powerpc,kgdb: Introduce low level trap catching
[linux/fpc-iii.git] / block / cfq-iosched.c
blob5f127cfb2e924baf06f77ae95d1832e13048cee4
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk-cgroup.h"
20 * tunables
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
34 static const int cfq_hist_divisor = 4;
37 * offset from end of service tree
39 #define CFQ_IDLE_DELAY (HZ / 5)
42 * below this threshold, we consider thinktime immediate
44 #define CFQ_MIN_TT (2)
46 #define CFQ_SLICE_SCALE (5)
47 #define CFQ_HW_QUEUE_MIN (5)
48 #define CFQ_SERVICE_SHIFT 12
50 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
51 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
52 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
53 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
55 #define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
59 static struct kmem_cache *cfq_pool;
60 static struct kmem_cache *cfq_ioc_pool;
62 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63 static struct completion *ioc_gone;
64 static DEFINE_SPINLOCK(ioc_gone_lock);
66 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
67 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
68 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
70 #define sample_valid(samples) ((samples) > 80)
71 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
79 struct cfq_rb_root {
80 struct rb_root rb;
81 struct rb_node *left;
82 unsigned count;
83 unsigned total_weight;
84 u64 min_vdisktime;
85 struct rb_node *active;
87 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
88 .count = 0, .min_vdisktime = 0, }
91 * Per process-grouping structure
93 struct cfq_queue {
94 /* reference count */
95 atomic_t ref;
96 /* various state flags, see below */
97 unsigned int flags;
98 /* parent cfq_data */
99 struct cfq_data *cfqd;
100 /* service_tree member */
101 struct rb_node rb_node;
102 /* service_tree key */
103 unsigned long rb_key;
104 /* prio tree member */
105 struct rb_node p_node;
106 /* prio tree root we belong to, if any */
107 struct rb_root *p_root;
108 /* sorted list of pending requests */
109 struct rb_root sort_list;
110 /* if fifo isn't expired, next request to serve */
111 struct request *next_rq;
112 /* requests queued in sort_list */
113 int queued[2];
114 /* currently allocated requests */
115 int allocated[2];
116 /* fifo list of requests in sort_list */
117 struct list_head fifo;
119 /* time when queue got scheduled in to dispatch first request. */
120 unsigned long dispatch_start;
121 unsigned int allocated_slice;
122 unsigned int slice_dispatch;
123 /* time when first request from queue completed and slice started. */
124 unsigned long slice_start;
125 unsigned long slice_end;
126 long slice_resid;
128 /* pending metadata requests */
129 int meta_pending;
130 /* number of requests that are on the dispatch list or inside driver */
131 int dispatched;
133 /* io prio of this group */
134 unsigned short ioprio, org_ioprio;
135 unsigned short ioprio_class, org_ioprio_class;
137 pid_t pid;
139 u32 seek_history;
140 sector_t last_request_pos;
142 struct cfq_rb_root *service_tree;
143 struct cfq_queue *new_cfqq;
144 struct cfq_group *cfqg;
145 struct cfq_group *orig_cfqg;
146 /* Sectors dispatched in current dispatch round */
147 unsigned long nr_sectors;
151 * First index in the service_trees.
152 * IDLE is handled separately, so it has negative index
154 enum wl_prio_t {
155 BE_WORKLOAD = 0,
156 RT_WORKLOAD = 1,
157 IDLE_WORKLOAD = 2,
161 * Second index in the service_trees.
163 enum wl_type_t {
164 ASYNC_WORKLOAD = 0,
165 SYNC_NOIDLE_WORKLOAD = 1,
166 SYNC_WORKLOAD = 2
169 /* This is per cgroup per device grouping structure */
170 struct cfq_group {
171 /* group service_tree member */
172 struct rb_node rb_node;
174 /* group service_tree key */
175 u64 vdisktime;
176 unsigned int weight;
177 bool on_st;
179 /* number of cfqq currently on this group */
180 int nr_cfqq;
182 /* Per group busy queus average. Useful for workload slice calc. */
183 unsigned int busy_queues_avg[2];
185 * rr lists of queues with requests, onle rr for each priority class.
186 * Counts are embedded in the cfq_rb_root
188 struct cfq_rb_root service_trees[2][3];
189 struct cfq_rb_root service_tree_idle;
191 unsigned long saved_workload_slice;
192 enum wl_type_t saved_workload;
193 enum wl_prio_t saved_serving_prio;
194 struct blkio_group blkg;
195 #ifdef CONFIG_CFQ_GROUP_IOSCHED
196 struct hlist_node cfqd_node;
197 atomic_t ref;
198 #endif
202 * Per block device queue structure
204 struct cfq_data {
205 struct request_queue *queue;
206 /* Root service tree for cfq_groups */
207 struct cfq_rb_root grp_service_tree;
208 struct cfq_group root_group;
211 * The priority currently being served
213 enum wl_prio_t serving_prio;
214 enum wl_type_t serving_type;
215 unsigned long workload_expires;
216 struct cfq_group *serving_group;
217 bool noidle_tree_requires_idle;
220 * Each priority tree is sorted by next_request position. These
221 * trees are used when determining if two or more queues are
222 * interleaving requests (see cfq_close_cooperator).
224 struct rb_root prio_trees[CFQ_PRIO_LISTS];
226 unsigned int busy_queues;
228 int rq_in_driver;
229 int rq_in_flight[2];
232 * queue-depth detection
234 int rq_queued;
235 int hw_tag;
237 * hw_tag can be
238 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
239 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
240 * 0 => no NCQ
242 int hw_tag_est_depth;
243 unsigned int hw_tag_samples;
246 * idle window management
248 struct timer_list idle_slice_timer;
249 struct work_struct unplug_work;
251 struct cfq_queue *active_queue;
252 struct cfq_io_context *active_cic;
255 * async queue for each priority case
257 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
258 struct cfq_queue *async_idle_cfqq;
260 sector_t last_position;
263 * tunables, see top of file
265 unsigned int cfq_quantum;
266 unsigned int cfq_fifo_expire[2];
267 unsigned int cfq_back_penalty;
268 unsigned int cfq_back_max;
269 unsigned int cfq_slice[2];
270 unsigned int cfq_slice_async_rq;
271 unsigned int cfq_slice_idle;
272 unsigned int cfq_latency;
273 unsigned int cfq_group_isolation;
275 struct list_head cic_list;
278 * Fallback dummy cfqq for extreme OOM conditions
280 struct cfq_queue oom_cfqq;
282 unsigned long last_delayed_sync;
284 /* List of cfq groups being managed on this device*/
285 struct hlist_head cfqg_list;
286 struct rcu_head rcu;
289 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
291 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
292 enum wl_prio_t prio,
293 enum wl_type_t type)
295 if (!cfqg)
296 return NULL;
298 if (prio == IDLE_WORKLOAD)
299 return &cfqg->service_tree_idle;
301 return &cfqg->service_trees[prio][type];
304 enum cfqq_state_flags {
305 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
306 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
307 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
308 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
309 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
310 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
311 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
312 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
313 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
314 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
315 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
316 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
317 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
320 #define CFQ_CFQQ_FNS(name) \
321 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
323 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
325 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
327 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
329 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
331 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
334 CFQ_CFQQ_FNS(on_rr);
335 CFQ_CFQQ_FNS(wait_request);
336 CFQ_CFQQ_FNS(must_dispatch);
337 CFQ_CFQQ_FNS(must_alloc_slice);
338 CFQ_CFQQ_FNS(fifo_expire);
339 CFQ_CFQQ_FNS(idle_window);
340 CFQ_CFQQ_FNS(prio_changed);
341 CFQ_CFQQ_FNS(slice_new);
342 CFQ_CFQQ_FNS(sync);
343 CFQ_CFQQ_FNS(coop);
344 CFQ_CFQQ_FNS(split_coop);
345 CFQ_CFQQ_FNS(deep);
346 CFQ_CFQQ_FNS(wait_busy);
347 #undef CFQ_CFQQ_FNS
349 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
350 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
351 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
352 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
353 blkg_path(&(cfqq)->cfqg->blkg), ##args);
355 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
356 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
357 blkg_path(&(cfqg)->blkg), ##args); \
359 #else
360 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
361 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
362 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
363 #endif
364 #define cfq_log(cfqd, fmt, args...) \
365 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
367 /* Traverses through cfq group service trees */
368 #define for_each_cfqg_st(cfqg, i, j, st) \
369 for (i = 0; i <= IDLE_WORKLOAD; i++) \
370 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
371 : &cfqg->service_tree_idle; \
372 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
373 (i == IDLE_WORKLOAD && j == 0); \
374 j++, st = i < IDLE_WORKLOAD ? \
375 &cfqg->service_trees[i][j]: NULL) \
378 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
380 if (cfq_class_idle(cfqq))
381 return IDLE_WORKLOAD;
382 if (cfq_class_rt(cfqq))
383 return RT_WORKLOAD;
384 return BE_WORKLOAD;
388 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
390 if (!cfq_cfqq_sync(cfqq))
391 return ASYNC_WORKLOAD;
392 if (!cfq_cfqq_idle_window(cfqq))
393 return SYNC_NOIDLE_WORKLOAD;
394 return SYNC_WORKLOAD;
397 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
398 struct cfq_data *cfqd,
399 struct cfq_group *cfqg)
401 if (wl == IDLE_WORKLOAD)
402 return cfqg->service_tree_idle.count;
404 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
405 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
406 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
409 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
410 struct cfq_group *cfqg)
412 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
413 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
416 static void cfq_dispatch_insert(struct request_queue *, struct request *);
417 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
418 struct io_context *, gfp_t);
419 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
420 struct io_context *);
422 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
423 bool is_sync)
425 return cic->cfqq[is_sync];
428 static inline void cic_set_cfqq(struct cfq_io_context *cic,
429 struct cfq_queue *cfqq, bool is_sync)
431 cic->cfqq[is_sync] = cfqq;
435 * We regard a request as SYNC, if it's either a read or has the SYNC bit
436 * set (in which case it could also be direct WRITE).
438 static inline bool cfq_bio_sync(struct bio *bio)
440 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
444 * scheduler run of queue, if there are requests pending and no one in the
445 * driver that will restart queueing
447 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
449 if (cfqd->busy_queues) {
450 cfq_log(cfqd, "schedule dispatch");
451 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
455 static int cfq_queue_empty(struct request_queue *q)
457 struct cfq_data *cfqd = q->elevator->elevator_data;
459 return !cfqd->rq_queued;
463 * Scale schedule slice based on io priority. Use the sync time slice only
464 * if a queue is marked sync and has sync io queued. A sync queue with async
465 * io only, should not get full sync slice length.
467 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
468 unsigned short prio)
470 const int base_slice = cfqd->cfq_slice[sync];
472 WARN_ON(prio >= IOPRIO_BE_NR);
474 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
477 static inline int
478 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
480 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
483 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
485 u64 d = delta << CFQ_SERVICE_SHIFT;
487 d = d * BLKIO_WEIGHT_DEFAULT;
488 do_div(d, cfqg->weight);
489 return d;
492 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
494 s64 delta = (s64)(vdisktime - min_vdisktime);
495 if (delta > 0)
496 min_vdisktime = vdisktime;
498 return min_vdisktime;
501 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
503 s64 delta = (s64)(vdisktime - min_vdisktime);
504 if (delta < 0)
505 min_vdisktime = vdisktime;
507 return min_vdisktime;
510 static void update_min_vdisktime(struct cfq_rb_root *st)
512 u64 vdisktime = st->min_vdisktime;
513 struct cfq_group *cfqg;
515 if (st->active) {
516 cfqg = rb_entry_cfqg(st->active);
517 vdisktime = cfqg->vdisktime;
520 if (st->left) {
521 cfqg = rb_entry_cfqg(st->left);
522 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
525 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
529 * get averaged number of queues of RT/BE priority.
530 * average is updated, with a formula that gives more weight to higher numbers,
531 * to quickly follows sudden increases and decrease slowly
534 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
535 struct cfq_group *cfqg, bool rt)
537 unsigned min_q, max_q;
538 unsigned mult = cfq_hist_divisor - 1;
539 unsigned round = cfq_hist_divisor / 2;
540 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
542 min_q = min(cfqg->busy_queues_avg[rt], busy);
543 max_q = max(cfqg->busy_queues_avg[rt], busy);
544 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
545 cfq_hist_divisor;
546 return cfqg->busy_queues_avg[rt];
549 static inline unsigned
550 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
552 struct cfq_rb_root *st = &cfqd->grp_service_tree;
554 return cfq_target_latency * cfqg->weight / st->total_weight;
557 static inline void
558 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
560 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
561 if (cfqd->cfq_latency) {
563 * interested queues (we consider only the ones with the same
564 * priority class in the cfq group)
566 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
567 cfq_class_rt(cfqq));
568 unsigned sync_slice = cfqd->cfq_slice[1];
569 unsigned expect_latency = sync_slice * iq;
570 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
572 if (expect_latency > group_slice) {
573 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
574 /* scale low_slice according to IO priority
575 * and sync vs async */
576 unsigned low_slice =
577 min(slice, base_low_slice * slice / sync_slice);
578 /* the adapted slice value is scaled to fit all iqs
579 * into the target latency */
580 slice = max(slice * group_slice / expect_latency,
581 low_slice);
584 cfqq->slice_start = jiffies;
585 cfqq->slice_end = jiffies + slice;
586 cfqq->allocated_slice = slice;
587 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
591 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
592 * isn't valid until the first request from the dispatch is activated
593 * and the slice time set.
595 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
597 if (cfq_cfqq_slice_new(cfqq))
598 return 0;
599 if (time_before(jiffies, cfqq->slice_end))
600 return 0;
602 return 1;
606 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
607 * We choose the request that is closest to the head right now. Distance
608 * behind the head is penalized and only allowed to a certain extent.
610 static struct request *
611 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
613 sector_t s1, s2, d1 = 0, d2 = 0;
614 unsigned long back_max;
615 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
616 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
617 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
619 if (rq1 == NULL || rq1 == rq2)
620 return rq2;
621 if (rq2 == NULL)
622 return rq1;
624 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
625 return rq1;
626 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
627 return rq2;
628 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
629 return rq1;
630 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
631 return rq2;
633 s1 = blk_rq_pos(rq1);
634 s2 = blk_rq_pos(rq2);
637 * by definition, 1KiB is 2 sectors
639 back_max = cfqd->cfq_back_max * 2;
642 * Strict one way elevator _except_ in the case where we allow
643 * short backward seeks which are biased as twice the cost of a
644 * similar forward seek.
646 if (s1 >= last)
647 d1 = s1 - last;
648 else if (s1 + back_max >= last)
649 d1 = (last - s1) * cfqd->cfq_back_penalty;
650 else
651 wrap |= CFQ_RQ1_WRAP;
653 if (s2 >= last)
654 d2 = s2 - last;
655 else if (s2 + back_max >= last)
656 d2 = (last - s2) * cfqd->cfq_back_penalty;
657 else
658 wrap |= CFQ_RQ2_WRAP;
660 /* Found required data */
663 * By doing switch() on the bit mask "wrap" we avoid having to
664 * check two variables for all permutations: --> faster!
666 switch (wrap) {
667 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
668 if (d1 < d2)
669 return rq1;
670 else if (d2 < d1)
671 return rq2;
672 else {
673 if (s1 >= s2)
674 return rq1;
675 else
676 return rq2;
679 case CFQ_RQ2_WRAP:
680 return rq1;
681 case CFQ_RQ1_WRAP:
682 return rq2;
683 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
684 default:
686 * Since both rqs are wrapped,
687 * start with the one that's further behind head
688 * (--> only *one* back seek required),
689 * since back seek takes more time than forward.
691 if (s1 <= s2)
692 return rq1;
693 else
694 return rq2;
699 * The below is leftmost cache rbtree addon
701 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
703 /* Service tree is empty */
704 if (!root->count)
705 return NULL;
707 if (!root->left)
708 root->left = rb_first(&root->rb);
710 if (root->left)
711 return rb_entry(root->left, struct cfq_queue, rb_node);
713 return NULL;
716 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
718 if (!root->left)
719 root->left = rb_first(&root->rb);
721 if (root->left)
722 return rb_entry_cfqg(root->left);
724 return NULL;
727 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
729 rb_erase(n, root);
730 RB_CLEAR_NODE(n);
733 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
735 if (root->left == n)
736 root->left = NULL;
737 rb_erase_init(n, &root->rb);
738 --root->count;
742 * would be nice to take fifo expire time into account as well
744 static struct request *
745 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
746 struct request *last)
748 struct rb_node *rbnext = rb_next(&last->rb_node);
749 struct rb_node *rbprev = rb_prev(&last->rb_node);
750 struct request *next = NULL, *prev = NULL;
752 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
754 if (rbprev)
755 prev = rb_entry_rq(rbprev);
757 if (rbnext)
758 next = rb_entry_rq(rbnext);
759 else {
760 rbnext = rb_first(&cfqq->sort_list);
761 if (rbnext && rbnext != &last->rb_node)
762 next = rb_entry_rq(rbnext);
765 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
768 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
769 struct cfq_queue *cfqq)
772 * just an approximation, should be ok.
774 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
775 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
778 static inline s64
779 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
781 return cfqg->vdisktime - st->min_vdisktime;
784 static void
785 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
787 struct rb_node **node = &st->rb.rb_node;
788 struct rb_node *parent = NULL;
789 struct cfq_group *__cfqg;
790 s64 key = cfqg_key(st, cfqg);
791 int left = 1;
793 while (*node != NULL) {
794 parent = *node;
795 __cfqg = rb_entry_cfqg(parent);
797 if (key < cfqg_key(st, __cfqg))
798 node = &parent->rb_left;
799 else {
800 node = &parent->rb_right;
801 left = 0;
805 if (left)
806 st->left = &cfqg->rb_node;
808 rb_link_node(&cfqg->rb_node, parent, node);
809 rb_insert_color(&cfqg->rb_node, &st->rb);
812 static void
813 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
815 struct cfq_rb_root *st = &cfqd->grp_service_tree;
816 struct cfq_group *__cfqg;
817 struct rb_node *n;
819 cfqg->nr_cfqq++;
820 if (cfqg->on_st)
821 return;
824 * Currently put the group at the end. Later implement something
825 * so that groups get lesser vtime based on their weights, so that
826 * if group does not loose all if it was not continously backlogged.
828 n = rb_last(&st->rb);
829 if (n) {
830 __cfqg = rb_entry_cfqg(n);
831 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
832 } else
833 cfqg->vdisktime = st->min_vdisktime;
835 __cfq_group_service_tree_add(st, cfqg);
836 cfqg->on_st = true;
837 st->total_weight += cfqg->weight;
840 static void
841 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
843 struct cfq_rb_root *st = &cfqd->grp_service_tree;
845 if (st->active == &cfqg->rb_node)
846 st->active = NULL;
848 BUG_ON(cfqg->nr_cfqq < 1);
849 cfqg->nr_cfqq--;
851 /* If there are other cfq queues under this group, don't delete it */
852 if (cfqg->nr_cfqq)
853 return;
855 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
856 cfqg->on_st = false;
857 st->total_weight -= cfqg->weight;
858 if (!RB_EMPTY_NODE(&cfqg->rb_node))
859 cfq_rb_erase(&cfqg->rb_node, st);
860 cfqg->saved_workload_slice = 0;
861 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
864 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
866 unsigned int slice_used;
869 * Queue got expired before even a single request completed or
870 * got expired immediately after first request completion.
872 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
874 * Also charge the seek time incurred to the group, otherwise
875 * if there are mutiple queues in the group, each can dispatch
876 * a single request on seeky media and cause lots of seek time
877 * and group will never know it.
879 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
881 } else {
882 slice_used = jiffies - cfqq->slice_start;
883 if (slice_used > cfqq->allocated_slice)
884 slice_used = cfqq->allocated_slice;
887 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
888 cfqq->nr_sectors);
889 return slice_used;
892 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
893 struct cfq_queue *cfqq)
895 struct cfq_rb_root *st = &cfqd->grp_service_tree;
896 unsigned int used_sl, charge_sl;
897 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
898 - cfqg->service_tree_idle.count;
900 BUG_ON(nr_sync < 0);
901 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
903 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
904 charge_sl = cfqq->allocated_slice;
906 /* Can't update vdisktime while group is on service tree */
907 cfq_rb_erase(&cfqg->rb_node, st);
908 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
909 __cfq_group_service_tree_add(st, cfqg);
911 /* This group is being expired. Save the context */
912 if (time_after(cfqd->workload_expires, jiffies)) {
913 cfqg->saved_workload_slice = cfqd->workload_expires
914 - jiffies;
915 cfqg->saved_workload = cfqd->serving_type;
916 cfqg->saved_serving_prio = cfqd->serving_prio;
917 } else
918 cfqg->saved_workload_slice = 0;
920 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
921 st->min_vdisktime);
922 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
923 cfqq->nr_sectors);
926 #ifdef CONFIG_CFQ_GROUP_IOSCHED
927 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
929 if (blkg)
930 return container_of(blkg, struct cfq_group, blkg);
931 return NULL;
934 void
935 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
937 cfqg_of_blkg(blkg)->weight = weight;
940 static struct cfq_group *
941 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
943 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
944 struct cfq_group *cfqg = NULL;
945 void *key = cfqd;
946 int i, j;
947 struct cfq_rb_root *st;
948 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
949 unsigned int major, minor;
951 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
952 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
953 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
954 cfqg->blkg.dev = MKDEV(major, minor);
955 goto done;
957 if (cfqg || !create)
958 goto done;
960 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
961 if (!cfqg)
962 goto done;
964 cfqg->weight = blkcg->weight;
965 for_each_cfqg_st(cfqg, i, j, st)
966 *st = CFQ_RB_ROOT;
967 RB_CLEAR_NODE(&cfqg->rb_node);
970 * Take the initial reference that will be released on destroy
971 * This can be thought of a joint reference by cgroup and
972 * elevator which will be dropped by either elevator exit
973 * or cgroup deletion path depending on who is exiting first.
975 atomic_set(&cfqg->ref, 1);
977 /* Add group onto cgroup list */
978 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
979 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
980 MKDEV(major, minor));
982 /* Add group on cfqd list */
983 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
985 done:
986 return cfqg;
990 * Search for the cfq group current task belongs to. If create = 1, then also
991 * create the cfq group if it does not exist. request_queue lock must be held.
993 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
995 struct cgroup *cgroup;
996 struct cfq_group *cfqg = NULL;
998 rcu_read_lock();
999 cgroup = task_cgroup(current, blkio_subsys_id);
1000 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1001 if (!cfqg && create)
1002 cfqg = &cfqd->root_group;
1003 rcu_read_unlock();
1004 return cfqg;
1007 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1009 /* Currently, all async queues are mapped to root group */
1010 if (!cfq_cfqq_sync(cfqq))
1011 cfqg = &cfqq->cfqd->root_group;
1013 cfqq->cfqg = cfqg;
1014 /* cfqq reference on cfqg */
1015 atomic_inc(&cfqq->cfqg->ref);
1018 static void cfq_put_cfqg(struct cfq_group *cfqg)
1020 struct cfq_rb_root *st;
1021 int i, j;
1023 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1024 if (!atomic_dec_and_test(&cfqg->ref))
1025 return;
1026 for_each_cfqg_st(cfqg, i, j, st)
1027 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1028 kfree(cfqg);
1031 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1033 /* Something wrong if we are trying to remove same group twice */
1034 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1036 hlist_del_init(&cfqg->cfqd_node);
1039 * Put the reference taken at the time of creation so that when all
1040 * queues are gone, group can be destroyed.
1042 cfq_put_cfqg(cfqg);
1045 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1047 struct hlist_node *pos, *n;
1048 struct cfq_group *cfqg;
1050 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1052 * If cgroup removal path got to blk_group first and removed
1053 * it from cgroup list, then it will take care of destroying
1054 * cfqg also.
1056 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1057 cfq_destroy_cfqg(cfqd, cfqg);
1062 * Blk cgroup controller notification saying that blkio_group object is being
1063 * delinked as associated cgroup object is going away. That also means that
1064 * no new IO will come in this group. So get rid of this group as soon as
1065 * any pending IO in the group is finished.
1067 * This function is called under rcu_read_lock(). key is the rcu protected
1068 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1069 * read lock.
1071 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1072 * it should not be NULL as even if elevator was exiting, cgroup deltion
1073 * path got to it first.
1075 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1077 unsigned long flags;
1078 struct cfq_data *cfqd = key;
1080 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1081 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1082 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1085 #else /* GROUP_IOSCHED */
1086 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1088 return &cfqd->root_group;
1090 static inline void
1091 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1092 cfqq->cfqg = cfqg;
1095 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1096 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1098 #endif /* GROUP_IOSCHED */
1101 * The cfqd->service_trees holds all pending cfq_queue's that have
1102 * requests waiting to be processed. It is sorted in the order that
1103 * we will service the queues.
1105 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1106 bool add_front)
1108 struct rb_node **p, *parent;
1109 struct cfq_queue *__cfqq;
1110 unsigned long rb_key;
1111 struct cfq_rb_root *service_tree;
1112 int left;
1113 int new_cfqq = 1;
1114 int group_changed = 0;
1116 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1117 if (!cfqd->cfq_group_isolation
1118 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1119 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1120 /* Move this cfq to root group */
1121 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1122 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1123 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1124 cfqq->orig_cfqg = cfqq->cfqg;
1125 cfqq->cfqg = &cfqd->root_group;
1126 atomic_inc(&cfqd->root_group.ref);
1127 group_changed = 1;
1128 } else if (!cfqd->cfq_group_isolation
1129 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1130 /* cfqq is sequential now needs to go to its original group */
1131 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1132 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1133 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1134 cfq_put_cfqg(cfqq->cfqg);
1135 cfqq->cfqg = cfqq->orig_cfqg;
1136 cfqq->orig_cfqg = NULL;
1137 group_changed = 1;
1138 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1140 #endif
1142 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1143 cfqq_type(cfqq));
1144 if (cfq_class_idle(cfqq)) {
1145 rb_key = CFQ_IDLE_DELAY;
1146 parent = rb_last(&service_tree->rb);
1147 if (parent && parent != &cfqq->rb_node) {
1148 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1149 rb_key += __cfqq->rb_key;
1150 } else
1151 rb_key += jiffies;
1152 } else if (!add_front) {
1154 * Get our rb key offset. Subtract any residual slice
1155 * value carried from last service. A negative resid
1156 * count indicates slice overrun, and this should position
1157 * the next service time further away in the tree.
1159 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1160 rb_key -= cfqq->slice_resid;
1161 cfqq->slice_resid = 0;
1162 } else {
1163 rb_key = -HZ;
1164 __cfqq = cfq_rb_first(service_tree);
1165 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1168 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1169 new_cfqq = 0;
1171 * same position, nothing more to do
1173 if (rb_key == cfqq->rb_key &&
1174 cfqq->service_tree == service_tree)
1175 return;
1177 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1178 cfqq->service_tree = NULL;
1181 left = 1;
1182 parent = NULL;
1183 cfqq->service_tree = service_tree;
1184 p = &service_tree->rb.rb_node;
1185 while (*p) {
1186 struct rb_node **n;
1188 parent = *p;
1189 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1192 * sort by key, that represents service time.
1194 if (time_before(rb_key, __cfqq->rb_key))
1195 n = &(*p)->rb_left;
1196 else {
1197 n = &(*p)->rb_right;
1198 left = 0;
1201 p = n;
1204 if (left)
1205 service_tree->left = &cfqq->rb_node;
1207 cfqq->rb_key = rb_key;
1208 rb_link_node(&cfqq->rb_node, parent, p);
1209 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1210 service_tree->count++;
1211 if ((add_front || !new_cfqq) && !group_changed)
1212 return;
1213 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1216 static struct cfq_queue *
1217 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1218 sector_t sector, struct rb_node **ret_parent,
1219 struct rb_node ***rb_link)
1221 struct rb_node **p, *parent;
1222 struct cfq_queue *cfqq = NULL;
1224 parent = NULL;
1225 p = &root->rb_node;
1226 while (*p) {
1227 struct rb_node **n;
1229 parent = *p;
1230 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1233 * Sort strictly based on sector. Smallest to the left,
1234 * largest to the right.
1236 if (sector > blk_rq_pos(cfqq->next_rq))
1237 n = &(*p)->rb_right;
1238 else if (sector < blk_rq_pos(cfqq->next_rq))
1239 n = &(*p)->rb_left;
1240 else
1241 break;
1242 p = n;
1243 cfqq = NULL;
1246 *ret_parent = parent;
1247 if (rb_link)
1248 *rb_link = p;
1249 return cfqq;
1252 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1254 struct rb_node **p, *parent;
1255 struct cfq_queue *__cfqq;
1257 if (cfqq->p_root) {
1258 rb_erase(&cfqq->p_node, cfqq->p_root);
1259 cfqq->p_root = NULL;
1262 if (cfq_class_idle(cfqq))
1263 return;
1264 if (!cfqq->next_rq)
1265 return;
1267 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1268 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1269 blk_rq_pos(cfqq->next_rq), &parent, &p);
1270 if (!__cfqq) {
1271 rb_link_node(&cfqq->p_node, parent, p);
1272 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1273 } else
1274 cfqq->p_root = NULL;
1278 * Update cfqq's position in the service tree.
1280 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1283 * Resorting requires the cfqq to be on the RR list already.
1285 if (cfq_cfqq_on_rr(cfqq)) {
1286 cfq_service_tree_add(cfqd, cfqq, 0);
1287 cfq_prio_tree_add(cfqd, cfqq);
1292 * add to busy list of queues for service, trying to be fair in ordering
1293 * the pending list according to last request service
1295 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1297 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1298 BUG_ON(cfq_cfqq_on_rr(cfqq));
1299 cfq_mark_cfqq_on_rr(cfqq);
1300 cfqd->busy_queues++;
1302 cfq_resort_rr_list(cfqd, cfqq);
1306 * Called when the cfqq no longer has requests pending, remove it from
1307 * the service tree.
1309 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1311 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1312 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1313 cfq_clear_cfqq_on_rr(cfqq);
1315 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1316 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1317 cfqq->service_tree = NULL;
1319 if (cfqq->p_root) {
1320 rb_erase(&cfqq->p_node, cfqq->p_root);
1321 cfqq->p_root = NULL;
1324 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1325 BUG_ON(!cfqd->busy_queues);
1326 cfqd->busy_queues--;
1330 * rb tree support functions
1332 static void cfq_del_rq_rb(struct request *rq)
1334 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1335 const int sync = rq_is_sync(rq);
1337 BUG_ON(!cfqq->queued[sync]);
1338 cfqq->queued[sync]--;
1340 elv_rb_del(&cfqq->sort_list, rq);
1342 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1344 * Queue will be deleted from service tree when we actually
1345 * expire it later. Right now just remove it from prio tree
1346 * as it is empty.
1348 if (cfqq->p_root) {
1349 rb_erase(&cfqq->p_node, cfqq->p_root);
1350 cfqq->p_root = NULL;
1355 static void cfq_add_rq_rb(struct request *rq)
1357 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1358 struct cfq_data *cfqd = cfqq->cfqd;
1359 struct request *__alias, *prev;
1361 cfqq->queued[rq_is_sync(rq)]++;
1364 * looks a little odd, but the first insert might return an alias.
1365 * if that happens, put the alias on the dispatch list
1367 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1368 cfq_dispatch_insert(cfqd->queue, __alias);
1370 if (!cfq_cfqq_on_rr(cfqq))
1371 cfq_add_cfqq_rr(cfqd, cfqq);
1374 * check if this request is a better next-serve candidate
1376 prev = cfqq->next_rq;
1377 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1380 * adjust priority tree position, if ->next_rq changes
1382 if (prev != cfqq->next_rq)
1383 cfq_prio_tree_add(cfqd, cfqq);
1385 BUG_ON(!cfqq->next_rq);
1388 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1390 elv_rb_del(&cfqq->sort_list, rq);
1391 cfqq->queued[rq_is_sync(rq)]--;
1392 cfq_add_rq_rb(rq);
1395 static struct request *
1396 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1398 struct task_struct *tsk = current;
1399 struct cfq_io_context *cic;
1400 struct cfq_queue *cfqq;
1402 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1403 if (!cic)
1404 return NULL;
1406 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1407 if (cfqq) {
1408 sector_t sector = bio->bi_sector + bio_sectors(bio);
1410 return elv_rb_find(&cfqq->sort_list, sector);
1413 return NULL;
1416 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1418 struct cfq_data *cfqd = q->elevator->elevator_data;
1420 cfqd->rq_in_driver++;
1421 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1422 cfqd->rq_in_driver);
1424 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1427 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1429 struct cfq_data *cfqd = q->elevator->elevator_data;
1431 WARN_ON(!cfqd->rq_in_driver);
1432 cfqd->rq_in_driver--;
1433 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1434 cfqd->rq_in_driver);
1437 static void cfq_remove_request(struct request *rq)
1439 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1441 if (cfqq->next_rq == rq)
1442 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1444 list_del_init(&rq->queuelist);
1445 cfq_del_rq_rb(rq);
1447 cfqq->cfqd->rq_queued--;
1448 if (rq_is_meta(rq)) {
1449 WARN_ON(!cfqq->meta_pending);
1450 cfqq->meta_pending--;
1454 static int cfq_merge(struct request_queue *q, struct request **req,
1455 struct bio *bio)
1457 struct cfq_data *cfqd = q->elevator->elevator_data;
1458 struct request *__rq;
1460 __rq = cfq_find_rq_fmerge(cfqd, bio);
1461 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1462 *req = __rq;
1463 return ELEVATOR_FRONT_MERGE;
1466 return ELEVATOR_NO_MERGE;
1469 static void cfq_merged_request(struct request_queue *q, struct request *req,
1470 int type)
1472 if (type == ELEVATOR_FRONT_MERGE) {
1473 struct cfq_queue *cfqq = RQ_CFQQ(req);
1475 cfq_reposition_rq_rb(cfqq, req);
1479 static void
1480 cfq_merged_requests(struct request_queue *q, struct request *rq,
1481 struct request *next)
1483 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1485 * reposition in fifo if next is older than rq
1487 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1488 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1489 list_move(&rq->queuelist, &next->queuelist);
1490 rq_set_fifo_time(rq, rq_fifo_time(next));
1493 if (cfqq->next_rq == next)
1494 cfqq->next_rq = rq;
1495 cfq_remove_request(next);
1498 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1499 struct bio *bio)
1501 struct cfq_data *cfqd = q->elevator->elevator_data;
1502 struct cfq_io_context *cic;
1503 struct cfq_queue *cfqq;
1506 * Disallow merge of a sync bio into an async request.
1508 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1509 return false;
1512 * Lookup the cfqq that this bio will be queued with. Allow
1513 * merge only if rq is queued there.
1515 cic = cfq_cic_lookup(cfqd, current->io_context);
1516 if (!cic)
1517 return false;
1519 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1520 return cfqq == RQ_CFQQ(rq);
1523 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1524 struct cfq_queue *cfqq)
1526 if (cfqq) {
1527 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1528 cfqd->serving_prio, cfqd->serving_type);
1529 cfqq->slice_start = 0;
1530 cfqq->dispatch_start = jiffies;
1531 cfqq->allocated_slice = 0;
1532 cfqq->slice_end = 0;
1533 cfqq->slice_dispatch = 0;
1534 cfqq->nr_sectors = 0;
1536 cfq_clear_cfqq_wait_request(cfqq);
1537 cfq_clear_cfqq_must_dispatch(cfqq);
1538 cfq_clear_cfqq_must_alloc_slice(cfqq);
1539 cfq_clear_cfqq_fifo_expire(cfqq);
1540 cfq_mark_cfqq_slice_new(cfqq);
1542 del_timer(&cfqd->idle_slice_timer);
1545 cfqd->active_queue = cfqq;
1549 * current cfqq expired its slice (or was too idle), select new one
1551 static void
1552 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1553 bool timed_out)
1555 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1557 if (cfq_cfqq_wait_request(cfqq))
1558 del_timer(&cfqd->idle_slice_timer);
1560 cfq_clear_cfqq_wait_request(cfqq);
1561 cfq_clear_cfqq_wait_busy(cfqq);
1564 * If this cfqq is shared between multiple processes, check to
1565 * make sure that those processes are still issuing I/Os within
1566 * the mean seek distance. If not, it may be time to break the
1567 * queues apart again.
1569 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1570 cfq_mark_cfqq_split_coop(cfqq);
1573 * store what was left of this slice, if the queue idled/timed out
1575 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1576 cfqq->slice_resid = cfqq->slice_end - jiffies;
1577 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1580 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1582 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1583 cfq_del_cfqq_rr(cfqd, cfqq);
1585 cfq_resort_rr_list(cfqd, cfqq);
1587 if (cfqq == cfqd->active_queue)
1588 cfqd->active_queue = NULL;
1590 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1591 cfqd->grp_service_tree.active = NULL;
1593 if (cfqd->active_cic) {
1594 put_io_context(cfqd->active_cic->ioc);
1595 cfqd->active_cic = NULL;
1599 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1601 struct cfq_queue *cfqq = cfqd->active_queue;
1603 if (cfqq)
1604 __cfq_slice_expired(cfqd, cfqq, timed_out);
1608 * Get next queue for service. Unless we have a queue preemption,
1609 * we'll simply select the first cfqq in the service tree.
1611 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1613 struct cfq_rb_root *service_tree =
1614 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1615 cfqd->serving_type);
1617 if (!cfqd->rq_queued)
1618 return NULL;
1620 /* There is nothing to dispatch */
1621 if (!service_tree)
1622 return NULL;
1623 if (RB_EMPTY_ROOT(&service_tree->rb))
1624 return NULL;
1625 return cfq_rb_first(service_tree);
1628 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1630 struct cfq_group *cfqg;
1631 struct cfq_queue *cfqq;
1632 int i, j;
1633 struct cfq_rb_root *st;
1635 if (!cfqd->rq_queued)
1636 return NULL;
1638 cfqg = cfq_get_next_cfqg(cfqd);
1639 if (!cfqg)
1640 return NULL;
1642 for_each_cfqg_st(cfqg, i, j, st)
1643 if ((cfqq = cfq_rb_first(st)) != NULL)
1644 return cfqq;
1645 return NULL;
1649 * Get and set a new active queue for service.
1651 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1652 struct cfq_queue *cfqq)
1654 if (!cfqq)
1655 cfqq = cfq_get_next_queue(cfqd);
1657 __cfq_set_active_queue(cfqd, cfqq);
1658 return cfqq;
1661 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1662 struct request *rq)
1664 if (blk_rq_pos(rq) >= cfqd->last_position)
1665 return blk_rq_pos(rq) - cfqd->last_position;
1666 else
1667 return cfqd->last_position - blk_rq_pos(rq);
1670 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1671 struct request *rq)
1673 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1676 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1677 struct cfq_queue *cur_cfqq)
1679 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1680 struct rb_node *parent, *node;
1681 struct cfq_queue *__cfqq;
1682 sector_t sector = cfqd->last_position;
1684 if (RB_EMPTY_ROOT(root))
1685 return NULL;
1688 * First, if we find a request starting at the end of the last
1689 * request, choose it.
1691 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1692 if (__cfqq)
1693 return __cfqq;
1696 * If the exact sector wasn't found, the parent of the NULL leaf
1697 * will contain the closest sector.
1699 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1700 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1701 return __cfqq;
1703 if (blk_rq_pos(__cfqq->next_rq) < sector)
1704 node = rb_next(&__cfqq->p_node);
1705 else
1706 node = rb_prev(&__cfqq->p_node);
1707 if (!node)
1708 return NULL;
1710 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1711 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1712 return __cfqq;
1714 return NULL;
1718 * cfqd - obvious
1719 * cur_cfqq - passed in so that we don't decide that the current queue is
1720 * closely cooperating with itself.
1722 * So, basically we're assuming that that cur_cfqq has dispatched at least
1723 * one request, and that cfqd->last_position reflects a position on the disk
1724 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1725 * assumption.
1727 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1728 struct cfq_queue *cur_cfqq)
1730 struct cfq_queue *cfqq;
1732 if (cfq_class_idle(cur_cfqq))
1733 return NULL;
1734 if (!cfq_cfqq_sync(cur_cfqq))
1735 return NULL;
1736 if (CFQQ_SEEKY(cur_cfqq))
1737 return NULL;
1740 * Don't search priority tree if it's the only queue in the group.
1742 if (cur_cfqq->cfqg->nr_cfqq == 1)
1743 return NULL;
1746 * We should notice if some of the queues are cooperating, eg
1747 * working closely on the same area of the disk. In that case,
1748 * we can group them together and don't waste time idling.
1750 cfqq = cfqq_close(cfqd, cur_cfqq);
1751 if (!cfqq)
1752 return NULL;
1754 /* If new queue belongs to different cfq_group, don't choose it */
1755 if (cur_cfqq->cfqg != cfqq->cfqg)
1756 return NULL;
1759 * It only makes sense to merge sync queues.
1761 if (!cfq_cfqq_sync(cfqq))
1762 return NULL;
1763 if (CFQQ_SEEKY(cfqq))
1764 return NULL;
1767 * Do not merge queues of different priority classes
1769 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1770 return NULL;
1772 return cfqq;
1776 * Determine whether we should enforce idle window for this queue.
1779 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1781 enum wl_prio_t prio = cfqq_prio(cfqq);
1782 struct cfq_rb_root *service_tree = cfqq->service_tree;
1784 BUG_ON(!service_tree);
1785 BUG_ON(!service_tree->count);
1787 /* We never do for idle class queues. */
1788 if (prio == IDLE_WORKLOAD)
1789 return false;
1791 /* We do for queues that were marked with idle window flag. */
1792 if (cfq_cfqq_idle_window(cfqq) &&
1793 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1794 return true;
1797 * Otherwise, we do only if they are the last ones
1798 * in their service tree.
1800 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1801 return 1;
1802 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1803 service_tree->count);
1804 return 0;
1807 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1809 struct cfq_queue *cfqq = cfqd->active_queue;
1810 struct cfq_io_context *cic;
1811 unsigned long sl;
1814 * SSD device without seek penalty, disable idling. But only do so
1815 * for devices that support queuing, otherwise we still have a problem
1816 * with sync vs async workloads.
1818 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1819 return;
1821 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1822 WARN_ON(cfq_cfqq_slice_new(cfqq));
1825 * idle is disabled, either manually or by past process history
1827 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1828 return;
1831 * still active requests from this queue, don't idle
1833 if (cfqq->dispatched)
1834 return;
1837 * task has exited, don't wait
1839 cic = cfqd->active_cic;
1840 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1841 return;
1844 * If our average think time is larger than the remaining time
1845 * slice, then don't idle. This avoids overrunning the allotted
1846 * time slice.
1848 if (sample_valid(cic->ttime_samples) &&
1849 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1850 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1851 cic->ttime_mean);
1852 return;
1855 cfq_mark_cfqq_wait_request(cfqq);
1857 sl = cfqd->cfq_slice_idle;
1859 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1860 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1864 * Move request from internal lists to the request queue dispatch list.
1866 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1868 struct cfq_data *cfqd = q->elevator->elevator_data;
1869 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1871 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1873 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1874 cfq_remove_request(rq);
1875 cfqq->dispatched++;
1876 elv_dispatch_sort(q, rq);
1878 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1879 cfqq->nr_sectors += blk_rq_sectors(rq);
1883 * return expired entry, or NULL to just start from scratch in rbtree
1885 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1887 struct request *rq = NULL;
1889 if (cfq_cfqq_fifo_expire(cfqq))
1890 return NULL;
1892 cfq_mark_cfqq_fifo_expire(cfqq);
1894 if (list_empty(&cfqq->fifo))
1895 return NULL;
1897 rq = rq_entry_fifo(cfqq->fifo.next);
1898 if (time_before(jiffies, rq_fifo_time(rq)))
1899 rq = NULL;
1901 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1902 return rq;
1905 static inline int
1906 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1908 const int base_rq = cfqd->cfq_slice_async_rq;
1910 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1912 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1916 * Must be called with the queue_lock held.
1918 static int cfqq_process_refs(struct cfq_queue *cfqq)
1920 int process_refs, io_refs;
1922 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1923 process_refs = atomic_read(&cfqq->ref) - io_refs;
1924 BUG_ON(process_refs < 0);
1925 return process_refs;
1928 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1930 int process_refs, new_process_refs;
1931 struct cfq_queue *__cfqq;
1933 /* Avoid a circular list and skip interim queue merges */
1934 while ((__cfqq = new_cfqq->new_cfqq)) {
1935 if (__cfqq == cfqq)
1936 return;
1937 new_cfqq = __cfqq;
1940 process_refs = cfqq_process_refs(cfqq);
1942 * If the process for the cfqq has gone away, there is no
1943 * sense in merging the queues.
1945 if (process_refs == 0)
1946 return;
1949 * Merge in the direction of the lesser amount of work.
1951 new_process_refs = cfqq_process_refs(new_cfqq);
1952 if (new_process_refs >= process_refs) {
1953 cfqq->new_cfqq = new_cfqq;
1954 atomic_add(process_refs, &new_cfqq->ref);
1955 } else {
1956 new_cfqq->new_cfqq = cfqq;
1957 atomic_add(new_process_refs, &cfqq->ref);
1961 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1962 struct cfq_group *cfqg, enum wl_prio_t prio)
1964 struct cfq_queue *queue;
1965 int i;
1966 bool key_valid = false;
1967 unsigned long lowest_key = 0;
1968 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1970 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1971 /* select the one with lowest rb_key */
1972 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
1973 if (queue &&
1974 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1975 lowest_key = queue->rb_key;
1976 cur_best = i;
1977 key_valid = true;
1981 return cur_best;
1984 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1986 unsigned slice;
1987 unsigned count;
1988 struct cfq_rb_root *st;
1989 unsigned group_slice;
1991 if (!cfqg) {
1992 cfqd->serving_prio = IDLE_WORKLOAD;
1993 cfqd->workload_expires = jiffies + 1;
1994 return;
1997 /* Choose next priority. RT > BE > IDLE */
1998 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1999 cfqd->serving_prio = RT_WORKLOAD;
2000 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2001 cfqd->serving_prio = BE_WORKLOAD;
2002 else {
2003 cfqd->serving_prio = IDLE_WORKLOAD;
2004 cfqd->workload_expires = jiffies + 1;
2005 return;
2009 * For RT and BE, we have to choose also the type
2010 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2011 * expiration time
2013 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2014 count = st->count;
2017 * check workload expiration, and that we still have other queues ready
2019 if (count && !time_after(jiffies, cfqd->workload_expires))
2020 return;
2022 /* otherwise select new workload type */
2023 cfqd->serving_type =
2024 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2025 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2026 count = st->count;
2029 * the workload slice is computed as a fraction of target latency
2030 * proportional to the number of queues in that workload, over
2031 * all the queues in the same priority class
2033 group_slice = cfq_group_slice(cfqd, cfqg);
2035 slice = group_slice * count /
2036 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2037 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2039 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2040 unsigned int tmp;
2043 * Async queues are currently system wide. Just taking
2044 * proportion of queues with-in same group will lead to higher
2045 * async ratio system wide as generally root group is going
2046 * to have higher weight. A more accurate thing would be to
2047 * calculate system wide asnc/sync ratio.
2049 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2050 tmp = tmp/cfqd->busy_queues;
2051 slice = min_t(unsigned, slice, tmp);
2053 /* async workload slice is scaled down according to
2054 * the sync/async slice ratio. */
2055 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2056 } else
2057 /* sync workload slice is at least 2 * cfq_slice_idle */
2058 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2060 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2061 cfq_log(cfqd, "workload slice:%d", slice);
2062 cfqd->workload_expires = jiffies + slice;
2063 cfqd->noidle_tree_requires_idle = false;
2066 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2068 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2069 struct cfq_group *cfqg;
2071 if (RB_EMPTY_ROOT(&st->rb))
2072 return NULL;
2073 cfqg = cfq_rb_first_group(st);
2074 st->active = &cfqg->rb_node;
2075 update_min_vdisktime(st);
2076 return cfqg;
2079 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2081 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2083 cfqd->serving_group = cfqg;
2085 /* Restore the workload type data */
2086 if (cfqg->saved_workload_slice) {
2087 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2088 cfqd->serving_type = cfqg->saved_workload;
2089 cfqd->serving_prio = cfqg->saved_serving_prio;
2090 } else
2091 cfqd->workload_expires = jiffies - 1;
2093 choose_service_tree(cfqd, cfqg);
2097 * Select a queue for service. If we have a current active queue,
2098 * check whether to continue servicing it, or retrieve and set a new one.
2100 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2102 struct cfq_queue *cfqq, *new_cfqq = NULL;
2104 cfqq = cfqd->active_queue;
2105 if (!cfqq)
2106 goto new_queue;
2108 if (!cfqd->rq_queued)
2109 return NULL;
2112 * We were waiting for group to get backlogged. Expire the queue
2114 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2115 goto expire;
2118 * The active queue has run out of time, expire it and select new.
2120 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2122 * If slice had not expired at the completion of last request
2123 * we might not have turned on wait_busy flag. Don't expire
2124 * the queue yet. Allow the group to get backlogged.
2126 * The very fact that we have used the slice, that means we
2127 * have been idling all along on this queue and it should be
2128 * ok to wait for this request to complete.
2130 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2131 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2132 cfqq = NULL;
2133 goto keep_queue;
2134 } else
2135 goto expire;
2139 * The active queue has requests and isn't expired, allow it to
2140 * dispatch.
2142 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2143 goto keep_queue;
2146 * If another queue has a request waiting within our mean seek
2147 * distance, let it run. The expire code will check for close
2148 * cooperators and put the close queue at the front of the service
2149 * tree. If possible, merge the expiring queue with the new cfqq.
2151 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2152 if (new_cfqq) {
2153 if (!cfqq->new_cfqq)
2154 cfq_setup_merge(cfqq, new_cfqq);
2155 goto expire;
2159 * No requests pending. If the active queue still has requests in
2160 * flight or is idling for a new request, allow either of these
2161 * conditions to happen (or time out) before selecting a new queue.
2163 if (timer_pending(&cfqd->idle_slice_timer) ||
2164 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2165 cfqq = NULL;
2166 goto keep_queue;
2169 expire:
2170 cfq_slice_expired(cfqd, 0);
2171 new_queue:
2173 * Current queue expired. Check if we have to switch to a new
2174 * service tree
2176 if (!new_cfqq)
2177 cfq_choose_cfqg(cfqd);
2179 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2180 keep_queue:
2181 return cfqq;
2184 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2186 int dispatched = 0;
2188 while (cfqq->next_rq) {
2189 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2190 dispatched++;
2193 BUG_ON(!list_empty(&cfqq->fifo));
2195 /* By default cfqq is not expired if it is empty. Do it explicitly */
2196 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2197 return dispatched;
2201 * Drain our current requests. Used for barriers and when switching
2202 * io schedulers on-the-fly.
2204 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2206 struct cfq_queue *cfqq;
2207 int dispatched = 0;
2209 /* Expire the timeslice of the current active queue first */
2210 cfq_slice_expired(cfqd, 0);
2211 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2212 __cfq_set_active_queue(cfqd, cfqq);
2213 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2216 BUG_ON(cfqd->busy_queues);
2218 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2219 return dispatched;
2222 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2223 struct cfq_queue *cfqq)
2225 /* the queue hasn't finished any request, can't estimate */
2226 if (cfq_cfqq_slice_new(cfqq))
2227 return 1;
2228 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2229 cfqq->slice_end))
2230 return 1;
2232 return 0;
2235 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2237 unsigned int max_dispatch;
2240 * Drain async requests before we start sync IO
2242 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2243 return false;
2246 * If this is an async queue and we have sync IO in flight, let it wait
2248 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2249 return false;
2251 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2252 if (cfq_class_idle(cfqq))
2253 max_dispatch = 1;
2256 * Does this cfqq already have too much IO in flight?
2258 if (cfqq->dispatched >= max_dispatch) {
2260 * idle queue must always only have a single IO in flight
2262 if (cfq_class_idle(cfqq))
2263 return false;
2266 * We have other queues, don't allow more IO from this one
2268 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2269 return false;
2272 * Sole queue user, no limit
2274 if (cfqd->busy_queues == 1)
2275 max_dispatch = -1;
2276 else
2278 * Normally we start throttling cfqq when cfq_quantum/2
2279 * requests have been dispatched. But we can drive
2280 * deeper queue depths at the beginning of slice
2281 * subjected to upper limit of cfq_quantum.
2282 * */
2283 max_dispatch = cfqd->cfq_quantum;
2287 * Async queues must wait a bit before being allowed dispatch.
2288 * We also ramp up the dispatch depth gradually for async IO,
2289 * based on the last sync IO we serviced
2291 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2292 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2293 unsigned int depth;
2295 depth = last_sync / cfqd->cfq_slice[1];
2296 if (!depth && !cfqq->dispatched)
2297 depth = 1;
2298 if (depth < max_dispatch)
2299 max_dispatch = depth;
2303 * If we're below the current max, allow a dispatch
2305 return cfqq->dispatched < max_dispatch;
2309 * Dispatch a request from cfqq, moving them to the request queue
2310 * dispatch list.
2312 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2314 struct request *rq;
2316 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2318 if (!cfq_may_dispatch(cfqd, cfqq))
2319 return false;
2322 * follow expired path, else get first next available
2324 rq = cfq_check_fifo(cfqq);
2325 if (!rq)
2326 rq = cfqq->next_rq;
2329 * insert request into driver dispatch list
2331 cfq_dispatch_insert(cfqd->queue, rq);
2333 if (!cfqd->active_cic) {
2334 struct cfq_io_context *cic = RQ_CIC(rq);
2336 atomic_long_inc(&cic->ioc->refcount);
2337 cfqd->active_cic = cic;
2340 return true;
2344 * Find the cfqq that we need to service and move a request from that to the
2345 * dispatch list
2347 static int cfq_dispatch_requests(struct request_queue *q, int force)
2349 struct cfq_data *cfqd = q->elevator->elevator_data;
2350 struct cfq_queue *cfqq;
2352 if (!cfqd->busy_queues)
2353 return 0;
2355 if (unlikely(force))
2356 return cfq_forced_dispatch(cfqd);
2358 cfqq = cfq_select_queue(cfqd);
2359 if (!cfqq)
2360 return 0;
2363 * Dispatch a request from this cfqq, if it is allowed
2365 if (!cfq_dispatch_request(cfqd, cfqq))
2366 return 0;
2368 cfqq->slice_dispatch++;
2369 cfq_clear_cfqq_must_dispatch(cfqq);
2372 * expire an async queue immediately if it has used up its slice. idle
2373 * queue always expire after 1 dispatch round.
2375 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2376 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2377 cfq_class_idle(cfqq))) {
2378 cfqq->slice_end = jiffies + 1;
2379 cfq_slice_expired(cfqd, 0);
2382 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2383 return 1;
2387 * task holds one reference to the queue, dropped when task exits. each rq
2388 * in-flight on this queue also holds a reference, dropped when rq is freed.
2390 * Each cfq queue took a reference on the parent group. Drop it now.
2391 * queue lock must be held here.
2393 static void cfq_put_queue(struct cfq_queue *cfqq)
2395 struct cfq_data *cfqd = cfqq->cfqd;
2396 struct cfq_group *cfqg, *orig_cfqg;
2398 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2400 if (!atomic_dec_and_test(&cfqq->ref))
2401 return;
2403 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2404 BUG_ON(rb_first(&cfqq->sort_list));
2405 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2406 cfqg = cfqq->cfqg;
2407 orig_cfqg = cfqq->orig_cfqg;
2409 if (unlikely(cfqd->active_queue == cfqq)) {
2410 __cfq_slice_expired(cfqd, cfqq, 0);
2411 cfq_schedule_dispatch(cfqd);
2414 BUG_ON(cfq_cfqq_on_rr(cfqq));
2415 kmem_cache_free(cfq_pool, cfqq);
2416 cfq_put_cfqg(cfqg);
2417 if (orig_cfqg)
2418 cfq_put_cfqg(orig_cfqg);
2422 * Must always be called with the rcu_read_lock() held
2424 static void
2425 __call_for_each_cic(struct io_context *ioc,
2426 void (*func)(struct io_context *, struct cfq_io_context *))
2428 struct cfq_io_context *cic;
2429 struct hlist_node *n;
2431 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2432 func(ioc, cic);
2436 * Call func for each cic attached to this ioc.
2438 static void
2439 call_for_each_cic(struct io_context *ioc,
2440 void (*func)(struct io_context *, struct cfq_io_context *))
2442 rcu_read_lock();
2443 __call_for_each_cic(ioc, func);
2444 rcu_read_unlock();
2447 static void cfq_cic_free_rcu(struct rcu_head *head)
2449 struct cfq_io_context *cic;
2451 cic = container_of(head, struct cfq_io_context, rcu_head);
2453 kmem_cache_free(cfq_ioc_pool, cic);
2454 elv_ioc_count_dec(cfq_ioc_count);
2456 if (ioc_gone) {
2458 * CFQ scheduler is exiting, grab exit lock and check
2459 * the pending io context count. If it hits zero,
2460 * complete ioc_gone and set it back to NULL
2462 spin_lock(&ioc_gone_lock);
2463 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2464 complete(ioc_gone);
2465 ioc_gone = NULL;
2467 spin_unlock(&ioc_gone_lock);
2471 static void cfq_cic_free(struct cfq_io_context *cic)
2473 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2476 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2478 unsigned long flags;
2480 BUG_ON(!cic->dead_key);
2482 spin_lock_irqsave(&ioc->lock, flags);
2483 radix_tree_delete(&ioc->radix_root, cic->dead_key);
2484 hlist_del_rcu(&cic->cic_list);
2485 spin_unlock_irqrestore(&ioc->lock, flags);
2487 cfq_cic_free(cic);
2491 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2492 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2493 * and ->trim() which is called with the task lock held
2495 static void cfq_free_io_context(struct io_context *ioc)
2498 * ioc->refcount is zero here, or we are called from elv_unregister(),
2499 * so no more cic's are allowed to be linked into this ioc. So it
2500 * should be ok to iterate over the known list, we will see all cic's
2501 * since no new ones are added.
2503 __call_for_each_cic(ioc, cic_free_func);
2506 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2508 struct cfq_queue *__cfqq, *next;
2510 if (unlikely(cfqq == cfqd->active_queue)) {
2511 __cfq_slice_expired(cfqd, cfqq, 0);
2512 cfq_schedule_dispatch(cfqd);
2516 * If this queue was scheduled to merge with another queue, be
2517 * sure to drop the reference taken on that queue (and others in
2518 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2520 __cfqq = cfqq->new_cfqq;
2521 while (__cfqq) {
2522 if (__cfqq == cfqq) {
2523 WARN(1, "cfqq->new_cfqq loop detected\n");
2524 break;
2526 next = __cfqq->new_cfqq;
2527 cfq_put_queue(__cfqq);
2528 __cfqq = next;
2531 cfq_put_queue(cfqq);
2534 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2535 struct cfq_io_context *cic)
2537 struct io_context *ioc = cic->ioc;
2539 list_del_init(&cic->queue_list);
2542 * Make sure key == NULL is seen for dead queues
2544 smp_wmb();
2545 cic->dead_key = (unsigned long) cic->key;
2546 cic->key = NULL;
2548 if (ioc->ioc_data == cic)
2549 rcu_assign_pointer(ioc->ioc_data, NULL);
2551 if (cic->cfqq[BLK_RW_ASYNC]) {
2552 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2553 cic->cfqq[BLK_RW_ASYNC] = NULL;
2556 if (cic->cfqq[BLK_RW_SYNC]) {
2557 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2558 cic->cfqq[BLK_RW_SYNC] = NULL;
2562 static void cfq_exit_single_io_context(struct io_context *ioc,
2563 struct cfq_io_context *cic)
2565 struct cfq_data *cfqd = cic->key;
2567 if (cfqd) {
2568 struct request_queue *q = cfqd->queue;
2569 unsigned long flags;
2571 spin_lock_irqsave(q->queue_lock, flags);
2574 * Ensure we get a fresh copy of the ->key to prevent
2575 * race between exiting task and queue
2577 smp_read_barrier_depends();
2578 if (cic->key)
2579 __cfq_exit_single_io_context(cfqd, cic);
2581 spin_unlock_irqrestore(q->queue_lock, flags);
2586 * The process that ioc belongs to has exited, we need to clean up
2587 * and put the internal structures we have that belongs to that process.
2589 static void cfq_exit_io_context(struct io_context *ioc)
2591 call_for_each_cic(ioc, cfq_exit_single_io_context);
2594 static struct cfq_io_context *
2595 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2597 struct cfq_io_context *cic;
2599 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2600 cfqd->queue->node);
2601 if (cic) {
2602 cic->last_end_request = jiffies;
2603 INIT_LIST_HEAD(&cic->queue_list);
2604 INIT_HLIST_NODE(&cic->cic_list);
2605 cic->dtor = cfq_free_io_context;
2606 cic->exit = cfq_exit_io_context;
2607 elv_ioc_count_inc(cfq_ioc_count);
2610 return cic;
2613 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2615 struct task_struct *tsk = current;
2616 int ioprio_class;
2618 if (!cfq_cfqq_prio_changed(cfqq))
2619 return;
2621 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2622 switch (ioprio_class) {
2623 default:
2624 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2625 case IOPRIO_CLASS_NONE:
2627 * no prio set, inherit CPU scheduling settings
2629 cfqq->ioprio = task_nice_ioprio(tsk);
2630 cfqq->ioprio_class = task_nice_ioclass(tsk);
2631 break;
2632 case IOPRIO_CLASS_RT:
2633 cfqq->ioprio = task_ioprio(ioc);
2634 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2635 break;
2636 case IOPRIO_CLASS_BE:
2637 cfqq->ioprio = task_ioprio(ioc);
2638 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2639 break;
2640 case IOPRIO_CLASS_IDLE:
2641 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2642 cfqq->ioprio = 7;
2643 cfq_clear_cfqq_idle_window(cfqq);
2644 break;
2648 * keep track of original prio settings in case we have to temporarily
2649 * elevate the priority of this queue
2651 cfqq->org_ioprio = cfqq->ioprio;
2652 cfqq->org_ioprio_class = cfqq->ioprio_class;
2653 cfq_clear_cfqq_prio_changed(cfqq);
2656 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2658 struct cfq_data *cfqd = cic->key;
2659 struct cfq_queue *cfqq;
2660 unsigned long flags;
2662 if (unlikely(!cfqd))
2663 return;
2665 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2667 cfqq = cic->cfqq[BLK_RW_ASYNC];
2668 if (cfqq) {
2669 struct cfq_queue *new_cfqq;
2670 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2671 GFP_ATOMIC);
2672 if (new_cfqq) {
2673 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2674 cfq_put_queue(cfqq);
2678 cfqq = cic->cfqq[BLK_RW_SYNC];
2679 if (cfqq)
2680 cfq_mark_cfqq_prio_changed(cfqq);
2682 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2685 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2687 call_for_each_cic(ioc, changed_ioprio);
2688 ioc->ioprio_changed = 0;
2691 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2692 pid_t pid, bool is_sync)
2694 RB_CLEAR_NODE(&cfqq->rb_node);
2695 RB_CLEAR_NODE(&cfqq->p_node);
2696 INIT_LIST_HEAD(&cfqq->fifo);
2698 atomic_set(&cfqq->ref, 0);
2699 cfqq->cfqd = cfqd;
2701 cfq_mark_cfqq_prio_changed(cfqq);
2703 if (is_sync) {
2704 if (!cfq_class_idle(cfqq))
2705 cfq_mark_cfqq_idle_window(cfqq);
2706 cfq_mark_cfqq_sync(cfqq);
2708 cfqq->pid = pid;
2711 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2712 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2714 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2715 struct cfq_data *cfqd = cic->key;
2716 unsigned long flags;
2717 struct request_queue *q;
2719 if (unlikely(!cfqd))
2720 return;
2722 q = cfqd->queue;
2724 spin_lock_irqsave(q->queue_lock, flags);
2726 if (sync_cfqq) {
2728 * Drop reference to sync queue. A new sync queue will be
2729 * assigned in new group upon arrival of a fresh request.
2731 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2732 cic_set_cfqq(cic, NULL, 1);
2733 cfq_put_queue(sync_cfqq);
2736 spin_unlock_irqrestore(q->queue_lock, flags);
2739 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2741 call_for_each_cic(ioc, changed_cgroup);
2742 ioc->cgroup_changed = 0;
2744 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2746 static struct cfq_queue *
2747 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2748 struct io_context *ioc, gfp_t gfp_mask)
2750 struct cfq_queue *cfqq, *new_cfqq = NULL;
2751 struct cfq_io_context *cic;
2752 struct cfq_group *cfqg;
2754 retry:
2755 cfqg = cfq_get_cfqg(cfqd, 1);
2756 cic = cfq_cic_lookup(cfqd, ioc);
2757 /* cic always exists here */
2758 cfqq = cic_to_cfqq(cic, is_sync);
2761 * Always try a new alloc if we fell back to the OOM cfqq
2762 * originally, since it should just be a temporary situation.
2764 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2765 cfqq = NULL;
2766 if (new_cfqq) {
2767 cfqq = new_cfqq;
2768 new_cfqq = NULL;
2769 } else if (gfp_mask & __GFP_WAIT) {
2770 spin_unlock_irq(cfqd->queue->queue_lock);
2771 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2772 gfp_mask | __GFP_ZERO,
2773 cfqd->queue->node);
2774 spin_lock_irq(cfqd->queue->queue_lock);
2775 if (new_cfqq)
2776 goto retry;
2777 } else {
2778 cfqq = kmem_cache_alloc_node(cfq_pool,
2779 gfp_mask | __GFP_ZERO,
2780 cfqd->queue->node);
2783 if (cfqq) {
2784 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2785 cfq_init_prio_data(cfqq, ioc);
2786 cfq_link_cfqq_cfqg(cfqq, cfqg);
2787 cfq_log_cfqq(cfqd, cfqq, "alloced");
2788 } else
2789 cfqq = &cfqd->oom_cfqq;
2792 if (new_cfqq)
2793 kmem_cache_free(cfq_pool, new_cfqq);
2795 return cfqq;
2798 static struct cfq_queue **
2799 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2801 switch (ioprio_class) {
2802 case IOPRIO_CLASS_RT:
2803 return &cfqd->async_cfqq[0][ioprio];
2804 case IOPRIO_CLASS_BE:
2805 return &cfqd->async_cfqq[1][ioprio];
2806 case IOPRIO_CLASS_IDLE:
2807 return &cfqd->async_idle_cfqq;
2808 default:
2809 BUG();
2813 static struct cfq_queue *
2814 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2815 gfp_t gfp_mask)
2817 const int ioprio = task_ioprio(ioc);
2818 const int ioprio_class = task_ioprio_class(ioc);
2819 struct cfq_queue **async_cfqq = NULL;
2820 struct cfq_queue *cfqq = NULL;
2822 if (!is_sync) {
2823 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2824 cfqq = *async_cfqq;
2827 if (!cfqq)
2828 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2831 * pin the queue now that it's allocated, scheduler exit will prune it
2833 if (!is_sync && !(*async_cfqq)) {
2834 atomic_inc(&cfqq->ref);
2835 *async_cfqq = cfqq;
2838 atomic_inc(&cfqq->ref);
2839 return cfqq;
2843 * We drop cfq io contexts lazily, so we may find a dead one.
2845 static void
2846 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2847 struct cfq_io_context *cic)
2849 unsigned long flags;
2851 WARN_ON(!list_empty(&cic->queue_list));
2853 spin_lock_irqsave(&ioc->lock, flags);
2855 BUG_ON(ioc->ioc_data == cic);
2857 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2858 hlist_del_rcu(&cic->cic_list);
2859 spin_unlock_irqrestore(&ioc->lock, flags);
2861 cfq_cic_free(cic);
2864 static struct cfq_io_context *
2865 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2867 struct cfq_io_context *cic;
2868 unsigned long flags;
2869 void *k;
2871 if (unlikely(!ioc))
2872 return NULL;
2874 rcu_read_lock();
2877 * we maintain a last-hit cache, to avoid browsing over the tree
2879 cic = rcu_dereference(ioc->ioc_data);
2880 if (cic && cic->key == cfqd) {
2881 rcu_read_unlock();
2882 return cic;
2885 do {
2886 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2887 rcu_read_unlock();
2888 if (!cic)
2889 break;
2890 /* ->key must be copied to avoid race with cfq_exit_queue() */
2891 k = cic->key;
2892 if (unlikely(!k)) {
2893 cfq_drop_dead_cic(cfqd, ioc, cic);
2894 rcu_read_lock();
2895 continue;
2898 spin_lock_irqsave(&ioc->lock, flags);
2899 rcu_assign_pointer(ioc->ioc_data, cic);
2900 spin_unlock_irqrestore(&ioc->lock, flags);
2901 break;
2902 } while (1);
2904 return cic;
2908 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2909 * the process specific cfq io context when entered from the block layer.
2910 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2912 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2913 struct cfq_io_context *cic, gfp_t gfp_mask)
2915 unsigned long flags;
2916 int ret;
2918 ret = radix_tree_preload(gfp_mask);
2919 if (!ret) {
2920 cic->ioc = ioc;
2921 cic->key = cfqd;
2923 spin_lock_irqsave(&ioc->lock, flags);
2924 ret = radix_tree_insert(&ioc->radix_root,
2925 (unsigned long) cfqd, cic);
2926 if (!ret)
2927 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2928 spin_unlock_irqrestore(&ioc->lock, flags);
2930 radix_tree_preload_end();
2932 if (!ret) {
2933 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2934 list_add(&cic->queue_list, &cfqd->cic_list);
2935 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2939 if (ret)
2940 printk(KERN_ERR "cfq: cic link failed!\n");
2942 return ret;
2946 * Setup general io context and cfq io context. There can be several cfq
2947 * io contexts per general io context, if this process is doing io to more
2948 * than one device managed by cfq.
2950 static struct cfq_io_context *
2951 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2953 struct io_context *ioc = NULL;
2954 struct cfq_io_context *cic;
2956 might_sleep_if(gfp_mask & __GFP_WAIT);
2958 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2959 if (!ioc)
2960 return NULL;
2962 cic = cfq_cic_lookup(cfqd, ioc);
2963 if (cic)
2964 goto out;
2966 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2967 if (cic == NULL)
2968 goto err;
2970 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2971 goto err_free;
2973 out:
2974 smp_read_barrier_depends();
2975 if (unlikely(ioc->ioprio_changed))
2976 cfq_ioc_set_ioprio(ioc);
2978 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2979 if (unlikely(ioc->cgroup_changed))
2980 cfq_ioc_set_cgroup(ioc);
2981 #endif
2982 return cic;
2983 err_free:
2984 cfq_cic_free(cic);
2985 err:
2986 put_io_context(ioc);
2987 return NULL;
2990 static void
2991 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2993 unsigned long elapsed = jiffies - cic->last_end_request;
2994 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2996 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2997 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2998 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3001 static void
3002 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3003 struct request *rq)
3005 sector_t sdist = 0;
3006 sector_t n_sec = blk_rq_sectors(rq);
3007 if (cfqq->last_request_pos) {
3008 if (cfqq->last_request_pos < blk_rq_pos(rq))
3009 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3010 else
3011 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3014 cfqq->seek_history <<= 1;
3015 if (blk_queue_nonrot(cfqd->queue))
3016 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3017 else
3018 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3022 * Disable idle window if the process thinks too long or seeks so much that
3023 * it doesn't matter
3025 static void
3026 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3027 struct cfq_io_context *cic)
3029 int old_idle, enable_idle;
3032 * Don't idle for async or idle io prio class
3034 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3035 return;
3037 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3039 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3040 cfq_mark_cfqq_deep(cfqq);
3042 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3043 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3044 enable_idle = 0;
3045 else if (sample_valid(cic->ttime_samples)) {
3046 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3047 enable_idle = 0;
3048 else
3049 enable_idle = 1;
3052 if (old_idle != enable_idle) {
3053 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3054 if (enable_idle)
3055 cfq_mark_cfqq_idle_window(cfqq);
3056 else
3057 cfq_clear_cfqq_idle_window(cfqq);
3062 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3063 * no or if we aren't sure, a 1 will cause a preempt.
3065 static bool
3066 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3067 struct request *rq)
3069 struct cfq_queue *cfqq;
3071 cfqq = cfqd->active_queue;
3072 if (!cfqq)
3073 return false;
3075 if (cfq_class_idle(new_cfqq))
3076 return false;
3078 if (cfq_class_idle(cfqq))
3079 return true;
3082 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3084 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3085 return false;
3088 * if the new request is sync, but the currently running queue is
3089 * not, let the sync request have priority.
3091 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3092 return true;
3094 if (new_cfqq->cfqg != cfqq->cfqg)
3095 return false;
3097 if (cfq_slice_used(cfqq))
3098 return true;
3100 /* Allow preemption only if we are idling on sync-noidle tree */
3101 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3102 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3103 new_cfqq->service_tree->count == 2 &&
3104 RB_EMPTY_ROOT(&cfqq->sort_list))
3105 return true;
3108 * So both queues are sync. Let the new request get disk time if
3109 * it's a metadata request and the current queue is doing regular IO.
3111 if (rq_is_meta(rq) && !cfqq->meta_pending)
3112 return true;
3115 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3117 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3118 return true;
3120 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3121 return false;
3124 * if this request is as-good as one we would expect from the
3125 * current cfqq, let it preempt
3127 if (cfq_rq_close(cfqd, cfqq, rq))
3128 return true;
3130 return false;
3134 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3135 * let it have half of its nominal slice.
3137 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3139 cfq_log_cfqq(cfqd, cfqq, "preempt");
3140 cfq_slice_expired(cfqd, 1);
3143 * Put the new queue at the front of the of the current list,
3144 * so we know that it will be selected next.
3146 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3148 cfq_service_tree_add(cfqd, cfqq, 1);
3150 cfqq->slice_end = 0;
3151 cfq_mark_cfqq_slice_new(cfqq);
3155 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3156 * something we should do about it
3158 static void
3159 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3160 struct request *rq)
3162 struct cfq_io_context *cic = RQ_CIC(rq);
3164 cfqd->rq_queued++;
3165 if (rq_is_meta(rq))
3166 cfqq->meta_pending++;
3168 cfq_update_io_thinktime(cfqd, cic);
3169 cfq_update_io_seektime(cfqd, cfqq, rq);
3170 cfq_update_idle_window(cfqd, cfqq, cic);
3172 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3174 if (cfqq == cfqd->active_queue) {
3176 * Remember that we saw a request from this process, but
3177 * don't start queuing just yet. Otherwise we risk seeing lots
3178 * of tiny requests, because we disrupt the normal plugging
3179 * and merging. If the request is already larger than a single
3180 * page, let it rip immediately. For that case we assume that
3181 * merging is already done. Ditto for a busy system that
3182 * has other work pending, don't risk delaying until the
3183 * idle timer unplug to continue working.
3185 if (cfq_cfqq_wait_request(cfqq)) {
3186 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3187 cfqd->busy_queues > 1) {
3188 del_timer(&cfqd->idle_slice_timer);
3189 cfq_clear_cfqq_wait_request(cfqq);
3190 __blk_run_queue(cfqd->queue);
3191 } else
3192 cfq_mark_cfqq_must_dispatch(cfqq);
3194 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3196 * not the active queue - expire current slice if it is
3197 * idle and has expired it's mean thinktime or this new queue
3198 * has some old slice time left and is of higher priority or
3199 * this new queue is RT and the current one is BE
3201 cfq_preempt_queue(cfqd, cfqq);
3202 __blk_run_queue(cfqd->queue);
3206 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3208 struct cfq_data *cfqd = q->elevator->elevator_data;
3209 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3211 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3212 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3214 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3215 list_add_tail(&rq->queuelist, &cfqq->fifo);
3216 cfq_add_rq_rb(rq);
3218 cfq_rq_enqueued(cfqd, cfqq, rq);
3222 * Update hw_tag based on peak queue depth over 50 samples under
3223 * sufficient load.
3225 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3227 struct cfq_queue *cfqq = cfqd->active_queue;
3229 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3230 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3232 if (cfqd->hw_tag == 1)
3233 return;
3235 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3236 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3237 return;
3240 * If active queue hasn't enough requests and can idle, cfq might not
3241 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3242 * case
3244 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3245 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3246 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3247 return;
3249 if (cfqd->hw_tag_samples++ < 50)
3250 return;
3252 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3253 cfqd->hw_tag = 1;
3254 else
3255 cfqd->hw_tag = 0;
3258 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3260 struct cfq_io_context *cic = cfqd->active_cic;
3262 /* If there are other queues in the group, don't wait */
3263 if (cfqq->cfqg->nr_cfqq > 1)
3264 return false;
3266 if (cfq_slice_used(cfqq))
3267 return true;
3269 /* if slice left is less than think time, wait busy */
3270 if (cic && sample_valid(cic->ttime_samples)
3271 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3272 return true;
3275 * If think times is less than a jiffy than ttime_mean=0 and above
3276 * will not be true. It might happen that slice has not expired yet
3277 * but will expire soon (4-5 ns) during select_queue(). To cover the
3278 * case where think time is less than a jiffy, mark the queue wait
3279 * busy if only 1 jiffy is left in the slice.
3281 if (cfqq->slice_end - jiffies == 1)
3282 return true;
3284 return false;
3287 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3289 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3290 struct cfq_data *cfqd = cfqq->cfqd;
3291 const int sync = rq_is_sync(rq);
3292 unsigned long now;
3294 now = jiffies;
3295 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3297 cfq_update_hw_tag(cfqd);
3299 WARN_ON(!cfqd->rq_in_driver);
3300 WARN_ON(!cfqq->dispatched);
3301 cfqd->rq_in_driver--;
3302 cfqq->dispatched--;
3304 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3306 if (sync) {
3307 RQ_CIC(rq)->last_end_request = now;
3308 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3309 cfqd->last_delayed_sync = now;
3313 * If this is the active queue, check if it needs to be expired,
3314 * or if we want to idle in case it has no pending requests.
3316 if (cfqd->active_queue == cfqq) {
3317 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3319 if (cfq_cfqq_slice_new(cfqq)) {
3320 cfq_set_prio_slice(cfqd, cfqq);
3321 cfq_clear_cfqq_slice_new(cfqq);
3325 * Should we wait for next request to come in before we expire
3326 * the queue.
3328 if (cfq_should_wait_busy(cfqd, cfqq)) {
3329 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3330 cfq_mark_cfqq_wait_busy(cfqq);
3331 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3335 * Idling is not enabled on:
3336 * - expired queues
3337 * - idle-priority queues
3338 * - async queues
3339 * - queues with still some requests queued
3340 * - when there is a close cooperator
3342 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3343 cfq_slice_expired(cfqd, 1);
3344 else if (sync && cfqq_empty &&
3345 !cfq_close_cooperator(cfqd, cfqq)) {
3346 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3348 * Idling is enabled for SYNC_WORKLOAD.
3349 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3350 * only if we processed at least one !rq_noidle request
3352 if (cfqd->serving_type == SYNC_WORKLOAD
3353 || cfqd->noidle_tree_requires_idle
3354 || cfqq->cfqg->nr_cfqq == 1)
3355 cfq_arm_slice_timer(cfqd);
3359 if (!cfqd->rq_in_driver)
3360 cfq_schedule_dispatch(cfqd);
3364 * we temporarily boost lower priority queues if they are holding fs exclusive
3365 * resources. they are boosted to normal prio (CLASS_BE/4)
3367 static void cfq_prio_boost(struct cfq_queue *cfqq)
3369 if (has_fs_excl()) {
3371 * boost idle prio on transactions that would lock out other
3372 * users of the filesystem
3374 if (cfq_class_idle(cfqq))
3375 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3376 if (cfqq->ioprio > IOPRIO_NORM)
3377 cfqq->ioprio = IOPRIO_NORM;
3378 } else {
3380 * unboost the queue (if needed)
3382 cfqq->ioprio_class = cfqq->org_ioprio_class;
3383 cfqq->ioprio = cfqq->org_ioprio;
3387 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3389 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3390 cfq_mark_cfqq_must_alloc_slice(cfqq);
3391 return ELV_MQUEUE_MUST;
3394 return ELV_MQUEUE_MAY;
3397 static int cfq_may_queue(struct request_queue *q, int rw)
3399 struct cfq_data *cfqd = q->elevator->elevator_data;
3400 struct task_struct *tsk = current;
3401 struct cfq_io_context *cic;
3402 struct cfq_queue *cfqq;
3405 * don't force setup of a queue from here, as a call to may_queue
3406 * does not necessarily imply that a request actually will be queued.
3407 * so just lookup a possibly existing queue, or return 'may queue'
3408 * if that fails
3410 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3411 if (!cic)
3412 return ELV_MQUEUE_MAY;
3414 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3415 if (cfqq) {
3416 cfq_init_prio_data(cfqq, cic->ioc);
3417 cfq_prio_boost(cfqq);
3419 return __cfq_may_queue(cfqq);
3422 return ELV_MQUEUE_MAY;
3426 * queue lock held here
3428 static void cfq_put_request(struct request *rq)
3430 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3432 if (cfqq) {
3433 const int rw = rq_data_dir(rq);
3435 BUG_ON(!cfqq->allocated[rw]);
3436 cfqq->allocated[rw]--;
3438 put_io_context(RQ_CIC(rq)->ioc);
3440 rq->elevator_private = NULL;
3441 rq->elevator_private2 = NULL;
3443 cfq_put_queue(cfqq);
3447 static struct cfq_queue *
3448 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3449 struct cfq_queue *cfqq)
3451 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3452 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3453 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3454 cfq_put_queue(cfqq);
3455 return cic_to_cfqq(cic, 1);
3459 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3460 * was the last process referring to said cfqq.
3462 static struct cfq_queue *
3463 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3465 if (cfqq_process_refs(cfqq) == 1) {
3466 cfqq->pid = current->pid;
3467 cfq_clear_cfqq_coop(cfqq);
3468 cfq_clear_cfqq_split_coop(cfqq);
3469 return cfqq;
3472 cic_set_cfqq(cic, NULL, 1);
3473 cfq_put_queue(cfqq);
3474 return NULL;
3477 * Allocate cfq data structures associated with this request.
3479 static int
3480 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3482 struct cfq_data *cfqd = q->elevator->elevator_data;
3483 struct cfq_io_context *cic;
3484 const int rw = rq_data_dir(rq);
3485 const bool is_sync = rq_is_sync(rq);
3486 struct cfq_queue *cfqq;
3487 unsigned long flags;
3489 might_sleep_if(gfp_mask & __GFP_WAIT);
3491 cic = cfq_get_io_context(cfqd, gfp_mask);
3493 spin_lock_irqsave(q->queue_lock, flags);
3495 if (!cic)
3496 goto queue_fail;
3498 new_queue:
3499 cfqq = cic_to_cfqq(cic, is_sync);
3500 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3501 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3502 cic_set_cfqq(cic, cfqq, is_sync);
3503 } else {
3505 * If the queue was seeky for too long, break it apart.
3507 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3508 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3509 cfqq = split_cfqq(cic, cfqq);
3510 if (!cfqq)
3511 goto new_queue;
3515 * Check to see if this queue is scheduled to merge with
3516 * another, closely cooperating queue. The merging of
3517 * queues happens here as it must be done in process context.
3518 * The reference on new_cfqq was taken in merge_cfqqs.
3520 if (cfqq->new_cfqq)
3521 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3524 cfqq->allocated[rw]++;
3525 atomic_inc(&cfqq->ref);
3527 spin_unlock_irqrestore(q->queue_lock, flags);
3529 rq->elevator_private = cic;
3530 rq->elevator_private2 = cfqq;
3531 return 0;
3533 queue_fail:
3534 if (cic)
3535 put_io_context(cic->ioc);
3537 cfq_schedule_dispatch(cfqd);
3538 spin_unlock_irqrestore(q->queue_lock, flags);
3539 cfq_log(cfqd, "set_request fail");
3540 return 1;
3543 static void cfq_kick_queue(struct work_struct *work)
3545 struct cfq_data *cfqd =
3546 container_of(work, struct cfq_data, unplug_work);
3547 struct request_queue *q = cfqd->queue;
3549 spin_lock_irq(q->queue_lock);
3550 __blk_run_queue(cfqd->queue);
3551 spin_unlock_irq(q->queue_lock);
3555 * Timer running if the active_queue is currently idling inside its time slice
3557 static void cfq_idle_slice_timer(unsigned long data)
3559 struct cfq_data *cfqd = (struct cfq_data *) data;
3560 struct cfq_queue *cfqq;
3561 unsigned long flags;
3562 int timed_out = 1;
3564 cfq_log(cfqd, "idle timer fired");
3566 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3568 cfqq = cfqd->active_queue;
3569 if (cfqq) {
3570 timed_out = 0;
3573 * We saw a request before the queue expired, let it through
3575 if (cfq_cfqq_must_dispatch(cfqq))
3576 goto out_kick;
3579 * expired
3581 if (cfq_slice_used(cfqq))
3582 goto expire;
3585 * only expire and reinvoke request handler, if there are
3586 * other queues with pending requests
3588 if (!cfqd->busy_queues)
3589 goto out_cont;
3592 * not expired and it has a request pending, let it dispatch
3594 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3595 goto out_kick;
3598 * Queue depth flag is reset only when the idle didn't succeed
3600 cfq_clear_cfqq_deep(cfqq);
3602 expire:
3603 cfq_slice_expired(cfqd, timed_out);
3604 out_kick:
3605 cfq_schedule_dispatch(cfqd);
3606 out_cont:
3607 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3610 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3612 del_timer_sync(&cfqd->idle_slice_timer);
3613 cancel_work_sync(&cfqd->unplug_work);
3616 static void cfq_put_async_queues(struct cfq_data *cfqd)
3618 int i;
3620 for (i = 0; i < IOPRIO_BE_NR; i++) {
3621 if (cfqd->async_cfqq[0][i])
3622 cfq_put_queue(cfqd->async_cfqq[0][i]);
3623 if (cfqd->async_cfqq[1][i])
3624 cfq_put_queue(cfqd->async_cfqq[1][i]);
3627 if (cfqd->async_idle_cfqq)
3628 cfq_put_queue(cfqd->async_idle_cfqq);
3631 static void cfq_cfqd_free(struct rcu_head *head)
3633 kfree(container_of(head, struct cfq_data, rcu));
3636 static void cfq_exit_queue(struct elevator_queue *e)
3638 struct cfq_data *cfqd = e->elevator_data;
3639 struct request_queue *q = cfqd->queue;
3641 cfq_shutdown_timer_wq(cfqd);
3643 spin_lock_irq(q->queue_lock);
3645 if (cfqd->active_queue)
3646 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3648 while (!list_empty(&cfqd->cic_list)) {
3649 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3650 struct cfq_io_context,
3651 queue_list);
3653 __cfq_exit_single_io_context(cfqd, cic);
3656 cfq_put_async_queues(cfqd);
3657 cfq_release_cfq_groups(cfqd);
3658 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3660 spin_unlock_irq(q->queue_lock);
3662 cfq_shutdown_timer_wq(cfqd);
3664 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3665 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3668 static void *cfq_init_queue(struct request_queue *q)
3670 struct cfq_data *cfqd;
3671 int i, j;
3672 struct cfq_group *cfqg;
3673 struct cfq_rb_root *st;
3675 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3676 if (!cfqd)
3677 return NULL;
3679 /* Init root service tree */
3680 cfqd->grp_service_tree = CFQ_RB_ROOT;
3682 /* Init root group */
3683 cfqg = &cfqd->root_group;
3684 for_each_cfqg_st(cfqg, i, j, st)
3685 *st = CFQ_RB_ROOT;
3686 RB_CLEAR_NODE(&cfqg->rb_node);
3688 /* Give preference to root group over other groups */
3689 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3691 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3693 * Take a reference to root group which we never drop. This is just
3694 * to make sure that cfq_put_cfqg() does not try to kfree root group
3696 atomic_set(&cfqg->ref, 1);
3697 rcu_read_lock();
3698 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3700 rcu_read_unlock();
3701 #endif
3703 * Not strictly needed (since RB_ROOT just clears the node and we
3704 * zeroed cfqd on alloc), but better be safe in case someone decides
3705 * to add magic to the rb code
3707 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3708 cfqd->prio_trees[i] = RB_ROOT;
3711 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3712 * Grab a permanent reference to it, so that the normal code flow
3713 * will not attempt to free it.
3715 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3716 atomic_inc(&cfqd->oom_cfqq.ref);
3717 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3719 INIT_LIST_HEAD(&cfqd->cic_list);
3721 cfqd->queue = q;
3723 init_timer(&cfqd->idle_slice_timer);
3724 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3725 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3727 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3729 cfqd->cfq_quantum = cfq_quantum;
3730 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3731 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3732 cfqd->cfq_back_max = cfq_back_max;
3733 cfqd->cfq_back_penalty = cfq_back_penalty;
3734 cfqd->cfq_slice[0] = cfq_slice_async;
3735 cfqd->cfq_slice[1] = cfq_slice_sync;
3736 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3737 cfqd->cfq_slice_idle = cfq_slice_idle;
3738 cfqd->cfq_latency = 1;
3739 cfqd->cfq_group_isolation = 0;
3740 cfqd->hw_tag = -1;
3742 * we optimistically start assuming sync ops weren't delayed in last
3743 * second, in order to have larger depth for async operations.
3745 cfqd->last_delayed_sync = jiffies - HZ;
3746 INIT_RCU_HEAD(&cfqd->rcu);
3747 return cfqd;
3750 static void cfq_slab_kill(void)
3753 * Caller already ensured that pending RCU callbacks are completed,
3754 * so we should have no busy allocations at this point.
3756 if (cfq_pool)
3757 kmem_cache_destroy(cfq_pool);
3758 if (cfq_ioc_pool)
3759 kmem_cache_destroy(cfq_ioc_pool);
3762 static int __init cfq_slab_setup(void)
3764 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3765 if (!cfq_pool)
3766 goto fail;
3768 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3769 if (!cfq_ioc_pool)
3770 goto fail;
3772 return 0;
3773 fail:
3774 cfq_slab_kill();
3775 return -ENOMEM;
3779 * sysfs parts below -->
3781 static ssize_t
3782 cfq_var_show(unsigned int var, char *page)
3784 return sprintf(page, "%d\n", var);
3787 static ssize_t
3788 cfq_var_store(unsigned int *var, const char *page, size_t count)
3790 char *p = (char *) page;
3792 *var = simple_strtoul(p, &p, 10);
3793 return count;
3796 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3797 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3799 struct cfq_data *cfqd = e->elevator_data; \
3800 unsigned int __data = __VAR; \
3801 if (__CONV) \
3802 __data = jiffies_to_msecs(__data); \
3803 return cfq_var_show(__data, (page)); \
3805 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3806 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3807 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3808 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3809 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3810 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3811 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3812 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3813 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3814 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3815 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3816 #undef SHOW_FUNCTION
3818 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3819 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3821 struct cfq_data *cfqd = e->elevator_data; \
3822 unsigned int __data; \
3823 int ret = cfq_var_store(&__data, (page), count); \
3824 if (__data < (MIN)) \
3825 __data = (MIN); \
3826 else if (__data > (MAX)) \
3827 __data = (MAX); \
3828 if (__CONV) \
3829 *(__PTR) = msecs_to_jiffies(__data); \
3830 else \
3831 *(__PTR) = __data; \
3832 return ret; \
3834 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3835 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3836 UINT_MAX, 1);
3837 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3838 UINT_MAX, 1);
3839 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3840 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3841 UINT_MAX, 0);
3842 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3843 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3844 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3845 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3846 UINT_MAX, 0);
3847 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3848 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3849 #undef STORE_FUNCTION
3851 #define CFQ_ATTR(name) \
3852 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3854 static struct elv_fs_entry cfq_attrs[] = {
3855 CFQ_ATTR(quantum),
3856 CFQ_ATTR(fifo_expire_sync),
3857 CFQ_ATTR(fifo_expire_async),
3858 CFQ_ATTR(back_seek_max),
3859 CFQ_ATTR(back_seek_penalty),
3860 CFQ_ATTR(slice_sync),
3861 CFQ_ATTR(slice_async),
3862 CFQ_ATTR(slice_async_rq),
3863 CFQ_ATTR(slice_idle),
3864 CFQ_ATTR(low_latency),
3865 CFQ_ATTR(group_isolation),
3866 __ATTR_NULL
3869 static struct elevator_type iosched_cfq = {
3870 .ops = {
3871 .elevator_merge_fn = cfq_merge,
3872 .elevator_merged_fn = cfq_merged_request,
3873 .elevator_merge_req_fn = cfq_merged_requests,
3874 .elevator_allow_merge_fn = cfq_allow_merge,
3875 .elevator_dispatch_fn = cfq_dispatch_requests,
3876 .elevator_add_req_fn = cfq_insert_request,
3877 .elevator_activate_req_fn = cfq_activate_request,
3878 .elevator_deactivate_req_fn = cfq_deactivate_request,
3879 .elevator_queue_empty_fn = cfq_queue_empty,
3880 .elevator_completed_req_fn = cfq_completed_request,
3881 .elevator_former_req_fn = elv_rb_former_request,
3882 .elevator_latter_req_fn = elv_rb_latter_request,
3883 .elevator_set_req_fn = cfq_set_request,
3884 .elevator_put_req_fn = cfq_put_request,
3885 .elevator_may_queue_fn = cfq_may_queue,
3886 .elevator_init_fn = cfq_init_queue,
3887 .elevator_exit_fn = cfq_exit_queue,
3888 .trim = cfq_free_io_context,
3890 .elevator_attrs = cfq_attrs,
3891 .elevator_name = "cfq",
3892 .elevator_owner = THIS_MODULE,
3895 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3896 static struct blkio_policy_type blkio_policy_cfq = {
3897 .ops = {
3898 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3899 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3902 #else
3903 static struct blkio_policy_type blkio_policy_cfq;
3904 #endif
3906 static int __init cfq_init(void)
3909 * could be 0 on HZ < 1000 setups
3911 if (!cfq_slice_async)
3912 cfq_slice_async = 1;
3913 if (!cfq_slice_idle)
3914 cfq_slice_idle = 1;
3916 if (cfq_slab_setup())
3917 return -ENOMEM;
3919 elv_register(&iosched_cfq);
3920 blkio_policy_register(&blkio_policy_cfq);
3922 return 0;
3925 static void __exit cfq_exit(void)
3927 DECLARE_COMPLETION_ONSTACK(all_gone);
3928 blkio_policy_unregister(&blkio_policy_cfq);
3929 elv_unregister(&iosched_cfq);
3930 ioc_gone = &all_gone;
3931 /* ioc_gone's update must be visible before reading ioc_count */
3932 smp_wmb();
3935 * this also protects us from entering cfq_slab_kill() with
3936 * pending RCU callbacks
3938 if (elv_ioc_count_read(cfq_ioc_count))
3939 wait_for_completion(&all_gone);
3940 cfq_slab_kill();
3943 module_init(cfq_init);
3944 module_exit(cfq_exit);
3946 MODULE_AUTHOR("Jens Axboe");
3947 MODULE_LICENSE("GPL");
3948 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");