpfn, so on most architectures reading
548 * page->mapping is naturally ordered after reading node->kpfn,
549 * but on Alpha we need to be more careful.
551 smp_read_barrier_depends();
552 if (READ_ONCE(page->mapping) != expected_mapping)
553 goto stale;
556 * We cannot do anything with the page while its refcount is 0.
557 * Usually 0 means free, or tail of a higher-order page: in which
558 * case this node is no longer referenced, and should be freed;
559 * however, it might mean that the page is under page_freeze_refs().
560 * The __remove_mapping() case is easy, again the node is now stale;
561 * but if page is swapcache in migrate_page_move_mapping(), it might
562 * still be our page, in which case it's essential to keep the node.
564 while (!get_page_unless_zero(page)) {
566 * Another check for page->mapping != expected_mapping would
567 * work here too. We have chosen the !PageSwapCache test to
568 * optimize the common case, when the page is or is about to
569 * be freed: PageSwapCache is cleared (under spin_lock_irq)
570 * in the freeze_refs section of __remove_mapping(); but Anon
571 * page->mapping reset to NULL later, in free_pages_prepare().
573 if (!PageSwapCache(page))
574 goto stale;
575 cpu_relax();
578 if (READ_ONCE(page->mapping) != expected_mapping) {
579 put_page(page);
580 goto stale;
583 if (lock_it) {
584 lock_page(page);
585 if (READ_ONCE(page->mapping) != expected_mapping) {
586 unlock_page(page);
587 put_page(page);
588 goto stale;
591 return page;
593 stale:
595 * We come here from above when page->mapping or !PageSwapCache
596 * suggests that the node is stale; but it might be under migration.
597 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
598 * before checking whether node->kpfn has been changed.
600 smp_rmb();
601 if (READ_ONCE(stable_node->kpfn) != kpfn)
602 goto again;
603 remove_node_from_stable_tree(stable_node);
604 return NULL;
608 * Removing rmap_item from stable or unstable tree.
609 * This function will clean the information from the stable/unstable tree.
611 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
613 if (rmap_item->address & STABLE_FLAG) {
614 struct stable_node *stable_node;
615 struct page *page;
617 stable_node = rmap_item->head;
618 page = get_ksm_page(stable_node, true);
619 if (!page)
620 goto out;
622 hlist_del(&rmap_item->hlist);
623 unlock_page(page);
624 put_page(page);
626 if (!hlist_empty(&stable_node->hlist))
627 ksm_pages_sharing--;
628 else
629 ksm_pages_shared--;
631 put_anon_vma(rmap_item->anon_vma);
632 rmap_item->address &= PAGE_MASK;
634 } else if (rmap_item->address & UNSTABLE_FLAG) {
635 unsigned char age;
637 * Usually ksmd can and must skip the rb_erase, because
638 * root_unstable_tree was already reset to RB_ROOT.
639 * But be careful when an mm is exiting: do the rb_erase
640 * if this rmap_item was inserted by this scan, rather
641 * than left over from before.
643 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
644 BUG_ON(age > 1);
645 if (!age)
646 rb_erase(&rmap_item->node,
647 root_unstable_tree + NUMA(rmap_item->nid));
648 ksm_pages_unshared--;
649 rmap_item->address &= PAGE_MASK;
651 out:
652 cond_resched(); /* we're called from many long loops */
655 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
656 struct rmap_item **rmap_list)
658 while (*rmap_list) {
659 struct rmap_item *rmap_item = *rmap_list;
660 *rmap_list = rmap_item->rmap_list;
661 remove_rmap_item_from_tree(rmap_item);
662 free_rmap_item(rmap_item);
667 * Though it's very tempting to unmerge rmap_items from stable tree rather
668 * than check every pte of a given vma, the locking doesn't quite work for
669 * that - an rmap_item is assigned to the stable tree after inserting ksm
670 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
671 * rmap_items from parent to child at fork time (so as not to waste time
672 * if exit comes before the next scan reaches it).
674 * Similarly, although we'd like to remove rmap_items (so updating counts
675 * and freeing memory) when unmerging an area, it's easier to leave that
676 * to the next pass of ksmd - consider, for example, how ksmd might be
677 * in cmp_and_merge_page on one of the rmap_items we would be removing.
679 static int unmerge_ksm_pages(struct vm_area_struct *vma,
680 unsigned long start, unsigned long end)
682 unsigned long addr;
683 int err = 0;
685 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
686 if (ksm_test_exit(vma->vm_mm))
687 break;
688 if (signal_pending(current))
689 err = -ERESTARTSYS;
690 else
691 err = break_ksm(vma, addr);
693 return err;
696 #ifdef CONFIG_SYSFS
698 * Only called through the sysfs control interface:
700 static int remove_stable_node(struct stable_node *stable_node)
702 struct page *page;
703 int err;
705 page = get_ksm_page(stable_node, true);
706 if (!page) {
708 * get_ksm_page did remove_node_from_stable_tree itself.
710 return 0;
713 if (WARN_ON_ONCE(page_mapped(page))) {
715 * This should not happen: but if it does, just refuse to let
716 * merge_across_nodes be switched - there is no need to panic.
718 err = -EBUSY;
719 } else {
721 * The stable node did not yet appear stale to get_ksm_page(),
722 * since that allows for an unmapped ksm page to be recognized
723 * right up until it is freed; but the node is safe to remove.
724 * This page might be in a pagevec waiting to be freed,
725 * or it might be PageSwapCache (perhaps under writeback),
726 * or it might have been removed from swapcache a moment ago.
728 set_page_stable_node(page, NULL);
729 remove_node_from_stable_tree(stable_node);
730 err = 0;
733 unlock_page(page);
734 put_page(page);
735 return err;
738 static int remove_all_stable_nodes(void)
740 struct stable_node *stable_node, *next;
741 int nid;
742 int err = 0;
744 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
745 while (root_stable_tree[nid].rb_node) {
746 stable_node = rb_entry(root_stable_tree[nid].rb_node,
747 struct stable_node, node);
748 if (remove_stable_node(stable_node)) {
749 err = -EBUSY;
750 break; /* proceed to next nid */
752 cond_resched();
755 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
756 if (remove_stable_node(stable_node))
757 err = -EBUSY;
758 cond_resched();
760 return err;
763 static int unmerge_and_remove_all_rmap_items(void)
765 struct mm_slot *mm_slot;
766 struct mm_struct *mm;
767 struct vm_area_struct *vma;
768 int err = 0;
770 spin_lock(&ksm_mmlist_lock);
771 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
772 struct mm_slot, mm_list);
773 spin_unlock(&ksm_mmlist_lock);
775 for (mm_slot = ksm_scan.mm_slot;
776 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
777 mm = mm_slot->mm;
778 down_read(&mm->mmap_sem);
779 for (vma = mm->mmap; vma; vma = vma->vm_next) {
780 if (ksm_test_exit(mm))
781 break;
782 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
783 continue;
784 err = unmerge_ksm_pages(vma,
785 vma->vm_start, vma->vm_end);
786 if (err)
787 goto error;
790 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
791 up_read(&mm->mmap_sem);
793 spin_lock(&ksm_mmlist_lock);
794 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
795 struct mm_slot, mm_list);
796 if (ksm_test_exit(mm)) {
797 hash_del(&mm_slot->link);
798 list_del(&mm_slot->mm_list);
799 spin_unlock(&ksm_mmlist_lock);
801 free_mm_slot(mm_slot);
802 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
803 mmdrop(mm);
804 } else
805 spin_unlock(&ksm_mmlist_lock);
808 /* Clean up stable nodes, but don't worry if some are still busy */
809 remove_all_stable_nodes();
810 ksm_scan.seqnr = 0;
811 return 0;
813 error:
814 up_read(&mm->mmap_sem);
815 spin_lock(&ksm_mmlist_lock);
816 ksm_scan.mm_slot = &ksm_mm_head;
817 spin_unlock(&ksm_mmlist_lock);
818 return err;
820 #endif /* CONFIG_SYSFS */
822 static u32 calc_checksum(struct page *page)
824 u32 checksum;
825 void *addr = kmap_atomic(page);
826 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
827 kunmap_atomic(addr);
828 return checksum;
831 static int memcmp_pages(struct page *page1, struct page *page2)
833 char *addr1, *addr2;
834 int ret;
836 addr1 = kmap_atomic(page1);
837 addr2 = kmap_atomic(page2);
838 ret = memcmp(addr1, addr2, PAGE_SIZE);
839 kunmap_atomic(addr2);
840 kunmap_atomic(addr1);
841 return ret;
844 static inline int pages_identical(struct page *page1, struct page *page2)
846 return !memcmp_pages(page1, page2);
849 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
850 pte_t *orig_pte)
852 struct mm_struct *mm = vma->vm_mm;
853 unsigned long addr;
854 pte_t *ptep;
855 spinlock_t *ptl;
856 int swapped;
857 int err = -EFAULT;
858 unsigned long mmun_start; /* For mmu_notifiers */
859 unsigned long mmun_end; /* For mmu_notifiers */
861 addr = page_address_in_vma(page, vma);
862 if (addr == -EFAULT)
863 goto out;
865 BUG_ON(PageTransCompound(page));
867 mmun_start = addr;
868 mmun_end = addr + PAGE_SIZE;
869 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
871 ptep = page_check_address(page, mm, addr, &ptl, 0);
872 if (!ptep)
873 goto out_mn;
875 if (pte_write(*ptep) || pte_dirty(*ptep)) {
876 pte_t entry;
878 swapped = PageSwapCache(page);
879 flush_cache_page(vma, addr, page_to_pfn(page));
881 * Ok this is tricky, when get_user_pages_fast() run it doesn't
882 * take any lock, therefore the check that we are going to make
883 * with the pagecount against the mapcount is racey and
884 * O_DIRECT can happen right after the check.
885 * So we clear the pte and flush the tlb before the check
886 * this assure us that no O_DIRECT can happen after the check
887 * or in the middle of the check.
889 entry = ptep_clear_flush_notify(vma, addr, ptep);
891 * Check that no O_DIRECT or similar I/O is in progress on the
892 * page
894 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
895 set_pte_at(mm, addr, ptep, entry);
896 goto out_unlock;
898 if (pte_dirty(entry))
899 set_page_dirty(page);
900 entry = pte_mkclean(pte_wrprotect(entry));
901 set_pte_at_notify(mm, addr, ptep, entry);
903 *orig_pte = *ptep;
904 err = 0;
906 out_unlock:
907 pte_unmap_unlock(ptep, ptl);
908 out_mn:
909 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
910 out:
911 return err;
915 * replace_page - replace page in vma by new ksm page
916 * @vma: vma that holds the pte pointing to page
917 * @page: the page we are replacing by kpage
918 * @kpage: the ksm page we replace page by
919 * @orig_pte: the original value of the pte
921 * Returns 0 on success, -EFAULT on failure.
923 static int replace_page(struct vm_area_struct *vma, struct page *page,
924 struct page *kpage, pte_t orig_pte)
926 struct mm_struct *mm = vma->vm_mm;
927 pmd_t *pmd;
928 pte_t *ptep;
929 spinlock_t *ptl;
930 unsigned long addr;
931 int err = -EFAULT;
932 unsigned long mmun_start; /* For mmu_notifiers */
933 unsigned long mmun_end; /* For mmu_notifiers */
935 addr = page_address_in_vma(page, vma);
936 if (addr == -EFAULT)
937 goto out;
939 pmd = mm_find_pmd(mm, addr);
940 if (!pmd)
941 goto out;
943 mmun_start = addr;
944 mmun_end = addr + PAGE_SIZE;
945 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
947 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
948 if (!pte_same(*ptep, orig_pte)) {
949 pte_unmap_unlock(ptep, ptl);
950 goto out_mn;
953 get_page(kpage);
954 page_add_anon_rmap(kpage, vma, addr, false);
956 flush_cache_page(vma, addr, pte_pfn(*ptep));
957 ptep_clear_flush_notify(vma, addr, ptep);
958 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
960 page_remove_rmap(page, false);
961 if (!page_mapped(page))
962 try_to_free_swap(page);
963 put_page(page);
965 pte_unmap_unlock(ptep, ptl);
966 err = 0;
967 out_mn:
968 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
969 out:
970 return err;
974 * try_to_merge_one_page - take two pages and merge them into one
975 * @vma: the vma that holds the pte pointing to page
976 * @page: the PageAnon page that we want to replace with kpage
977 * @kpage: the PageKsm page that we want to map instead of page,
978 * or NULL the first time when we want to use page as kpage.
980 * This function returns 0 if the pages were merged, -EFAULT otherwise.
982 static int try_to_merge_one_page(struct vm_area_struct *vma,
983 struct page *page, struct page *kpage)
985 pte_t orig_pte = __pte(0);
986 int err = -EFAULT;
988 if (page == kpage) /* ksm page forked */
989 return 0;
991 if (!PageAnon(page))
992 goto out;
995 * We need the page lock to read a stable PageSwapCache in
996 * write_protect_page(). We use trylock_page() instead of
997 * lock_page() because we don't want to wait here - we
998 * prefer to continue scanning and merging different pages,
999 * then come back to this page when it is unlocked.
1001 if (!trylock_page(page))
1002 goto out;
1004 if (PageTransCompound(page)) {
1005 if (split_huge_page(page))
1006 goto out_unlock;
1010 * If this anonymous page is mapped only here, its pte may need
1011 * to be write-protected. If it's mapped elsewhere, all of its
1012 * ptes are necessarily already write-protected. But in either
1013 * case, we need to lock and check page_count is not raised.
1015 if (write_protect_page(vma, page, &orig_pte) == 0) {
1016 if (!kpage) {
1018 * While we hold page lock, upgrade page from
1019 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1020 * stable_tree_insert() will update stable_node.
1022 set_page_stable_node(page, NULL);
1023 mark_page_accessed(page);
1025 * Page reclaim just frees a clean page with no dirty
1026 * ptes: make sure that the ksm page would be swapped.
1028 if (!PageDirty(page))
1029 SetPageDirty(page);
1030 err = 0;
1031 } else if (pages_identical(page, kpage))
1032 err = replace_page(vma, page, kpage, orig_pte);
1035 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1036 munlock_vma_page(page);
1037 if (!PageMlocked(kpage)) {
1038 unlock_page(page);
1039 lock_page(kpage);
1040 mlock_vma_page(kpage);
1041 page = kpage; /* for final unlock */
1045 out_unlock:
1046 unlock_page(page);
1047 out:
1048 return err;
1052 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1053 * but no new kernel page is allocated: kpage must already be a ksm page.
1055 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1057 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1058 struct page *page, struct page *kpage)
1060 struct mm_struct *mm = rmap_item->mm;
1061 struct vm_area_struct *vma;
1062 int err = -EFAULT;
1064 down_read(&mm->mmap_sem);
1065 vma = find_mergeable_vma(mm, rmap_item->address);
1066 if (!vma)
1067 goto out;
1069 err = try_to_merge_one_page(vma, page, kpage);
1070 if (err)
1071 goto out;
1073 /* Unstable nid is in union with stable anon_vma: remove first */
1074 remove_rmap_item_from_tree(rmap_item);
1076 /* Must get reference to anon_vma while still holding mmap_sem */
1077 rmap_item->anon_vma = vma->anon_vma;
1078 get_anon_vma(vma->anon_vma);
1079 out:
1080 up_read(&mm->mmap_sem);
1081 return err;
1085 * try_to_merge_two_pages - take two identical pages and prepare them
1086 * to be merged into one page.
1088 * This function returns the kpage if we successfully merged two identical
1089 * pages into one ksm page, NULL otherwise.
1091 * Note that this function upgrades page to ksm page: if one of the pages
1092 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1094 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1095 struct page *page,
1096 struct rmap_item *tree_rmap_item,
1097 struct page *tree_page)
1099 int err;
1101 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1102 if (!err) {
1103 err = try_to_merge_with_ksm_page(tree_rmap_item,
1104 tree_page, page);
1106 * If that fails, we have a ksm page with only one pte
1107 * pointing to it: so break it.
1109 if (err)
1110 break_cow(rmap_item);
1112 return err ? NULL : page;
1116 * stable_tree_search - search for page inside the stable tree
1118 * This function checks if there is a page inside the stable tree
1119 * with identical content to the page that we are scanning right now.
1121 * This function returns the stable tree node of identical content if found,
1122 * NULL otherwise.
1124 static struct page *stable_tree_search(struct page *page)
1126 int nid;
1127 struct rb_root *root;
1128 struct rb_node **new;
1129 struct rb_node *parent;
1130 struct stable_node *stable_node;
1131 struct stable_node *page_node;
1133 page_node = page_stable_node(page);
1134 if (page_node && page_node->head != &migrate_nodes) {
1135 /* ksm page forked */
1136 get_page(page);
1137 return page;
1140 nid = get_kpfn_nid(page_to_pfn(page));
1141 root = root_stable_tree + nid;
1142 again:
1143 new = &root->rb_node;
1144 parent = NULL;
1146 while (*new) {
1147 struct page *tree_page;
1148 int ret;
1150 cond_resched();
1151 stable_node = rb_entry(*new, struct stable_node, node);
1152 tree_page = get_ksm_page(stable_node, false);
1153 if (!tree_page) {
1155 * If we walked over a stale stable_node,
1156 * get_ksm_page() will call rb_erase() and it
1157 * may rebalance the tree from under us. So
1158 * restart the search from scratch. Returning
1159 * NULL would be safe too, but we'd generate
1160 * false negative insertions just because some
1161 * stable_node was stale.
1163 goto again;
1166 ret = memcmp_pages(page, tree_page);
1167 put_page(tree_page);
1169 parent = *new;
1170 if (ret < 0)
1171 new = &parent->rb_left;
1172 else if (ret > 0)
1173 new = &parent->rb_right;
1174 else {
1176 * Lock and unlock the stable_node's page (which
1177 * might already have been migrated) so that page
1178 * migration is sure to notice its raised count.
1179 * It would be more elegant to return stable_node
1180 * than kpage, but that involves more changes.
1182 tree_page = get_ksm_page(stable_node, true);
1183 if (tree_page) {
1184 unlock_page(tree_page);
1185 if (get_kpfn_nid(stable_node->kpfn) !=
1186 NUMA(stable_node->nid)) {
1187 put_page(tree_page);
1188 goto replace;
1190 return tree_page;
1193 * There is now a place for page_node, but the tree may
1194 * have been rebalanced, so re-evaluate parent and new.
1196 if (page_node)
1197 goto again;
1198 return NULL;
1202 if (!page_node)
1203 return NULL;
1205 list_del(&page_node->list);
1206 DO_NUMA(page_node->nid = nid);
1207 rb_link_node(&page_node->node, parent, new);
1208 rb_insert_color(&page_node->node, root);
1209 get_page(page);
1210 return page;
1212 replace:
1213 if (page_node) {
1214 list_del(&page_node->list);
1215 DO_NUMA(page_node->nid = nid);
1216 rb_replace_node(&stable_node->node, &page_node->node, root);
1217 get_page(page);
1218 } else {
1219 rb_erase(&stable_node->node, root);
1220 page = NULL;
1222 stable_node->head = &migrate_nodes;
1223 list_add(&stable_node->list, stable_node->head);
1224 return page;
1228 * stable_tree_insert - insert stable tree node pointing to new ksm page
1229 * into the stable tree.
1231 * This function returns the stable tree node just allocated on success,
1232 * NULL otherwise.
1234 static struct stable_node *stable_tree_insert(struct page *kpage)
1236 int nid;
1237 unsigned long kpfn;
1238 struct rb_root *root;
1239 struct rb_node **new;
1240 struct rb_node *parent;
1241 struct stable_node *stable_node;
1243 kpfn = page_to_pfn(kpage);
1244 nid = get_kpfn_nid(kpfn);
1245 root = root_stable_tree + nid;
1246 again:
1247 parent = NULL;
1248 new = &root->rb_node;
1250 while (*new) {
1251 struct page *tree_page;
1252 int ret;
1254 cond_resched();
1255 stable_node = rb_entry(*new, struct stable_node, node);
1256 tree_page = get_ksm_page(stable_node, false);
1257 if (!tree_page) {
1259 * If we walked over a stale stable_node,
1260 * get_ksm_page() will call rb_erase() and it
1261 * may rebalance the tree from under us. So
1262 * restart the search from scratch. Returning
1263 * NULL would be safe too, but we'd generate
1264 * false negative insertions just because some
1265 * stable_node was stale.
1267 goto again;
1270 ret = memcmp_pages(kpage, tree_page);
1271 put_page(tree_page);
1273 parent = *new;
1274 if (ret < 0)
1275 new = &parent->rb_left;
1276 else if (ret > 0)
1277 new = &parent->rb_right;
1278 else {
1280 * It is not a bug that stable_tree_search() didn't
1281 * find this node: because at that time our page was
1282 * not yet write-protected, so may have changed since.
1284 return NULL;
1288 stable_node = alloc_stable_node();
1289 if (!stable_node)
1290 return NULL;
1292 INIT_HLIST_HEAD(&stable_node->hlist);
1293 stable_node->kpfn = kpfn;
1294 set_page_stable_node(kpage, stable_node);
1295 DO_NUMA(stable_node->nid = nid);
1296 rb_link_node(&stable_node->node, parent, new);
1297 rb_insert_color(&stable_node->node, root);
1299 return stable_node;
1303 * unstable_tree_search_insert - search for identical page,
1304 * else insert rmap_item into the unstable tree.
1306 * This function searches for a page in the unstable tree identical to the
1307 * page currently being scanned; and if no identical page is found in the
1308 * tree, we insert rmap_item as a new object into the unstable tree.
1310 * This function returns pointer to rmap_item found to be identical
1311 * to the currently scanned page, NULL otherwise.
1313 * This function does both searching and inserting, because they share
1314 * the same walking algorithm in an rbtree.
1316 static
1317 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1318 struct page *page,
1319 struct page **tree_pagep)
1321 struct rb_node **new;
1322 struct rb_root *root;
1323 struct rb_node *parent = NULL;
1324 int nid;
1326 nid = get_kpfn_nid(page_to_pfn(page));
1327 root = root_unstable_tree + nid;
1328 new = &root->rb_node;
1330 while (*new) {
1331 struct rmap_item *tree_rmap_item;
1332 struct page *tree_page;
1333 int ret;
1335 cond_resched();
1336 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1337 tree_page = get_mergeable_page(tree_rmap_item);
1338 if (!tree_page)
1339 return NULL;
1342 * Don't substitute a ksm page for a forked page.
1344 if (page == tree_page) {
1345 put_page(tree_page);
1346 return NULL;
1349 ret = memcmp_pages(page, tree_page);
1351 parent = *new;
1352 if (ret < 0) {
1353 put_page(tree_page);
1354 new = &parent->rb_left;
1355 } else if (ret > 0) {
1356 put_page(tree_page);
1357 new = &parent->rb_right;
1358 } else if (!ksm_merge_across_nodes &&
1359 page_to_nid(tree_page) != nid) {
1361 * If tree_page has been migrated to another NUMA node,
1362 * it will be flushed out and put in the right unstable
1363 * tree next time: only merge with it when across_nodes.
1365 put_page(tree_page);
1366 return NULL;
1367 } else {
1368 *tree_pagep = tree_page;
1369 return tree_rmap_item;
1373 rmap_item->address |= UNSTABLE_FLAG;
1374 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1375 DO_NUMA(rmap_item->nid = nid);
1376 rb_link_node(&rmap_item->node, parent, new);
1377 rb_insert_color(&rmap_item->node, root);
1379 ksm_pages_unshared++;
1380 return NULL;
1384 * stable_tree_append - add another rmap_item to the linked list of
1385 * rmap_items hanging off a given node of the stable tree, all sharing
1386 * the same ksm page.
1388 static void stable_tree_append(struct rmap_item *rmap_item,
1389 struct stable_node *stable_node)
1391 rmap_item->head = stable_node;
1392 rmap_item->address |= STABLE_FLAG;
1393 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1395 if (rmap_item->hlist.next)
1396 ksm_pages_sharing++;
1397 else
1398 ksm_pages_shared++;
1402 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1403 * if not, compare checksum to previous and if it's the same, see if page can
1404 * be inserted into the unstable tree, or merged with a page already there and
1405 * both transferred to the stable tree.
1407 * @page: the page that we are searching identical page to.
1408 * @rmap_item: the reverse mapping into the virtual address of this page
1410 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1412 struct rmap_item *tree_rmap_item;
1413 struct page *tree_page = NULL;
1414 struct stable_node *stable_node;
1415 struct page *kpage;
1416 unsigned int checksum;
1417 int err;
1419 stable_node = page_stable_node(page);
1420 if (stable_node) {
1421 if (stable_node->head != &migrate_nodes &&
1422 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1423 rb_erase(&stable_node->node,
1424 root_stable_tree + NUMA(stable_node->nid));
1425 stable_node->head = &migrate_nodes;
1426 list_add(&stable_node->list, stable_node->head);
1428 if (stable_node->head != &migrate_nodes &&
1429 rmap_item->head == stable_node)
1430 return;
1433 /* We first start with searching the page inside the stable tree */
1434 kpage = stable_tree_search(page);
1435 if (kpage == page && rmap_item->head == stable_node) {
1436 put_page(kpage);
1437 return;
1440 remove_rmap_item_from_tree(rmap_item);
1442 if (kpage) {
1443 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1444 if (!err) {
1446 * The page was successfully merged:
1447 * add its rmap_item to the stable tree.
1449 lock_page(kpage);
1450 stable_tree_append(rmap_item, page_stable_node(kpage));
1451 unlock_page(kpage);
1453 put_page(kpage);
1454 return;
1458 * If the hash value of the page has changed from the last time
1459 * we calculated it, this page is changing frequently: therefore we
1460 * don't want to insert it in the unstable tree, and we don't want
1461 * to waste our time searching for something identical to it there.
1463 checksum = calc_checksum(page);
1464 if (rmap_item->oldchecksum != checksum) {
1465 rmap_item->oldchecksum = checksum;
1466 return;
1469 tree_rmap_item =
1470 unstable_tree_search_insert(rmap_item, page, &tree_page);
1471 if (tree_rmap_item) {
1472 kpage = try_to_merge_two_pages(rmap_item, page,
1473 tree_rmap_item, tree_page);
1474 put_page(tree_page);
1475 if (kpage) {
1477 * The pages were successfully merged: insert new
1478 * node in the stable tree and add both rmap_items.
1480 lock_page(kpage);
1481 stable_node = stable_tree_insert(kpage);
1482 if (stable_node) {
1483 stable_tree_append(tree_rmap_item, stable_node);
1484 stable_tree_append(rmap_item, stable_node);
1486 unlock_page(kpage);
1489 * If we fail to insert the page into the stable tree,
1490 * we will have 2 virtual addresses that are pointing
1491 * to a ksm page left outside the stable tree,
1492 * in which case we need to break_cow on both.
1494 if (!stable_node) {
1495 break_cow(tree_rmap_item);
1496 break_cow(rmap_item);
1502 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1503 struct rmap_item **rmap_list,
1504 unsigned long addr)
1506 struct rmap_item *rmap_item;
1508 while (*rmap_list) {
1509 rmap_item = *rmap_list;
1510 if ((rmap_item->address & PAGE_MASK) == addr)
1511 return rmap_item;
1512 if (rmap_item->address > addr)
1513 break;
1514 *rmap_list = rmap_item->rmap_list;
1515 remove_rmap_item_from_tree(rmap_item);
1516 free_rmap_item(rmap_item);
1519 rmap_item = alloc_rmap_item();
1520 if (rmap_item) {
1521 /* It has already been zeroed */
1522 rmap_item->mm = mm_slot->mm;
1523 rmap_item->address = addr;
1524 rmap_item->rmap_list = *rmap_list;
1525 *rmap_list = rmap_item;
1527 return rmap_item;
1530 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1532 struct mm_struct *mm;
1533 struct mm_slot *slot;
1534 struct vm_area_struct *vma;
1535 struct rmap_item *rmap_item;
1536 int nid;
1538 if (list_empty(&ksm_mm_head.mm_list))
1539 return NULL;
1541 slot = ksm_scan.mm_slot;
1542 if (slot == &ksm_mm_head) {
1544 * A number of pages can hang around indefinitely on per-cpu
1545 * pagevecs, raised page count preventing write_protect_page
1546 * from merging them. Though it doesn't really matter much,
1547 * it is puzzling to see some stuck in pages_volatile until
1548 * other activity jostles them out, and they also prevented
1549 * LTP's KSM test from succeeding deterministically; so drain
1550 * them here (here rather than on entry to ksm_do_scan(),
1551 * so we don't IPI too often when pages_to_scan is set low).
1553 lru_add_drain_all();
1556 * Whereas stale stable_nodes on the stable_tree itself
1557 * get pruned in the regular course of stable_tree_search(),
1558 * those moved out to the migrate_nodes list can accumulate:
1559 * so prune them once before each full scan.
1561 if (!ksm_merge_across_nodes) {
1562 struct stable_node *stable_node, *next;
1563 struct page *page;
1565 list_for_each_entry_safe(stable_node, next,
1566 &migrate_nodes, list) {
1567 page = get_ksm_page(stable_node, false);
1568 if (page)
1569 put_page(page);
1570 cond_resched();
1574 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1575 root_unstable_tree[nid] = RB_ROOT;
1577 spin_lock(&ksm_mmlist_lock);
1578 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1579 ksm_scan.mm_slot = slot;
1580 spin_unlock(&ksm_mmlist_lock);
1582 * Although we tested list_empty() above, a racing __ksm_exit
1583 * of the last mm on the list may have removed it since then.
1585 if (slot == &ksm_mm_head)
1586 return NULL;
1587 next_mm:
1588 ksm_scan.address = 0;
1589 ksm_scan.rmap_list = &slot->rmap_list;
1592 mm = slot->mm;
1593 down_read(&mm->mmap_sem);
1594 if (ksm_test_exit(mm))
1595 vma = NULL;
1596 else
1597 vma = find_vma(mm, ksm_scan.address);
1599 for (; vma; vma = vma->vm_next) {
1600 if (!(vma->vm_flags & VM_MERGEABLE))
1601 continue;
1602 if (ksm_scan.address < vma->vm_start)
1603 ksm_scan.address = vma->vm_start;
1604 if (!vma->anon_vma)
1605 ksm_scan.address = vma->vm_end;
1607 while (ksm_scan.address < vma->vm_end) {
1608 if (ksm_test_exit(mm))
1609 break;
1610 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1611 if (IS_ERR_OR_NULL(*page)) {
1612 ksm_scan.address += PAGE_SIZE;
1613 cond_resched();
1614 continue;
1616 if (PageAnon(*page)) {
1617 flush_anon_page(vma, *page, ksm_scan.address);
1618 flush_dcache_page(*page);
1619 rmap_item = get_next_rmap_item(slot,
1620 ksm_scan.rmap_list, ksm_scan.address);
1621 if (rmap_item) {
1622 ksm_scan.rmap_list =
1623 &rmap_item->rmap_list;
1624 ksm_scan.address += PAGE_SIZE;
1625 } else
1626 put_page(*page);
1627 up_read(&mm->mmap_sem);
1628 return rmap_item;
1630 put_page(*page);
1631 ksm_scan.address += PAGE_SIZE;
1632 cond_resched();
1636 if (ksm_test_exit(mm)) {
1637 ksm_scan.address = 0;
1638 ksm_scan.rmap_list = &slot->rmap_list;
1641 * Nuke all the rmap_items that are above this current rmap:
1642 * because there were no VM_MERGEABLE vmas with such addresses.
1644 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1646 spin_lock(&ksm_mmlist_lock);
1647 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1648 struct mm_slot, mm_list);
1649 if (ksm_scan.address == 0) {
1651 * We've completed a full scan of all vmas, holding mmap_sem
1652 * throughout, and found no VM_MERGEABLE: so do the same as
1653 * __ksm_exit does to remove this mm from all our lists now.
1654 * This applies either when cleaning up after __ksm_exit
1655 * (but beware: we can reach here even before __ksm_exit),
1656 * or when all VM_MERGEABLE areas have been unmapped (and
1657 * mmap_sem then protects against race with MADV_MERGEABLE).
1659 hash_del(&slot->link);
1660 list_del(&slot->mm_list);
1661 spin_unlock(&ksm_mmlist_lock);
1663 free_mm_slot(slot);
1664 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1665 up_read(&mm->mmap_sem);
1666 mmdrop(mm);
1667 } else {
1668 up_read(&mm->mmap_sem);
1670 * up_read(&mm->mmap_sem) first because after
1671 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
1672 * already have been freed under us by __ksm_exit()
1673 * because the "mm_slot" is still hashed and
1674 * ksm_scan.mm_slot doesn't point to it anymore.
1676 spin_unlock(&ksm_mmlist_lock);
1679 /* Repeat until we've completed scanning the whole list */
1680 slot = ksm_scan.mm_slot;
1681 if (slot != &ksm_mm_head)
1682 goto next_mm;
1684 ksm_scan.seqnr++;
1685 return NULL;
1689 * ksm_do_scan - the ksm scanner main worker function.
1690 * @scan_npages - number of pages we want to scan before we return.
1692 static void ksm_do_scan(unsigned int scan_npages)
1694 struct rmap_item *rmap_item;
1695 struct page *uninitialized_var(page);
1697 while (scan_npages-- && likely(!freezing(current))) {
1698 cond_resched();
1699 rmap_item = scan_get_next_rmap_item(&page);
1700 if (!rmap_item)
1701 return;
1702 cmp_and_merge_page(page, rmap_item);
1703 put_page(page);
1707 static int ksmd_should_run(void)
1709 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1712 static int ksm_scan_thread(void *nothing)
1714 set_freezable();
1715 set_user_nice(current, 5);
1717 while (!kthread_should_stop()) {
1718 mutex_lock(&ksm_thread_mutex);
1719 wait_while_offlining();
1720 if (ksmd_should_run())
1721 ksm_do_scan(ksm_thread_pages_to_scan);
1722 mutex_unlock(&ksm_thread_mutex);
1724 try_to_freeze();
1726 if (ksmd_should_run()) {
1727 schedule_timeout_interruptible(
1728 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1729 } else {
1730 wait_event_freezable(ksm_thread_wait,
1731 ksmd_should_run() || kthread_should_stop());
1734 return 0;
1737 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1738 unsigned long end, int advice, unsigned long *vm_flags)
1740 struct mm_struct *mm = vma->vm_mm;
1741 int err;
1743 switch (advice) {
1744 case MADV_MERGEABLE:
1746 * Be somewhat over-protective for now!
1748 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1749 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1750 VM_HUGETLB | VM_MIXEDMAP))
1751 return 0; /* just ignore the advice */
1753 #ifdef VM_SAO
1754 if (*vm_flags & VM_SAO)
1755 return 0;
1756 #endif
1758 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1759 err = __ksm_enter(mm);
1760 if (err)
1761 return err;
1764 *vm_flags |= VM_MERGEABLE;
1765 break;
1767 case MADV_UNMERGEABLE:
1768 if (!(*vm_flags & VM_MERGEABLE))
1769 return 0; /* just ignore the advice */
1771 if (vma->anon_vma) {
1772 err = unmerge_ksm_pages(vma, start, end);
1773 if (err)
1774 return err;
1777 *vm_flags &= ~VM_MERGEABLE;
1778 break;
1781 return 0;
1784 int __ksm_enter(struct mm_struct *mm)
1786 struct mm_slot *mm_slot;
1787 int needs_wakeup;
1789 mm_slot = alloc_mm_slot();
1790 if (!mm_slot)
1791 return -ENOMEM;
1793 /* Check ksm_run too? Would need tighter locking */
1794 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1796 spin_lock(&ksm_mmlist_lock);
1797 insert_to_mm_slots_hash(mm, mm_slot);
1799 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1800 * insert just behind the scanning cursor, to let the area settle
1801 * down a little; when fork is followed by immediate exec, we don't
1802 * want ksmd to waste time setting up and tearing down an rmap_list.
1804 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1805 * scanning cursor, otherwise KSM pages in newly forked mms will be
1806 * missed: then we might as well insert at the end of the list.
1808 if (ksm_run & KSM_RUN_UNMERGE)
1809 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1810 else
1811 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1812 spin_unlock(&ksm_mmlist_lock);
1814 set_bit(MMF_VM_MERGEABLE, &mm->flags);
1815 atomic_inc(&mm->mm_count);
1817 if (needs_wakeup)
1818 wake_up_interruptible(&ksm_thread_wait);
1820 return 0;
1823 void __ksm_exit(struct mm_struct *mm)
1825 struct mm_slot *mm_slot;
1826 int easy_to_free = 0;
1829 * This process is exiting: if it's straightforward (as is the
1830 * case when ksmd was never running), free mm_slot immediately.
1831 * But if it's at the cursor or has rmap_items linked to it, use
1832 * mmap_sem to synchronize with any break_cows before pagetables
1833 * are freed, and leave the mm_slot on the list for ksmd to free.
1834 * Beware: ksm may already have noticed it exiting and freed the slot.
1837 spin_lock(&ksm_mmlist_lock);
1838 mm_slot = get_mm_slot(mm);
1839 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1840 if (!mm_slot->rmap_list) {
1841 hash_del(&mm_slot->link);
1842 list_del(&mm_slot->mm_list);
1843 easy_to_free = 1;
1844 } else {
1845 list_move(&mm_slot->mm_list,
1846 &ksm_scan.mm_slot->mm_list);
1849 spin_unlock(&ksm_mmlist_lock);
1851 if (easy_to_free) {
1852 free_mm_slot(mm_slot);
1853 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1854 mmdrop(mm);
1855 } else if (mm_slot) {
1856 down_write(&mm->mmap_sem);
1857 up_write(&mm->mmap_sem);
1861 struct page *ksm_might_need_to_copy(struct page *page,
1862 struct vm_area_struct *vma, unsigned long address)
1864 struct anon_vma *anon_vma = page_anon_vma(page);
1865 struct page *new_page;
1867 if (PageKsm(page)) {
1868 if (page_stable_node(page) &&
1869 !(ksm_run & KSM_RUN_UNMERGE))
1870 return page; /* no need to copy it */
1871 } else if (!anon_vma) {
1872 return page; /* no need to copy it */
1873 } else if (anon_vma->root == vma->anon_vma->root &&
1874 page->index == linear_page_index(vma, address)) {
1875 return page; /* still no need to copy it */
1877 if (!PageUptodate(page))
1878 return page; /* let do_swap_page report the error */
1880 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1881 if (new_page) {
1882 copy_user_highpage(new_page, page, address, vma);
1884 SetPageDirty(new_page);
1885 __SetPageUptodate(new_page);
1886 __SetPageLocked(new_page);
1889 return new_page;
1892 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1894 struct stable_node *stable_node;
1895 struct rmap_item *rmap_item;
1896 int ret = SWAP_AGAIN;
1897 int search_new_forks = 0;
1899 VM_BUG_ON_PAGE(!PageKsm(page), page);
1902 * Rely on the page lock to protect against concurrent modifications
1903 * to that page's node of the stable tree.
1905 VM_BUG_ON_PAGE(!PageLocked(page), page);
1907 stable_node = page_stable_node(page);
1908 if (!stable_node)
1909 return ret;
1910 again:
1911 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1912 struct anon_vma *anon_vma = rmap_item->anon_vma;
1913 struct anon_vma_chain *vmac;
1914 struct vm_area_struct *vma;
1916 cond_resched();
1917 anon_vma_lock_read(anon_vma);
1918 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1919 0, ULONG_MAX) {
1920 cond_resched();
1921 vma = vmac->vma;
1922 if (rmap_item->address < vma->vm_start ||
1923 rmap_item->address >= vma->vm_end)
1924 continue;
1926 * Initially we examine only the vma which covers this
1927 * rmap_item; but later, if there is still work to do,
1928 * we examine covering vmas in other mms: in case they
1929 * were forked from the original since ksmd passed.
1931 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1932 continue;
1934 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1935 continue;
1937 ret = rwc->rmap_one(page, vma,
1938 rmap_item->address, rwc->arg);
1939 if (ret != SWAP_AGAIN) {
1940 anon_vma_unlock_read(anon_vma);
1941 goto out;
1943 if (rwc->done && rwc->done(page)) {
1944 anon_vma_unlock_read(anon_vma);
1945 goto out;
1948 anon_vma_unlock_read(anon_vma);
1950 if (!search_new_forks++)
1951 goto again;
1952 out:
1953 return ret;
1956 #ifdef CONFIG_MIGRATION
1957 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1959 struct stable_node *stable_node;
1961 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1962 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1963 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
1965 stable_node = page_stable_node(newpage);
1966 if (stable_node) {
1967 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
1968 stable_node->kpfn = page_to_pfn(newpage);
1970 * newpage->mapping was set in advance; now we need smp_wmb()
1971 * to make sure that the new stable_node->kpfn is visible
1972 * to get_ksm_page() before it can see that oldpage->mapping
1973 * has gone stale (or that PageSwapCache has been cleared).
1975 smp_wmb();
1976 set_page_stable_node(oldpage, NULL);
1979 #endif /* CONFIG_MIGRATION */
1981 #ifdef CONFIG_MEMORY_HOTREMOVE
1982 static void wait_while_offlining(void)
1984 while (ksm_run & KSM_RUN_OFFLINE) {
1985 mutex_unlock(&ksm_thread_mutex);
1986 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
1987 TASK_UNINTERRUPTIBLE);
1988 mutex_lock(&ksm_thread_mutex);
1992 static void ksm_check_stable_tree(unsigned long start_pfn,
1993 unsigned long end_pfn)
1995 struct stable_node *stable_node, *next;
1996 struct rb_node *node;
1997 int nid;
1999 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2000 node = rb_first(root_stable_tree + nid);
2001 while (node) {
2002 stable_node = rb_entry(node, struct stable_node, node);
2003 if (stable_node->kpfn >= start_pfn &&
2004 stable_node->kpfn < end_pfn) {
2006 * Don't get_ksm_page, page has already gone:
2007 * which is why we keep kpfn instead of page*
2009 remove_node_from_stable_tree(stable_node);
2010 node = rb_first(root_stable_tree + nid);
2011 } else
2012 node = rb_next(node);
2013 cond_resched();
2016 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2017 if (stable_node->kpfn >= start_pfn &&
2018 stable_node->kpfn < end_pfn)
2019 remove_node_from_stable_tree(stable_node);
2020 cond_resched();
2024 static int ksm_memory_callback(struct notifier_block *self,
2025 unsigned long action, void *arg)
2027 struct memory_notify *mn = arg;
2029 switch (action) {
2030 case MEM_GOING_OFFLINE:
2032 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2033 * and remove_all_stable_nodes() while memory is going offline:
2034 * it is unsafe for them to touch the stable tree at this time.
2035 * But unmerge_ksm_pages(), rmap lookups and other entry points
2036 * which do not need the ksm_thread_mutex are all safe.
2038 mutex_lock(&ksm_thread_mutex);
2039 ksm_run |= KSM_RUN_OFFLINE;
2040 mutex_unlock(&ksm_thread_mutex);
2041 break;
2043 case MEM_OFFLINE:
2045 * Most of the work is done by page migration; but there might
2046 * be a few stable_nodes left over, still pointing to struct
2047 * pages which have been offlined: prune those from the tree,
2048 * otherwise get_ksm_page() might later try to access a
2049 * non-existent struct page.
2051 ksm_check_stable_tree(mn->start_pfn,
2052 mn->start_pfn + mn->nr_pages);
2053 /* fallthrough */
2055 case MEM_CANCEL_OFFLINE:
2056 mutex_lock(&ksm_thread_mutex);
2057 ksm_run &= ~KSM_RUN_OFFLINE;
2058 mutex_unlock(&ksm_thread_mutex);
2060 smp_mb(); /* wake_up_bit advises this */
2061 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2062 break;
2064 return NOTIFY_OK;
2066 #else
2067 static void wait_while_offlining(void)
2070 #endif /* CONFIG_MEMORY_HOTREMOVE */
2072 #ifdef CONFIG_SYSFS
2074 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2077 #define KSM_ATTR_RO(_name) \
2078 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2079 #define KSM_ATTR(_name) \
2080 static struct kobj_attribute _name##_attr = \
2081 __ATTR(_name, 0644, _name##_show, _name##_store)
2083 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2084 struct kobj_attribute *attr, char *buf)
2086 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2089 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2090 struct kobj_attribute *attr,
2091 const char *buf, size_t count)
2093 unsigned long msecs;
2094 int err;
2096 err = kstrtoul(buf, 10, &msecs);
2097 if (err || msecs > UINT_MAX)
2098 return -EINVAL;
2100 ksm_thread_sleep_millisecs = msecs;
2102 return count;
2104 KSM_ATTR(sleep_millisecs);
2106 static ssize_t pages_to_scan_show(struct kobject *kobj,
2107 struct kobj_attribute *attr, char *buf)
2109 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2112 static ssize_t pages_to_scan_store(struct kobject *kobj,
2113 struct kobj_attribute *attr,
2114 const char *buf, size_t count)
2116 int err;
2117 unsigned long nr_pages;
2119 err = kstrtoul(buf, 10, &nr_pages);
2120 if (err || nr_pages > UINT_MAX)
2121 return -EINVAL;
2123 ksm_thread_pages_to_scan = nr_pages;
2125 return count;
2127 KSM_ATTR(pages_to_scan);
2129 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2130 char *buf)
2132 return sprintf(buf, "%lu\n", ksm_run);
2135 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2136 const char *buf, size_t count)
2138 int err;
2139 unsigned long flags;
2141 err = kstrtoul(buf, 10, &flags);
2142 if (err || flags > UINT_MAX)
2143 return -EINVAL;
2144 if (flags > KSM_RUN_UNMERGE)
2145 return -EINVAL;
2148 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2149 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2150 * breaking COW to free the pages_shared (but leaves mm_slots
2151 * on the list for when ksmd may be set running again).
2154 mutex_lock(&ksm_thread_mutex);
2155 wait_while_offlining();
2156 if (ksm_run != flags) {
2157 ksm_run = flags;
2158 if (flags & KSM_RUN_UNMERGE) {
2159 set_current_oom_origin();
2160 err = unmerge_and_remove_all_rmap_items();
2161 clear_current_oom_origin();
2162 if (err) {
2163 ksm_run = KSM_RUN_STOP;
2164 count = err;
2168 mutex_unlock(&ksm_thread_mutex);
2170 if (flags & KSM_RUN_MERGE)
2171 wake_up_interruptible(&ksm_thread_wait);
2173 return count;
2175 KSM_ATTR(run);
2177 #ifdef CONFIG_NUMA
2178 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2179 struct kobj_attribute *attr, char *buf)
2181 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2184 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2185 struct kobj_attribute *attr,
2186 const char *buf, size_t count)
2188 int err;
2189 unsigned long knob;
2191 err = kstrtoul(buf, 10, &knob);
2192 if (err)
2193 return err;
2194 if (knob > 1)
2195 return -EINVAL;
2197 mutex_lock(&ksm_thread_mutex);
2198 wait_while_offlining();
2199 if (ksm_merge_across_nodes != knob) {
2200 if (ksm_pages_shared || remove_all_stable_nodes())
2201 err = -EBUSY;
2202 else if (root_stable_tree == one_stable_tree) {
2203 struct rb_root *buf;
2205 * This is the first time that we switch away from the
2206 * default of merging across nodes: must now allocate
2207 * a buffer to hold as many roots as may be needed.
2208 * Allocate stable and unstable together:
2209 * MAXSMP NODES_SHIFT 10 will use 16kB.
2211 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2212 GFP_KERNEL);
2213 /* Let us assume that RB_ROOT is NULL is zero */
2214 if (!buf)
2215 err = -ENOMEM;
2216 else {
2217 root_stable_tree = buf;
2218 root_unstable_tree = buf + nr_node_ids;
2219 /* Stable tree is empty but not the unstable */
2220 root_unstable_tree[0] = one_unstable_tree[0];
2223 if (!err) {
2224 ksm_merge_across_nodes = knob;
2225 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2228 mutex_unlock(&ksm_thread_mutex);
2230 return err ? err : count;
2232 KSM_ATTR(merge_across_nodes);
2233 #endif
2235 static ssize_t pages_shared_show(struct kobject *kobj,
2236 struct kobj_attribute *attr, char *buf)
2238 return sprintf(buf, "%lu\n", ksm_pages_shared);
2240 KSM_ATTR_RO(pages_shared);
2242 static ssize_t pages_sharing_show(struct kobject *kobj,
2243 struct kobj_attribute *attr, char *buf)
2245 return sprintf(buf, "%lu\n", ksm_pages_sharing);
2247 KSM_ATTR_RO(pages_sharing);
2249 static ssize_t pages_unshared_show(struct kobject *kobj,
2250 struct kobj_attribute *attr, char *buf)
2252 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2254 KSM_ATTR_RO(pages_unshared);
2256 static ssize_t pages_volatile_show(struct kobject *kobj,
2257 struct kobj_attribute *attr, char *buf)
2259 long ksm_pages_volatile;
2261 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2262 - ksm_pages_sharing - ksm_pages_unshared;
2264 * It was not worth any locking to calculate that statistic,
2265 * but it might therefore sometimes be negative: conceal that.
2267 if (ksm_pages_volatile < 0)
2268 ksm_pages_volatile = 0;
2269 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2271 KSM_ATTR_RO(pages_volatile);
2273 static ssize_t full_scans_show(struct kobject *kobj,
2274 struct kobj_attribute *attr, char *buf)
2276 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2278 KSM_ATTR_RO(full_scans);
2280 static struct attribute *ksm_attrs[] = {
2281 &sleep_millisecs_attr.attr,
2282 &pages_to_scan_attr.attr,
2283 &run_attr.attr,
2284 &pages_shared_attr.attr,
2285 &pages_sharing_attr.attr,
2286 &pages_unshared_attr.attr,
2287 &pages_volatile_attr.attr,
2288 &full_scans_attr.attr,
2289 #ifdef CONFIG_NUMA
2290 &merge_across_nodes_attr.attr,
2291 #endif
2292 NULL,
2295 static struct attribute_group ksm_attr_group = {
2296 .attrs = ksm_attrs,
2297 .name = "ksm",
2299 #endif /* CONFIG_SYSFS */
2301 static int __init ksm_init(void)
2303 struct task_struct *ksm_thread;
2304 int err;
2306 err = ksm_slab_init();
2307 if (err)
2308 goto out;
2310 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2311 if (IS_ERR(ksm_thread)) {
2312 pr_err("ksm: creating kthread failed\n");
2313 err = PTR_ERR(ksm_thread);
2314 goto out_free;
2317 #ifdef CONFIG_SYSFS
2318 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2319 if (err) {
2320 pr_err("ksm: register sysfs failed\n");
2321 kthread_stop(ksm_thread);
2322 goto out_free;
2324 #else
2325 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2327 #endif /* CONFIG_SYSFS */
2329 #ifdef CONFIG_MEMORY_HOTREMOVE
2330 /* There is no significance to this priority 100 */
2331 hotplug_memory_notifier(ksm_memory_callback, 100);
2332 #endif
2333 return 0;
2335 out_free:
2336 ksm_slab_free();
2337 out:
2338 return err;
2340 subsys_initcall(ksm_init);