spi: rspi: Fix loopback mode for Dual/Quad SPI Transfers
[linux/fpc-iii.git] / net / vmw_vsock / vmci_transport.c
blob687360da62d9f5e9a0075ba1a532da33ba973f98
1 /*
2 * VMware vSockets Driver
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/cred.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/kmod.h>
23 #include <linux/list.h>
24 #include <linux/miscdevice.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/net.h>
28 #include <linux/poll.h>
29 #include <linux/skbuff.h>
30 #include <linux/smp.h>
31 #include <linux/socket.h>
32 #include <linux/stddef.h>
33 #include <linux/unistd.h>
34 #include <linux/wait.h>
35 #include <linux/workqueue.h>
36 #include <net/sock.h>
37 #include <net/af_vsock.h>
39 #include "vmci_transport_notify.h"
41 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
42 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
43 static void vmci_transport_peer_attach_cb(u32 sub_id,
44 const struct vmci_event_data *ed,
45 void *client_data);
46 static void vmci_transport_peer_detach_cb(u32 sub_id,
47 const struct vmci_event_data *ed,
48 void *client_data);
49 static void vmci_transport_recv_pkt_work(struct work_struct *work);
50 static int vmci_transport_recv_listen(struct sock *sk,
51 struct vmci_transport_packet *pkt);
52 static int vmci_transport_recv_connecting_server(
53 struct sock *sk,
54 struct sock *pending,
55 struct vmci_transport_packet *pkt);
56 static int vmci_transport_recv_connecting_client(
57 struct sock *sk,
58 struct vmci_transport_packet *pkt);
59 static int vmci_transport_recv_connecting_client_negotiate(
60 struct sock *sk,
61 struct vmci_transport_packet *pkt);
62 static int vmci_transport_recv_connecting_client_invalid(
63 struct sock *sk,
64 struct vmci_transport_packet *pkt);
65 static int vmci_transport_recv_connected(struct sock *sk,
66 struct vmci_transport_packet *pkt);
67 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
68 static u16 vmci_transport_new_proto_supported_versions(void);
69 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
70 bool old_pkt_proto);
72 struct vmci_transport_recv_pkt_info {
73 struct work_struct work;
74 struct sock *sk;
75 struct vmci_transport_packet pkt;
78 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
79 VMCI_INVALID_ID };
80 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
82 static int PROTOCOL_OVERRIDE = -1;
84 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN 128
85 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE 262144
86 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX 262144
88 /* The default peer timeout indicates how long we will wait for a peer response
89 * to a control message.
91 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
93 #define SS_LISTEN 255
95 /* Helper function to convert from a VMCI error code to a VSock error code. */
97 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
99 int err;
101 switch (vmci_error) {
102 case VMCI_ERROR_NO_MEM:
103 err = ENOMEM;
104 break;
105 case VMCI_ERROR_DUPLICATE_ENTRY:
106 case VMCI_ERROR_ALREADY_EXISTS:
107 err = EADDRINUSE;
108 break;
109 case VMCI_ERROR_NO_ACCESS:
110 err = EPERM;
111 break;
112 case VMCI_ERROR_NO_RESOURCES:
113 err = ENOBUFS;
114 break;
115 case VMCI_ERROR_INVALID_RESOURCE:
116 err = EHOSTUNREACH;
117 break;
118 case VMCI_ERROR_INVALID_ARGS:
119 default:
120 err = EINVAL;
123 return err > 0 ? -err : err;
126 static u32 vmci_transport_peer_rid(u32 peer_cid)
128 if (VMADDR_CID_HYPERVISOR == peer_cid)
129 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
131 return VMCI_TRANSPORT_PACKET_RID;
134 static inline void
135 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
136 struct sockaddr_vm *src,
137 struct sockaddr_vm *dst,
138 u8 type,
139 u64 size,
140 u64 mode,
141 struct vmci_transport_waiting_info *wait,
142 u16 proto,
143 struct vmci_handle handle)
145 /* We register the stream control handler as an any cid handle so we
146 * must always send from a source address of VMADDR_CID_ANY
148 pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
149 VMCI_TRANSPORT_PACKET_RID);
150 pkt->dg.dst = vmci_make_handle(dst->svm_cid,
151 vmci_transport_peer_rid(dst->svm_cid));
152 pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
153 pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
154 pkt->type = type;
155 pkt->src_port = src->svm_port;
156 pkt->dst_port = dst->svm_port;
157 memset(&pkt->proto, 0, sizeof(pkt->proto));
158 memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
160 switch (pkt->type) {
161 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
162 pkt->u.size = 0;
163 break;
165 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
166 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
167 pkt->u.size = size;
168 break;
170 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
171 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
172 pkt->u.handle = handle;
173 break;
175 case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
176 case VMCI_TRANSPORT_PACKET_TYPE_READ:
177 case VMCI_TRANSPORT_PACKET_TYPE_RST:
178 pkt->u.size = 0;
179 break;
181 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
182 pkt->u.mode = mode;
183 break;
185 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
186 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
187 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
188 break;
190 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
191 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
192 pkt->u.size = size;
193 pkt->proto = proto;
194 break;
198 static inline void
199 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
200 struct sockaddr_vm *local,
201 struct sockaddr_vm *remote)
203 vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
204 vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
207 static int
208 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
209 struct sockaddr_vm *src,
210 struct sockaddr_vm *dst,
211 enum vmci_transport_packet_type type,
212 u64 size,
213 u64 mode,
214 struct vmci_transport_waiting_info *wait,
215 u16 proto,
216 struct vmci_handle handle,
217 bool convert_error)
219 int err;
221 vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
222 proto, handle);
223 err = vmci_datagram_send(&pkt->dg);
224 if (convert_error && (err < 0))
225 return vmci_transport_error_to_vsock_error(err);
227 return err;
230 static int
231 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
232 enum vmci_transport_packet_type type,
233 u64 size,
234 u64 mode,
235 struct vmci_transport_waiting_info *wait,
236 struct vmci_handle handle)
238 struct vmci_transport_packet reply;
239 struct sockaddr_vm src, dst;
241 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
242 return 0;
243 } else {
244 vmci_transport_packet_get_addresses(pkt, &src, &dst);
245 return __vmci_transport_send_control_pkt(&reply, &src, &dst,
246 type,
247 size, mode, wait,
248 VSOCK_PROTO_INVALID,
249 handle, true);
253 static int
254 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
255 struct sockaddr_vm *dst,
256 enum vmci_transport_packet_type type,
257 u64 size,
258 u64 mode,
259 struct vmci_transport_waiting_info *wait,
260 struct vmci_handle handle)
262 /* Note that it is safe to use a single packet across all CPUs since
263 * two tasklets of the same type are guaranteed to not ever run
264 * simultaneously. If that ever changes, or VMCI stops using tasklets,
265 * we can use per-cpu packets.
267 static struct vmci_transport_packet pkt;
269 return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
270 size, mode, wait,
271 VSOCK_PROTO_INVALID, handle,
272 false);
275 static int
276 vmci_transport_send_control_pkt(struct sock *sk,
277 enum vmci_transport_packet_type type,
278 u64 size,
279 u64 mode,
280 struct vmci_transport_waiting_info *wait,
281 u16 proto,
282 struct vmci_handle handle)
284 struct vmci_transport_packet *pkt;
285 struct vsock_sock *vsk;
286 int err;
288 vsk = vsock_sk(sk);
290 if (!vsock_addr_bound(&vsk->local_addr))
291 return -EINVAL;
293 if (!vsock_addr_bound(&vsk->remote_addr))
294 return -EINVAL;
296 pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
297 if (!pkt)
298 return -ENOMEM;
300 err = __vmci_transport_send_control_pkt(pkt, &vsk->local_addr,
301 &vsk->remote_addr, type, size,
302 mode, wait, proto, handle,
303 true);
304 kfree(pkt);
306 return err;
309 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
310 struct sockaddr_vm *src,
311 struct vmci_transport_packet *pkt)
313 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
314 return 0;
315 return vmci_transport_send_control_pkt_bh(
316 dst, src,
317 VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
318 0, NULL, VMCI_INVALID_HANDLE);
321 static int vmci_transport_send_reset(struct sock *sk,
322 struct vmci_transport_packet *pkt)
324 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
325 return 0;
326 return vmci_transport_send_control_pkt(sk,
327 VMCI_TRANSPORT_PACKET_TYPE_RST,
328 0, 0, NULL, VSOCK_PROTO_INVALID,
329 VMCI_INVALID_HANDLE);
332 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
334 return vmci_transport_send_control_pkt(
336 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
337 size, 0, NULL,
338 VSOCK_PROTO_INVALID,
339 VMCI_INVALID_HANDLE);
342 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
343 u16 version)
345 return vmci_transport_send_control_pkt(
347 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
348 size, 0, NULL, version,
349 VMCI_INVALID_HANDLE);
352 static int vmci_transport_send_qp_offer(struct sock *sk,
353 struct vmci_handle handle)
355 return vmci_transport_send_control_pkt(
356 sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
357 0, NULL,
358 VSOCK_PROTO_INVALID, handle);
361 static int vmci_transport_send_attach(struct sock *sk,
362 struct vmci_handle handle)
364 return vmci_transport_send_control_pkt(
365 sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
366 0, 0, NULL, VSOCK_PROTO_INVALID,
367 handle);
370 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
372 return vmci_transport_reply_control_pkt_fast(
373 pkt,
374 VMCI_TRANSPORT_PACKET_TYPE_RST,
375 0, 0, NULL,
376 VMCI_INVALID_HANDLE);
379 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
380 struct sockaddr_vm *src)
382 return vmci_transport_send_control_pkt_bh(
383 dst, src,
384 VMCI_TRANSPORT_PACKET_TYPE_INVALID,
385 0, 0, NULL, VMCI_INVALID_HANDLE);
388 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
389 struct sockaddr_vm *src)
391 return vmci_transport_send_control_pkt_bh(
392 dst, src,
393 VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
394 0, NULL, VMCI_INVALID_HANDLE);
397 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
398 struct sockaddr_vm *src)
400 return vmci_transport_send_control_pkt_bh(
401 dst, src,
402 VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
403 0, NULL, VMCI_INVALID_HANDLE);
406 int vmci_transport_send_wrote(struct sock *sk)
408 return vmci_transport_send_control_pkt(
409 sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
410 0, NULL, VSOCK_PROTO_INVALID,
411 VMCI_INVALID_HANDLE);
414 int vmci_transport_send_read(struct sock *sk)
416 return vmci_transport_send_control_pkt(
417 sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
418 0, NULL, VSOCK_PROTO_INVALID,
419 VMCI_INVALID_HANDLE);
422 int vmci_transport_send_waiting_write(struct sock *sk,
423 struct vmci_transport_waiting_info *wait)
425 return vmci_transport_send_control_pkt(
426 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
427 0, 0, wait, VSOCK_PROTO_INVALID,
428 VMCI_INVALID_HANDLE);
431 int vmci_transport_send_waiting_read(struct sock *sk,
432 struct vmci_transport_waiting_info *wait)
434 return vmci_transport_send_control_pkt(
435 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
436 0, 0, wait, VSOCK_PROTO_INVALID,
437 VMCI_INVALID_HANDLE);
440 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
442 return vmci_transport_send_control_pkt(
443 &vsk->sk,
444 VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
445 0, mode, NULL,
446 VSOCK_PROTO_INVALID,
447 VMCI_INVALID_HANDLE);
450 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
452 return vmci_transport_send_control_pkt(sk,
453 VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
454 size, 0, NULL,
455 VSOCK_PROTO_INVALID,
456 VMCI_INVALID_HANDLE);
459 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
460 u16 version)
462 return vmci_transport_send_control_pkt(
463 sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
464 size, 0, NULL, version,
465 VMCI_INVALID_HANDLE);
468 static struct sock *vmci_transport_get_pending(
469 struct sock *listener,
470 struct vmci_transport_packet *pkt)
472 struct vsock_sock *vlistener;
473 struct vsock_sock *vpending;
474 struct sock *pending;
475 struct sockaddr_vm src;
477 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
479 vlistener = vsock_sk(listener);
481 list_for_each_entry(vpending, &vlistener->pending_links,
482 pending_links) {
483 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
484 pkt->dst_port == vpending->local_addr.svm_port) {
485 pending = sk_vsock(vpending);
486 sock_hold(pending);
487 goto found;
491 pending = NULL;
492 found:
493 return pending;
497 static void vmci_transport_release_pending(struct sock *pending)
499 sock_put(pending);
502 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
503 * trusted sockets 2) sockets from applications running as the same user as the
504 * VM (this is only true for the host side and only when using hosted products)
507 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
509 return vsock->trusted ||
510 vmci_is_context_owner(peer_cid, vsock->owner->uid);
513 /* We allow sending datagrams to and receiving datagrams from a restricted VM
514 * only if it is trusted as described in vmci_transport_is_trusted.
517 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
519 if (VMADDR_CID_HYPERVISOR == peer_cid)
520 return true;
522 if (vsock->cached_peer != peer_cid) {
523 vsock->cached_peer = peer_cid;
524 if (!vmci_transport_is_trusted(vsock, peer_cid) &&
525 (vmci_context_get_priv_flags(peer_cid) &
526 VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
527 vsock->cached_peer_allow_dgram = false;
528 } else {
529 vsock->cached_peer_allow_dgram = true;
533 return vsock->cached_peer_allow_dgram;
536 static int
537 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
538 struct vmci_handle *handle,
539 u64 produce_size,
540 u64 consume_size,
541 u32 peer, u32 flags, bool trusted)
543 int err = 0;
545 if (trusted) {
546 /* Try to allocate our queue pair as trusted. This will only
547 * work if vsock is running in the host.
550 err = vmci_qpair_alloc(qpair, handle, produce_size,
551 consume_size,
552 peer, flags,
553 VMCI_PRIVILEGE_FLAG_TRUSTED);
554 if (err != VMCI_ERROR_NO_ACCESS)
555 goto out;
559 err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
560 peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
561 out:
562 if (err < 0) {
563 pr_err("Could not attach to queue pair with %d\n",
564 err);
565 err = vmci_transport_error_to_vsock_error(err);
568 return err;
571 static int
572 vmci_transport_datagram_create_hnd(u32 resource_id,
573 u32 flags,
574 vmci_datagram_recv_cb recv_cb,
575 void *client_data,
576 struct vmci_handle *out_handle)
578 int err = 0;
580 /* Try to allocate our datagram handler as trusted. This will only work
581 * if vsock is running in the host.
584 err = vmci_datagram_create_handle_priv(resource_id, flags,
585 VMCI_PRIVILEGE_FLAG_TRUSTED,
586 recv_cb,
587 client_data, out_handle);
589 if (err == VMCI_ERROR_NO_ACCESS)
590 err = vmci_datagram_create_handle(resource_id, flags,
591 recv_cb, client_data,
592 out_handle);
594 return err;
597 /* This is invoked as part of a tasklet that's scheduled when the VMCI
598 * interrupt fires. This is run in bottom-half context and if it ever needs to
599 * sleep it should defer that work to a work queue.
602 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
604 struct sock *sk;
605 size_t size;
606 struct sk_buff *skb;
607 struct vsock_sock *vsk;
609 sk = (struct sock *)data;
611 /* This handler is privileged when this module is running on the host.
612 * We will get datagrams from all endpoints (even VMs that are in a
613 * restricted context). If we get one from a restricted context then
614 * the destination socket must be trusted.
616 * NOTE: We access the socket struct without holding the lock here.
617 * This is ok because the field we are interested is never modified
618 * outside of the create and destruct socket functions.
620 vsk = vsock_sk(sk);
621 if (!vmci_transport_allow_dgram(vsk, dg->src.context))
622 return VMCI_ERROR_NO_ACCESS;
624 size = VMCI_DG_SIZE(dg);
626 /* Attach the packet to the socket's receive queue as an sk_buff. */
627 skb = alloc_skb(size, GFP_ATOMIC);
628 if (!skb)
629 return VMCI_ERROR_NO_MEM;
631 /* sk_receive_skb() will do a sock_put(), so hold here. */
632 sock_hold(sk);
633 skb_put(skb, size);
634 memcpy(skb->data, dg, size);
635 sk_receive_skb(sk, skb, 0);
637 return VMCI_SUCCESS;
640 static bool vmci_transport_stream_allow(u32 cid, u32 port)
642 static const u32 non_socket_contexts[] = {
643 VMADDR_CID_RESERVED,
645 int i;
647 BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
649 for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
650 if (cid == non_socket_contexts[i])
651 return false;
654 return true;
657 /* This is invoked as part of a tasklet that's scheduled when the VMCI
658 * interrupt fires. This is run in bottom-half context but it defers most of
659 * its work to the packet handling work queue.
662 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
664 struct sock *sk;
665 struct sockaddr_vm dst;
666 struct sockaddr_vm src;
667 struct vmci_transport_packet *pkt;
668 struct vsock_sock *vsk;
669 bool bh_process_pkt;
670 int err;
672 sk = NULL;
673 err = VMCI_SUCCESS;
674 bh_process_pkt = false;
676 /* Ignore incoming packets from contexts without sockets, or resources
677 * that aren't vsock implementations.
680 if (!vmci_transport_stream_allow(dg->src.context, -1)
681 || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
682 return VMCI_ERROR_NO_ACCESS;
684 if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
685 /* Drop datagrams that do not contain full VSock packets. */
686 return VMCI_ERROR_INVALID_ARGS;
688 pkt = (struct vmci_transport_packet *)dg;
690 /* Find the socket that should handle this packet. First we look for a
691 * connected socket and if there is none we look for a socket bound to
692 * the destintation address.
694 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
695 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
697 sk = vsock_find_connected_socket(&src, &dst);
698 if (!sk) {
699 sk = vsock_find_bound_socket(&dst);
700 if (!sk) {
701 /* We could not find a socket for this specified
702 * address. If this packet is a RST, we just drop it.
703 * If it is another packet, we send a RST. Note that
704 * we do not send a RST reply to RSTs so that we do not
705 * continually send RSTs between two endpoints.
707 * Note that since this is a reply, dst is src and src
708 * is dst.
710 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
711 pr_err("unable to send reset\n");
713 err = VMCI_ERROR_NOT_FOUND;
714 goto out;
718 /* If the received packet type is beyond all types known to this
719 * implementation, reply with an invalid message. Hopefully this will
720 * help when implementing backwards compatibility in the future.
722 if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
723 vmci_transport_send_invalid_bh(&dst, &src);
724 err = VMCI_ERROR_INVALID_ARGS;
725 goto out;
728 /* This handler is privileged when this module is running on the host.
729 * We will get datagram connect requests from all endpoints (even VMs
730 * that are in a restricted context). If we get one from a restricted
731 * context then the destination socket must be trusted.
733 * NOTE: We access the socket struct without holding the lock here.
734 * This is ok because the field we are interested is never modified
735 * outside of the create and destruct socket functions.
737 vsk = vsock_sk(sk);
738 if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
739 err = VMCI_ERROR_NO_ACCESS;
740 goto out;
743 /* We do most everything in a work queue, but let's fast path the
744 * notification of reads and writes to help data transfer performance.
745 * We can only do this if there is no process context code executing
746 * for this socket since that may change the state.
748 bh_lock_sock(sk);
750 if (!sock_owned_by_user(sk)) {
751 /* The local context ID may be out of date, update it. */
752 vsk->local_addr.svm_cid = dst.svm_cid;
754 if (sk->sk_state == SS_CONNECTED)
755 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
756 sk, pkt, true, &dst, &src,
757 &bh_process_pkt);
760 bh_unlock_sock(sk);
762 if (!bh_process_pkt) {
763 struct vmci_transport_recv_pkt_info *recv_pkt_info;
765 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
766 if (!recv_pkt_info) {
767 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
768 pr_err("unable to send reset\n");
770 err = VMCI_ERROR_NO_MEM;
771 goto out;
774 recv_pkt_info->sk = sk;
775 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
776 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
778 schedule_work(&recv_pkt_info->work);
779 /* Clear sk so that the reference count incremented by one of
780 * the Find functions above is not decremented below. We need
781 * that reference count for the packet handler we've scheduled
782 * to run.
784 sk = NULL;
787 out:
788 if (sk)
789 sock_put(sk);
791 return err;
794 static void vmci_transport_peer_attach_cb(u32 sub_id,
795 const struct vmci_event_data *e_data,
796 void *client_data)
798 struct sock *sk = client_data;
799 const struct vmci_event_payload_qp *e_payload;
800 struct vsock_sock *vsk;
802 e_payload = vmci_event_data_const_payload(e_data);
804 vsk = vsock_sk(sk);
806 /* We don't ask for delayed CBs when we subscribe to this event (we
807 * pass 0 as flags to vmci_event_subscribe()). VMCI makes no
808 * guarantees in that case about what context we might be running in,
809 * so it could be BH or process, blockable or non-blockable. So we
810 * need to account for all possible contexts here.
812 local_bh_disable();
813 bh_lock_sock(sk);
815 /* XXX This is lame, we should provide a way to lookup sockets by
816 * qp_handle.
818 if (vmci_handle_is_equal(vmci_trans(vsk)->qp_handle,
819 e_payload->handle)) {
820 /* XXX This doesn't do anything, but in the future we may want
821 * to set a flag here to verify the attach really did occur and
822 * we weren't just sent a datagram claiming it was.
824 goto out;
827 out:
828 bh_unlock_sock(sk);
829 local_bh_enable();
832 static void vmci_transport_handle_detach(struct sock *sk)
834 struct vsock_sock *vsk;
836 vsk = vsock_sk(sk);
837 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
838 sock_set_flag(sk, SOCK_DONE);
840 /* On a detach the peer will not be sending or receiving
841 * anymore.
843 vsk->peer_shutdown = SHUTDOWN_MASK;
845 /* We should not be sending anymore since the peer won't be
846 * there to receive, but we can still receive if there is data
847 * left in our consume queue.
849 if (vsock_stream_has_data(vsk) <= 0) {
850 if (sk->sk_state == SS_CONNECTING) {
851 /* The peer may detach from a queue pair while
852 * we are still in the connecting state, i.e.,
853 * if the peer VM is killed after attaching to
854 * a queue pair, but before we complete the
855 * handshake. In that case, we treat the detach
856 * event like a reset.
859 sk->sk_state = SS_UNCONNECTED;
860 sk->sk_err = ECONNRESET;
861 sk->sk_error_report(sk);
862 return;
864 sk->sk_state = SS_UNCONNECTED;
866 sk->sk_state_change(sk);
870 static void vmci_transport_peer_detach_cb(u32 sub_id,
871 const struct vmci_event_data *e_data,
872 void *client_data)
874 struct sock *sk = client_data;
875 const struct vmci_event_payload_qp *e_payload;
876 struct vsock_sock *vsk;
878 e_payload = vmci_event_data_const_payload(e_data);
879 vsk = vsock_sk(sk);
880 if (vmci_handle_is_invalid(e_payload->handle))
881 return;
883 /* Same rules for locking as for peer_attach_cb(). */
884 local_bh_disable();
885 bh_lock_sock(sk);
887 /* XXX This is lame, we should provide a way to lookup sockets by
888 * qp_handle.
890 if (vmci_handle_is_equal(vmci_trans(vsk)->qp_handle,
891 e_payload->handle))
892 vmci_transport_handle_detach(sk);
894 bh_unlock_sock(sk);
895 local_bh_enable();
898 static void vmci_transport_qp_resumed_cb(u32 sub_id,
899 const struct vmci_event_data *e_data,
900 void *client_data)
902 vsock_for_each_connected_socket(vmci_transport_handle_detach);
905 static void vmci_transport_recv_pkt_work(struct work_struct *work)
907 struct vmci_transport_recv_pkt_info *recv_pkt_info;
908 struct vmci_transport_packet *pkt;
909 struct sock *sk;
911 recv_pkt_info =
912 container_of(work, struct vmci_transport_recv_pkt_info, work);
913 sk = recv_pkt_info->sk;
914 pkt = &recv_pkt_info->pkt;
916 lock_sock(sk);
918 /* The local context ID may be out of date. */
919 vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
921 switch (sk->sk_state) {
922 case SS_LISTEN:
923 vmci_transport_recv_listen(sk, pkt);
924 break;
925 case SS_CONNECTING:
926 /* Processing of pending connections for servers goes through
927 * the listening socket, so see vmci_transport_recv_listen()
928 * for that path.
930 vmci_transport_recv_connecting_client(sk, pkt);
931 break;
932 case SS_CONNECTED:
933 vmci_transport_recv_connected(sk, pkt);
934 break;
935 default:
936 /* Because this function does not run in the same context as
937 * vmci_transport_recv_stream_cb it is possible that the
938 * socket has closed. We need to let the other side know or it
939 * could be sitting in a connect and hang forever. Send a
940 * reset to prevent that.
942 vmci_transport_send_reset(sk, pkt);
943 break;
946 release_sock(sk);
947 kfree(recv_pkt_info);
948 /* Release reference obtained in the stream callback when we fetched
949 * this socket out of the bound or connected list.
951 sock_put(sk);
954 static int vmci_transport_recv_listen(struct sock *sk,
955 struct vmci_transport_packet *pkt)
957 struct sock *pending;
958 struct vsock_sock *vpending;
959 int err;
960 u64 qp_size;
961 bool old_request = false;
962 bool old_pkt_proto = false;
964 err = 0;
966 /* Because we are in the listen state, we could be receiving a packet
967 * for ourself or any previous connection requests that we received.
968 * If it's the latter, we try to find a socket in our list of pending
969 * connections and, if we do, call the appropriate handler for the
970 * state that that socket is in. Otherwise we try to service the
971 * connection request.
973 pending = vmci_transport_get_pending(sk, pkt);
974 if (pending) {
975 lock_sock(pending);
977 /* The local context ID may be out of date. */
978 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
980 switch (pending->sk_state) {
981 case SS_CONNECTING:
982 err = vmci_transport_recv_connecting_server(sk,
983 pending,
984 pkt);
985 break;
986 default:
987 vmci_transport_send_reset(pending, pkt);
988 err = -EINVAL;
991 if (err < 0)
992 vsock_remove_pending(sk, pending);
994 release_sock(pending);
995 vmci_transport_release_pending(pending);
997 return err;
1000 /* The listen state only accepts connection requests. Reply with a
1001 * reset unless we received a reset.
1004 if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
1005 pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
1006 vmci_transport_reply_reset(pkt);
1007 return -EINVAL;
1010 if (pkt->u.size == 0) {
1011 vmci_transport_reply_reset(pkt);
1012 return -EINVAL;
1015 /* If this socket can't accommodate this connection request, we send a
1016 * reset. Otherwise we create and initialize a child socket and reply
1017 * with a connection negotiation.
1019 if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1020 vmci_transport_reply_reset(pkt);
1021 return -ECONNREFUSED;
1024 pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
1025 sk->sk_type);
1026 if (!pending) {
1027 vmci_transport_send_reset(sk, pkt);
1028 return -ENOMEM;
1031 vpending = vsock_sk(pending);
1033 vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1034 pkt->dst_port);
1035 vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1036 pkt->src_port);
1038 /* If the proposed size fits within our min/max, accept it. Otherwise
1039 * propose our own size.
1041 if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size &&
1042 pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) {
1043 qp_size = pkt->u.size;
1044 } else {
1045 qp_size = vmci_trans(vpending)->queue_pair_size;
1048 /* Figure out if we are using old or new requests based on the
1049 * overrides pkt types sent by our peer.
1051 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1052 old_request = old_pkt_proto;
1053 } else {
1054 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1055 old_request = true;
1056 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1057 old_request = false;
1061 if (old_request) {
1062 /* Handle a REQUEST (or override) */
1063 u16 version = VSOCK_PROTO_INVALID;
1064 if (vmci_transport_proto_to_notify_struct(
1065 pending, &version, true))
1066 err = vmci_transport_send_negotiate(pending, qp_size);
1067 else
1068 err = -EINVAL;
1070 } else {
1071 /* Handle a REQUEST2 (or override) */
1072 int proto_int = pkt->proto;
1073 int pos;
1074 u16 active_proto_version = 0;
1076 /* The list of possible protocols is the intersection of all
1077 * protocols the client supports ... plus all the protocols we
1078 * support.
1080 proto_int &= vmci_transport_new_proto_supported_versions();
1082 /* We choose the highest possible protocol version and use that
1083 * one.
1085 pos = fls(proto_int);
1086 if (pos) {
1087 active_proto_version = (1 << (pos - 1));
1088 if (vmci_transport_proto_to_notify_struct(
1089 pending, &active_proto_version, false))
1090 err = vmci_transport_send_negotiate2(pending,
1091 qp_size,
1092 active_proto_version);
1093 else
1094 err = -EINVAL;
1096 } else {
1097 err = -EINVAL;
1101 if (err < 0) {
1102 vmci_transport_send_reset(sk, pkt);
1103 sock_put(pending);
1104 err = vmci_transport_error_to_vsock_error(err);
1105 goto out;
1108 vsock_add_pending(sk, pending);
1109 sk->sk_ack_backlog++;
1111 pending->sk_state = SS_CONNECTING;
1112 vmci_trans(vpending)->produce_size =
1113 vmci_trans(vpending)->consume_size = qp_size;
1114 vmci_trans(vpending)->queue_pair_size = qp_size;
1116 vmci_trans(vpending)->notify_ops->process_request(pending);
1118 /* We might never receive another message for this socket and it's not
1119 * connected to any process, so we have to ensure it gets cleaned up
1120 * ourself. Our delayed work function will take care of that. Note
1121 * that we do not ever cancel this function since we have few
1122 * guarantees about its state when calling cancel_delayed_work().
1123 * Instead we hold a reference on the socket for that function and make
1124 * it capable of handling cases where it needs to do nothing but
1125 * release that reference.
1127 vpending->listener = sk;
1128 sock_hold(sk);
1129 sock_hold(pending);
1130 INIT_DELAYED_WORK(&vpending->dwork, vsock_pending_work);
1131 schedule_delayed_work(&vpending->dwork, HZ);
1133 out:
1134 return err;
1137 static int
1138 vmci_transport_recv_connecting_server(struct sock *listener,
1139 struct sock *pending,
1140 struct vmci_transport_packet *pkt)
1142 struct vsock_sock *vpending;
1143 struct vmci_handle handle;
1144 struct vmci_qp *qpair;
1145 bool is_local;
1146 u32 flags;
1147 u32 detach_sub_id;
1148 int err;
1149 int skerr;
1151 vpending = vsock_sk(pending);
1152 detach_sub_id = VMCI_INVALID_ID;
1154 switch (pkt->type) {
1155 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1156 if (vmci_handle_is_invalid(pkt->u.handle)) {
1157 vmci_transport_send_reset(pending, pkt);
1158 skerr = EPROTO;
1159 err = -EINVAL;
1160 goto destroy;
1162 break;
1163 default:
1164 /* Close and cleanup the connection. */
1165 vmci_transport_send_reset(pending, pkt);
1166 skerr = EPROTO;
1167 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1168 goto destroy;
1171 /* In order to complete the connection we need to attach to the offered
1172 * queue pair and send an attach notification. We also subscribe to the
1173 * detach event so we know when our peer goes away, and we do that
1174 * before attaching so we don't miss an event. If all this succeeds,
1175 * we update our state and wakeup anything waiting in accept() for a
1176 * connection.
1179 /* We don't care about attach since we ensure the other side has
1180 * attached by specifying the ATTACH_ONLY flag below.
1182 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1183 vmci_transport_peer_detach_cb,
1184 pending, &detach_sub_id);
1185 if (err < VMCI_SUCCESS) {
1186 vmci_transport_send_reset(pending, pkt);
1187 err = vmci_transport_error_to_vsock_error(err);
1188 skerr = -err;
1189 goto destroy;
1192 vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1194 /* Now attach to the queue pair the client created. */
1195 handle = pkt->u.handle;
1197 /* vpending->local_addr always has a context id so we do not need to
1198 * worry about VMADDR_CID_ANY in this case.
1200 is_local =
1201 vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1202 flags = VMCI_QPFLAG_ATTACH_ONLY;
1203 flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1205 err = vmci_transport_queue_pair_alloc(
1206 &qpair,
1207 &handle,
1208 vmci_trans(vpending)->produce_size,
1209 vmci_trans(vpending)->consume_size,
1210 pkt->dg.src.context,
1211 flags,
1212 vmci_transport_is_trusted(
1213 vpending,
1214 vpending->remote_addr.svm_cid));
1215 if (err < 0) {
1216 vmci_transport_send_reset(pending, pkt);
1217 skerr = -err;
1218 goto destroy;
1221 vmci_trans(vpending)->qp_handle = handle;
1222 vmci_trans(vpending)->qpair = qpair;
1224 /* When we send the attach message, we must be ready to handle incoming
1225 * control messages on the newly connected socket. So we move the
1226 * pending socket to the connected state before sending the attach
1227 * message. Otherwise, an incoming packet triggered by the attach being
1228 * received by the peer may be processed concurrently with what happens
1229 * below after sending the attach message, and that incoming packet
1230 * will find the listening socket instead of the (currently) pending
1231 * socket. Note that enqueueing the socket increments the reference
1232 * count, so even if a reset comes before the connection is accepted,
1233 * the socket will be valid until it is removed from the queue.
1235 * If we fail sending the attach below, we remove the socket from the
1236 * connected list and move the socket to SS_UNCONNECTED before
1237 * releasing the lock, so a pending slow path processing of an incoming
1238 * packet will not see the socket in the connected state in that case.
1240 pending->sk_state = SS_CONNECTED;
1242 vsock_insert_connected(vpending);
1244 /* Notify our peer of our attach. */
1245 err = vmci_transport_send_attach(pending, handle);
1246 if (err < 0) {
1247 vsock_remove_connected(vpending);
1248 pr_err("Could not send attach\n");
1249 vmci_transport_send_reset(pending, pkt);
1250 err = vmci_transport_error_to_vsock_error(err);
1251 skerr = -err;
1252 goto destroy;
1255 /* We have a connection. Move the now connected socket from the
1256 * listener's pending list to the accept queue so callers of accept()
1257 * can find it.
1259 vsock_remove_pending(listener, pending);
1260 vsock_enqueue_accept(listener, pending);
1262 /* Callers of accept() will be be waiting on the listening socket, not
1263 * the pending socket.
1265 listener->sk_state_change(listener);
1267 return 0;
1269 destroy:
1270 pending->sk_err = skerr;
1271 pending->sk_state = SS_UNCONNECTED;
1272 /* As long as we drop our reference, all necessary cleanup will handle
1273 * when the cleanup function drops its reference and our destruct
1274 * implementation is called. Note that since the listen handler will
1275 * remove pending from the pending list upon our failure, the cleanup
1276 * function won't drop the additional reference, which is why we do it
1277 * here.
1279 sock_put(pending);
1281 return err;
1284 static int
1285 vmci_transport_recv_connecting_client(struct sock *sk,
1286 struct vmci_transport_packet *pkt)
1288 struct vsock_sock *vsk;
1289 int err;
1290 int skerr;
1292 vsk = vsock_sk(sk);
1294 switch (pkt->type) {
1295 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1296 if (vmci_handle_is_invalid(pkt->u.handle) ||
1297 !vmci_handle_is_equal(pkt->u.handle,
1298 vmci_trans(vsk)->qp_handle)) {
1299 skerr = EPROTO;
1300 err = -EINVAL;
1301 goto destroy;
1304 /* Signify the socket is connected and wakeup the waiter in
1305 * connect(). Also place the socket in the connected table for
1306 * accounting (it can already be found since it's in the bound
1307 * table).
1309 sk->sk_state = SS_CONNECTED;
1310 sk->sk_socket->state = SS_CONNECTED;
1311 vsock_insert_connected(vsk);
1312 sk->sk_state_change(sk);
1314 break;
1315 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1316 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1317 if (pkt->u.size == 0
1318 || pkt->dg.src.context != vsk->remote_addr.svm_cid
1319 || pkt->src_port != vsk->remote_addr.svm_port
1320 || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1321 || vmci_trans(vsk)->qpair
1322 || vmci_trans(vsk)->produce_size != 0
1323 || vmci_trans(vsk)->consume_size != 0
1324 || vmci_trans(vsk)->attach_sub_id != VMCI_INVALID_ID
1325 || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1326 skerr = EPROTO;
1327 err = -EINVAL;
1329 goto destroy;
1332 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1333 if (err) {
1334 skerr = -err;
1335 goto destroy;
1338 break;
1339 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1340 err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1341 if (err) {
1342 skerr = -err;
1343 goto destroy;
1346 break;
1347 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1348 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1349 * continue processing here after they sent an INVALID packet.
1350 * This meant that we got a RST after the INVALID. We ignore a
1351 * RST after an INVALID. The common code doesn't send the RST
1352 * ... so we can hang if an old version of the common code
1353 * fails between getting a REQUEST and sending an OFFER back.
1354 * Not much we can do about it... except hope that it doesn't
1355 * happen.
1357 if (vsk->ignore_connecting_rst) {
1358 vsk->ignore_connecting_rst = false;
1359 } else {
1360 skerr = ECONNRESET;
1361 err = 0;
1362 goto destroy;
1365 break;
1366 default:
1367 /* Close and cleanup the connection. */
1368 skerr = EPROTO;
1369 err = -EINVAL;
1370 goto destroy;
1373 return 0;
1375 destroy:
1376 vmci_transport_send_reset(sk, pkt);
1378 sk->sk_state = SS_UNCONNECTED;
1379 sk->sk_err = skerr;
1380 sk->sk_error_report(sk);
1381 return err;
1384 static int vmci_transport_recv_connecting_client_negotiate(
1385 struct sock *sk,
1386 struct vmci_transport_packet *pkt)
1388 int err;
1389 struct vsock_sock *vsk;
1390 struct vmci_handle handle;
1391 struct vmci_qp *qpair;
1392 u32 attach_sub_id;
1393 u32 detach_sub_id;
1394 bool is_local;
1395 u32 flags;
1396 bool old_proto = true;
1397 bool old_pkt_proto;
1398 u16 version;
1400 vsk = vsock_sk(sk);
1401 handle = VMCI_INVALID_HANDLE;
1402 attach_sub_id = VMCI_INVALID_ID;
1403 detach_sub_id = VMCI_INVALID_ID;
1405 /* If we have gotten here then we should be past the point where old
1406 * linux vsock could have sent the bogus rst.
1408 vsk->sent_request = false;
1409 vsk->ignore_connecting_rst = false;
1411 /* Verify that we're OK with the proposed queue pair size */
1412 if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size ||
1413 pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) {
1414 err = -EINVAL;
1415 goto destroy;
1418 /* At this point we know the CID the peer is using to talk to us. */
1420 if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1421 vsk->local_addr.svm_cid = pkt->dg.dst.context;
1423 /* Setup the notify ops to be the highest supported version that both
1424 * the server and the client support.
1427 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1428 old_proto = old_pkt_proto;
1429 } else {
1430 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1431 old_proto = true;
1432 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1433 old_proto = false;
1437 if (old_proto)
1438 version = VSOCK_PROTO_INVALID;
1439 else
1440 version = pkt->proto;
1442 if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1443 err = -EINVAL;
1444 goto destroy;
1447 /* Subscribe to attach and detach events first.
1449 * XXX We attach once for each queue pair created for now so it is easy
1450 * to find the socket (it's provided), but later we should only
1451 * subscribe once and add a way to lookup sockets by queue pair handle.
1453 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_ATTACH,
1454 vmci_transport_peer_attach_cb,
1455 sk, &attach_sub_id);
1456 if (err < VMCI_SUCCESS) {
1457 err = vmci_transport_error_to_vsock_error(err);
1458 goto destroy;
1461 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1462 vmci_transport_peer_detach_cb,
1463 sk, &detach_sub_id);
1464 if (err < VMCI_SUCCESS) {
1465 err = vmci_transport_error_to_vsock_error(err);
1466 goto destroy;
1469 /* Make VMCI select the handle for us. */
1470 handle = VMCI_INVALID_HANDLE;
1471 is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1472 flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1474 err = vmci_transport_queue_pair_alloc(&qpair,
1475 &handle,
1476 pkt->u.size,
1477 pkt->u.size,
1478 vsk->remote_addr.svm_cid,
1479 flags,
1480 vmci_transport_is_trusted(
1481 vsk,
1482 vsk->
1483 remote_addr.svm_cid));
1484 if (err < 0)
1485 goto destroy;
1487 err = vmci_transport_send_qp_offer(sk, handle);
1488 if (err < 0) {
1489 err = vmci_transport_error_to_vsock_error(err);
1490 goto destroy;
1493 vmci_trans(vsk)->qp_handle = handle;
1494 vmci_trans(vsk)->qpair = qpair;
1496 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1497 pkt->u.size;
1499 vmci_trans(vsk)->attach_sub_id = attach_sub_id;
1500 vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1502 vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1504 return 0;
1506 destroy:
1507 if (attach_sub_id != VMCI_INVALID_ID)
1508 vmci_event_unsubscribe(attach_sub_id);
1510 if (detach_sub_id != VMCI_INVALID_ID)
1511 vmci_event_unsubscribe(detach_sub_id);
1513 if (!vmci_handle_is_invalid(handle))
1514 vmci_qpair_detach(&qpair);
1516 return err;
1519 static int
1520 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1521 struct vmci_transport_packet *pkt)
1523 int err = 0;
1524 struct vsock_sock *vsk = vsock_sk(sk);
1526 if (vsk->sent_request) {
1527 vsk->sent_request = false;
1528 vsk->ignore_connecting_rst = true;
1530 err = vmci_transport_send_conn_request(
1531 sk, vmci_trans(vsk)->queue_pair_size);
1532 if (err < 0)
1533 err = vmci_transport_error_to_vsock_error(err);
1534 else
1535 err = 0;
1539 return err;
1542 static int vmci_transport_recv_connected(struct sock *sk,
1543 struct vmci_transport_packet *pkt)
1545 struct vsock_sock *vsk;
1546 bool pkt_processed = false;
1548 /* In cases where we are closing the connection, it's sufficient to
1549 * mark the state change (and maybe error) and wake up any waiting
1550 * threads. Since this is a connected socket, it's owned by a user
1551 * process and will be cleaned up when the failure is passed back on
1552 * the current or next system call. Our system call implementations
1553 * must therefore check for error and state changes on entry and when
1554 * being awoken.
1556 switch (pkt->type) {
1557 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1558 if (pkt->u.mode) {
1559 vsk = vsock_sk(sk);
1561 vsk->peer_shutdown |= pkt->u.mode;
1562 sk->sk_state_change(sk);
1564 break;
1566 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1567 vsk = vsock_sk(sk);
1568 /* It is possible that we sent our peer a message (e.g a
1569 * WAITING_READ) right before we got notified that the peer had
1570 * detached. If that happens then we can get a RST pkt back
1571 * from our peer even though there is data available for us to
1572 * read. In that case, don't shutdown the socket completely but
1573 * instead allow the local client to finish reading data off
1574 * the queuepair. Always treat a RST pkt in connected mode like
1575 * a clean shutdown.
1577 sock_set_flag(sk, SOCK_DONE);
1578 vsk->peer_shutdown = SHUTDOWN_MASK;
1579 if (vsock_stream_has_data(vsk) <= 0)
1580 sk->sk_state = SS_DISCONNECTING;
1582 sk->sk_state_change(sk);
1583 break;
1585 default:
1586 vsk = vsock_sk(sk);
1587 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1588 sk, pkt, false, NULL, NULL,
1589 &pkt_processed);
1590 if (!pkt_processed)
1591 return -EINVAL;
1593 break;
1596 return 0;
1599 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1600 struct vsock_sock *psk)
1602 vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1603 if (!vsk->trans)
1604 return -ENOMEM;
1606 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1607 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1608 vmci_trans(vsk)->qpair = NULL;
1609 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1610 vmci_trans(vsk)->attach_sub_id = vmci_trans(vsk)->detach_sub_id =
1611 VMCI_INVALID_ID;
1612 vmci_trans(vsk)->notify_ops = NULL;
1613 if (psk) {
1614 vmci_trans(vsk)->queue_pair_size =
1615 vmci_trans(psk)->queue_pair_size;
1616 vmci_trans(vsk)->queue_pair_min_size =
1617 vmci_trans(psk)->queue_pair_min_size;
1618 vmci_trans(vsk)->queue_pair_max_size =
1619 vmci_trans(psk)->queue_pair_max_size;
1620 } else {
1621 vmci_trans(vsk)->queue_pair_size =
1622 VMCI_TRANSPORT_DEFAULT_QP_SIZE;
1623 vmci_trans(vsk)->queue_pair_min_size =
1624 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN;
1625 vmci_trans(vsk)->queue_pair_max_size =
1626 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX;
1629 return 0;
1632 static void vmci_transport_destruct(struct vsock_sock *vsk)
1634 if (vmci_trans(vsk)->attach_sub_id != VMCI_INVALID_ID) {
1635 vmci_event_unsubscribe(vmci_trans(vsk)->attach_sub_id);
1636 vmci_trans(vsk)->attach_sub_id = VMCI_INVALID_ID;
1639 if (vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1640 vmci_event_unsubscribe(vmci_trans(vsk)->detach_sub_id);
1641 vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1644 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
1645 vmci_qpair_detach(&vmci_trans(vsk)->qpair);
1646 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1647 vmci_trans(vsk)->produce_size = 0;
1648 vmci_trans(vsk)->consume_size = 0;
1651 if (vmci_trans(vsk)->notify_ops)
1652 vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1654 kfree(vsk->trans);
1655 vsk->trans = NULL;
1658 static void vmci_transport_release(struct vsock_sock *vsk)
1660 if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1661 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1662 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1666 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1667 struct sockaddr_vm *addr)
1669 u32 port;
1670 u32 flags;
1671 int err;
1673 /* VMCI will select a resource ID for us if we provide
1674 * VMCI_INVALID_ID.
1676 port = addr->svm_port == VMADDR_PORT_ANY ?
1677 VMCI_INVALID_ID : addr->svm_port;
1679 if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1680 return -EACCES;
1682 flags = addr->svm_cid == VMADDR_CID_ANY ?
1683 VMCI_FLAG_ANYCID_DG_HND : 0;
1685 err = vmci_transport_datagram_create_hnd(port, flags,
1686 vmci_transport_recv_dgram_cb,
1687 &vsk->sk,
1688 &vmci_trans(vsk)->dg_handle);
1689 if (err < VMCI_SUCCESS)
1690 return vmci_transport_error_to_vsock_error(err);
1691 vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1692 vmci_trans(vsk)->dg_handle.resource);
1694 return 0;
1697 static int vmci_transport_dgram_enqueue(
1698 struct vsock_sock *vsk,
1699 struct sockaddr_vm *remote_addr,
1700 struct iovec *iov,
1701 size_t len)
1703 int err;
1704 struct vmci_datagram *dg;
1706 if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1707 return -EMSGSIZE;
1709 if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1710 return -EPERM;
1712 /* Allocate a buffer for the user's message and our packet header. */
1713 dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1714 if (!dg)
1715 return -ENOMEM;
1717 memcpy_fromiovec(VMCI_DG_PAYLOAD(dg), iov, len);
1719 dg->dst = vmci_make_handle(remote_addr->svm_cid,
1720 remote_addr->svm_port);
1721 dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1722 vsk->local_addr.svm_port);
1723 dg->payload_size = len;
1725 err = vmci_datagram_send(dg);
1726 kfree(dg);
1727 if (err < 0)
1728 return vmci_transport_error_to_vsock_error(err);
1730 return err - sizeof(*dg);
1733 static int vmci_transport_dgram_dequeue(struct kiocb *kiocb,
1734 struct vsock_sock *vsk,
1735 struct msghdr *msg, size_t len,
1736 int flags)
1738 int err;
1739 int noblock;
1740 struct vmci_datagram *dg;
1741 size_t payload_len;
1742 struct sk_buff *skb;
1744 noblock = flags & MSG_DONTWAIT;
1746 if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1747 return -EOPNOTSUPP;
1749 /* Retrieve the head sk_buff from the socket's receive queue. */
1750 err = 0;
1751 skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1752 if (err)
1753 return err;
1755 if (!skb)
1756 return -EAGAIN;
1758 dg = (struct vmci_datagram *)skb->data;
1759 if (!dg)
1760 /* err is 0, meaning we read zero bytes. */
1761 goto out;
1763 payload_len = dg->payload_size;
1764 /* Ensure the sk_buff matches the payload size claimed in the packet. */
1765 if (payload_len != skb->len - sizeof(*dg)) {
1766 err = -EINVAL;
1767 goto out;
1770 if (payload_len > len) {
1771 payload_len = len;
1772 msg->msg_flags |= MSG_TRUNC;
1775 /* Place the datagram payload in the user's iovec. */
1776 err = skb_copy_datagram_iovec(skb, sizeof(*dg), msg->msg_iov,
1777 payload_len);
1778 if (err)
1779 goto out;
1781 if (msg->msg_name) {
1782 struct sockaddr_vm *vm_addr;
1784 /* Provide the address of the sender. */
1785 vm_addr = (struct sockaddr_vm *)msg->msg_name;
1786 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1787 msg->msg_namelen = sizeof(*vm_addr);
1789 err = payload_len;
1791 out:
1792 skb_free_datagram(&vsk->sk, skb);
1793 return err;
1796 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1798 if (cid == VMADDR_CID_HYPERVISOR) {
1799 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1800 * state and are allowed.
1802 return port == VMCI_UNITY_PBRPC_REGISTER;
1805 return true;
1808 static int vmci_transport_connect(struct vsock_sock *vsk)
1810 int err;
1811 bool old_pkt_proto = false;
1812 struct sock *sk = &vsk->sk;
1814 if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1815 old_pkt_proto) {
1816 err = vmci_transport_send_conn_request(
1817 sk, vmci_trans(vsk)->queue_pair_size);
1818 if (err < 0) {
1819 sk->sk_state = SS_UNCONNECTED;
1820 return err;
1822 } else {
1823 int supported_proto_versions =
1824 vmci_transport_new_proto_supported_versions();
1825 err = vmci_transport_send_conn_request2(
1826 sk, vmci_trans(vsk)->queue_pair_size,
1827 supported_proto_versions);
1828 if (err < 0) {
1829 sk->sk_state = SS_UNCONNECTED;
1830 return err;
1833 vsk->sent_request = true;
1836 return err;
1839 static ssize_t vmci_transport_stream_dequeue(
1840 struct vsock_sock *vsk,
1841 struct iovec *iov,
1842 size_t len,
1843 int flags)
1845 if (flags & MSG_PEEK)
1846 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, iov, len, 0);
1847 else
1848 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, iov, len, 0);
1851 static ssize_t vmci_transport_stream_enqueue(
1852 struct vsock_sock *vsk,
1853 struct iovec *iov,
1854 size_t len)
1856 return vmci_qpair_enquev(vmci_trans(vsk)->qpair, iov, len, 0);
1859 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1861 return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1864 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1866 return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1869 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1871 return vmci_trans(vsk)->consume_size;
1874 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1876 return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1879 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk)
1881 return vmci_trans(vsk)->queue_pair_size;
1884 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk)
1886 return vmci_trans(vsk)->queue_pair_min_size;
1889 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk)
1891 return vmci_trans(vsk)->queue_pair_max_size;
1894 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val)
1896 if (val < vmci_trans(vsk)->queue_pair_min_size)
1897 vmci_trans(vsk)->queue_pair_min_size = val;
1898 if (val > vmci_trans(vsk)->queue_pair_max_size)
1899 vmci_trans(vsk)->queue_pair_max_size = val;
1900 vmci_trans(vsk)->queue_pair_size = val;
1903 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk,
1904 u64 val)
1906 if (val > vmci_trans(vsk)->queue_pair_size)
1907 vmci_trans(vsk)->queue_pair_size = val;
1908 vmci_trans(vsk)->queue_pair_min_size = val;
1911 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk,
1912 u64 val)
1914 if (val < vmci_trans(vsk)->queue_pair_size)
1915 vmci_trans(vsk)->queue_pair_size = val;
1916 vmci_trans(vsk)->queue_pair_max_size = val;
1919 static int vmci_transport_notify_poll_in(
1920 struct vsock_sock *vsk,
1921 size_t target,
1922 bool *data_ready_now)
1924 return vmci_trans(vsk)->notify_ops->poll_in(
1925 &vsk->sk, target, data_ready_now);
1928 static int vmci_transport_notify_poll_out(
1929 struct vsock_sock *vsk,
1930 size_t target,
1931 bool *space_available_now)
1933 return vmci_trans(vsk)->notify_ops->poll_out(
1934 &vsk->sk, target, space_available_now);
1937 static int vmci_transport_notify_recv_init(
1938 struct vsock_sock *vsk,
1939 size_t target,
1940 struct vsock_transport_recv_notify_data *data)
1942 return vmci_trans(vsk)->notify_ops->recv_init(
1943 &vsk->sk, target,
1944 (struct vmci_transport_recv_notify_data *)data);
1947 static int vmci_transport_notify_recv_pre_block(
1948 struct vsock_sock *vsk,
1949 size_t target,
1950 struct vsock_transport_recv_notify_data *data)
1952 return vmci_trans(vsk)->notify_ops->recv_pre_block(
1953 &vsk->sk, target,
1954 (struct vmci_transport_recv_notify_data *)data);
1957 static int vmci_transport_notify_recv_pre_dequeue(
1958 struct vsock_sock *vsk,
1959 size_t target,
1960 struct vsock_transport_recv_notify_data *data)
1962 return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1963 &vsk->sk, target,
1964 (struct vmci_transport_recv_notify_data *)data);
1967 static int vmci_transport_notify_recv_post_dequeue(
1968 struct vsock_sock *vsk,
1969 size_t target,
1970 ssize_t copied,
1971 bool data_read,
1972 struct vsock_transport_recv_notify_data *data)
1974 return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1975 &vsk->sk, target, copied, data_read,
1976 (struct vmci_transport_recv_notify_data *)data);
1979 static int vmci_transport_notify_send_init(
1980 struct vsock_sock *vsk,
1981 struct vsock_transport_send_notify_data *data)
1983 return vmci_trans(vsk)->notify_ops->send_init(
1984 &vsk->sk,
1985 (struct vmci_transport_send_notify_data *)data);
1988 static int vmci_transport_notify_send_pre_block(
1989 struct vsock_sock *vsk,
1990 struct vsock_transport_send_notify_data *data)
1992 return vmci_trans(vsk)->notify_ops->send_pre_block(
1993 &vsk->sk,
1994 (struct vmci_transport_send_notify_data *)data);
1997 static int vmci_transport_notify_send_pre_enqueue(
1998 struct vsock_sock *vsk,
1999 struct vsock_transport_send_notify_data *data)
2001 return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
2002 &vsk->sk,
2003 (struct vmci_transport_send_notify_data *)data);
2006 static int vmci_transport_notify_send_post_enqueue(
2007 struct vsock_sock *vsk,
2008 ssize_t written,
2009 struct vsock_transport_send_notify_data *data)
2011 return vmci_trans(vsk)->notify_ops->send_post_enqueue(
2012 &vsk->sk, written,
2013 (struct vmci_transport_send_notify_data *)data);
2016 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
2018 if (PROTOCOL_OVERRIDE != -1) {
2019 if (PROTOCOL_OVERRIDE == 0)
2020 *old_pkt_proto = true;
2021 else
2022 *old_pkt_proto = false;
2024 pr_info("Proto override in use\n");
2025 return true;
2028 return false;
2031 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
2032 u16 *proto,
2033 bool old_pkt_proto)
2035 struct vsock_sock *vsk = vsock_sk(sk);
2037 if (old_pkt_proto) {
2038 if (*proto != VSOCK_PROTO_INVALID) {
2039 pr_err("Can't set both an old and new protocol\n");
2040 return false;
2042 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2043 goto exit;
2046 switch (*proto) {
2047 case VSOCK_PROTO_PKT_ON_NOTIFY:
2048 vmci_trans(vsk)->notify_ops =
2049 &vmci_transport_notify_pkt_q_state_ops;
2050 break;
2051 default:
2052 pr_err("Unknown notify protocol version\n");
2053 return false;
2056 exit:
2057 vmci_trans(vsk)->notify_ops->socket_init(sk);
2058 return true;
2061 static u16 vmci_transport_new_proto_supported_versions(void)
2063 if (PROTOCOL_OVERRIDE != -1)
2064 return PROTOCOL_OVERRIDE;
2066 return VSOCK_PROTO_ALL_SUPPORTED;
2069 static u32 vmci_transport_get_local_cid(void)
2071 return vmci_get_context_id();
2074 static struct vsock_transport vmci_transport = {
2075 .init = vmci_transport_socket_init,
2076 .destruct = vmci_transport_destruct,
2077 .release = vmci_transport_release,
2078 .connect = vmci_transport_connect,
2079 .dgram_bind = vmci_transport_dgram_bind,
2080 .dgram_dequeue = vmci_transport_dgram_dequeue,
2081 .dgram_enqueue = vmci_transport_dgram_enqueue,
2082 .dgram_allow = vmci_transport_dgram_allow,
2083 .stream_dequeue = vmci_transport_stream_dequeue,
2084 .stream_enqueue = vmci_transport_stream_enqueue,
2085 .stream_has_data = vmci_transport_stream_has_data,
2086 .stream_has_space = vmci_transport_stream_has_space,
2087 .stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2088 .stream_is_active = vmci_transport_stream_is_active,
2089 .stream_allow = vmci_transport_stream_allow,
2090 .notify_poll_in = vmci_transport_notify_poll_in,
2091 .notify_poll_out = vmci_transport_notify_poll_out,
2092 .notify_recv_init = vmci_transport_notify_recv_init,
2093 .notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2094 .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2095 .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2096 .notify_send_init = vmci_transport_notify_send_init,
2097 .notify_send_pre_block = vmci_transport_notify_send_pre_block,
2098 .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2099 .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2100 .shutdown = vmci_transport_shutdown,
2101 .set_buffer_size = vmci_transport_set_buffer_size,
2102 .set_min_buffer_size = vmci_transport_set_min_buffer_size,
2103 .set_max_buffer_size = vmci_transport_set_max_buffer_size,
2104 .get_buffer_size = vmci_transport_get_buffer_size,
2105 .get_min_buffer_size = vmci_transport_get_min_buffer_size,
2106 .get_max_buffer_size = vmci_transport_get_max_buffer_size,
2107 .get_local_cid = vmci_transport_get_local_cid,
2110 static int __init vmci_transport_init(void)
2112 int err;
2114 /* Create the datagram handle that we will use to send and receive all
2115 * VSocket control messages for this context.
2117 err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2118 VMCI_FLAG_ANYCID_DG_HND,
2119 vmci_transport_recv_stream_cb,
2120 NULL,
2121 &vmci_transport_stream_handle);
2122 if (err < VMCI_SUCCESS) {
2123 pr_err("Unable to create datagram handle. (%d)\n", err);
2124 return vmci_transport_error_to_vsock_error(err);
2127 err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2128 vmci_transport_qp_resumed_cb,
2129 NULL, &vmci_transport_qp_resumed_sub_id);
2130 if (err < VMCI_SUCCESS) {
2131 pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2132 err = vmci_transport_error_to_vsock_error(err);
2133 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2134 goto err_destroy_stream_handle;
2137 err = vsock_core_init(&vmci_transport);
2138 if (err < 0)
2139 goto err_unsubscribe;
2141 return 0;
2143 err_unsubscribe:
2144 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2145 err_destroy_stream_handle:
2146 vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2147 return err;
2149 module_init(vmci_transport_init);
2151 static void __exit vmci_transport_exit(void)
2153 if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2154 if (vmci_datagram_destroy_handle(
2155 vmci_transport_stream_handle) != VMCI_SUCCESS)
2156 pr_err("Couldn't destroy datagram handle\n");
2157 vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2160 if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2161 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2162 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2165 vsock_core_exit();
2167 module_exit(vmci_transport_exit);
2169 MODULE_AUTHOR("VMware, Inc.");
2170 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2171 MODULE_LICENSE("GPL v2");
2172 MODULE_ALIAS("vmware_vsock");
2173 MODULE_ALIAS_NETPROTO(PF_VSOCK);