2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
43 #include "ext4_jbd2.h"
48 #include <trace/events/ext4.h>
50 #define MPAGE_DA_EXTENT_TAIL 0x01
52 static __u32
ext4_inode_csum(struct inode
*inode
, struct ext4_inode
*raw
,
53 struct ext4_inode_info
*ei
)
55 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
60 csum_lo
= le16_to_cpu(raw
->i_checksum_lo
);
61 raw
->i_checksum_lo
= 0;
62 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
63 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
)) {
64 csum_hi
= le16_to_cpu(raw
->i_checksum_hi
);
65 raw
->i_checksum_hi
= 0;
68 csum
= ext4_chksum(sbi
, ei
->i_csum_seed
, (__u8
*)raw
,
69 EXT4_INODE_SIZE(inode
->i_sb
));
71 raw
->i_checksum_lo
= cpu_to_le16(csum_lo
);
72 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
73 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
74 raw
->i_checksum_hi
= cpu_to_le16(csum_hi
);
79 static int ext4_inode_csum_verify(struct inode
*inode
, struct ext4_inode
*raw
,
80 struct ext4_inode_info
*ei
)
82 __u32 provided
, calculated
;
84 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
85 cpu_to_le32(EXT4_OS_LINUX
) ||
86 !ext4_has_metadata_csum(inode
->i_sb
))
89 provided
= le16_to_cpu(raw
->i_checksum_lo
);
90 calculated
= ext4_inode_csum(inode
, raw
, ei
);
91 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
92 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
93 provided
|= ((__u32
)le16_to_cpu(raw
->i_checksum_hi
)) << 16;
97 return provided
== calculated
;
100 static void ext4_inode_csum_set(struct inode
*inode
, struct ext4_inode
*raw
,
101 struct ext4_inode_info
*ei
)
105 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
106 cpu_to_le32(EXT4_OS_LINUX
) ||
107 !ext4_has_metadata_csum(inode
->i_sb
))
110 csum
= ext4_inode_csum(inode
, raw
, ei
);
111 raw
->i_checksum_lo
= cpu_to_le16(csum
& 0xFFFF);
112 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
113 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
114 raw
->i_checksum_hi
= cpu_to_le16(csum
>> 16);
117 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
120 trace_ext4_begin_ordered_truncate(inode
, new_size
);
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
127 if (!EXT4_I(inode
)->jinode
)
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode
),
130 EXT4_I(inode
)->jinode
,
134 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
135 unsigned int length
);
136 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
137 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
138 static int ext4_meta_trans_blocks(struct inode
*inode
, int lblocks
,
142 * Test whether an inode is a fast symlink.
144 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
146 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
147 EXT4_CLUSTER_SIZE(inode
->i_sb
) >> 9 : 0;
149 if (ext4_has_inline_data(inode
))
152 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
156 * Restart the transaction associated with *handle. This does a commit,
157 * so before we call here everything must be consistently dirtied against
160 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
167 * moment, get_block can be called only for blocks inside i_size since
168 * page cache has been already dropped and writes are blocked by
169 * i_mutex. So we can safely drop the i_data_sem here.
171 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
172 jbd_debug(2, "restarting handle %p\n", handle
);
173 up_write(&EXT4_I(inode
)->i_data_sem
);
174 ret
= ext4_journal_restart(handle
, nblocks
);
175 down_write(&EXT4_I(inode
)->i_data_sem
);
176 ext4_discard_preallocations(inode
);
182 * Called at the last iput() if i_nlink is zero.
184 void ext4_evict_inode(struct inode
*inode
)
189 trace_ext4_evict_inode(inode
);
191 if (inode
->i_nlink
) {
193 * When journalling data dirty buffers are tracked only in the
194 * journal. So although mm thinks everything is clean and
195 * ready for reaping the inode might still have some pages to
196 * write in the running transaction or waiting to be
197 * checkpointed. Thus calling jbd2_journal_invalidatepage()
198 * (via truncate_inode_pages()) to discard these buffers can
199 * cause data loss. Also even if we did not discard these
200 * buffers, we would have no way to find them after the inode
201 * is reaped and thus user could see stale data if he tries to
202 * read them before the transaction is checkpointed. So be
203 * careful and force everything to disk here... We use
204 * ei->i_datasync_tid to store the newest transaction
205 * containing inode's data.
207 * Note that directories do not have this problem because they
208 * don't use page cache.
210 if (ext4_should_journal_data(inode
) &&
211 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
)) &&
212 inode
->i_ino
!= EXT4_JOURNAL_INO
) {
213 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
214 tid_t commit_tid
= EXT4_I(inode
)->i_datasync_tid
;
216 jbd2_complete_transaction(journal
, commit_tid
);
217 filemap_write_and_wait(&inode
->i_data
);
219 truncate_inode_pages_final(&inode
->i_data
);
221 WARN_ON(atomic_read(&EXT4_I(inode
)->i_ioend_count
));
225 if (is_bad_inode(inode
))
227 dquot_initialize(inode
);
229 if (ext4_should_order_data(inode
))
230 ext4_begin_ordered_truncate(inode
, 0);
231 truncate_inode_pages_final(&inode
->i_data
);
233 WARN_ON(atomic_read(&EXT4_I(inode
)->i_ioend_count
));
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
239 sb_start_intwrite(inode
->i_sb
);
240 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
,
241 ext4_blocks_for_truncate(inode
)+3);
242 if (IS_ERR(handle
)) {
243 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
249 ext4_orphan_del(NULL
, inode
);
250 sb_end_intwrite(inode
->i_sb
);
255 ext4_handle_sync(handle
);
257 err
= ext4_mark_inode_dirty(handle
, inode
);
259 ext4_warning(inode
->i_sb
,
260 "couldn't mark inode dirty (err %d)", err
);
264 ext4_truncate(inode
);
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
272 if (!ext4_handle_has_enough_credits(handle
, 3)) {
273 err
= ext4_journal_extend(handle
, 3);
275 err
= ext4_journal_restart(handle
, 3);
277 ext4_warning(inode
->i_sb
,
278 "couldn't extend journal (err %d)", err
);
280 ext4_journal_stop(handle
);
281 ext4_orphan_del(NULL
, inode
);
282 sb_end_intwrite(inode
->i_sb
);
288 * Kill off the orphan record which ext4_truncate created.
289 * AKPM: I think this can be inside the above `if'.
290 * Note that ext4_orphan_del() has to be able to cope with the
291 * deletion of a non-existent orphan - this is because we don't
292 * know if ext4_truncate() actually created an orphan record.
293 * (Well, we could do this if we need to, but heck - it works)
295 ext4_orphan_del(handle
, inode
);
296 EXT4_I(inode
)->i_dtime
= get_seconds();
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
305 if (ext4_mark_inode_dirty(handle
, inode
))
306 /* If that failed, just do the required in-core inode clear. */
307 ext4_clear_inode(inode
);
309 ext4_free_inode(handle
, inode
);
310 ext4_journal_stop(handle
);
311 sb_end_intwrite(inode
->i_sb
);
314 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
318 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
320 return &EXT4_I(inode
)->i_reserved_quota
;
325 * Called with i_data_sem down, which is important since we can call
326 * ext4_discard_preallocations() from here.
328 void ext4_da_update_reserve_space(struct inode
*inode
,
329 int used
, int quota_claim
)
331 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
332 struct ext4_inode_info
*ei
= EXT4_I(inode
);
334 spin_lock(&ei
->i_block_reservation_lock
);
335 trace_ext4_da_update_reserve_space(inode
, used
, quota_claim
);
336 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
337 ext4_warning(inode
->i_sb
, "%s: ino %lu, used %d "
338 "with only %d reserved data blocks",
339 __func__
, inode
->i_ino
, used
,
340 ei
->i_reserved_data_blocks
);
342 used
= ei
->i_reserved_data_blocks
;
345 /* Update per-inode reservations */
346 ei
->i_reserved_data_blocks
-= used
;
347 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, used
);
349 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
351 /* Update quota subsystem for data blocks */
353 dquot_claim_block(inode
, EXT4_C2B(sbi
, used
));
356 * We did fallocate with an offset that is already delayed
357 * allocated. So on delayed allocated writeback we should
358 * not re-claim the quota for fallocated blocks.
360 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, used
));
364 * If we have done all the pending block allocations and if
365 * there aren't any writers on the inode, we can discard the
366 * inode's preallocations.
368 if ((ei
->i_reserved_data_blocks
== 0) &&
369 (atomic_read(&inode
->i_writecount
) == 0))
370 ext4_discard_preallocations(inode
);
373 static int __check_block_validity(struct inode
*inode
, const char *func
,
375 struct ext4_map_blocks
*map
)
377 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), map
->m_pblk
,
379 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
380 "lblock %lu mapped to illegal pblock "
381 "(length %d)", (unsigned long) map
->m_lblk
,
388 #define check_block_validity(inode, map) \
389 __check_block_validity((inode), __func__, __LINE__, (map))
391 #ifdef ES_AGGRESSIVE_TEST
392 static void ext4_map_blocks_es_recheck(handle_t
*handle
,
394 struct ext4_map_blocks
*es_map
,
395 struct ext4_map_blocks
*map
,
402 * There is a race window that the result is not the same.
403 * e.g. xfstests #223 when dioread_nolock enables. The reason
404 * is that we lookup a block mapping in extent status tree with
405 * out taking i_data_sem. So at the time the unwritten extent
406 * could be converted.
408 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
409 down_read(&EXT4_I(inode
)->i_data_sem
);
410 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
411 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
412 EXT4_GET_BLOCKS_KEEP_SIZE
);
414 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
415 EXT4_GET_BLOCKS_KEEP_SIZE
);
417 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
418 up_read((&EXT4_I(inode
)->i_data_sem
));
420 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
421 * because it shouldn't be marked in es_map->m_flags.
423 map
->m_flags
&= ~(EXT4_MAP_FROM_CLUSTER
| EXT4_MAP_BOUNDARY
);
426 * We don't check m_len because extent will be collpased in status
427 * tree. So the m_len might not equal.
429 if (es_map
->m_lblk
!= map
->m_lblk
||
430 es_map
->m_flags
!= map
->m_flags
||
431 es_map
->m_pblk
!= map
->m_pblk
) {
432 printk("ES cache assertion failed for inode: %lu "
433 "es_cached ex [%d/%d/%llu/%x] != "
434 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
435 inode
->i_ino
, es_map
->m_lblk
, es_map
->m_len
,
436 es_map
->m_pblk
, es_map
->m_flags
, map
->m_lblk
,
437 map
->m_len
, map
->m_pblk
, map
->m_flags
,
441 #endif /* ES_AGGRESSIVE_TEST */
444 * The ext4_map_blocks() function tries to look up the requested blocks,
445 * and returns if the blocks are already mapped.
447 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
448 * and store the allocated blocks in the result buffer head and mark it
451 * If file type is extents based, it will call ext4_ext_map_blocks(),
452 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
455 * On success, it returns the number of blocks being mapped or allocated.
456 * if create==0 and the blocks are pre-allocated and unwritten block,
457 * the result buffer head is unmapped. If the create ==1, it will make sure
458 * the buffer head is mapped.
460 * It returns 0 if plain look up failed (blocks have not been allocated), in
461 * that case, buffer head is unmapped
463 * It returns the error in case of allocation failure.
465 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
466 struct ext4_map_blocks
*map
, int flags
)
468 struct extent_status es
;
471 #ifdef ES_AGGRESSIVE_TEST
472 struct ext4_map_blocks orig_map
;
474 memcpy(&orig_map
, map
, sizeof(*map
));
478 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
479 "logical block %lu\n", inode
->i_ino
, flags
, map
->m_len
,
480 (unsigned long) map
->m_lblk
);
483 * ext4_map_blocks returns an int, and m_len is an unsigned int
485 if (unlikely(map
->m_len
> INT_MAX
))
486 map
->m_len
= INT_MAX
;
488 /* We can handle the block number less than EXT_MAX_BLOCKS */
489 if (unlikely(map
->m_lblk
>= EXT_MAX_BLOCKS
))
492 /* Lookup extent status tree firstly */
493 if (ext4_es_lookup_extent(inode
, map
->m_lblk
, &es
)) {
494 ext4_es_lru_add(inode
);
495 if (ext4_es_is_written(&es
) || ext4_es_is_unwritten(&es
)) {
496 map
->m_pblk
= ext4_es_pblock(&es
) +
497 map
->m_lblk
- es
.es_lblk
;
498 map
->m_flags
|= ext4_es_is_written(&es
) ?
499 EXT4_MAP_MAPPED
: EXT4_MAP_UNWRITTEN
;
500 retval
= es
.es_len
- (map
->m_lblk
- es
.es_lblk
);
501 if (retval
> map
->m_len
)
504 } else if (ext4_es_is_delayed(&es
) || ext4_es_is_hole(&es
)) {
509 #ifdef ES_AGGRESSIVE_TEST
510 ext4_map_blocks_es_recheck(handle
, inode
, map
,
517 * Try to see if we can get the block without requesting a new
520 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
521 down_read(&EXT4_I(inode
)->i_data_sem
);
522 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
523 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
524 EXT4_GET_BLOCKS_KEEP_SIZE
);
526 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
527 EXT4_GET_BLOCKS_KEEP_SIZE
);
532 if (unlikely(retval
!= map
->m_len
)) {
533 ext4_warning(inode
->i_sb
,
534 "ES len assertion failed for inode "
535 "%lu: retval %d != map->m_len %d",
536 inode
->i_ino
, retval
, map
->m_len
);
540 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
541 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
542 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
543 ext4_find_delalloc_range(inode
, map
->m_lblk
,
544 map
->m_lblk
+ map
->m_len
- 1))
545 status
|= EXTENT_STATUS_DELAYED
;
546 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
,
547 map
->m_len
, map
->m_pblk
, status
);
551 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
552 up_read((&EXT4_I(inode
)->i_data_sem
));
555 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
556 ret
= check_block_validity(inode
, map
);
561 /* If it is only a block(s) look up */
562 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
566 * Returns if the blocks have already allocated
568 * Note that if blocks have been preallocated
569 * ext4_ext_get_block() returns the create = 0
570 * with buffer head unmapped.
572 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
574 * If we need to convert extent to unwritten
575 * we continue and do the actual work in
576 * ext4_ext_map_blocks()
578 if (!(flags
& EXT4_GET_BLOCKS_CONVERT_UNWRITTEN
))
582 * Here we clear m_flags because after allocating an new extent,
583 * it will be set again.
585 map
->m_flags
&= ~EXT4_MAP_FLAGS
;
588 * New blocks allocate and/or writing to unwritten extent
589 * will possibly result in updating i_data, so we take
590 * the write lock of i_data_sem, and call get_block()
591 * with create == 1 flag.
593 down_write(&EXT4_I(inode
)->i_data_sem
);
596 * We need to check for EXT4 here because migrate
597 * could have changed the inode type in between
599 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
600 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
602 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
604 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
606 * We allocated new blocks which will result in
607 * i_data's format changing. Force the migrate
608 * to fail by clearing migrate flags
610 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
614 * Update reserved blocks/metadata blocks after successful
615 * block allocation which had been deferred till now. We don't
616 * support fallocate for non extent files. So we can update
617 * reserve space here.
620 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
621 ext4_da_update_reserve_space(inode
, retval
, 1);
627 if (unlikely(retval
!= map
->m_len
)) {
628 ext4_warning(inode
->i_sb
,
629 "ES len assertion failed for inode "
630 "%lu: retval %d != map->m_len %d",
631 inode
->i_ino
, retval
, map
->m_len
);
636 * If the extent has been zeroed out, we don't need to update
637 * extent status tree.
639 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
) &&
640 ext4_es_lookup_extent(inode
, map
->m_lblk
, &es
)) {
641 if (ext4_es_is_written(&es
))
644 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
645 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
646 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
647 ext4_find_delalloc_range(inode
, map
->m_lblk
,
648 map
->m_lblk
+ map
->m_len
- 1))
649 status
|= EXTENT_STATUS_DELAYED
;
650 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
651 map
->m_pblk
, status
);
657 up_write((&EXT4_I(inode
)->i_data_sem
));
658 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
659 ret
= check_block_validity(inode
, map
);
666 /* Maximum number of blocks we map for direct IO at once. */
667 #define DIO_MAX_BLOCKS 4096
669 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
670 struct buffer_head
*bh
, int flags
)
672 handle_t
*handle
= ext4_journal_current_handle();
673 struct ext4_map_blocks map
;
674 int ret
= 0, started
= 0;
677 if (ext4_has_inline_data(inode
))
681 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
683 if (flags
&& !(flags
& EXT4_GET_BLOCKS_NO_LOCK
) && !handle
) {
684 /* Direct IO write... */
685 if (map
.m_len
> DIO_MAX_BLOCKS
)
686 map
.m_len
= DIO_MAX_BLOCKS
;
687 dio_credits
= ext4_chunk_trans_blocks(inode
, map
.m_len
);
688 handle
= ext4_journal_start(inode
, EXT4_HT_MAP_BLOCKS
,
690 if (IS_ERR(handle
)) {
691 ret
= PTR_ERR(handle
);
697 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
699 ext4_io_end_t
*io_end
= ext4_inode_aio(inode
);
701 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
702 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
703 if (io_end
&& io_end
->flag
& EXT4_IO_END_UNWRITTEN
)
704 set_buffer_defer_completion(bh
);
705 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
709 ext4_journal_stop(handle
);
713 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
714 struct buffer_head
*bh
, int create
)
716 return _ext4_get_block(inode
, iblock
, bh
,
717 create
? EXT4_GET_BLOCKS_CREATE
: 0);
721 * `handle' can be NULL if create is zero
723 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
724 ext4_lblk_t block
, int create
)
726 struct ext4_map_blocks map
;
727 struct buffer_head
*bh
;
730 J_ASSERT(handle
!= NULL
|| create
== 0);
734 err
= ext4_map_blocks(handle
, inode
, &map
,
735 create
? EXT4_GET_BLOCKS_CREATE
: 0);
738 return create
? ERR_PTR(-ENOSPC
) : NULL
;
742 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
744 return ERR_PTR(-ENOMEM
);
745 if (map
.m_flags
& EXT4_MAP_NEW
) {
746 J_ASSERT(create
!= 0);
747 J_ASSERT(handle
!= NULL
);
750 * Now that we do not always journal data, we should
751 * keep in mind whether this should always journal the
752 * new buffer as metadata. For now, regular file
753 * writes use ext4_get_block instead, so it's not a
757 BUFFER_TRACE(bh
, "call get_create_access");
758 err
= ext4_journal_get_create_access(handle
, bh
);
763 if (!buffer_uptodate(bh
)) {
764 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
765 set_buffer_uptodate(bh
);
768 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
769 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
773 BUFFER_TRACE(bh
, "not a new buffer");
780 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
781 ext4_lblk_t block
, int create
)
783 struct buffer_head
*bh
;
785 bh
= ext4_getblk(handle
, inode
, block
, create
);
788 if (!bh
|| buffer_uptodate(bh
))
790 ll_rw_block(READ
| REQ_META
| REQ_PRIO
, 1, &bh
);
792 if (buffer_uptodate(bh
))
795 return ERR_PTR(-EIO
);
798 int ext4_walk_page_buffers(handle_t
*handle
,
799 struct buffer_head
*head
,
803 int (*fn
)(handle_t
*handle
,
804 struct buffer_head
*bh
))
806 struct buffer_head
*bh
;
807 unsigned block_start
, block_end
;
808 unsigned blocksize
= head
->b_size
;
810 struct buffer_head
*next
;
812 for (bh
= head
, block_start
= 0;
813 ret
== 0 && (bh
!= head
|| !block_start
);
814 block_start
= block_end
, bh
= next
) {
815 next
= bh
->b_this_page
;
816 block_end
= block_start
+ blocksize
;
817 if (block_end
<= from
|| block_start
>= to
) {
818 if (partial
&& !buffer_uptodate(bh
))
822 err
= (*fn
)(handle
, bh
);
830 * To preserve ordering, it is essential that the hole instantiation and
831 * the data write be encapsulated in a single transaction. We cannot
832 * close off a transaction and start a new one between the ext4_get_block()
833 * and the commit_write(). So doing the jbd2_journal_start at the start of
834 * prepare_write() is the right place.
836 * Also, this function can nest inside ext4_writepage(). In that case, we
837 * *know* that ext4_writepage() has generated enough buffer credits to do the
838 * whole page. So we won't block on the journal in that case, which is good,
839 * because the caller may be PF_MEMALLOC.
841 * By accident, ext4 can be reentered when a transaction is open via
842 * quota file writes. If we were to commit the transaction while thus
843 * reentered, there can be a deadlock - we would be holding a quota
844 * lock, and the commit would never complete if another thread had a
845 * transaction open and was blocking on the quota lock - a ranking
848 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
849 * will _not_ run commit under these circumstances because handle->h_ref
850 * is elevated. We'll still have enough credits for the tiny quotafile
853 int do_journal_get_write_access(handle_t
*handle
,
854 struct buffer_head
*bh
)
856 int dirty
= buffer_dirty(bh
);
859 if (!buffer_mapped(bh
) || buffer_freed(bh
))
862 * __block_write_begin() could have dirtied some buffers. Clean
863 * the dirty bit as jbd2_journal_get_write_access() could complain
864 * otherwise about fs integrity issues. Setting of the dirty bit
865 * by __block_write_begin() isn't a real problem here as we clear
866 * the bit before releasing a page lock and thus writeback cannot
867 * ever write the buffer.
870 clear_buffer_dirty(bh
);
871 BUFFER_TRACE(bh
, "get write access");
872 ret
= ext4_journal_get_write_access(handle
, bh
);
874 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
878 static int ext4_get_block_write_nolock(struct inode
*inode
, sector_t iblock
,
879 struct buffer_head
*bh_result
, int create
);
880 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
881 loff_t pos
, unsigned len
, unsigned flags
,
882 struct page
**pagep
, void **fsdata
)
884 struct inode
*inode
= mapping
->host
;
885 int ret
, needed_blocks
;
892 trace_ext4_write_begin(inode
, pos
, len
, flags
);
894 * Reserve one block more for addition to orphan list in case
895 * we allocate blocks but write fails for some reason
897 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
898 index
= pos
>> PAGE_CACHE_SHIFT
;
899 from
= pos
& (PAGE_CACHE_SIZE
- 1);
902 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
903 ret
= ext4_try_to_write_inline_data(mapping
, inode
, pos
, len
,
912 * grab_cache_page_write_begin() can take a long time if the
913 * system is thrashing due to memory pressure, or if the page
914 * is being written back. So grab it first before we start
915 * the transaction handle. This also allows us to allocate
916 * the page (if needed) without using GFP_NOFS.
919 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
925 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
, needed_blocks
);
926 if (IS_ERR(handle
)) {
927 page_cache_release(page
);
928 return PTR_ERR(handle
);
932 if (page
->mapping
!= mapping
) {
933 /* The page got truncated from under us */
935 page_cache_release(page
);
936 ext4_journal_stop(handle
);
939 /* In case writeback began while the page was unlocked */
940 wait_for_stable_page(page
);
942 if (ext4_should_dioread_nolock(inode
))
943 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block_write
);
945 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
947 if (!ret
&& ext4_should_journal_data(inode
)) {
948 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
),
950 do_journal_get_write_access
);
956 * __block_write_begin may have instantiated a few blocks
957 * outside i_size. Trim these off again. Don't need
958 * i_size_read because we hold i_mutex.
960 * Add inode to orphan list in case we crash before
963 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
964 ext4_orphan_add(handle
, inode
);
966 ext4_journal_stop(handle
);
967 if (pos
+ len
> inode
->i_size
) {
968 ext4_truncate_failed_write(inode
);
970 * If truncate failed early the inode might
971 * still be on the orphan list; we need to
972 * make sure the inode is removed from the
973 * orphan list in that case.
976 ext4_orphan_del(NULL
, inode
);
979 if (ret
== -ENOSPC
&&
980 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
982 page_cache_release(page
);
989 /* For write_end() in data=journal mode */
990 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
993 if (!buffer_mapped(bh
) || buffer_freed(bh
))
995 set_buffer_uptodate(bh
);
996 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
997 clear_buffer_meta(bh
);
998 clear_buffer_prio(bh
);
1003 * We need to pick up the new inode size which generic_commit_write gave us
1004 * `file' can be NULL - eg, when called from page_symlink().
1006 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1007 * buffers are managed internally.
1009 static int ext4_write_end(struct file
*file
,
1010 struct address_space
*mapping
,
1011 loff_t pos
, unsigned len
, unsigned copied
,
1012 struct page
*page
, void *fsdata
)
1014 handle_t
*handle
= ext4_journal_current_handle();
1015 struct inode
*inode
= mapping
->host
;
1017 int i_size_changed
= 0;
1019 trace_ext4_write_end(inode
, pos
, len
, copied
);
1020 if (ext4_test_inode_state(inode
, EXT4_STATE_ORDERED_MODE
)) {
1021 ret
= ext4_jbd2_file_inode(handle
, inode
);
1024 page_cache_release(page
);
1029 if (ext4_has_inline_data(inode
)) {
1030 ret
= ext4_write_inline_data_end(inode
, pos
, len
,
1036 copied
= block_write_end(file
, mapping
, pos
,
1037 len
, copied
, page
, fsdata
);
1039 * it's important to update i_size while still holding page lock:
1040 * page writeout could otherwise come in and zero beyond i_size.
1042 i_size_changed
= ext4_update_inode_size(inode
, pos
+ copied
);
1044 page_cache_release(page
);
1047 * Don't mark the inode dirty under page lock. First, it unnecessarily
1048 * makes the holding time of page lock longer. Second, it forces lock
1049 * ordering of page lock and transaction start for journaling
1053 ext4_mark_inode_dirty(handle
, inode
);
1055 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1056 /* if we have allocated more blocks and copied
1057 * less. We will have blocks allocated outside
1058 * inode->i_size. So truncate them
1060 ext4_orphan_add(handle
, inode
);
1062 ret2
= ext4_journal_stop(handle
);
1066 if (pos
+ len
> inode
->i_size
) {
1067 ext4_truncate_failed_write(inode
);
1069 * If truncate failed early the inode might still be
1070 * on the orphan list; we need to make sure the inode
1071 * is removed from the orphan list in that case.
1074 ext4_orphan_del(NULL
, inode
);
1077 return ret
? ret
: copied
;
1080 static int ext4_journalled_write_end(struct file
*file
,
1081 struct address_space
*mapping
,
1082 loff_t pos
, unsigned len
, unsigned copied
,
1083 struct page
*page
, void *fsdata
)
1085 handle_t
*handle
= ext4_journal_current_handle();
1086 struct inode
*inode
= mapping
->host
;
1090 int size_changed
= 0;
1092 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1093 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1096 BUG_ON(!ext4_handle_valid(handle
));
1098 if (ext4_has_inline_data(inode
))
1099 copied
= ext4_write_inline_data_end(inode
, pos
, len
,
1103 if (!PageUptodate(page
))
1105 page_zero_new_buffers(page
, from
+copied
, to
);
1108 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
), from
,
1109 to
, &partial
, write_end_fn
);
1111 SetPageUptodate(page
);
1113 size_changed
= ext4_update_inode_size(inode
, pos
+ copied
);
1114 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1115 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1117 page_cache_release(page
);
1120 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1125 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1126 /* if we have allocated more blocks and copied
1127 * less. We will have blocks allocated outside
1128 * inode->i_size. So truncate them
1130 ext4_orphan_add(handle
, inode
);
1132 ret2
= ext4_journal_stop(handle
);
1135 if (pos
+ len
> inode
->i_size
) {
1136 ext4_truncate_failed_write(inode
);
1138 * If truncate failed early the inode might still be
1139 * on the orphan list; we need to make sure the inode
1140 * is removed from the orphan list in that case.
1143 ext4_orphan_del(NULL
, inode
);
1146 return ret
? ret
: copied
;
1150 * Reserve a single cluster located at lblock
1152 static int ext4_da_reserve_space(struct inode
*inode
, ext4_lblk_t lblock
)
1154 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1155 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1156 unsigned int md_needed
;
1160 * We will charge metadata quota at writeout time; this saves
1161 * us from metadata over-estimation, though we may go over by
1162 * a small amount in the end. Here we just reserve for data.
1164 ret
= dquot_reserve_block(inode
, EXT4_C2B(sbi
, 1));
1169 * recalculate the amount of metadata blocks to reserve
1170 * in order to allocate nrblocks
1171 * worse case is one extent per block
1173 spin_lock(&ei
->i_block_reservation_lock
);
1175 * ext4_calc_metadata_amount() has side effects, which we have
1176 * to be prepared undo if we fail to claim space.
1179 trace_ext4_da_reserve_space(inode
, 0);
1181 if (ext4_claim_free_clusters(sbi
, 1, 0)) {
1182 spin_unlock(&ei
->i_block_reservation_lock
);
1183 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, 1));
1186 ei
->i_reserved_data_blocks
++;
1187 spin_unlock(&ei
->i_block_reservation_lock
);
1189 return 0; /* success */
1192 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1194 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1195 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1198 return; /* Nothing to release, exit */
1200 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1202 trace_ext4_da_release_space(inode
, to_free
);
1203 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1205 * if there aren't enough reserved blocks, then the
1206 * counter is messed up somewhere. Since this
1207 * function is called from invalidate page, it's
1208 * harmless to return without any action.
1210 ext4_warning(inode
->i_sb
, "ext4_da_release_space: "
1211 "ino %lu, to_free %d with only %d reserved "
1212 "data blocks", inode
->i_ino
, to_free
,
1213 ei
->i_reserved_data_blocks
);
1215 to_free
= ei
->i_reserved_data_blocks
;
1217 ei
->i_reserved_data_blocks
-= to_free
;
1219 /* update fs dirty data blocks counter */
1220 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, to_free
);
1222 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1224 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, to_free
));
1227 static void ext4_da_page_release_reservation(struct page
*page
,
1228 unsigned int offset
,
1229 unsigned int length
)
1232 struct buffer_head
*head
, *bh
;
1233 unsigned int curr_off
= 0;
1234 struct inode
*inode
= page
->mapping
->host
;
1235 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1236 unsigned int stop
= offset
+ length
;
1240 BUG_ON(stop
> PAGE_CACHE_SIZE
|| stop
< length
);
1242 head
= page_buffers(page
);
1245 unsigned int next_off
= curr_off
+ bh
->b_size
;
1247 if (next_off
> stop
)
1250 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1252 clear_buffer_delay(bh
);
1254 curr_off
= next_off
;
1255 } while ((bh
= bh
->b_this_page
) != head
);
1258 lblk
= page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1259 ext4_es_remove_extent(inode
, lblk
, to_release
);
1262 /* If we have released all the blocks belonging to a cluster, then we
1263 * need to release the reserved space for that cluster. */
1264 num_clusters
= EXT4_NUM_B2C(sbi
, to_release
);
1265 while (num_clusters
> 0) {
1266 lblk
= (page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
)) +
1267 ((num_clusters
- 1) << sbi
->s_cluster_bits
);
1268 if (sbi
->s_cluster_ratio
== 1 ||
1269 !ext4_find_delalloc_cluster(inode
, lblk
))
1270 ext4_da_release_space(inode
, 1);
1277 * Delayed allocation stuff
1280 struct mpage_da_data
{
1281 struct inode
*inode
;
1282 struct writeback_control
*wbc
;
1284 pgoff_t first_page
; /* The first page to write */
1285 pgoff_t next_page
; /* Current page to examine */
1286 pgoff_t last_page
; /* Last page to examine */
1288 * Extent to map - this can be after first_page because that can be
1289 * fully mapped. We somewhat abuse m_flags to store whether the extent
1290 * is delalloc or unwritten.
1292 struct ext4_map_blocks map
;
1293 struct ext4_io_submit io_submit
; /* IO submission data */
1296 static void mpage_release_unused_pages(struct mpage_da_data
*mpd
,
1301 struct pagevec pvec
;
1302 struct inode
*inode
= mpd
->inode
;
1303 struct address_space
*mapping
= inode
->i_mapping
;
1305 /* This is necessary when next_page == 0. */
1306 if (mpd
->first_page
>= mpd
->next_page
)
1309 index
= mpd
->first_page
;
1310 end
= mpd
->next_page
- 1;
1312 ext4_lblk_t start
, last
;
1313 start
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1314 last
= end
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1315 ext4_es_remove_extent(inode
, start
, last
- start
+ 1);
1318 pagevec_init(&pvec
, 0);
1319 while (index
<= end
) {
1320 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1323 for (i
= 0; i
< nr_pages
; i
++) {
1324 struct page
*page
= pvec
.pages
[i
];
1325 if (page
->index
> end
)
1327 BUG_ON(!PageLocked(page
));
1328 BUG_ON(PageWriteback(page
));
1330 block_invalidatepage(page
, 0, PAGE_CACHE_SIZE
);
1331 ClearPageUptodate(page
);
1335 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
1336 pagevec_release(&pvec
);
1340 static void ext4_print_free_blocks(struct inode
*inode
)
1342 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1343 struct super_block
*sb
= inode
->i_sb
;
1344 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1346 ext4_msg(sb
, KERN_CRIT
, "Total free blocks count %lld",
1347 EXT4_C2B(EXT4_SB(inode
->i_sb
),
1348 ext4_count_free_clusters(sb
)));
1349 ext4_msg(sb
, KERN_CRIT
, "Free/Dirty block details");
1350 ext4_msg(sb
, KERN_CRIT
, "free_blocks=%lld",
1351 (long long) EXT4_C2B(EXT4_SB(sb
),
1352 percpu_counter_sum(&sbi
->s_freeclusters_counter
)));
1353 ext4_msg(sb
, KERN_CRIT
, "dirty_blocks=%lld",
1354 (long long) EXT4_C2B(EXT4_SB(sb
),
1355 percpu_counter_sum(&sbi
->s_dirtyclusters_counter
)));
1356 ext4_msg(sb
, KERN_CRIT
, "Block reservation details");
1357 ext4_msg(sb
, KERN_CRIT
, "i_reserved_data_blocks=%u",
1358 ei
->i_reserved_data_blocks
);
1362 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
1364 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
1368 * This function is grabs code from the very beginning of
1369 * ext4_map_blocks, but assumes that the caller is from delayed write
1370 * time. This function looks up the requested blocks and sets the
1371 * buffer delay bit under the protection of i_data_sem.
1373 static int ext4_da_map_blocks(struct inode
*inode
, sector_t iblock
,
1374 struct ext4_map_blocks
*map
,
1375 struct buffer_head
*bh
)
1377 struct extent_status es
;
1379 sector_t invalid_block
= ~((sector_t
) 0xffff);
1380 #ifdef ES_AGGRESSIVE_TEST
1381 struct ext4_map_blocks orig_map
;
1383 memcpy(&orig_map
, map
, sizeof(*map
));
1386 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
1390 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1391 "logical block %lu\n", inode
->i_ino
, map
->m_len
,
1392 (unsigned long) map
->m_lblk
);
1394 /* Lookup extent status tree firstly */
1395 if (ext4_es_lookup_extent(inode
, iblock
, &es
)) {
1396 ext4_es_lru_add(inode
);
1397 if (ext4_es_is_hole(&es
)) {
1399 down_read(&EXT4_I(inode
)->i_data_sem
);
1404 * Delayed extent could be allocated by fallocate.
1405 * So we need to check it.
1407 if (ext4_es_is_delayed(&es
) && !ext4_es_is_unwritten(&es
)) {
1408 map_bh(bh
, inode
->i_sb
, invalid_block
);
1410 set_buffer_delay(bh
);
1414 map
->m_pblk
= ext4_es_pblock(&es
) + iblock
- es
.es_lblk
;
1415 retval
= es
.es_len
- (iblock
- es
.es_lblk
);
1416 if (retval
> map
->m_len
)
1417 retval
= map
->m_len
;
1418 map
->m_len
= retval
;
1419 if (ext4_es_is_written(&es
))
1420 map
->m_flags
|= EXT4_MAP_MAPPED
;
1421 else if (ext4_es_is_unwritten(&es
))
1422 map
->m_flags
|= EXT4_MAP_UNWRITTEN
;
1426 #ifdef ES_AGGRESSIVE_TEST
1427 ext4_map_blocks_es_recheck(NULL
, inode
, map
, &orig_map
, 0);
1433 * Try to see if we can get the block without requesting a new
1434 * file system block.
1436 down_read(&EXT4_I(inode
)->i_data_sem
);
1437 if (ext4_has_inline_data(inode
)) {
1439 * We will soon create blocks for this page, and let
1440 * us pretend as if the blocks aren't allocated yet.
1441 * In case of clusters, we have to handle the work
1442 * of mapping from cluster so that the reserved space
1443 * is calculated properly.
1445 if ((EXT4_SB(inode
->i_sb
)->s_cluster_ratio
> 1) &&
1446 ext4_find_delalloc_cluster(inode
, map
->m_lblk
))
1447 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
1449 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
1450 retval
= ext4_ext_map_blocks(NULL
, inode
, map
,
1451 EXT4_GET_BLOCKS_NO_PUT_HOLE
);
1453 retval
= ext4_ind_map_blocks(NULL
, inode
, map
,
1454 EXT4_GET_BLOCKS_NO_PUT_HOLE
);
1460 * XXX: __block_prepare_write() unmaps passed block,
1464 * If the block was allocated from previously allocated cluster,
1465 * then we don't need to reserve it again. However we still need
1466 * to reserve metadata for every block we're going to write.
1468 if (!(map
->m_flags
& EXT4_MAP_FROM_CLUSTER
)) {
1469 ret
= ext4_da_reserve_space(inode
, iblock
);
1471 /* not enough space to reserve */
1477 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
1478 ~0, EXTENT_STATUS_DELAYED
);
1484 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1485 * and it should not appear on the bh->b_state.
1487 map
->m_flags
&= ~EXT4_MAP_FROM_CLUSTER
;
1489 map_bh(bh
, inode
->i_sb
, invalid_block
);
1491 set_buffer_delay(bh
);
1492 } else if (retval
> 0) {
1494 unsigned int status
;
1496 if (unlikely(retval
!= map
->m_len
)) {
1497 ext4_warning(inode
->i_sb
,
1498 "ES len assertion failed for inode "
1499 "%lu: retval %d != map->m_len %d",
1500 inode
->i_ino
, retval
, map
->m_len
);
1504 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
1505 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
1506 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
1507 map
->m_pblk
, status
);
1513 up_read((&EXT4_I(inode
)->i_data_sem
));
1519 * This is a special get_block_t callback which is used by
1520 * ext4_da_write_begin(). It will either return mapped block or
1521 * reserve space for a single block.
1523 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1524 * We also have b_blocknr = -1 and b_bdev initialized properly
1526 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1527 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1528 * initialized properly.
1530 int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
1531 struct buffer_head
*bh
, int create
)
1533 struct ext4_map_blocks map
;
1536 BUG_ON(create
== 0);
1537 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
1539 map
.m_lblk
= iblock
;
1543 * first, we need to know whether the block is allocated already
1544 * preallocated blocks are unmapped but should treated
1545 * the same as allocated blocks.
1547 ret
= ext4_da_map_blocks(inode
, iblock
, &map
, bh
);
1551 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1552 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
1554 if (buffer_unwritten(bh
)) {
1555 /* A delayed write to unwritten bh should be marked
1556 * new and mapped. Mapped ensures that we don't do
1557 * get_block multiple times when we write to the same
1558 * offset and new ensures that we do proper zero out
1559 * for partial write.
1562 set_buffer_mapped(bh
);
1567 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1573 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1579 static int __ext4_journalled_writepage(struct page
*page
,
1582 struct address_space
*mapping
= page
->mapping
;
1583 struct inode
*inode
= mapping
->host
;
1584 struct buffer_head
*page_bufs
= NULL
;
1585 handle_t
*handle
= NULL
;
1586 int ret
= 0, err
= 0;
1587 int inline_data
= ext4_has_inline_data(inode
);
1588 struct buffer_head
*inode_bh
= NULL
;
1590 ClearPageChecked(page
);
1593 BUG_ON(page
->index
!= 0);
1594 BUG_ON(len
> ext4_get_max_inline_size(inode
));
1595 inode_bh
= ext4_journalled_write_inline_data(inode
, len
, page
);
1596 if (inode_bh
== NULL
)
1599 page_bufs
= page_buffers(page
);
1604 ext4_walk_page_buffers(handle
, page_bufs
, 0, len
,
1607 /* As soon as we unlock the page, it can go away, but we have
1608 * references to buffers so we are safe */
1611 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
1612 ext4_writepage_trans_blocks(inode
));
1613 if (IS_ERR(handle
)) {
1614 ret
= PTR_ERR(handle
);
1618 BUG_ON(!ext4_handle_valid(handle
));
1621 BUFFER_TRACE(inode_bh
, "get write access");
1622 ret
= ext4_journal_get_write_access(handle
, inode_bh
);
1624 err
= ext4_handle_dirty_metadata(handle
, inode
, inode_bh
);
1627 ret
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1628 do_journal_get_write_access
);
1630 err
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1635 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1636 err
= ext4_journal_stop(handle
);
1640 if (!ext4_has_inline_data(inode
))
1641 ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
,
1643 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1650 * Note that we don't need to start a transaction unless we're journaling data
1651 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1652 * need to file the inode to the transaction's list in ordered mode because if
1653 * we are writing back data added by write(), the inode is already there and if
1654 * we are writing back data modified via mmap(), no one guarantees in which
1655 * transaction the data will hit the disk. In case we are journaling data, we
1656 * cannot start transaction directly because transaction start ranks above page
1657 * lock so we have to do some magic.
1659 * This function can get called via...
1660 * - ext4_writepages after taking page lock (have journal handle)
1661 * - journal_submit_inode_data_buffers (no journal handle)
1662 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1663 * - grab_page_cache when doing write_begin (have journal handle)
1665 * We don't do any block allocation in this function. If we have page with
1666 * multiple blocks we need to write those buffer_heads that are mapped. This
1667 * is important for mmaped based write. So if we do with blocksize 1K
1668 * truncate(f, 1024);
1669 * a = mmap(f, 0, 4096);
1671 * truncate(f, 4096);
1672 * we have in the page first buffer_head mapped via page_mkwrite call back
1673 * but other buffer_heads would be unmapped but dirty (dirty done via the
1674 * do_wp_page). So writepage should write the first block. If we modify
1675 * the mmap area beyond 1024 we will again get a page_fault and the
1676 * page_mkwrite callback will do the block allocation and mark the
1677 * buffer_heads mapped.
1679 * We redirty the page if we have any buffer_heads that is either delay or
1680 * unwritten in the page.
1682 * We can get recursively called as show below.
1684 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1687 * But since we don't do any block allocation we should not deadlock.
1688 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1690 static int ext4_writepage(struct page
*page
,
1691 struct writeback_control
*wbc
)
1696 struct buffer_head
*page_bufs
= NULL
;
1697 struct inode
*inode
= page
->mapping
->host
;
1698 struct ext4_io_submit io_submit
;
1699 bool keep_towrite
= false;
1701 trace_ext4_writepage(page
);
1702 size
= i_size_read(inode
);
1703 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
1704 len
= size
& ~PAGE_CACHE_MASK
;
1706 len
= PAGE_CACHE_SIZE
;
1708 page_bufs
= page_buffers(page
);
1710 * We cannot do block allocation or other extent handling in this
1711 * function. If there are buffers needing that, we have to redirty
1712 * the page. But we may reach here when we do a journal commit via
1713 * journal_submit_inode_data_buffers() and in that case we must write
1714 * allocated buffers to achieve data=ordered mode guarantees.
1716 if (ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
1717 ext4_bh_delay_or_unwritten
)) {
1718 redirty_page_for_writepage(wbc
, page
);
1719 if (current
->flags
& PF_MEMALLOC
) {
1721 * For memory cleaning there's no point in writing only
1722 * some buffers. So just bail out. Warn if we came here
1723 * from direct reclaim.
1725 WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
))
1730 keep_towrite
= true;
1733 if (PageChecked(page
) && ext4_should_journal_data(inode
))
1735 * It's mmapped pagecache. Add buffers and journal it. There
1736 * doesn't seem much point in redirtying the page here.
1738 return __ext4_journalled_writepage(page
, len
);
1740 ext4_io_submit_init(&io_submit
, wbc
);
1741 io_submit
.io_end
= ext4_init_io_end(inode
, GFP_NOFS
);
1742 if (!io_submit
.io_end
) {
1743 redirty_page_for_writepage(wbc
, page
);
1747 ret
= ext4_bio_write_page(&io_submit
, page
, len
, wbc
, keep_towrite
);
1748 ext4_io_submit(&io_submit
);
1749 /* Drop io_end reference we got from init */
1750 ext4_put_io_end_defer(io_submit
.io_end
);
1754 static int mpage_submit_page(struct mpage_da_data
*mpd
, struct page
*page
)
1757 loff_t size
= i_size_read(mpd
->inode
);
1760 BUG_ON(page
->index
!= mpd
->first_page
);
1761 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
1762 len
= size
& ~PAGE_CACHE_MASK
;
1764 len
= PAGE_CACHE_SIZE
;
1765 clear_page_dirty_for_io(page
);
1766 err
= ext4_bio_write_page(&mpd
->io_submit
, page
, len
, mpd
->wbc
, false);
1768 mpd
->wbc
->nr_to_write
--;
1774 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1777 * mballoc gives us at most this number of blocks...
1778 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1779 * The rest of mballoc seems to handle chunks up to full group size.
1781 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1784 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1786 * @mpd - extent of blocks
1787 * @lblk - logical number of the block in the file
1788 * @bh - buffer head we want to add to the extent
1790 * The function is used to collect contig. blocks in the same state. If the
1791 * buffer doesn't require mapping for writeback and we haven't started the
1792 * extent of buffers to map yet, the function returns 'true' immediately - the
1793 * caller can write the buffer right away. Otherwise the function returns true
1794 * if the block has been added to the extent, false if the block couldn't be
1797 static bool mpage_add_bh_to_extent(struct mpage_da_data
*mpd
, ext4_lblk_t lblk
,
1798 struct buffer_head
*bh
)
1800 struct ext4_map_blocks
*map
= &mpd
->map
;
1802 /* Buffer that doesn't need mapping for writeback? */
1803 if (!buffer_dirty(bh
) || !buffer_mapped(bh
) ||
1804 (!buffer_delay(bh
) && !buffer_unwritten(bh
))) {
1805 /* So far no extent to map => we write the buffer right away */
1806 if (map
->m_len
== 0)
1811 /* First block in the extent? */
1812 if (map
->m_len
== 0) {
1815 map
->m_flags
= bh
->b_state
& BH_FLAGS
;
1819 /* Don't go larger than mballoc is willing to allocate */
1820 if (map
->m_len
>= MAX_WRITEPAGES_EXTENT_LEN
)
1823 /* Can we merge the block to our big extent? */
1824 if (lblk
== map
->m_lblk
+ map
->m_len
&&
1825 (bh
->b_state
& BH_FLAGS
) == map
->m_flags
) {
1833 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1835 * @mpd - extent of blocks for mapping
1836 * @head - the first buffer in the page
1837 * @bh - buffer we should start processing from
1838 * @lblk - logical number of the block in the file corresponding to @bh
1840 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1841 * the page for IO if all buffers in this page were mapped and there's no
1842 * accumulated extent of buffers to map or add buffers in the page to the
1843 * extent of buffers to map. The function returns 1 if the caller can continue
1844 * by processing the next page, 0 if it should stop adding buffers to the
1845 * extent to map because we cannot extend it anymore. It can also return value
1846 * < 0 in case of error during IO submission.
1848 static int mpage_process_page_bufs(struct mpage_da_data
*mpd
,
1849 struct buffer_head
*head
,
1850 struct buffer_head
*bh
,
1853 struct inode
*inode
= mpd
->inode
;
1855 ext4_lblk_t blocks
= (i_size_read(inode
) + (1 << inode
->i_blkbits
) - 1)
1856 >> inode
->i_blkbits
;
1859 BUG_ON(buffer_locked(bh
));
1861 if (lblk
>= blocks
|| !mpage_add_bh_to_extent(mpd
, lblk
, bh
)) {
1862 /* Found extent to map? */
1865 /* Everything mapped so far and we hit EOF */
1868 } while (lblk
++, (bh
= bh
->b_this_page
) != head
);
1869 /* So far everything mapped? Submit the page for IO. */
1870 if (mpd
->map
.m_len
== 0) {
1871 err
= mpage_submit_page(mpd
, head
->b_page
);
1875 return lblk
< blocks
;
1879 * mpage_map_buffers - update buffers corresponding to changed extent and
1880 * submit fully mapped pages for IO
1882 * @mpd - description of extent to map, on return next extent to map
1884 * Scan buffers corresponding to changed extent (we expect corresponding pages
1885 * to be already locked) and update buffer state according to new extent state.
1886 * We map delalloc buffers to their physical location, clear unwritten bits,
1887 * and mark buffers as uninit when we perform writes to unwritten extents
1888 * and do extent conversion after IO is finished. If the last page is not fully
1889 * mapped, we update @map to the next extent in the last page that needs
1890 * mapping. Otherwise we submit the page for IO.
1892 static int mpage_map_and_submit_buffers(struct mpage_da_data
*mpd
)
1894 struct pagevec pvec
;
1896 struct inode
*inode
= mpd
->inode
;
1897 struct buffer_head
*head
, *bh
;
1898 int bpp_bits
= PAGE_CACHE_SHIFT
- inode
->i_blkbits
;
1904 start
= mpd
->map
.m_lblk
>> bpp_bits
;
1905 end
= (mpd
->map
.m_lblk
+ mpd
->map
.m_len
- 1) >> bpp_bits
;
1906 lblk
= start
<< bpp_bits
;
1907 pblock
= mpd
->map
.m_pblk
;
1909 pagevec_init(&pvec
, 0);
1910 while (start
<= end
) {
1911 nr_pages
= pagevec_lookup(&pvec
, inode
->i_mapping
, start
,
1915 for (i
= 0; i
< nr_pages
; i
++) {
1916 struct page
*page
= pvec
.pages
[i
];
1918 if (page
->index
> end
)
1920 /* Up to 'end' pages must be contiguous */
1921 BUG_ON(page
->index
!= start
);
1922 bh
= head
= page_buffers(page
);
1924 if (lblk
< mpd
->map
.m_lblk
)
1926 if (lblk
>= mpd
->map
.m_lblk
+ mpd
->map
.m_len
) {
1928 * Buffer after end of mapped extent.
1929 * Find next buffer in the page to map.
1932 mpd
->map
.m_flags
= 0;
1934 * FIXME: If dioread_nolock supports
1935 * blocksize < pagesize, we need to make
1936 * sure we add size mapped so far to
1937 * io_end->size as the following call
1938 * can submit the page for IO.
1940 err
= mpage_process_page_bufs(mpd
, head
,
1942 pagevec_release(&pvec
);
1947 if (buffer_delay(bh
)) {
1948 clear_buffer_delay(bh
);
1949 bh
->b_blocknr
= pblock
++;
1951 clear_buffer_unwritten(bh
);
1952 } while (lblk
++, (bh
= bh
->b_this_page
) != head
);
1955 * FIXME: This is going to break if dioread_nolock
1956 * supports blocksize < pagesize as we will try to
1957 * convert potentially unmapped parts of inode.
1959 mpd
->io_submit
.io_end
->size
+= PAGE_CACHE_SIZE
;
1960 /* Page fully mapped - let IO run! */
1961 err
= mpage_submit_page(mpd
, page
);
1963 pagevec_release(&pvec
);
1968 pagevec_release(&pvec
);
1970 /* Extent fully mapped and matches with page boundary. We are done. */
1972 mpd
->map
.m_flags
= 0;
1976 static int mpage_map_one_extent(handle_t
*handle
, struct mpage_da_data
*mpd
)
1978 struct inode
*inode
= mpd
->inode
;
1979 struct ext4_map_blocks
*map
= &mpd
->map
;
1980 int get_blocks_flags
;
1981 int err
, dioread_nolock
;
1983 trace_ext4_da_write_pages_extent(inode
, map
);
1985 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
1986 * to convert an unwritten extent to be initialized (in the case
1987 * where we have written into one or more preallocated blocks). It is
1988 * possible that we're going to need more metadata blocks than
1989 * previously reserved. However we must not fail because we're in
1990 * writeback and there is nothing we can do about it so it might result
1991 * in data loss. So use reserved blocks to allocate metadata if
1994 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1995 * the blocks in question are delalloc blocks. This indicates
1996 * that the blocks and quotas has already been checked when
1997 * the data was copied into the page cache.
1999 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
|
2000 EXT4_GET_BLOCKS_METADATA_NOFAIL
;
2001 dioread_nolock
= ext4_should_dioread_nolock(inode
);
2003 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
2004 if (map
->m_flags
& (1 << BH_Delay
))
2005 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
2007 err
= ext4_map_blocks(handle
, inode
, map
, get_blocks_flags
);
2010 if (dioread_nolock
&& (map
->m_flags
& EXT4_MAP_UNWRITTEN
)) {
2011 if (!mpd
->io_submit
.io_end
->handle
&&
2012 ext4_handle_valid(handle
)) {
2013 mpd
->io_submit
.io_end
->handle
= handle
->h_rsv_handle
;
2014 handle
->h_rsv_handle
= NULL
;
2016 ext4_set_io_unwritten_flag(inode
, mpd
->io_submit
.io_end
);
2019 BUG_ON(map
->m_len
== 0);
2020 if (map
->m_flags
& EXT4_MAP_NEW
) {
2021 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
2024 for (i
= 0; i
< map
->m_len
; i
++)
2025 unmap_underlying_metadata(bdev
, map
->m_pblk
+ i
);
2031 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2032 * mpd->len and submit pages underlying it for IO
2034 * @handle - handle for journal operations
2035 * @mpd - extent to map
2036 * @give_up_on_write - we set this to true iff there is a fatal error and there
2037 * is no hope of writing the data. The caller should discard
2038 * dirty pages to avoid infinite loops.
2040 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2041 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2042 * them to initialized or split the described range from larger unwritten
2043 * extent. Note that we need not map all the described range since allocation
2044 * can return less blocks or the range is covered by more unwritten extents. We
2045 * cannot map more because we are limited by reserved transaction credits. On
2046 * the other hand we always make sure that the last touched page is fully
2047 * mapped so that it can be written out (and thus forward progress is
2048 * guaranteed). After mapping we submit all mapped pages for IO.
2050 static int mpage_map_and_submit_extent(handle_t
*handle
,
2051 struct mpage_da_data
*mpd
,
2052 bool *give_up_on_write
)
2054 struct inode
*inode
= mpd
->inode
;
2055 struct ext4_map_blocks
*map
= &mpd
->map
;
2060 mpd
->io_submit
.io_end
->offset
=
2061 ((loff_t
)map
->m_lblk
) << inode
->i_blkbits
;
2063 err
= mpage_map_one_extent(handle
, mpd
);
2065 struct super_block
*sb
= inode
->i_sb
;
2067 if (EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)
2068 goto invalidate_dirty_pages
;
2070 * Let the uper layers retry transient errors.
2071 * In the case of ENOSPC, if ext4_count_free_blocks()
2072 * is non-zero, a commit should free up blocks.
2074 if ((err
== -ENOMEM
) ||
2075 (err
== -ENOSPC
&& ext4_count_free_clusters(sb
))) {
2077 goto update_disksize
;
2080 ext4_msg(sb
, KERN_CRIT
,
2081 "Delayed block allocation failed for "
2082 "inode %lu at logical offset %llu with"
2083 " max blocks %u with error %d",
2085 (unsigned long long)map
->m_lblk
,
2086 (unsigned)map
->m_len
, -err
);
2087 ext4_msg(sb
, KERN_CRIT
,
2088 "This should not happen!! Data will "
2091 ext4_print_free_blocks(inode
);
2092 invalidate_dirty_pages
:
2093 *give_up_on_write
= true;
2098 * Update buffer state, submit mapped pages, and get us new
2101 err
= mpage_map_and_submit_buffers(mpd
);
2103 goto update_disksize
;
2104 } while (map
->m_len
);
2108 * Update on-disk size after IO is submitted. Races with
2109 * truncate are avoided by checking i_size under i_data_sem.
2111 disksize
= ((loff_t
)mpd
->first_page
) << PAGE_CACHE_SHIFT
;
2112 if (disksize
> EXT4_I(inode
)->i_disksize
) {
2116 down_write(&EXT4_I(inode
)->i_data_sem
);
2117 i_size
= i_size_read(inode
);
2118 if (disksize
> i_size
)
2120 if (disksize
> EXT4_I(inode
)->i_disksize
)
2121 EXT4_I(inode
)->i_disksize
= disksize
;
2122 err2
= ext4_mark_inode_dirty(handle
, inode
);
2123 up_write(&EXT4_I(inode
)->i_data_sem
);
2125 ext4_error(inode
->i_sb
,
2126 "Failed to mark inode %lu dirty",
2135 * Calculate the total number of credits to reserve for one writepages
2136 * iteration. This is called from ext4_writepages(). We map an extent of
2137 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2138 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2139 * bpp - 1 blocks in bpp different extents.
2141 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2143 int bpp
= ext4_journal_blocks_per_page(inode
);
2145 return ext4_meta_trans_blocks(inode
,
2146 MAX_WRITEPAGES_EXTENT_LEN
+ bpp
- 1, bpp
);
2150 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2151 * and underlying extent to map
2153 * @mpd - where to look for pages
2155 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2156 * IO immediately. When we find a page which isn't mapped we start accumulating
2157 * extent of buffers underlying these pages that needs mapping (formed by
2158 * either delayed or unwritten buffers). We also lock the pages containing
2159 * these buffers. The extent found is returned in @mpd structure (starting at
2160 * mpd->lblk with length mpd->len blocks).
2162 * Note that this function can attach bios to one io_end structure which are
2163 * neither logically nor physically contiguous. Although it may seem as an
2164 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2165 * case as we need to track IO to all buffers underlying a page in one io_end.
2167 static int mpage_prepare_extent_to_map(struct mpage_da_data
*mpd
)
2169 struct address_space
*mapping
= mpd
->inode
->i_mapping
;
2170 struct pagevec pvec
;
2171 unsigned int nr_pages
;
2172 long left
= mpd
->wbc
->nr_to_write
;
2173 pgoff_t index
= mpd
->first_page
;
2174 pgoff_t end
= mpd
->last_page
;
2177 int blkbits
= mpd
->inode
->i_blkbits
;
2179 struct buffer_head
*head
;
2181 if (mpd
->wbc
->sync_mode
== WB_SYNC_ALL
|| mpd
->wbc
->tagged_writepages
)
2182 tag
= PAGECACHE_TAG_TOWRITE
;
2184 tag
= PAGECACHE_TAG_DIRTY
;
2186 pagevec_init(&pvec
, 0);
2188 mpd
->next_page
= index
;
2189 while (index
<= end
) {
2190 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
2191 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
2195 for (i
= 0; i
< nr_pages
; i
++) {
2196 struct page
*page
= pvec
.pages
[i
];
2199 * At this point, the page may be truncated or
2200 * invalidated (changing page->mapping to NULL), or
2201 * even swizzled back from swapper_space to tmpfs file
2202 * mapping. However, page->index will not change
2203 * because we have a reference on the page.
2205 if (page
->index
> end
)
2209 * Accumulated enough dirty pages? This doesn't apply
2210 * to WB_SYNC_ALL mode. For integrity sync we have to
2211 * keep going because someone may be concurrently
2212 * dirtying pages, and we might have synced a lot of
2213 * newly appeared dirty pages, but have not synced all
2214 * of the old dirty pages.
2216 if (mpd
->wbc
->sync_mode
== WB_SYNC_NONE
&& left
<= 0)
2219 /* If we can't merge this page, we are done. */
2220 if (mpd
->map
.m_len
> 0 && mpd
->next_page
!= page
->index
)
2225 * If the page is no longer dirty, or its mapping no
2226 * longer corresponds to inode we are writing (which
2227 * means it has been truncated or invalidated), or the
2228 * page is already under writeback and we are not doing
2229 * a data integrity writeback, skip the page
2231 if (!PageDirty(page
) ||
2232 (PageWriteback(page
) &&
2233 (mpd
->wbc
->sync_mode
== WB_SYNC_NONE
)) ||
2234 unlikely(page
->mapping
!= mapping
)) {
2239 wait_on_page_writeback(page
);
2240 BUG_ON(PageWriteback(page
));
2242 if (mpd
->map
.m_len
== 0)
2243 mpd
->first_page
= page
->index
;
2244 mpd
->next_page
= page
->index
+ 1;
2245 /* Add all dirty buffers to mpd */
2246 lblk
= ((ext4_lblk_t
)page
->index
) <<
2247 (PAGE_CACHE_SHIFT
- blkbits
);
2248 head
= page_buffers(page
);
2249 err
= mpage_process_page_bufs(mpd
, head
, head
, lblk
);
2255 pagevec_release(&pvec
);
2260 pagevec_release(&pvec
);
2264 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
2267 struct address_space
*mapping
= data
;
2268 int ret
= ext4_writepage(page
, wbc
);
2269 mapping_set_error(mapping
, ret
);
2273 static int ext4_writepages(struct address_space
*mapping
,
2274 struct writeback_control
*wbc
)
2276 pgoff_t writeback_index
= 0;
2277 long nr_to_write
= wbc
->nr_to_write
;
2278 int range_whole
= 0;
2280 handle_t
*handle
= NULL
;
2281 struct mpage_da_data mpd
;
2282 struct inode
*inode
= mapping
->host
;
2283 int needed_blocks
, rsv_blocks
= 0, ret
= 0;
2284 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2286 struct blk_plug plug
;
2287 bool give_up_on_write
= false;
2289 trace_ext4_writepages(inode
, wbc
);
2292 * No pages to write? This is mainly a kludge to avoid starting
2293 * a transaction for special inodes like journal inode on last iput()
2294 * because that could violate lock ordering on umount
2296 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2297 goto out_writepages
;
2299 if (ext4_should_journal_data(inode
)) {
2300 struct blk_plug plug
;
2302 blk_start_plug(&plug
);
2303 ret
= write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
2304 blk_finish_plug(&plug
);
2305 goto out_writepages
;
2309 * If the filesystem has aborted, it is read-only, so return
2310 * right away instead of dumping stack traces later on that
2311 * will obscure the real source of the problem. We test
2312 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2313 * the latter could be true if the filesystem is mounted
2314 * read-only, and in that case, ext4_writepages should
2315 * *never* be called, so if that ever happens, we would want
2318 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
)) {
2320 goto out_writepages
;
2323 if (ext4_should_dioread_nolock(inode
)) {
2325 * We may need to convert up to one extent per block in
2326 * the page and we may dirty the inode.
2328 rsv_blocks
= 1 + (PAGE_CACHE_SIZE
>> inode
->i_blkbits
);
2332 * If we have inline data and arrive here, it means that
2333 * we will soon create the block for the 1st page, so
2334 * we'd better clear the inline data here.
2336 if (ext4_has_inline_data(inode
)) {
2337 /* Just inode will be modified... */
2338 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
2339 if (IS_ERR(handle
)) {
2340 ret
= PTR_ERR(handle
);
2341 goto out_writepages
;
2343 BUG_ON(ext4_test_inode_state(inode
,
2344 EXT4_STATE_MAY_INLINE_DATA
));
2345 ext4_destroy_inline_data(handle
, inode
);
2346 ext4_journal_stop(handle
);
2349 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2352 if (wbc
->range_cyclic
) {
2353 writeback_index
= mapping
->writeback_index
;
2354 if (writeback_index
)
2356 mpd
.first_page
= writeback_index
;
2359 mpd
.first_page
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2360 mpd
.last_page
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2365 ext4_io_submit_init(&mpd
.io_submit
, wbc
);
2367 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2368 tag_pages_for_writeback(mapping
, mpd
.first_page
, mpd
.last_page
);
2370 blk_start_plug(&plug
);
2371 while (!done
&& mpd
.first_page
<= mpd
.last_page
) {
2372 /* For each extent of pages we use new io_end */
2373 mpd
.io_submit
.io_end
= ext4_init_io_end(inode
, GFP_KERNEL
);
2374 if (!mpd
.io_submit
.io_end
) {
2380 * We have two constraints: We find one extent to map and we
2381 * must always write out whole page (makes a difference when
2382 * blocksize < pagesize) so that we don't block on IO when we
2383 * try to write out the rest of the page. Journalled mode is
2384 * not supported by delalloc.
2386 BUG_ON(ext4_should_journal_data(inode
));
2387 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2389 /* start a new transaction */
2390 handle
= ext4_journal_start_with_reserve(inode
,
2391 EXT4_HT_WRITE_PAGE
, needed_blocks
, rsv_blocks
);
2392 if (IS_ERR(handle
)) {
2393 ret
= PTR_ERR(handle
);
2394 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2395 "%ld pages, ino %lu; err %d", __func__
,
2396 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2397 /* Release allocated io_end */
2398 ext4_put_io_end(mpd
.io_submit
.io_end
);
2402 trace_ext4_da_write_pages(inode
, mpd
.first_page
, mpd
.wbc
);
2403 ret
= mpage_prepare_extent_to_map(&mpd
);
2406 ret
= mpage_map_and_submit_extent(handle
, &mpd
,
2410 * We scanned the whole range (or exhausted
2411 * nr_to_write), submitted what was mapped and
2412 * didn't find anything needing mapping. We are
2418 ext4_journal_stop(handle
);
2419 /* Submit prepared bio */
2420 ext4_io_submit(&mpd
.io_submit
);
2421 /* Unlock pages we didn't use */
2422 mpage_release_unused_pages(&mpd
, give_up_on_write
);
2423 /* Drop our io_end reference we got from init */
2424 ext4_put_io_end(mpd
.io_submit
.io_end
);
2426 if (ret
== -ENOSPC
&& sbi
->s_journal
) {
2428 * Commit the transaction which would
2429 * free blocks released in the transaction
2432 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2436 /* Fatal error - ENOMEM, EIO... */
2440 blk_finish_plug(&plug
);
2441 if (!ret
&& !cycled
&& wbc
->nr_to_write
> 0) {
2443 mpd
.last_page
= writeback_index
- 1;
2449 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2451 * Set the writeback_index so that range_cyclic
2452 * mode will write it back later
2454 mapping
->writeback_index
= mpd
.first_page
;
2457 trace_ext4_writepages_result(inode
, wbc
, ret
,
2458 nr_to_write
- wbc
->nr_to_write
);
2462 static int ext4_nonda_switch(struct super_block
*sb
)
2464 s64 free_clusters
, dirty_clusters
;
2465 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2468 * switch to non delalloc mode if we are running low
2469 * on free block. The free block accounting via percpu
2470 * counters can get slightly wrong with percpu_counter_batch getting
2471 * accumulated on each CPU without updating global counters
2472 * Delalloc need an accurate free block accounting. So switch
2473 * to non delalloc when we are near to error range.
2476 percpu_counter_read_positive(&sbi
->s_freeclusters_counter
);
2478 percpu_counter_read_positive(&sbi
->s_dirtyclusters_counter
);
2480 * Start pushing delalloc when 1/2 of free blocks are dirty.
2482 if (dirty_clusters
&& (free_clusters
< 2 * dirty_clusters
))
2483 try_to_writeback_inodes_sb(sb
, WB_REASON_FS_FREE_SPACE
);
2485 if (2 * free_clusters
< 3 * dirty_clusters
||
2486 free_clusters
< (dirty_clusters
+ EXT4_FREECLUSTERS_WATERMARK
)) {
2488 * free block count is less than 150% of dirty blocks
2489 * or free blocks is less than watermark
2496 /* We always reserve for an inode update; the superblock could be there too */
2497 static int ext4_da_write_credits(struct inode
*inode
, loff_t pos
, unsigned len
)
2499 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
2500 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
)))
2503 if (pos
+ len
<= 0x7fffffffULL
)
2506 /* We might need to update the superblock to set LARGE_FILE */
2510 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2511 loff_t pos
, unsigned len
, unsigned flags
,
2512 struct page
**pagep
, void **fsdata
)
2514 int ret
, retries
= 0;
2517 struct inode
*inode
= mapping
->host
;
2520 index
= pos
>> PAGE_CACHE_SHIFT
;
2522 if (ext4_nonda_switch(inode
->i_sb
)) {
2523 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2524 return ext4_write_begin(file
, mapping
, pos
,
2525 len
, flags
, pagep
, fsdata
);
2527 *fsdata
= (void *)0;
2528 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2530 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
2531 ret
= ext4_da_write_inline_data_begin(mapping
, inode
,
2541 * grab_cache_page_write_begin() can take a long time if the
2542 * system is thrashing due to memory pressure, or if the page
2543 * is being written back. So grab it first before we start
2544 * the transaction handle. This also allows us to allocate
2545 * the page (if needed) without using GFP_NOFS.
2548 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2554 * With delayed allocation, we don't log the i_disksize update
2555 * if there is delayed block allocation. But we still need
2556 * to journalling the i_disksize update if writes to the end
2557 * of file which has an already mapped buffer.
2560 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
2561 ext4_da_write_credits(inode
, pos
, len
));
2562 if (IS_ERR(handle
)) {
2563 page_cache_release(page
);
2564 return PTR_ERR(handle
);
2568 if (page
->mapping
!= mapping
) {
2569 /* The page got truncated from under us */
2571 page_cache_release(page
);
2572 ext4_journal_stop(handle
);
2575 /* In case writeback began while the page was unlocked */
2576 wait_for_stable_page(page
);
2578 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
2581 ext4_journal_stop(handle
);
2583 * block_write_begin may have instantiated a few blocks
2584 * outside i_size. Trim these off again. Don't need
2585 * i_size_read because we hold i_mutex.
2587 if (pos
+ len
> inode
->i_size
)
2588 ext4_truncate_failed_write(inode
);
2590 if (ret
== -ENOSPC
&&
2591 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
2594 page_cache_release(page
);
2603 * Check if we should update i_disksize
2604 * when write to the end of file but not require block allocation
2606 static int ext4_da_should_update_i_disksize(struct page
*page
,
2607 unsigned long offset
)
2609 struct buffer_head
*bh
;
2610 struct inode
*inode
= page
->mapping
->host
;
2614 bh
= page_buffers(page
);
2615 idx
= offset
>> inode
->i_blkbits
;
2617 for (i
= 0; i
< idx
; i
++)
2618 bh
= bh
->b_this_page
;
2620 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
2625 static int ext4_da_write_end(struct file
*file
,
2626 struct address_space
*mapping
,
2627 loff_t pos
, unsigned len
, unsigned copied
,
2628 struct page
*page
, void *fsdata
)
2630 struct inode
*inode
= mapping
->host
;
2632 handle_t
*handle
= ext4_journal_current_handle();
2634 unsigned long start
, end
;
2635 int write_mode
= (int)(unsigned long)fsdata
;
2637 if (write_mode
== FALL_BACK_TO_NONDELALLOC
)
2638 return ext4_write_end(file
, mapping
, pos
,
2639 len
, copied
, page
, fsdata
);
2641 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
2642 start
= pos
& (PAGE_CACHE_SIZE
- 1);
2643 end
= start
+ copied
- 1;
2646 * generic_write_end() will run mark_inode_dirty() if i_size
2647 * changes. So let's piggyback the i_disksize mark_inode_dirty
2650 new_i_size
= pos
+ copied
;
2651 if (copied
&& new_i_size
> EXT4_I(inode
)->i_disksize
) {
2652 if (ext4_has_inline_data(inode
) ||
2653 ext4_da_should_update_i_disksize(page
, end
)) {
2654 ext4_update_i_disksize(inode
, new_i_size
);
2655 /* We need to mark inode dirty even if
2656 * new_i_size is less that inode->i_size
2657 * bu greater than i_disksize.(hint delalloc)
2659 ext4_mark_inode_dirty(handle
, inode
);
2663 if (write_mode
!= CONVERT_INLINE_DATA
&&
2664 ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
) &&
2665 ext4_has_inline_data(inode
))
2666 ret2
= ext4_da_write_inline_data_end(inode
, pos
, len
, copied
,
2669 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
2675 ret2
= ext4_journal_stop(handle
);
2679 return ret
? ret
: copied
;
2682 static void ext4_da_invalidatepage(struct page
*page
, unsigned int offset
,
2683 unsigned int length
)
2686 * Drop reserved blocks
2688 BUG_ON(!PageLocked(page
));
2689 if (!page_has_buffers(page
))
2692 ext4_da_page_release_reservation(page
, offset
, length
);
2695 ext4_invalidatepage(page
, offset
, length
);
2701 * Force all delayed allocation blocks to be allocated for a given inode.
2703 int ext4_alloc_da_blocks(struct inode
*inode
)
2705 trace_ext4_alloc_da_blocks(inode
);
2707 if (!EXT4_I(inode
)->i_reserved_data_blocks
)
2711 * We do something simple for now. The filemap_flush() will
2712 * also start triggering a write of the data blocks, which is
2713 * not strictly speaking necessary (and for users of
2714 * laptop_mode, not even desirable). However, to do otherwise
2715 * would require replicating code paths in:
2717 * ext4_writepages() ->
2718 * write_cache_pages() ---> (via passed in callback function)
2719 * __mpage_da_writepage() -->
2720 * mpage_add_bh_to_extent()
2721 * mpage_da_map_blocks()
2723 * The problem is that write_cache_pages(), located in
2724 * mm/page-writeback.c, marks pages clean in preparation for
2725 * doing I/O, which is not desirable if we're not planning on
2728 * We could call write_cache_pages(), and then redirty all of
2729 * the pages by calling redirty_page_for_writepage() but that
2730 * would be ugly in the extreme. So instead we would need to
2731 * replicate parts of the code in the above functions,
2732 * simplifying them because we wouldn't actually intend to
2733 * write out the pages, but rather only collect contiguous
2734 * logical block extents, call the multi-block allocator, and
2735 * then update the buffer heads with the block allocations.
2737 * For now, though, we'll cheat by calling filemap_flush(),
2738 * which will map the blocks, and start the I/O, but not
2739 * actually wait for the I/O to complete.
2741 return filemap_flush(inode
->i_mapping
);
2745 * bmap() is special. It gets used by applications such as lilo and by
2746 * the swapper to find the on-disk block of a specific piece of data.
2748 * Naturally, this is dangerous if the block concerned is still in the
2749 * journal. If somebody makes a swapfile on an ext4 data-journaling
2750 * filesystem and enables swap, then they may get a nasty shock when the
2751 * data getting swapped to that swapfile suddenly gets overwritten by
2752 * the original zero's written out previously to the journal and
2753 * awaiting writeback in the kernel's buffer cache.
2755 * So, if we see any bmap calls here on a modified, data-journaled file,
2756 * take extra steps to flush any blocks which might be in the cache.
2758 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
2760 struct inode
*inode
= mapping
->host
;
2765 * We can get here for an inline file via the FIBMAP ioctl
2767 if (ext4_has_inline_data(inode
))
2770 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
2771 test_opt(inode
->i_sb
, DELALLOC
)) {
2773 * With delalloc we want to sync the file
2774 * so that we can make sure we allocate
2777 filemap_write_and_wait(mapping
);
2780 if (EXT4_JOURNAL(inode
) &&
2781 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
2783 * This is a REALLY heavyweight approach, but the use of
2784 * bmap on dirty files is expected to be extremely rare:
2785 * only if we run lilo or swapon on a freshly made file
2786 * do we expect this to happen.
2788 * (bmap requires CAP_SYS_RAWIO so this does not
2789 * represent an unprivileged user DOS attack --- we'd be
2790 * in trouble if mortal users could trigger this path at
2793 * NB. EXT4_STATE_JDATA is not set on files other than
2794 * regular files. If somebody wants to bmap a directory
2795 * or symlink and gets confused because the buffer
2796 * hasn't yet been flushed to disk, they deserve
2797 * everything they get.
2800 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
2801 journal
= EXT4_JOURNAL(inode
);
2802 jbd2_journal_lock_updates(journal
);
2803 err
= jbd2_journal_flush(journal
);
2804 jbd2_journal_unlock_updates(journal
);
2810 return generic_block_bmap(mapping
, block
, ext4_get_block
);
2813 static int ext4_readpage(struct file
*file
, struct page
*page
)
2816 struct inode
*inode
= page
->mapping
->host
;
2818 trace_ext4_readpage(page
);
2820 if (ext4_has_inline_data(inode
))
2821 ret
= ext4_readpage_inline(inode
, page
);
2824 return mpage_readpage(page
, ext4_get_block
);
2830 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
2831 struct list_head
*pages
, unsigned nr_pages
)
2833 struct inode
*inode
= mapping
->host
;
2835 /* If the file has inline data, no need to do readpages. */
2836 if (ext4_has_inline_data(inode
))
2839 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
2842 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
2843 unsigned int length
)
2845 trace_ext4_invalidatepage(page
, offset
, length
);
2847 /* No journalling happens on data buffers when this function is used */
2848 WARN_ON(page_has_buffers(page
) && buffer_jbd(page_buffers(page
)));
2850 block_invalidatepage(page
, offset
, length
);
2853 static int __ext4_journalled_invalidatepage(struct page
*page
,
2854 unsigned int offset
,
2855 unsigned int length
)
2857 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
2859 trace_ext4_journalled_invalidatepage(page
, offset
, length
);
2862 * If it's a full truncate we just forget about the pending dirtying
2864 if (offset
== 0 && length
== PAGE_CACHE_SIZE
)
2865 ClearPageChecked(page
);
2867 return jbd2_journal_invalidatepage(journal
, page
, offset
, length
);
2870 /* Wrapper for aops... */
2871 static void ext4_journalled_invalidatepage(struct page
*page
,
2872 unsigned int offset
,
2873 unsigned int length
)
2875 WARN_ON(__ext4_journalled_invalidatepage(page
, offset
, length
) < 0);
2878 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
2880 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
2882 trace_ext4_releasepage(page
);
2884 /* Page has dirty journalled data -> cannot release */
2885 if (PageChecked(page
))
2888 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
2890 return try_to_free_buffers(page
);
2894 * ext4_get_block used when preparing for a DIO write or buffer write.
2895 * We allocate an uinitialized extent if blocks haven't been allocated.
2896 * The extent will be converted to initialized after the IO is complete.
2898 int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
2899 struct buffer_head
*bh_result
, int create
)
2901 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2902 inode
->i_ino
, create
);
2903 return _ext4_get_block(inode
, iblock
, bh_result
,
2904 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
2907 static int ext4_get_block_write_nolock(struct inode
*inode
, sector_t iblock
,
2908 struct buffer_head
*bh_result
, int create
)
2910 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2911 inode
->i_ino
, create
);
2912 return _ext4_get_block(inode
, iblock
, bh_result
,
2913 EXT4_GET_BLOCKS_NO_LOCK
);
2916 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
2917 ssize_t size
, void *private)
2919 ext4_io_end_t
*io_end
= iocb
->private;
2921 /* if not async direct IO just return */
2925 ext_debug("ext4_end_io_dio(): io_end 0x%p "
2926 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2927 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
2930 iocb
->private = NULL
;
2931 io_end
->offset
= offset
;
2932 io_end
->size
= size
;
2933 ext4_put_io_end(io_end
);
2937 * For ext4 extent files, ext4 will do direct-io write to holes,
2938 * preallocated extents, and those write extend the file, no need to
2939 * fall back to buffered IO.
2941 * For holes, we fallocate those blocks, mark them as unwritten
2942 * If those blocks were preallocated, we mark sure they are split, but
2943 * still keep the range to write as unwritten.
2945 * The unwritten extents will be converted to written when DIO is completed.
2946 * For async direct IO, since the IO may still pending when return, we
2947 * set up an end_io call back function, which will do the conversion
2948 * when async direct IO completed.
2950 * If the O_DIRECT write will extend the file then add this inode to the
2951 * orphan list. So recovery will truncate it back to the original size
2952 * if the machine crashes during the write.
2955 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
2956 struct iov_iter
*iter
, loff_t offset
)
2958 struct file
*file
= iocb
->ki_filp
;
2959 struct inode
*inode
= file
->f_mapping
->host
;
2961 size_t count
= iov_iter_count(iter
);
2963 get_block_t
*get_block_func
= NULL
;
2965 loff_t final_size
= offset
+ count
;
2966 ext4_io_end_t
*io_end
= NULL
;
2968 /* Use the old path for reads and writes beyond i_size. */
2969 if (rw
!= WRITE
|| final_size
> inode
->i_size
)
2970 return ext4_ind_direct_IO(rw
, iocb
, iter
, offset
);
2972 BUG_ON(iocb
->private == NULL
);
2975 * Make all waiters for direct IO properly wait also for extent
2976 * conversion. This also disallows race between truncate() and
2977 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2980 atomic_inc(&inode
->i_dio_count
);
2982 /* If we do a overwrite dio, i_mutex locking can be released */
2983 overwrite
= *((int *)iocb
->private);
2986 down_read(&EXT4_I(inode
)->i_data_sem
);
2987 mutex_unlock(&inode
->i_mutex
);
2991 * We could direct write to holes and fallocate.
2993 * Allocated blocks to fill the hole are marked as
2994 * unwritten to prevent parallel buffered read to expose
2995 * the stale data before DIO complete the data IO.
2997 * As to previously fallocated extents, ext4 get_block will
2998 * just simply mark the buffer mapped but still keep the
2999 * extents unwritten.
3001 * For non AIO case, we will convert those unwritten extents
3002 * to written after return back from blockdev_direct_IO.
3004 * For async DIO, the conversion needs to be deferred when the
3005 * IO is completed. The ext4 end_io callback function will be
3006 * called to take care of the conversion work. Here for async
3007 * case, we allocate an io_end structure to hook to the iocb.
3009 iocb
->private = NULL
;
3010 ext4_inode_aio_set(inode
, NULL
);
3011 if (!is_sync_kiocb(iocb
)) {
3012 io_end
= ext4_init_io_end(inode
, GFP_NOFS
);
3018 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3020 iocb
->private = ext4_get_io_end(io_end
);
3022 * we save the io structure for current async direct
3023 * IO, so that later ext4_map_blocks() could flag the
3024 * io structure whether there is a unwritten extents
3025 * needs to be converted when IO is completed.
3027 ext4_inode_aio_set(inode
, io_end
);
3031 get_block_func
= ext4_get_block_write_nolock
;
3033 get_block_func
= ext4_get_block_write
;
3034 dio_flags
= DIO_LOCKING
;
3036 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
3037 inode
->i_sb
->s_bdev
, iter
,
3045 * Put our reference to io_end. This can free the io_end structure e.g.
3046 * in sync IO case or in case of error. It can even perform extent
3047 * conversion if all bios we submitted finished before we got here.
3048 * Note that in that case iocb->private can be already set to NULL
3052 ext4_inode_aio_set(inode
, NULL
);
3053 ext4_put_io_end(io_end
);
3055 * When no IO was submitted ext4_end_io_dio() was not
3056 * called so we have to put iocb's reference.
3058 if (ret
<= 0 && ret
!= -EIOCBQUEUED
&& iocb
->private) {
3059 WARN_ON(iocb
->private != io_end
);
3060 WARN_ON(io_end
->flag
& EXT4_IO_END_UNWRITTEN
);
3061 ext4_put_io_end(io_end
);
3062 iocb
->private = NULL
;
3065 if (ret
> 0 && !overwrite
&& ext4_test_inode_state(inode
,
3066 EXT4_STATE_DIO_UNWRITTEN
)) {
3069 * for non AIO case, since the IO is already
3070 * completed, we could do the conversion right here
3072 err
= ext4_convert_unwritten_extents(NULL
, inode
,
3076 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3081 inode_dio_done(inode
);
3082 /* take i_mutex locking again if we do a ovewrite dio */
3084 up_read(&EXT4_I(inode
)->i_data_sem
);
3085 mutex_lock(&inode
->i_mutex
);
3091 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
3092 struct iov_iter
*iter
, loff_t offset
)
3094 struct file
*file
= iocb
->ki_filp
;
3095 struct inode
*inode
= file
->f_mapping
->host
;
3096 size_t count
= iov_iter_count(iter
);
3100 * If we are doing data journalling we don't support O_DIRECT
3102 if (ext4_should_journal_data(inode
))
3105 /* Let buffer I/O handle the inline data case. */
3106 if (ext4_has_inline_data(inode
))
3109 trace_ext4_direct_IO_enter(inode
, offset
, count
, rw
);
3110 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3111 ret
= ext4_ext_direct_IO(rw
, iocb
, iter
, offset
);
3113 ret
= ext4_ind_direct_IO(rw
, iocb
, iter
, offset
);
3114 trace_ext4_direct_IO_exit(inode
, offset
, count
, rw
, ret
);
3119 * Pages can be marked dirty completely asynchronously from ext4's journalling
3120 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3121 * much here because ->set_page_dirty is called under VFS locks. The page is
3122 * not necessarily locked.
3124 * We cannot just dirty the page and leave attached buffers clean, because the
3125 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3126 * or jbddirty because all the journalling code will explode.
3128 * So what we do is to mark the page "pending dirty" and next time writepage
3129 * is called, propagate that into the buffers appropriately.
3131 static int ext4_journalled_set_page_dirty(struct page
*page
)
3133 SetPageChecked(page
);
3134 return __set_page_dirty_nobuffers(page
);
3137 static const struct address_space_operations ext4_aops
= {
3138 .readpage
= ext4_readpage
,
3139 .readpages
= ext4_readpages
,
3140 .writepage
= ext4_writepage
,
3141 .writepages
= ext4_writepages
,
3142 .write_begin
= ext4_write_begin
,
3143 .write_end
= ext4_write_end
,
3145 .invalidatepage
= ext4_invalidatepage
,
3146 .releasepage
= ext4_releasepage
,
3147 .direct_IO
= ext4_direct_IO
,
3148 .migratepage
= buffer_migrate_page
,
3149 .is_partially_uptodate
= block_is_partially_uptodate
,
3150 .error_remove_page
= generic_error_remove_page
,
3153 static const struct address_space_operations ext4_journalled_aops
= {
3154 .readpage
= ext4_readpage
,
3155 .readpages
= ext4_readpages
,
3156 .writepage
= ext4_writepage
,
3157 .writepages
= ext4_writepages
,
3158 .write_begin
= ext4_write_begin
,
3159 .write_end
= ext4_journalled_write_end
,
3160 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3162 .invalidatepage
= ext4_journalled_invalidatepage
,
3163 .releasepage
= ext4_releasepage
,
3164 .direct_IO
= ext4_direct_IO
,
3165 .is_partially_uptodate
= block_is_partially_uptodate
,
3166 .error_remove_page
= generic_error_remove_page
,
3169 static const struct address_space_operations ext4_da_aops
= {
3170 .readpage
= ext4_readpage
,
3171 .readpages
= ext4_readpages
,
3172 .writepage
= ext4_writepage
,
3173 .writepages
= ext4_writepages
,
3174 .write_begin
= ext4_da_write_begin
,
3175 .write_end
= ext4_da_write_end
,
3177 .invalidatepage
= ext4_da_invalidatepage
,
3178 .releasepage
= ext4_releasepage
,
3179 .direct_IO
= ext4_direct_IO
,
3180 .migratepage
= buffer_migrate_page
,
3181 .is_partially_uptodate
= block_is_partially_uptodate
,
3182 .error_remove_page
= generic_error_remove_page
,
3185 void ext4_set_aops(struct inode
*inode
)
3187 switch (ext4_inode_journal_mode(inode
)) {
3188 case EXT4_INODE_ORDERED_DATA_MODE
:
3189 ext4_set_inode_state(inode
, EXT4_STATE_ORDERED_MODE
);
3191 case EXT4_INODE_WRITEBACK_DATA_MODE
:
3192 ext4_clear_inode_state(inode
, EXT4_STATE_ORDERED_MODE
);
3194 case EXT4_INODE_JOURNAL_DATA_MODE
:
3195 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3200 if (test_opt(inode
->i_sb
, DELALLOC
))
3201 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3203 inode
->i_mapping
->a_ops
= &ext4_aops
;
3207 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3208 * starting from file offset 'from'. The range to be zero'd must
3209 * be contained with in one block. If the specified range exceeds
3210 * the end of the block it will be shortened to end of the block
3211 * that cooresponds to 'from'
3213 static int ext4_block_zero_page_range(handle_t
*handle
,
3214 struct address_space
*mapping
, loff_t from
, loff_t length
)
3216 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3217 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3218 unsigned blocksize
, max
, pos
;
3220 struct inode
*inode
= mapping
->host
;
3221 struct buffer_head
*bh
;
3225 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3226 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3230 blocksize
= inode
->i_sb
->s_blocksize
;
3231 max
= blocksize
- (offset
& (blocksize
- 1));
3234 * correct length if it does not fall between
3235 * 'from' and the end of the block
3237 if (length
> max
|| length
< 0)
3240 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3242 if (!page_has_buffers(page
))
3243 create_empty_buffers(page
, blocksize
, 0);
3245 /* Find the buffer that contains "offset" */
3246 bh
= page_buffers(page
);
3248 while (offset
>= pos
) {
3249 bh
= bh
->b_this_page
;
3253 if (buffer_freed(bh
)) {
3254 BUFFER_TRACE(bh
, "freed: skip");
3257 if (!buffer_mapped(bh
)) {
3258 BUFFER_TRACE(bh
, "unmapped");
3259 ext4_get_block(inode
, iblock
, bh
, 0);
3260 /* unmapped? It's a hole - nothing to do */
3261 if (!buffer_mapped(bh
)) {
3262 BUFFER_TRACE(bh
, "still unmapped");
3267 /* Ok, it's mapped. Make sure it's up-to-date */
3268 if (PageUptodate(page
))
3269 set_buffer_uptodate(bh
);
3271 if (!buffer_uptodate(bh
)) {
3273 ll_rw_block(READ
, 1, &bh
);
3275 /* Uhhuh. Read error. Complain and punt. */
3276 if (!buffer_uptodate(bh
))
3279 if (ext4_should_journal_data(inode
)) {
3280 BUFFER_TRACE(bh
, "get write access");
3281 err
= ext4_journal_get_write_access(handle
, bh
);
3285 zero_user(page
, offset
, length
);
3286 BUFFER_TRACE(bh
, "zeroed end of block");
3288 if (ext4_should_journal_data(inode
)) {
3289 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3292 mark_buffer_dirty(bh
);
3293 if (ext4_test_inode_state(inode
, EXT4_STATE_ORDERED_MODE
))
3294 err
= ext4_jbd2_file_inode(handle
, inode
);
3299 page_cache_release(page
);
3304 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3305 * up to the end of the block which corresponds to `from'.
3306 * This required during truncate. We need to physically zero the tail end
3307 * of that block so it doesn't yield old data if the file is later grown.
3309 static int ext4_block_truncate_page(handle_t
*handle
,
3310 struct address_space
*mapping
, loff_t from
)
3312 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3315 struct inode
*inode
= mapping
->host
;
3317 blocksize
= inode
->i_sb
->s_blocksize
;
3318 length
= blocksize
- (offset
& (blocksize
- 1));
3320 return ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3323 int ext4_zero_partial_blocks(handle_t
*handle
, struct inode
*inode
,
3324 loff_t lstart
, loff_t length
)
3326 struct super_block
*sb
= inode
->i_sb
;
3327 struct address_space
*mapping
= inode
->i_mapping
;
3328 unsigned partial_start
, partial_end
;
3329 ext4_fsblk_t start
, end
;
3330 loff_t byte_end
= (lstart
+ length
- 1);
3333 partial_start
= lstart
& (sb
->s_blocksize
- 1);
3334 partial_end
= byte_end
& (sb
->s_blocksize
- 1);
3336 start
= lstart
>> sb
->s_blocksize_bits
;
3337 end
= byte_end
>> sb
->s_blocksize_bits
;
3339 /* Handle partial zero within the single block */
3341 (partial_start
|| (partial_end
!= sb
->s_blocksize
- 1))) {
3342 err
= ext4_block_zero_page_range(handle
, mapping
,
3346 /* Handle partial zero out on the start of the range */
3347 if (partial_start
) {
3348 err
= ext4_block_zero_page_range(handle
, mapping
,
3349 lstart
, sb
->s_blocksize
);
3353 /* Handle partial zero out on the end of the range */
3354 if (partial_end
!= sb
->s_blocksize
- 1)
3355 err
= ext4_block_zero_page_range(handle
, mapping
,
3356 byte_end
- partial_end
,
3361 int ext4_can_truncate(struct inode
*inode
)
3363 if (S_ISREG(inode
->i_mode
))
3365 if (S_ISDIR(inode
->i_mode
))
3367 if (S_ISLNK(inode
->i_mode
))
3368 return !ext4_inode_is_fast_symlink(inode
);
3373 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3374 * associated with the given offset and length
3376 * @inode: File inode
3377 * @offset: The offset where the hole will begin
3378 * @len: The length of the hole
3380 * Returns: 0 on success or negative on failure
3383 int ext4_punch_hole(struct inode
*inode
, loff_t offset
, loff_t length
)
3385 struct super_block
*sb
= inode
->i_sb
;
3386 ext4_lblk_t first_block
, stop_block
;
3387 struct address_space
*mapping
= inode
->i_mapping
;
3388 loff_t first_block_offset
, last_block_offset
;
3390 unsigned int credits
;
3393 if (!S_ISREG(inode
->i_mode
))
3396 trace_ext4_punch_hole(inode
, offset
, length
, 0);
3399 * Write out all dirty pages to avoid race conditions
3400 * Then release them.
3402 if (mapping
->nrpages
&& mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
3403 ret
= filemap_write_and_wait_range(mapping
, offset
,
3404 offset
+ length
- 1);
3409 mutex_lock(&inode
->i_mutex
);
3411 /* No need to punch hole beyond i_size */
3412 if (offset
>= inode
->i_size
)
3416 * If the hole extends beyond i_size, set the hole
3417 * to end after the page that contains i_size
3419 if (offset
+ length
> inode
->i_size
) {
3420 length
= inode
->i_size
+
3421 PAGE_CACHE_SIZE
- (inode
->i_size
& (PAGE_CACHE_SIZE
- 1)) -
3425 if (offset
& (sb
->s_blocksize
- 1) ||
3426 (offset
+ length
) & (sb
->s_blocksize
- 1)) {
3428 * Attach jinode to inode for jbd2 if we do any zeroing of
3431 ret
= ext4_inode_attach_jinode(inode
);
3437 first_block_offset
= round_up(offset
, sb
->s_blocksize
);
3438 last_block_offset
= round_down((offset
+ length
), sb
->s_blocksize
) - 1;
3440 /* Now release the pages and zero block aligned part of pages*/
3441 if (last_block_offset
> first_block_offset
)
3442 truncate_pagecache_range(inode
, first_block_offset
,
3445 /* Wait all existing dio workers, newcomers will block on i_mutex */
3446 ext4_inode_block_unlocked_dio(inode
);
3447 inode_dio_wait(inode
);
3449 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3450 credits
= ext4_writepage_trans_blocks(inode
);
3452 credits
= ext4_blocks_for_truncate(inode
);
3453 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
3454 if (IS_ERR(handle
)) {
3455 ret
= PTR_ERR(handle
);
3456 ext4_std_error(sb
, ret
);
3460 ret
= ext4_zero_partial_blocks(handle
, inode
, offset
,
3465 first_block
= (offset
+ sb
->s_blocksize
- 1) >>
3466 EXT4_BLOCK_SIZE_BITS(sb
);
3467 stop_block
= (offset
+ length
) >> EXT4_BLOCK_SIZE_BITS(sb
);
3469 /* If there are no blocks to remove, return now */
3470 if (first_block
>= stop_block
)
3473 down_write(&EXT4_I(inode
)->i_data_sem
);
3474 ext4_discard_preallocations(inode
);
3476 ret
= ext4_es_remove_extent(inode
, first_block
,
3477 stop_block
- first_block
);
3479 up_write(&EXT4_I(inode
)->i_data_sem
);
3483 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3484 ret
= ext4_ext_remove_space(inode
, first_block
,
3487 ret
= ext4_ind_remove_space(handle
, inode
, first_block
,
3490 up_write(&EXT4_I(inode
)->i_data_sem
);
3492 ext4_handle_sync(handle
);
3494 /* Now release the pages again to reduce race window */
3495 if (last_block_offset
> first_block_offset
)
3496 truncate_pagecache_range(inode
, first_block_offset
,
3499 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
3500 ext4_mark_inode_dirty(handle
, inode
);
3502 ext4_journal_stop(handle
);
3504 ext4_inode_resume_unlocked_dio(inode
);
3506 mutex_unlock(&inode
->i_mutex
);
3510 int ext4_inode_attach_jinode(struct inode
*inode
)
3512 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3513 struct jbd2_inode
*jinode
;
3515 if (ei
->jinode
|| !EXT4_SB(inode
->i_sb
)->s_journal
)
3518 jinode
= jbd2_alloc_inode(GFP_KERNEL
);
3519 spin_lock(&inode
->i_lock
);
3522 spin_unlock(&inode
->i_lock
);
3525 ei
->jinode
= jinode
;
3526 jbd2_journal_init_jbd_inode(ei
->jinode
, inode
);
3529 spin_unlock(&inode
->i_lock
);
3530 if (unlikely(jinode
!= NULL
))
3531 jbd2_free_inode(jinode
);
3538 * We block out ext4_get_block() block instantiations across the entire
3539 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3540 * simultaneously on behalf of the same inode.
3542 * As we work through the truncate and commit bits of it to the journal there
3543 * is one core, guiding principle: the file's tree must always be consistent on
3544 * disk. We must be able to restart the truncate after a crash.
3546 * The file's tree may be transiently inconsistent in memory (although it
3547 * probably isn't), but whenever we close off and commit a journal transaction,
3548 * the contents of (the filesystem + the journal) must be consistent and
3549 * restartable. It's pretty simple, really: bottom up, right to left (although
3550 * left-to-right works OK too).
3552 * Note that at recovery time, journal replay occurs *before* the restart of
3553 * truncate against the orphan inode list.
3555 * The committed inode has the new, desired i_size (which is the same as
3556 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3557 * that this inode's truncate did not complete and it will again call
3558 * ext4_truncate() to have another go. So there will be instantiated blocks
3559 * to the right of the truncation point in a crashed ext4 filesystem. But
3560 * that's fine - as long as they are linked from the inode, the post-crash
3561 * ext4_truncate() run will find them and release them.
3563 void ext4_truncate(struct inode
*inode
)
3565 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3566 unsigned int credits
;
3568 struct address_space
*mapping
= inode
->i_mapping
;
3571 * There is a possibility that we're either freeing the inode
3572 * or it's a completely new inode. In those cases we might not
3573 * have i_mutex locked because it's not necessary.
3575 if (!(inode
->i_state
& (I_NEW
|I_FREEING
)))
3576 WARN_ON(!mutex_is_locked(&inode
->i_mutex
));
3577 trace_ext4_truncate_enter(inode
);
3579 if (!ext4_can_truncate(inode
))
3582 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
3584 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
3585 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
3587 if (ext4_has_inline_data(inode
)) {
3590 ext4_inline_data_truncate(inode
, &has_inline
);
3595 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3596 if (inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1)) {
3597 if (ext4_inode_attach_jinode(inode
) < 0)
3601 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3602 credits
= ext4_writepage_trans_blocks(inode
);
3604 credits
= ext4_blocks_for_truncate(inode
);
3606 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
3607 if (IS_ERR(handle
)) {
3608 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
3612 if (inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1))
3613 ext4_block_truncate_page(handle
, mapping
, inode
->i_size
);
3616 * We add the inode to the orphan list, so that if this
3617 * truncate spans multiple transactions, and we crash, we will
3618 * resume the truncate when the filesystem recovers. It also
3619 * marks the inode dirty, to catch the new size.
3621 * Implication: the file must always be in a sane, consistent
3622 * truncatable state while each transaction commits.
3624 if (ext4_orphan_add(handle
, inode
))
3627 down_write(&EXT4_I(inode
)->i_data_sem
);
3629 ext4_discard_preallocations(inode
);
3631 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3632 ext4_ext_truncate(handle
, inode
);
3634 ext4_ind_truncate(handle
, inode
);
3636 up_write(&ei
->i_data_sem
);
3639 ext4_handle_sync(handle
);
3643 * If this was a simple ftruncate() and the file will remain alive,
3644 * then we need to clear up the orphan record which we created above.
3645 * However, if this was a real unlink then we were called by
3646 * ext4_delete_inode(), and we allow that function to clean up the
3647 * orphan info for us.
3650 ext4_orphan_del(handle
, inode
);
3652 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
3653 ext4_mark_inode_dirty(handle
, inode
);
3654 ext4_journal_stop(handle
);
3656 trace_ext4_truncate_exit(inode
);
3660 * ext4_get_inode_loc returns with an extra refcount against the inode's
3661 * underlying buffer_head on success. If 'in_mem' is true, we have all
3662 * data in memory that is needed to recreate the on-disk version of this
3665 static int __ext4_get_inode_loc(struct inode
*inode
,
3666 struct ext4_iloc
*iloc
, int in_mem
)
3668 struct ext4_group_desc
*gdp
;
3669 struct buffer_head
*bh
;
3670 struct super_block
*sb
= inode
->i_sb
;
3672 int inodes_per_block
, inode_offset
;
3675 if (!ext4_valid_inum(sb
, inode
->i_ino
))
3678 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
3679 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
3684 * Figure out the offset within the block group inode table
3686 inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
3687 inode_offset
= ((inode
->i_ino
- 1) %
3688 EXT4_INODES_PER_GROUP(sb
));
3689 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
3690 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
3692 bh
= sb_getblk(sb
, block
);
3695 if (!buffer_uptodate(bh
)) {
3699 * If the buffer has the write error flag, we have failed
3700 * to write out another inode in the same block. In this
3701 * case, we don't have to read the block because we may
3702 * read the old inode data successfully.
3704 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
3705 set_buffer_uptodate(bh
);
3707 if (buffer_uptodate(bh
)) {
3708 /* someone brought it uptodate while we waited */
3714 * If we have all information of the inode in memory and this
3715 * is the only valid inode in the block, we need not read the
3719 struct buffer_head
*bitmap_bh
;
3722 start
= inode_offset
& ~(inodes_per_block
- 1);
3724 /* Is the inode bitmap in cache? */
3725 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
3726 if (unlikely(!bitmap_bh
))
3730 * If the inode bitmap isn't in cache then the
3731 * optimisation may end up performing two reads instead
3732 * of one, so skip it.
3734 if (!buffer_uptodate(bitmap_bh
)) {
3738 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
3739 if (i
== inode_offset
)
3741 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
3745 if (i
== start
+ inodes_per_block
) {
3746 /* all other inodes are free, so skip I/O */
3747 memset(bh
->b_data
, 0, bh
->b_size
);
3748 set_buffer_uptodate(bh
);
3756 * If we need to do any I/O, try to pre-readahead extra
3757 * blocks from the inode table.
3759 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
3760 ext4_fsblk_t b
, end
, table
;
3762 __u32 ra_blks
= EXT4_SB(sb
)->s_inode_readahead_blks
;
3764 table
= ext4_inode_table(sb
, gdp
);
3765 /* s_inode_readahead_blks is always a power of 2 */
3766 b
= block
& ~((ext4_fsblk_t
) ra_blks
- 1);
3770 num
= EXT4_INODES_PER_GROUP(sb
);
3771 if (ext4_has_group_desc_csum(sb
))
3772 num
-= ext4_itable_unused_count(sb
, gdp
);
3773 table
+= num
/ inodes_per_block
;
3777 sb_breadahead(sb
, b
++);
3781 * There are other valid inodes in the buffer, this inode
3782 * has in-inode xattrs, or we don't have this inode in memory.
3783 * Read the block from disk.
3785 trace_ext4_load_inode(inode
);
3787 bh
->b_end_io
= end_buffer_read_sync
;
3788 submit_bh(READ
| REQ_META
| REQ_PRIO
, bh
);
3790 if (!buffer_uptodate(bh
)) {
3791 EXT4_ERROR_INODE_BLOCK(inode
, block
,
3792 "unable to read itable block");
3802 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
3804 /* We have all inode data except xattrs in memory here. */
3805 return __ext4_get_inode_loc(inode
, iloc
,
3806 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
3809 void ext4_set_inode_flags(struct inode
*inode
)
3811 unsigned int flags
= EXT4_I(inode
)->i_flags
;
3812 unsigned int new_fl
= 0;
3814 if (flags
& EXT4_SYNC_FL
)
3816 if (flags
& EXT4_APPEND_FL
)
3818 if (flags
& EXT4_IMMUTABLE_FL
)
3819 new_fl
|= S_IMMUTABLE
;
3820 if (flags
& EXT4_NOATIME_FL
)
3821 new_fl
|= S_NOATIME
;
3822 if (flags
& EXT4_DIRSYNC_FL
)
3823 new_fl
|= S_DIRSYNC
;
3824 inode_set_flags(inode
, new_fl
,
3825 S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
3828 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3829 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
3831 unsigned int vfs_fl
;
3832 unsigned long old_fl
, new_fl
;
3835 vfs_fl
= ei
->vfs_inode
.i_flags
;
3836 old_fl
= ei
->i_flags
;
3837 new_fl
= old_fl
& ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
3838 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|
3840 if (vfs_fl
& S_SYNC
)
3841 new_fl
|= EXT4_SYNC_FL
;
3842 if (vfs_fl
& S_APPEND
)
3843 new_fl
|= EXT4_APPEND_FL
;
3844 if (vfs_fl
& S_IMMUTABLE
)
3845 new_fl
|= EXT4_IMMUTABLE_FL
;
3846 if (vfs_fl
& S_NOATIME
)
3847 new_fl
|= EXT4_NOATIME_FL
;
3848 if (vfs_fl
& S_DIRSYNC
)
3849 new_fl
|= EXT4_DIRSYNC_FL
;
3850 } while (cmpxchg(&ei
->i_flags
, old_fl
, new_fl
) != old_fl
);
3853 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
3854 struct ext4_inode_info
*ei
)
3857 struct inode
*inode
= &(ei
->vfs_inode
);
3858 struct super_block
*sb
= inode
->i_sb
;
3860 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3861 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
3862 /* we are using combined 48 bit field */
3863 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
3864 le32_to_cpu(raw_inode
->i_blocks_lo
);
3865 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
3866 /* i_blocks represent file system block size */
3867 return i_blocks
<< (inode
->i_blkbits
- 9);
3872 return le32_to_cpu(raw_inode
->i_blocks_lo
);
3876 static inline void ext4_iget_extra_inode(struct inode
*inode
,
3877 struct ext4_inode
*raw_inode
,
3878 struct ext4_inode_info
*ei
)
3880 __le32
*magic
= (void *)raw_inode
+
3881 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
;
3882 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
)) {
3883 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
3884 ext4_find_inline_data_nolock(inode
);
3886 EXT4_I(inode
)->i_inline_off
= 0;
3889 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
3891 struct ext4_iloc iloc
;
3892 struct ext4_inode
*raw_inode
;
3893 struct ext4_inode_info
*ei
;
3894 struct inode
*inode
;
3895 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
3901 inode
= iget_locked(sb
, ino
);
3903 return ERR_PTR(-ENOMEM
);
3904 if (!(inode
->i_state
& I_NEW
))
3910 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
3913 raw_inode
= ext4_raw_inode(&iloc
);
3915 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
3916 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
3917 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
3918 EXT4_INODE_SIZE(inode
->i_sb
)) {
3919 EXT4_ERROR_INODE(inode
, "bad extra_isize (%u != %u)",
3920 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
,
3921 EXT4_INODE_SIZE(inode
->i_sb
));
3926 ei
->i_extra_isize
= 0;
3928 /* Precompute checksum seed for inode metadata */
3929 if (ext4_has_metadata_csum(sb
)) {
3930 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3932 __le32 inum
= cpu_to_le32(inode
->i_ino
);
3933 __le32 gen
= raw_inode
->i_generation
;
3934 csum
= ext4_chksum(sbi
, sbi
->s_csum_seed
, (__u8
*)&inum
,
3936 ei
->i_csum_seed
= ext4_chksum(sbi
, csum
, (__u8
*)&gen
,
3940 if (!ext4_inode_csum_verify(inode
, raw_inode
, ei
)) {
3941 EXT4_ERROR_INODE(inode
, "checksum invalid");
3946 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
3947 i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
3948 i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
3949 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
3950 i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
3951 i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
3953 i_uid_write(inode
, i_uid
);
3954 i_gid_write(inode
, i_gid
);
3955 set_nlink(inode
, le16_to_cpu(raw_inode
->i_links_count
));
3957 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
3958 ei
->i_inline_off
= 0;
3959 ei
->i_dir_start_lookup
= 0;
3960 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
3961 /* We now have enough fields to check if the inode was active or not.
3962 * This is needed because nfsd might try to access dead inodes
3963 * the test is that same one that e2fsck uses
3964 * NeilBrown 1999oct15
3966 if (inode
->i_nlink
== 0) {
3967 if ((inode
->i_mode
== 0 ||
3968 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) &&
3969 ino
!= EXT4_BOOT_LOADER_INO
) {
3970 /* this inode is deleted */
3974 /* The only unlinked inodes we let through here have
3975 * valid i_mode and are being read by the orphan
3976 * recovery code: that's fine, we're about to complete
3977 * the process of deleting those.
3978 * OR it is the EXT4_BOOT_LOADER_INO which is
3979 * not initialized on a new filesystem. */
3981 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
3982 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
3983 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
3984 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
3986 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
3987 inode
->i_size
= ext4_isize(raw_inode
);
3988 ei
->i_disksize
= inode
->i_size
;
3990 ei
->i_reserved_quota
= 0;
3992 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
3993 ei
->i_block_group
= iloc
.block_group
;
3994 ei
->i_last_alloc_group
= ~0;
3996 * NOTE! The in-memory inode i_data array is in little-endian order
3997 * even on big-endian machines: we do NOT byteswap the block numbers!
3999 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4000 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4001 INIT_LIST_HEAD(&ei
->i_orphan
);
4004 * Set transaction id's of transactions that have to be committed
4005 * to finish f[data]sync. We set them to currently running transaction
4006 * as we cannot be sure that the inode or some of its metadata isn't
4007 * part of the transaction - the inode could have been reclaimed and
4008 * now it is reread from disk.
4011 transaction_t
*transaction
;
4014 read_lock(&journal
->j_state_lock
);
4015 if (journal
->j_running_transaction
)
4016 transaction
= journal
->j_running_transaction
;
4018 transaction
= journal
->j_committing_transaction
;
4020 tid
= transaction
->t_tid
;
4022 tid
= journal
->j_commit_sequence
;
4023 read_unlock(&journal
->j_state_lock
);
4024 ei
->i_sync_tid
= tid
;
4025 ei
->i_datasync_tid
= tid
;
4028 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4029 if (ei
->i_extra_isize
== 0) {
4030 /* The extra space is currently unused. Use it. */
4031 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4032 EXT4_GOOD_OLD_INODE_SIZE
;
4034 ext4_iget_extra_inode(inode
, raw_inode
, ei
);
4038 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4039 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4040 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4041 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4043 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
))) {
4044 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4045 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4046 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4048 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4053 if (ei
->i_file_acl
&&
4054 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
4055 EXT4_ERROR_INODE(inode
, "bad extended attribute block %llu",
4059 } else if (!ext4_has_inline_data(inode
)) {
4060 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
4061 if ((S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4062 (S_ISLNK(inode
->i_mode
) &&
4063 !ext4_inode_is_fast_symlink(inode
))))
4064 /* Validate extent which is part of inode */
4065 ret
= ext4_ext_check_inode(inode
);
4066 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4067 (S_ISLNK(inode
->i_mode
) &&
4068 !ext4_inode_is_fast_symlink(inode
))) {
4069 /* Validate block references which are part of inode */
4070 ret
= ext4_ind_check_inode(inode
);
4076 if (S_ISREG(inode
->i_mode
)) {
4077 inode
->i_op
= &ext4_file_inode_operations
;
4078 inode
->i_fop
= &ext4_file_operations
;
4079 ext4_set_aops(inode
);
4080 } else if (S_ISDIR(inode
->i_mode
)) {
4081 inode
->i_op
= &ext4_dir_inode_operations
;
4082 inode
->i_fop
= &ext4_dir_operations
;
4083 } else if (S_ISLNK(inode
->i_mode
)) {
4084 if (ext4_inode_is_fast_symlink(inode
)) {
4085 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
4086 nd_terminate_link(ei
->i_data
, inode
->i_size
,
4087 sizeof(ei
->i_data
) - 1);
4089 inode
->i_op
= &ext4_symlink_inode_operations
;
4090 ext4_set_aops(inode
);
4092 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
4093 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
4094 inode
->i_op
= &ext4_special_inode_operations
;
4095 if (raw_inode
->i_block
[0])
4096 init_special_inode(inode
, inode
->i_mode
,
4097 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
4099 init_special_inode(inode
, inode
->i_mode
,
4100 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
4101 } else if (ino
== EXT4_BOOT_LOADER_INO
) {
4102 make_bad_inode(inode
);
4105 EXT4_ERROR_INODE(inode
, "bogus i_mode (%o)", inode
->i_mode
);
4109 ext4_set_inode_flags(inode
);
4110 unlock_new_inode(inode
);
4116 return ERR_PTR(ret
);
4119 struct inode
*ext4_iget_normal(struct super_block
*sb
, unsigned long ino
)
4121 if (ino
< EXT4_FIRST_INO(sb
) && ino
!= EXT4_ROOT_INO
)
4122 return ERR_PTR(-EIO
);
4123 return ext4_iget(sb
, ino
);
4126 static int ext4_inode_blocks_set(handle_t
*handle
,
4127 struct ext4_inode
*raw_inode
,
4128 struct ext4_inode_info
*ei
)
4130 struct inode
*inode
= &(ei
->vfs_inode
);
4131 u64 i_blocks
= inode
->i_blocks
;
4132 struct super_block
*sb
= inode
->i_sb
;
4134 if (i_blocks
<= ~0U) {
4136 * i_blocks can be represented in a 32 bit variable
4137 * as multiple of 512 bytes
4139 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4140 raw_inode
->i_blocks_high
= 0;
4141 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4144 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
4147 if (i_blocks
<= 0xffffffffffffULL
) {
4149 * i_blocks can be represented in a 48 bit variable
4150 * as multiple of 512 bytes
4152 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4153 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4154 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4156 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4157 /* i_block is stored in file system block size */
4158 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
4159 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4160 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4166 * Post the struct inode info into an on-disk inode location in the
4167 * buffer-cache. This gobbles the caller's reference to the
4168 * buffer_head in the inode location struct.
4170 * The caller must have write access to iloc->bh.
4172 static int ext4_do_update_inode(handle_t
*handle
,
4173 struct inode
*inode
,
4174 struct ext4_iloc
*iloc
)
4176 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
4177 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4178 struct buffer_head
*bh
= iloc
->bh
;
4179 struct super_block
*sb
= inode
->i_sb
;
4180 int err
= 0, rc
, block
;
4181 int need_datasync
= 0, set_large_file
= 0;
4185 spin_lock(&ei
->i_raw_lock
);
4187 /* For fields not tracked in the in-memory inode,
4188 * initialise them to zero for new inodes. */
4189 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
4190 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
4192 ext4_get_inode_flags(ei
);
4193 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
4194 i_uid
= i_uid_read(inode
);
4195 i_gid
= i_gid_read(inode
);
4196 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4197 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(i_uid
));
4198 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(i_gid
));
4200 * Fix up interoperability with old kernels. Otherwise, old inodes get
4201 * re-used with the upper 16 bits of the uid/gid intact
4204 raw_inode
->i_uid_high
=
4205 cpu_to_le16(high_16_bits(i_uid
));
4206 raw_inode
->i_gid_high
=
4207 cpu_to_le16(high_16_bits(i_gid
));
4209 raw_inode
->i_uid_high
= 0;
4210 raw_inode
->i_gid_high
= 0;
4213 raw_inode
->i_uid_low
= cpu_to_le16(fs_high2lowuid(i_uid
));
4214 raw_inode
->i_gid_low
= cpu_to_le16(fs_high2lowgid(i_gid
));
4215 raw_inode
->i_uid_high
= 0;
4216 raw_inode
->i_gid_high
= 0;
4218 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
4220 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
4221 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
4222 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
4223 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
4225 err
= ext4_inode_blocks_set(handle
, raw_inode
, ei
);
4227 spin_unlock(&ei
->i_raw_lock
);
4230 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
4231 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& 0xFFFFFFFF);
4232 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
)))
4233 raw_inode
->i_file_acl_high
=
4234 cpu_to_le16(ei
->i_file_acl
>> 32);
4235 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
4236 if (ei
->i_disksize
!= ext4_isize(raw_inode
)) {
4237 ext4_isize_set(raw_inode
, ei
->i_disksize
);
4240 if (ei
->i_disksize
> 0x7fffffffULL
) {
4241 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4242 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
4243 EXT4_SB(sb
)->s_es
->s_rev_level
==
4244 cpu_to_le32(EXT4_GOOD_OLD_REV
))
4247 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
4248 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
4249 if (old_valid_dev(inode
->i_rdev
)) {
4250 raw_inode
->i_block
[0] =
4251 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
4252 raw_inode
->i_block
[1] = 0;
4254 raw_inode
->i_block
[0] = 0;
4255 raw_inode
->i_block
[1] =
4256 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
4257 raw_inode
->i_block
[2] = 0;
4259 } else if (!ext4_has_inline_data(inode
)) {
4260 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4261 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
4264 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
))) {
4265 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
4266 if (ei
->i_extra_isize
) {
4267 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4268 raw_inode
->i_version_hi
=
4269 cpu_to_le32(inode
->i_version
>> 32);
4270 raw_inode
->i_extra_isize
=
4271 cpu_to_le16(ei
->i_extra_isize
);
4275 ext4_inode_csum_set(inode
, raw_inode
, ei
);
4277 spin_unlock(&ei
->i_raw_lock
);
4279 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4280 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
4283 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
4284 if (set_large_file
) {
4285 BUFFER_TRACE(EXT4_SB(sb
)->s_sbh
, "get write access");
4286 err
= ext4_journal_get_write_access(handle
, EXT4_SB(sb
)->s_sbh
);
4289 ext4_update_dynamic_rev(sb
);
4290 EXT4_SET_RO_COMPAT_FEATURE(sb
,
4291 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
4292 ext4_handle_sync(handle
);
4293 err
= ext4_handle_dirty_super(handle
, sb
);
4295 ext4_update_inode_fsync_trans(handle
, inode
, need_datasync
);
4298 ext4_std_error(inode
->i_sb
, err
);
4303 * ext4_write_inode()
4305 * We are called from a few places:
4307 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4308 * Here, there will be no transaction running. We wait for any running
4309 * transaction to commit.
4311 * - Within flush work (sys_sync(), kupdate and such).
4312 * We wait on commit, if told to.
4314 * - Within iput_final() -> write_inode_now()
4315 * We wait on commit, if told to.
4317 * In all cases it is actually safe for us to return without doing anything,
4318 * because the inode has been copied into a raw inode buffer in
4319 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4322 * Note that we are absolutely dependent upon all inode dirtiers doing the
4323 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4324 * which we are interested.
4326 * It would be a bug for them to not do this. The code:
4328 * mark_inode_dirty(inode)
4330 * inode->i_size = expr;
4332 * is in error because write_inode() could occur while `stuff()' is running,
4333 * and the new i_size will be lost. Plus the inode will no longer be on the
4334 * superblock's dirty inode list.
4336 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4340 if (WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
))
4343 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
4344 if (ext4_journal_current_handle()) {
4345 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4351 * No need to force transaction in WB_SYNC_NONE mode. Also
4352 * ext4_sync_fs() will force the commit after everything is
4355 if (wbc
->sync_mode
!= WB_SYNC_ALL
|| wbc
->for_sync
)
4358 err
= ext4_force_commit(inode
->i_sb
);
4360 struct ext4_iloc iloc
;
4362 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4366 * sync(2) will flush the whole buffer cache. No need to do
4367 * it here separately for each inode.
4369 if (wbc
->sync_mode
== WB_SYNC_ALL
&& !wbc
->for_sync
)
4370 sync_dirty_buffer(iloc
.bh
);
4371 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
4372 EXT4_ERROR_INODE_BLOCK(inode
, iloc
.bh
->b_blocknr
,
4373 "IO error syncing inode");
4382 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4383 * buffers that are attached to a page stradding i_size and are undergoing
4384 * commit. In that case we have to wait for commit to finish and try again.
4386 static void ext4_wait_for_tail_page_commit(struct inode
*inode
)
4390 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
4391 tid_t commit_tid
= 0;
4394 offset
= inode
->i_size
& (PAGE_CACHE_SIZE
- 1);
4396 * All buffers in the last page remain valid? Then there's nothing to
4397 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4400 if (offset
> PAGE_CACHE_SIZE
- (1 << inode
->i_blkbits
))
4403 page
= find_lock_page(inode
->i_mapping
,
4404 inode
->i_size
>> PAGE_CACHE_SHIFT
);
4407 ret
= __ext4_journalled_invalidatepage(page
, offset
,
4408 PAGE_CACHE_SIZE
- offset
);
4410 page_cache_release(page
);
4414 read_lock(&journal
->j_state_lock
);
4415 if (journal
->j_committing_transaction
)
4416 commit_tid
= journal
->j_committing_transaction
->t_tid
;
4417 read_unlock(&journal
->j_state_lock
);
4419 jbd2_log_wait_commit(journal
, commit_tid
);
4426 * Called from notify_change.
4428 * We want to trap VFS attempts to truncate the file as soon as
4429 * possible. In particular, we want to make sure that when the VFS
4430 * shrinks i_size, we put the inode on the orphan list and modify
4431 * i_disksize immediately, so that during the subsequent flushing of
4432 * dirty pages and freeing of disk blocks, we can guarantee that any
4433 * commit will leave the blocks being flushed in an unused state on
4434 * disk. (On recovery, the inode will get truncated and the blocks will
4435 * be freed, so we have a strong guarantee that no future commit will
4436 * leave these blocks visible to the user.)
4438 * Another thing we have to assure is that if we are in ordered mode
4439 * and inode is still attached to the committing transaction, we must
4440 * we start writeout of all the dirty pages which are being truncated.
4441 * This way we are sure that all the data written in the previous
4442 * transaction are already on disk (truncate waits for pages under
4445 * Called with inode->i_mutex down.
4447 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4449 struct inode
*inode
= dentry
->d_inode
;
4452 const unsigned int ia_valid
= attr
->ia_valid
;
4454 error
= inode_change_ok(inode
, attr
);
4458 if (is_quota_modification(inode
, attr
))
4459 dquot_initialize(inode
);
4460 if ((ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)) ||
4461 (ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
))) {
4464 /* (user+group)*(old+new) structure, inode write (sb,
4465 * inode block, ? - but truncate inode update has it) */
4466 handle
= ext4_journal_start(inode
, EXT4_HT_QUOTA
,
4467 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
) +
4468 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
)) + 3);
4469 if (IS_ERR(handle
)) {
4470 error
= PTR_ERR(handle
);
4473 error
= dquot_transfer(inode
, attr
);
4475 ext4_journal_stop(handle
);
4478 /* Update corresponding info in inode so that everything is in
4479 * one transaction */
4480 if (attr
->ia_valid
& ATTR_UID
)
4481 inode
->i_uid
= attr
->ia_uid
;
4482 if (attr
->ia_valid
& ATTR_GID
)
4483 inode
->i_gid
= attr
->ia_gid
;
4484 error
= ext4_mark_inode_dirty(handle
, inode
);
4485 ext4_journal_stop(handle
);
4488 if (attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
!= inode
->i_size
) {
4491 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
4492 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4494 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
)
4498 if (IS_I_VERSION(inode
) && attr
->ia_size
!= inode
->i_size
)
4499 inode_inc_iversion(inode
);
4501 if (S_ISREG(inode
->i_mode
) &&
4502 (attr
->ia_size
< inode
->i_size
)) {
4503 if (ext4_should_order_data(inode
)) {
4504 error
= ext4_begin_ordered_truncate(inode
,
4509 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 3);
4510 if (IS_ERR(handle
)) {
4511 error
= PTR_ERR(handle
);
4514 if (ext4_handle_valid(handle
)) {
4515 error
= ext4_orphan_add(handle
, inode
);
4518 down_write(&EXT4_I(inode
)->i_data_sem
);
4519 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
4520 rc
= ext4_mark_inode_dirty(handle
, inode
);
4524 * We have to update i_size under i_data_sem together
4525 * with i_disksize to avoid races with writeback code
4526 * running ext4_wb_update_i_disksize().
4529 i_size_write(inode
, attr
->ia_size
);
4530 up_write(&EXT4_I(inode
)->i_data_sem
);
4531 ext4_journal_stop(handle
);
4533 ext4_orphan_del(NULL
, inode
);
4537 loff_t oldsize
= inode
->i_size
;
4539 i_size_write(inode
, attr
->ia_size
);
4540 pagecache_isize_extended(inode
, oldsize
, inode
->i_size
);
4544 * Blocks are going to be removed from the inode. Wait
4545 * for dio in flight. Temporarily disable
4546 * dioread_nolock to prevent livelock.
4549 if (!ext4_should_journal_data(inode
)) {
4550 ext4_inode_block_unlocked_dio(inode
);
4551 inode_dio_wait(inode
);
4552 ext4_inode_resume_unlocked_dio(inode
);
4554 ext4_wait_for_tail_page_commit(inode
);
4557 * Truncate pagecache after we've waited for commit
4558 * in data=journal mode to make pages freeable.
4560 truncate_pagecache(inode
, inode
->i_size
);
4563 * We want to call ext4_truncate() even if attr->ia_size ==
4564 * inode->i_size for cases like truncation of fallocated space
4566 if (attr
->ia_valid
& ATTR_SIZE
)
4567 ext4_truncate(inode
);
4570 setattr_copy(inode
, attr
);
4571 mark_inode_dirty(inode
);
4575 * If the call to ext4_truncate failed to get a transaction handle at
4576 * all, we need to clean up the in-core orphan list manually.
4578 if (orphan
&& inode
->i_nlink
)
4579 ext4_orphan_del(NULL
, inode
);
4581 if (!rc
&& (ia_valid
& ATTR_MODE
))
4582 rc
= posix_acl_chmod(inode
, inode
->i_mode
);
4585 ext4_std_error(inode
->i_sb
, error
);
4591 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
4594 struct inode
*inode
;
4595 unsigned long long delalloc_blocks
;
4597 inode
= dentry
->d_inode
;
4598 generic_fillattr(inode
, stat
);
4601 * If there is inline data in the inode, the inode will normally not
4602 * have data blocks allocated (it may have an external xattr block).
4603 * Report at least one sector for such files, so tools like tar, rsync,
4604 * others doen't incorrectly think the file is completely sparse.
4606 if (unlikely(ext4_has_inline_data(inode
)))
4607 stat
->blocks
+= (stat
->size
+ 511) >> 9;
4610 * We can't update i_blocks if the block allocation is delayed
4611 * otherwise in the case of system crash before the real block
4612 * allocation is done, we will have i_blocks inconsistent with
4613 * on-disk file blocks.
4614 * We always keep i_blocks updated together with real
4615 * allocation. But to not confuse with user, stat
4616 * will return the blocks that include the delayed allocation
4617 * blocks for this file.
4619 delalloc_blocks
= EXT4_C2B(EXT4_SB(inode
->i_sb
),
4620 EXT4_I(inode
)->i_reserved_data_blocks
);
4621 stat
->blocks
+= delalloc_blocks
<< (inode
->i_sb
->s_blocksize_bits
- 9);
4625 static int ext4_index_trans_blocks(struct inode
*inode
, int lblocks
,
4628 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4629 return ext4_ind_trans_blocks(inode
, lblocks
);
4630 return ext4_ext_index_trans_blocks(inode
, pextents
);
4634 * Account for index blocks, block groups bitmaps and block group
4635 * descriptor blocks if modify datablocks and index blocks
4636 * worse case, the indexs blocks spread over different block groups
4638 * If datablocks are discontiguous, they are possible to spread over
4639 * different block groups too. If they are contiguous, with flexbg,
4640 * they could still across block group boundary.
4642 * Also account for superblock, inode, quota and xattr blocks
4644 static int ext4_meta_trans_blocks(struct inode
*inode
, int lblocks
,
4647 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
4653 * How many index blocks need to touch to map @lblocks logical blocks
4654 * to @pextents physical extents?
4656 idxblocks
= ext4_index_trans_blocks(inode
, lblocks
, pextents
);
4661 * Now let's see how many group bitmaps and group descriptors need
4664 groups
= idxblocks
+ pextents
;
4666 if (groups
> ngroups
)
4668 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
4669 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
4671 /* bitmaps and block group descriptor blocks */
4672 ret
+= groups
+ gdpblocks
;
4674 /* Blocks for super block, inode, quota and xattr blocks */
4675 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
4681 * Calculate the total number of credits to reserve to fit
4682 * the modification of a single pages into a single transaction,
4683 * which may include multiple chunks of block allocations.
4685 * This could be called via ext4_write_begin()
4687 * We need to consider the worse case, when
4688 * one new block per extent.
4690 int ext4_writepage_trans_blocks(struct inode
*inode
)
4692 int bpp
= ext4_journal_blocks_per_page(inode
);
4695 ret
= ext4_meta_trans_blocks(inode
, bpp
, bpp
);
4697 /* Account for data blocks for journalled mode */
4698 if (ext4_should_journal_data(inode
))
4704 * Calculate the journal credits for a chunk of data modification.
4706 * This is called from DIO, fallocate or whoever calling
4707 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4709 * journal buffers for data blocks are not included here, as DIO
4710 * and fallocate do no need to journal data buffers.
4712 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
4714 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
4718 * The caller must have previously called ext4_reserve_inode_write().
4719 * Give this, we know that the caller already has write access to iloc->bh.
4721 int ext4_mark_iloc_dirty(handle_t
*handle
,
4722 struct inode
*inode
, struct ext4_iloc
*iloc
)
4726 if (IS_I_VERSION(inode
))
4727 inode_inc_iversion(inode
);
4729 /* the do_update_inode consumes one bh->b_count */
4732 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4733 err
= ext4_do_update_inode(handle
, inode
, iloc
);
4739 * On success, We end up with an outstanding reference count against
4740 * iloc->bh. This _must_ be cleaned up later.
4744 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
4745 struct ext4_iloc
*iloc
)
4749 err
= ext4_get_inode_loc(inode
, iloc
);
4751 BUFFER_TRACE(iloc
->bh
, "get_write_access");
4752 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
4758 ext4_std_error(inode
->i_sb
, err
);
4763 * Expand an inode by new_extra_isize bytes.
4764 * Returns 0 on success or negative error number on failure.
4766 static int ext4_expand_extra_isize(struct inode
*inode
,
4767 unsigned int new_extra_isize
,
4768 struct ext4_iloc iloc
,
4771 struct ext4_inode
*raw_inode
;
4772 struct ext4_xattr_ibody_header
*header
;
4774 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
4777 raw_inode
= ext4_raw_inode(&iloc
);
4779 header
= IHDR(inode
, raw_inode
);
4781 /* No extended attributes present */
4782 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
4783 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4784 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
4786 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
4790 /* try to expand with EAs present */
4791 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
4796 * What we do here is to mark the in-core inode as clean with respect to inode
4797 * dirtiness (it may still be data-dirty).
4798 * This means that the in-core inode may be reaped by prune_icache
4799 * without having to perform any I/O. This is a very good thing,
4800 * because *any* task may call prune_icache - even ones which
4801 * have a transaction open against a different journal.
4803 * Is this cheating? Not really. Sure, we haven't written the
4804 * inode out, but prune_icache isn't a user-visible syncing function.
4805 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4806 * we start and wait on commits.
4808 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
4810 struct ext4_iloc iloc
;
4811 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4812 static unsigned int mnt_count
;
4816 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
4817 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
4818 if (ext4_handle_valid(handle
) &&
4819 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
4820 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
4822 * We need extra buffer credits since we may write into EA block
4823 * with this same handle. If journal_extend fails, then it will
4824 * only result in a minor loss of functionality for that inode.
4825 * If this is felt to be critical, then e2fsck should be run to
4826 * force a large enough s_min_extra_isize.
4828 if ((jbd2_journal_extend(handle
,
4829 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
4830 ret
= ext4_expand_extra_isize(inode
,
4831 sbi
->s_want_extra_isize
,
4834 ext4_set_inode_state(inode
,
4835 EXT4_STATE_NO_EXPAND
);
4837 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
4838 ext4_warning(inode
->i_sb
,
4839 "Unable to expand inode %lu. Delete"
4840 " some EAs or run e2fsck.",
4843 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
4849 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
4854 * ext4_dirty_inode() is called from __mark_inode_dirty()
4856 * We're really interested in the case where a file is being extended.
4857 * i_size has been changed by generic_commit_write() and we thus need
4858 * to include the updated inode in the current transaction.
4860 * Also, dquot_alloc_block() will always dirty the inode when blocks
4861 * are allocated to the file.
4863 * If the inode is marked synchronous, we don't honour that here - doing
4864 * so would cause a commit on atime updates, which we don't bother doing.
4865 * We handle synchronous inodes at the highest possible level.
4867 void ext4_dirty_inode(struct inode
*inode
, int flags
)
4871 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 2);
4875 ext4_mark_inode_dirty(handle
, inode
);
4877 ext4_journal_stop(handle
);
4884 * Bind an inode's backing buffer_head into this transaction, to prevent
4885 * it from being flushed to disk early. Unlike
4886 * ext4_reserve_inode_write, this leaves behind no bh reference and
4887 * returns no iloc structure, so the caller needs to repeat the iloc
4888 * lookup to mark the inode dirty later.
4890 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
4892 struct ext4_iloc iloc
;
4896 err
= ext4_get_inode_loc(inode
, &iloc
);
4898 BUFFER_TRACE(iloc
.bh
, "get_write_access");
4899 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
4901 err
= ext4_handle_dirty_metadata(handle
,
4907 ext4_std_error(inode
->i_sb
, err
);
4912 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
4919 * We have to be very careful here: changing a data block's
4920 * journaling status dynamically is dangerous. If we write a
4921 * data block to the journal, change the status and then delete
4922 * that block, we risk forgetting to revoke the old log record
4923 * from the journal and so a subsequent replay can corrupt data.
4924 * So, first we make sure that the journal is empty and that
4925 * nobody is changing anything.
4928 journal
= EXT4_JOURNAL(inode
);
4931 if (is_journal_aborted(journal
))
4933 /* We have to allocate physical blocks for delalloc blocks
4934 * before flushing journal. otherwise delalloc blocks can not
4935 * be allocated any more. even more truncate on delalloc blocks
4936 * could trigger BUG by flushing delalloc blocks in journal.
4937 * There is no delalloc block in non-journal data mode.
4939 if (val
&& test_opt(inode
->i_sb
, DELALLOC
)) {
4940 err
= ext4_alloc_da_blocks(inode
);
4945 /* Wait for all existing dio workers */
4946 ext4_inode_block_unlocked_dio(inode
);
4947 inode_dio_wait(inode
);
4949 jbd2_journal_lock_updates(journal
);
4952 * OK, there are no updates running now, and all cached data is
4953 * synced to disk. We are now in a completely consistent state
4954 * which doesn't have anything in the journal, and we know that
4955 * no filesystem updates are running, so it is safe to modify
4956 * the inode's in-core data-journaling state flag now.
4960 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
4962 err
= jbd2_journal_flush(journal
);
4964 jbd2_journal_unlock_updates(journal
);
4965 ext4_inode_resume_unlocked_dio(inode
);
4968 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
4970 ext4_set_aops(inode
);
4972 jbd2_journal_unlock_updates(journal
);
4973 ext4_inode_resume_unlocked_dio(inode
);
4975 /* Finally we can mark the inode as dirty. */
4977 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
4979 return PTR_ERR(handle
);
4981 err
= ext4_mark_inode_dirty(handle
, inode
);
4982 ext4_handle_sync(handle
);
4983 ext4_journal_stop(handle
);
4984 ext4_std_error(inode
->i_sb
, err
);
4989 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
4991 return !buffer_mapped(bh
);
4994 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4996 struct page
*page
= vmf
->page
;
5000 struct file
*file
= vma
->vm_file
;
5001 struct inode
*inode
= file_inode(file
);
5002 struct address_space
*mapping
= inode
->i_mapping
;
5004 get_block_t
*get_block
;
5007 sb_start_pagefault(inode
->i_sb
);
5008 file_update_time(vma
->vm_file
);
5009 /* Delalloc case is easy... */
5010 if (test_opt(inode
->i_sb
, DELALLOC
) &&
5011 !ext4_should_journal_data(inode
) &&
5012 !ext4_nonda_switch(inode
->i_sb
)) {
5014 ret
= __block_page_mkwrite(vma
, vmf
,
5015 ext4_da_get_block_prep
);
5016 } while (ret
== -ENOSPC
&&
5017 ext4_should_retry_alloc(inode
->i_sb
, &retries
));
5022 size
= i_size_read(inode
);
5023 /* Page got truncated from under us? */
5024 if (page
->mapping
!= mapping
|| page_offset(page
) > size
) {
5026 ret
= VM_FAULT_NOPAGE
;
5030 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5031 len
= size
& ~PAGE_CACHE_MASK
;
5033 len
= PAGE_CACHE_SIZE
;
5035 * Return if we have all the buffers mapped. This avoids the need to do
5036 * journal_start/journal_stop which can block and take a long time
5038 if (page_has_buffers(page
)) {
5039 if (!ext4_walk_page_buffers(NULL
, page_buffers(page
),
5041 ext4_bh_unmapped
)) {
5042 /* Wait so that we don't change page under IO */
5043 wait_for_stable_page(page
);
5044 ret
= VM_FAULT_LOCKED
;
5049 /* OK, we need to fill the hole... */
5050 if (ext4_should_dioread_nolock(inode
))
5051 get_block
= ext4_get_block_write
;
5053 get_block
= ext4_get_block
;
5055 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
5056 ext4_writepage_trans_blocks(inode
));
5057 if (IS_ERR(handle
)) {
5058 ret
= VM_FAULT_SIGBUS
;
5061 ret
= __block_page_mkwrite(vma
, vmf
, get_block
);
5062 if (!ret
&& ext4_should_journal_data(inode
)) {
5063 if (ext4_walk_page_buffers(handle
, page_buffers(page
), 0,
5064 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
)) {
5066 ret
= VM_FAULT_SIGBUS
;
5067 ext4_journal_stop(handle
);
5070 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
5072 ext4_journal_stop(handle
);
5073 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
5076 ret
= block_page_mkwrite_return(ret
);
5078 sb_end_pagefault(inode
->i_sb
);