libceph: clear r_req_lru_item in __unregister_linger_request()
[linux/fpc-iii.git] / fs / ext4 / mballoc.c
blobdbfe15c2533c93a299a484afb1ce32a7ca9a57f1
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly;
34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
36 #endif
39 * MUSTDO:
40 * - test ext4_ext_search_left() and ext4_ext_search_right()
41 * - search for metadata in few groups
43 * TODO v4:
44 * - normalization should take into account whether file is still open
45 * - discard preallocations if no free space left (policy?)
46 * - don't normalize tails
47 * - quota
48 * - reservation for superuser
50 * TODO v3:
51 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
52 * - track min/max extents in each group for better group selection
53 * - mb_mark_used() may allocate chunk right after splitting buddy
54 * - tree of groups sorted by number of free blocks
55 * - error handling
59 * The allocation request involve request for multiple number of blocks
60 * near to the goal(block) value specified.
62 * During initialization phase of the allocator we decide to use the
63 * group preallocation or inode preallocation depending on the size of
64 * the file. The size of the file could be the resulting file size we
65 * would have after allocation, or the current file size, which ever
66 * is larger. If the size is less than sbi->s_mb_stream_request we
67 * select to use the group preallocation. The default value of
68 * s_mb_stream_request is 16 blocks. This can also be tuned via
69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70 * terms of number of blocks.
72 * The main motivation for having small file use group preallocation is to
73 * ensure that we have small files closer together on the disk.
75 * First stage the allocator looks at the inode prealloc list,
76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77 * spaces for this particular inode. The inode prealloc space is
78 * represented as:
80 * pa_lstart -> the logical start block for this prealloc space
81 * pa_pstart -> the physical start block for this prealloc space
82 * pa_len -> length for this prealloc space (in clusters)
83 * pa_free -> free space available in this prealloc space (in clusters)
85 * The inode preallocation space is used looking at the _logical_ start
86 * block. If only the logical file block falls within the range of prealloc
87 * space we will consume the particular prealloc space. This makes sure that
88 * we have contiguous physical blocks representing the file blocks
90 * The important thing to be noted in case of inode prealloc space is that
91 * we don't modify the values associated to inode prealloc space except
92 * pa_free.
94 * If we are not able to find blocks in the inode prealloc space and if we
95 * have the group allocation flag set then we look at the locality group
96 * prealloc space. These are per CPU prealloc list represented as
98 * ext4_sb_info.s_locality_groups[smp_processor_id()]
100 * The reason for having a per cpu locality group is to reduce the contention
101 * between CPUs. It is possible to get scheduled at this point.
103 * The locality group prealloc space is used looking at whether we have
104 * enough free space (pa_free) within the prealloc space.
106 * If we can't allocate blocks via inode prealloc or/and locality group
107 * prealloc then we look at the buddy cache. The buddy cache is represented
108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109 * mapped to the buddy and bitmap information regarding different
110 * groups. The buddy information is attached to buddy cache inode so that
111 * we can access them through the page cache. The information regarding
112 * each group is loaded via ext4_mb_load_buddy. The information involve
113 * block bitmap and buddy information. The information are stored in the
114 * inode as:
116 * { page }
117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
120 * one block each for bitmap and buddy information. So for each group we
121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122 * blocksize) blocks. So it can have information regarding groups_per_page
123 * which is blocks_per_page/2
125 * The buddy cache inode is not stored on disk. The inode is thrown
126 * away when the filesystem is unmounted.
128 * We look for count number of blocks in the buddy cache. If we were able
129 * to locate that many free blocks we return with additional information
130 * regarding rest of the contiguous physical block available
132 * Before allocating blocks via buddy cache we normalize the request
133 * blocks. This ensure we ask for more blocks that we needed. The extra
134 * blocks that we get after allocation is added to the respective prealloc
135 * list. In case of inode preallocation we follow a list of heuristics
136 * based on file size. This can be found in ext4_mb_normalize_request. If
137 * we are doing a group prealloc we try to normalize the request to
138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
139 * dependent on the cluster size; for non-bigalloc file systems, it is
140 * 512 blocks. This can be tuned via
141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142 * terms of number of blocks. If we have mounted the file system with -O
143 * stripe=<value> option the group prealloc request is normalized to the
144 * the smallest multiple of the stripe value (sbi->s_stripe) which is
145 * greater than the default mb_group_prealloc.
147 * The regular allocator (using the buddy cache) supports a few tunables.
149 * /sys/fs/ext4/<partition>/mb_min_to_scan
150 * /sys/fs/ext4/<partition>/mb_max_to_scan
151 * /sys/fs/ext4/<partition>/mb_order2_req
153 * The regular allocator uses buddy scan only if the request len is power of
154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155 * value of s_mb_order2_reqs can be tuned via
156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
157 * stripe size (sbi->s_stripe), we try to search for contiguous block in
158 * stripe size. This should result in better allocation on RAID setups. If
159 * not, we search in the specific group using bitmap for best extents. The
160 * tunable min_to_scan and max_to_scan control the behaviour here.
161 * min_to_scan indicate how long the mballoc __must__ look for a best
162 * extent and max_to_scan indicates how long the mballoc __can__ look for a
163 * best extent in the found extents. Searching for the blocks starts with
164 * the group specified as the goal value in allocation context via
165 * ac_g_ex. Each group is first checked based on the criteria whether it
166 * can be used for allocation. ext4_mb_good_group explains how the groups are
167 * checked.
169 * Both the prealloc space are getting populated as above. So for the first
170 * request we will hit the buddy cache which will result in this prealloc
171 * space getting filled. The prealloc space is then later used for the
172 * subsequent request.
176 * mballoc operates on the following data:
177 * - on-disk bitmap
178 * - in-core buddy (actually includes buddy and bitmap)
179 * - preallocation descriptors (PAs)
181 * there are two types of preallocations:
182 * - inode
183 * assiged to specific inode and can be used for this inode only.
184 * it describes part of inode's space preallocated to specific
185 * physical blocks. any block from that preallocated can be used
186 * independent. the descriptor just tracks number of blocks left
187 * unused. so, before taking some block from descriptor, one must
188 * make sure corresponded logical block isn't allocated yet. this
189 * also means that freeing any block within descriptor's range
190 * must discard all preallocated blocks.
191 * - locality group
192 * assigned to specific locality group which does not translate to
193 * permanent set of inodes: inode can join and leave group. space
194 * from this type of preallocation can be used for any inode. thus
195 * it's consumed from the beginning to the end.
197 * relation between them can be expressed as:
198 * in-core buddy = on-disk bitmap + preallocation descriptors
200 * this mean blocks mballoc considers used are:
201 * - allocated blocks (persistent)
202 * - preallocated blocks (non-persistent)
204 * consistency in mballoc world means that at any time a block is either
205 * free or used in ALL structures. notice: "any time" should not be read
206 * literally -- time is discrete and delimited by locks.
208 * to keep it simple, we don't use block numbers, instead we count number of
209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
211 * all operations can be expressed as:
212 * - init buddy: buddy = on-disk + PAs
213 * - new PA: buddy += N; PA = N
214 * - use inode PA: on-disk += N; PA -= N
215 * - discard inode PA buddy -= on-disk - PA; PA = 0
216 * - use locality group PA on-disk += N; PA -= N
217 * - discard locality group PA buddy -= PA; PA = 0
218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219 * is used in real operation because we can't know actual used
220 * bits from PA, only from on-disk bitmap
222 * if we follow this strict logic, then all operations above should be atomic.
223 * given some of them can block, we'd have to use something like semaphores
224 * killing performance on high-end SMP hardware. let's try to relax it using
225 * the following knowledge:
226 * 1) if buddy is referenced, it's already initialized
227 * 2) while block is used in buddy and the buddy is referenced,
228 * nobody can re-allocate that block
229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230 * bit set and PA claims same block, it's OK. IOW, one can set bit in
231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
232 * block
234 * so, now we're building a concurrency table:
235 * - init buddy vs.
236 * - new PA
237 * blocks for PA are allocated in the buddy, buddy must be referenced
238 * until PA is linked to allocation group to avoid concurrent buddy init
239 * - use inode PA
240 * we need to make sure that either on-disk bitmap or PA has uptodate data
241 * given (3) we care that PA-=N operation doesn't interfere with init
242 * - discard inode PA
243 * the simplest way would be to have buddy initialized by the discard
244 * - use locality group PA
245 * again PA-=N must be serialized with init
246 * - discard locality group PA
247 * the simplest way would be to have buddy initialized by the discard
248 * - new PA vs.
249 * - use inode PA
250 * i_data_sem serializes them
251 * - discard inode PA
252 * discard process must wait until PA isn't used by another process
253 * - use locality group PA
254 * some mutex should serialize them
255 * - discard locality group PA
256 * discard process must wait until PA isn't used by another process
257 * - use inode PA
258 * - use inode PA
259 * i_data_sem or another mutex should serializes them
260 * - discard inode PA
261 * discard process must wait until PA isn't used by another process
262 * - use locality group PA
263 * nothing wrong here -- they're different PAs covering different blocks
264 * - discard locality group PA
265 * discard process must wait until PA isn't used by another process
267 * now we're ready to make few consequences:
268 * - PA is referenced and while it is no discard is possible
269 * - PA is referenced until block isn't marked in on-disk bitmap
270 * - PA changes only after on-disk bitmap
271 * - discard must not compete with init. either init is done before
272 * any discard or they're serialized somehow
273 * - buddy init as sum of on-disk bitmap and PAs is done atomically
275 * a special case when we've used PA to emptiness. no need to modify buddy
276 * in this case, but we should care about concurrent init
281 * Logic in few words:
283 * - allocation:
284 * load group
285 * find blocks
286 * mark bits in on-disk bitmap
287 * release group
289 * - use preallocation:
290 * find proper PA (per-inode or group)
291 * load group
292 * mark bits in on-disk bitmap
293 * release group
294 * release PA
296 * - free:
297 * load group
298 * mark bits in on-disk bitmap
299 * release group
301 * - discard preallocations in group:
302 * mark PAs deleted
303 * move them onto local list
304 * load on-disk bitmap
305 * load group
306 * remove PA from object (inode or locality group)
307 * mark free blocks in-core
309 * - discard inode's preallocations:
313 * Locking rules
315 * Locks:
316 * - bitlock on a group (group)
317 * - object (inode/locality) (object)
318 * - per-pa lock (pa)
320 * Paths:
321 * - new pa
322 * object
323 * group
325 * - find and use pa:
326 * pa
328 * - release consumed pa:
329 * pa
330 * group
331 * object
333 * - generate in-core bitmap:
334 * group
335 * pa
337 * - discard all for given object (inode, locality group):
338 * object
339 * pa
340 * group
342 * - discard all for given group:
343 * group
344 * pa
345 * group
346 * object
349 static struct kmem_cache *ext4_pspace_cachep;
350 static struct kmem_cache *ext4_ac_cachep;
351 static struct kmem_cache *ext4_free_data_cachep;
353 /* We create slab caches for groupinfo data structures based on the
354 * superblock block size. There will be one per mounted filesystem for
355 * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
366 ext4_group_t group);
367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
368 ext4_group_t group);
369 static void ext4_free_data_callback(struct super_block *sb,
370 struct ext4_journal_cb_entry *jce, int rc);
372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
374 #if BITS_PER_LONG == 64
375 *bit += ((unsigned long) addr & 7UL) << 3;
376 addr = (void *) ((unsigned long) addr & ~7UL);
377 #elif BITS_PER_LONG == 32
378 *bit += ((unsigned long) addr & 3UL) << 3;
379 addr = (void *) ((unsigned long) addr & ~3UL);
380 #else
381 #error "how many bits you are?!"
382 #endif
383 return addr;
386 static inline int mb_test_bit(int bit, void *addr)
389 * ext4_test_bit on architecture like powerpc
390 * needs unsigned long aligned address
392 addr = mb_correct_addr_and_bit(&bit, addr);
393 return ext4_test_bit(bit, addr);
396 static inline void mb_set_bit(int bit, void *addr)
398 addr = mb_correct_addr_and_bit(&bit, addr);
399 ext4_set_bit(bit, addr);
402 static inline void mb_clear_bit(int bit, void *addr)
404 addr = mb_correct_addr_and_bit(&bit, addr);
405 ext4_clear_bit(bit, addr);
408 static inline int mb_test_and_clear_bit(int bit, void *addr)
410 addr = mb_correct_addr_and_bit(&bit, addr);
411 return ext4_test_and_clear_bit(bit, addr);
414 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
416 int fix = 0, ret, tmpmax;
417 addr = mb_correct_addr_and_bit(&fix, addr);
418 tmpmax = max + fix;
419 start += fix;
421 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
422 if (ret > max)
423 return max;
424 return ret;
427 static inline int mb_find_next_bit(void *addr, int max, int start)
429 int fix = 0, ret, tmpmax;
430 addr = mb_correct_addr_and_bit(&fix, addr);
431 tmpmax = max + fix;
432 start += fix;
434 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
435 if (ret > max)
436 return max;
437 return ret;
440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
442 char *bb;
444 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
445 BUG_ON(max == NULL);
447 if (order > e4b->bd_blkbits + 1) {
448 *max = 0;
449 return NULL;
452 /* at order 0 we see each particular block */
453 if (order == 0) {
454 *max = 1 << (e4b->bd_blkbits + 3);
455 return e4b->bd_bitmap;
458 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
459 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
461 return bb;
464 #ifdef DOUBLE_CHECK
465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
466 int first, int count)
468 int i;
469 struct super_block *sb = e4b->bd_sb;
471 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 return;
473 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
474 for (i = 0; i < count; i++) {
475 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
476 ext4_fsblk_t blocknr;
478 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
479 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
480 ext4_grp_locked_error(sb, e4b->bd_group,
481 inode ? inode->i_ino : 0,
482 blocknr,
483 "freeing block already freed "
484 "(bit %u)",
485 first + i);
487 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
493 int i;
495 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
496 return;
497 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
498 for (i = 0; i < count; i++) {
499 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
500 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
506 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
507 unsigned char *b1, *b2;
508 int i;
509 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
510 b2 = (unsigned char *) bitmap;
511 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
512 if (b1[i] != b2[i]) {
513 ext4_msg(e4b->bd_sb, KERN_ERR,
514 "corruption in group %u "
515 "at byte %u(%u): %x in copy != %x "
516 "on disk/prealloc",
517 e4b->bd_group, i, i * 8, b1[i], b2[i]);
518 BUG();
524 #else
525 static inline void mb_free_blocks_double(struct inode *inode,
526 struct ext4_buddy *e4b, int first, int count)
528 return;
530 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
531 int first, int count)
533 return;
535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
537 return;
539 #endif
541 #ifdef AGGRESSIVE_CHECK
543 #define MB_CHECK_ASSERT(assert) \
544 do { \
545 if (!(assert)) { \
546 printk(KERN_EMERG \
547 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
548 function, file, line, # assert); \
549 BUG(); \
551 } while (0)
553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
554 const char *function, int line)
556 struct super_block *sb = e4b->bd_sb;
557 int order = e4b->bd_blkbits + 1;
558 int max;
559 int max2;
560 int i;
561 int j;
562 int k;
563 int count;
564 struct ext4_group_info *grp;
565 int fragments = 0;
566 int fstart;
567 struct list_head *cur;
568 void *buddy;
569 void *buddy2;
572 static int mb_check_counter;
573 if (mb_check_counter++ % 100 != 0)
574 return 0;
577 while (order > 1) {
578 buddy = mb_find_buddy(e4b, order, &max);
579 MB_CHECK_ASSERT(buddy);
580 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
581 MB_CHECK_ASSERT(buddy2);
582 MB_CHECK_ASSERT(buddy != buddy2);
583 MB_CHECK_ASSERT(max * 2 == max2);
585 count = 0;
586 for (i = 0; i < max; i++) {
588 if (mb_test_bit(i, buddy)) {
589 /* only single bit in buddy2 may be 1 */
590 if (!mb_test_bit(i << 1, buddy2)) {
591 MB_CHECK_ASSERT(
592 mb_test_bit((i<<1)+1, buddy2));
593 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
594 MB_CHECK_ASSERT(
595 mb_test_bit(i << 1, buddy2));
597 continue;
600 /* both bits in buddy2 must be 1 */
601 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
602 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
604 for (j = 0; j < (1 << order); j++) {
605 k = (i * (1 << order)) + j;
606 MB_CHECK_ASSERT(
607 !mb_test_bit(k, e4b->bd_bitmap));
609 count++;
611 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
612 order--;
615 fstart = -1;
616 buddy = mb_find_buddy(e4b, 0, &max);
617 for (i = 0; i < max; i++) {
618 if (!mb_test_bit(i, buddy)) {
619 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
620 if (fstart == -1) {
621 fragments++;
622 fstart = i;
624 continue;
626 fstart = -1;
627 /* check used bits only */
628 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
629 buddy2 = mb_find_buddy(e4b, j, &max2);
630 k = i >> j;
631 MB_CHECK_ASSERT(k < max2);
632 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
635 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
636 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
638 grp = ext4_get_group_info(sb, e4b->bd_group);
639 list_for_each(cur, &grp->bb_prealloc_list) {
640 ext4_group_t groupnr;
641 struct ext4_prealloc_space *pa;
642 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
643 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
644 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
645 for (i = 0; i < pa->pa_len; i++)
646 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
648 return 0;
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
652 __FILE__, __func__, __LINE__)
653 #else
654 #define mb_check_buddy(e4b)
655 #endif
658 * Divide blocks started from @first with length @len into
659 * smaller chunks with power of 2 blocks.
660 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661 * then increase bb_counters[] for corresponded chunk size.
663 static void ext4_mb_mark_free_simple(struct super_block *sb,
664 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
665 struct ext4_group_info *grp)
667 struct ext4_sb_info *sbi = EXT4_SB(sb);
668 ext4_grpblk_t min;
669 ext4_grpblk_t max;
670 ext4_grpblk_t chunk;
671 unsigned short border;
673 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
675 border = 2 << sb->s_blocksize_bits;
677 while (len > 0) {
678 /* find how many blocks can be covered since this position */
679 max = ffs(first | border) - 1;
681 /* find how many blocks of power 2 we need to mark */
682 min = fls(len) - 1;
684 if (max < min)
685 min = max;
686 chunk = 1 << min;
688 /* mark multiblock chunks only */
689 grp->bb_counters[min]++;
690 if (min > 0)
691 mb_clear_bit(first >> min,
692 buddy + sbi->s_mb_offsets[min]);
694 len -= chunk;
695 first += chunk;
700 * Cache the order of the largest free extent we have available in this block
701 * group.
703 static void
704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
706 int i;
707 int bits;
709 grp->bb_largest_free_order = -1; /* uninit */
711 bits = sb->s_blocksize_bits + 1;
712 for (i = bits; i >= 0; i--) {
713 if (grp->bb_counters[i] > 0) {
714 grp->bb_largest_free_order = i;
715 break;
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block *sb,
722 void *buddy, void *bitmap, ext4_group_t group)
724 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
725 struct ext4_sb_info *sbi = EXT4_SB(sb);
726 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
727 ext4_grpblk_t i = 0;
728 ext4_grpblk_t first;
729 ext4_grpblk_t len;
730 unsigned free = 0;
731 unsigned fragments = 0;
732 unsigned long long period = get_cycles();
734 /* initialize buddy from bitmap which is aggregation
735 * of on-disk bitmap and preallocations */
736 i = mb_find_next_zero_bit(bitmap, max, 0);
737 grp->bb_first_free = i;
738 while (i < max) {
739 fragments++;
740 first = i;
741 i = mb_find_next_bit(bitmap, max, i);
742 len = i - first;
743 free += len;
744 if (len > 1)
745 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
746 else
747 grp->bb_counters[0]++;
748 if (i < max)
749 i = mb_find_next_zero_bit(bitmap, max, i);
751 grp->bb_fragments = fragments;
753 if (free != grp->bb_free) {
754 ext4_grp_locked_error(sb, group, 0, 0,
755 "block bitmap and bg descriptor "
756 "inconsistent: %u vs %u free clusters",
757 free, grp->bb_free);
759 * If we intend to continue, we consider group descriptor
760 * corrupt and update bb_free using bitmap value
762 grp->bb_free = free;
763 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
764 percpu_counter_sub(&sbi->s_freeclusters_counter,
765 grp->bb_free);
766 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
768 mb_set_largest_free_order(sb, grp);
770 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
772 period = get_cycles() - period;
773 spin_lock(&EXT4_SB(sb)->s_bal_lock);
774 EXT4_SB(sb)->s_mb_buddies_generated++;
775 EXT4_SB(sb)->s_mb_generation_time += period;
776 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
779 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
781 int count;
782 int order = 1;
783 void *buddy;
785 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
786 ext4_set_bits(buddy, 0, count);
788 e4b->bd_info->bb_fragments = 0;
789 memset(e4b->bd_info->bb_counters, 0,
790 sizeof(*e4b->bd_info->bb_counters) *
791 (e4b->bd_sb->s_blocksize_bits + 2));
793 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
794 e4b->bd_bitmap, e4b->bd_group);
797 /* The buddy information is attached the buddy cache inode
798 * for convenience. The information regarding each group
799 * is loaded via ext4_mb_load_buddy. The information involve
800 * block bitmap and buddy information. The information are
801 * stored in the inode as
803 * { page }
804 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
807 * one block each for bitmap and buddy information.
808 * So for each group we take up 2 blocks. A page can
809 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
810 * So it can have information regarding groups_per_page which
811 * is blocks_per_page/2
813 * Locking note: This routine takes the block group lock of all groups
814 * for this page; do not hold this lock when calling this routine!
817 static int ext4_mb_init_cache(struct page *page, char *incore)
819 ext4_group_t ngroups;
820 int blocksize;
821 int blocks_per_page;
822 int groups_per_page;
823 int err = 0;
824 int i;
825 ext4_group_t first_group, group;
826 int first_block;
827 struct super_block *sb;
828 struct buffer_head *bhs;
829 struct buffer_head **bh = NULL;
830 struct inode *inode;
831 char *data;
832 char *bitmap;
833 struct ext4_group_info *grinfo;
835 mb_debug(1, "init page %lu\n", page->index);
837 inode = page->mapping->host;
838 sb = inode->i_sb;
839 ngroups = ext4_get_groups_count(sb);
840 blocksize = 1 << inode->i_blkbits;
841 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
843 groups_per_page = blocks_per_page >> 1;
844 if (groups_per_page == 0)
845 groups_per_page = 1;
847 /* allocate buffer_heads to read bitmaps */
848 if (groups_per_page > 1) {
849 i = sizeof(struct buffer_head *) * groups_per_page;
850 bh = kzalloc(i, GFP_NOFS);
851 if (bh == NULL) {
852 err = -ENOMEM;
853 goto out;
855 } else
856 bh = &bhs;
858 first_group = page->index * blocks_per_page / 2;
860 /* read all groups the page covers into the cache */
861 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
862 if (group >= ngroups)
863 break;
865 grinfo = ext4_get_group_info(sb, group);
867 * If page is uptodate then we came here after online resize
868 * which added some new uninitialized group info structs, so
869 * we must skip all initialized uptodate buddies on the page,
870 * which may be currently in use by an allocating task.
872 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
873 bh[i] = NULL;
874 continue;
876 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
877 err = -ENOMEM;
878 goto out;
880 mb_debug(1, "read bitmap for group %u\n", group);
883 /* wait for I/O completion */
884 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
885 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
886 err = -EIO;
887 goto out;
891 first_block = page->index * blocks_per_page;
892 for (i = 0; i < blocks_per_page; i++) {
893 group = (first_block + i) >> 1;
894 if (group >= ngroups)
895 break;
897 if (!bh[group - first_group])
898 /* skip initialized uptodate buddy */
899 continue;
902 * data carry information regarding this
903 * particular group in the format specified
904 * above
907 data = page_address(page) + (i * blocksize);
908 bitmap = bh[group - first_group]->b_data;
911 * We place the buddy block and bitmap block
912 * close together
914 if ((first_block + i) & 1) {
915 /* this is block of buddy */
916 BUG_ON(incore == NULL);
917 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
918 group, page->index, i * blocksize);
919 trace_ext4_mb_buddy_bitmap_load(sb, group);
920 grinfo = ext4_get_group_info(sb, group);
921 grinfo->bb_fragments = 0;
922 memset(grinfo->bb_counters, 0,
923 sizeof(*grinfo->bb_counters) *
924 (sb->s_blocksize_bits+2));
926 * incore got set to the group block bitmap below
928 ext4_lock_group(sb, group);
929 /* init the buddy */
930 memset(data, 0xff, blocksize);
931 ext4_mb_generate_buddy(sb, data, incore, group);
932 ext4_unlock_group(sb, group);
933 incore = NULL;
934 } else {
935 /* this is block of bitmap */
936 BUG_ON(incore != NULL);
937 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
938 group, page->index, i * blocksize);
939 trace_ext4_mb_bitmap_load(sb, group);
941 /* see comments in ext4_mb_put_pa() */
942 ext4_lock_group(sb, group);
943 memcpy(data, bitmap, blocksize);
945 /* mark all preallocated blks used in in-core bitmap */
946 ext4_mb_generate_from_pa(sb, data, group);
947 ext4_mb_generate_from_freelist(sb, data, group);
948 ext4_unlock_group(sb, group);
950 /* set incore so that the buddy information can be
951 * generated using this
953 incore = data;
956 SetPageUptodate(page);
958 out:
959 if (bh) {
960 for (i = 0; i < groups_per_page; i++)
961 brelse(bh[i]);
962 if (bh != &bhs)
963 kfree(bh);
965 return err;
969 * Lock the buddy and bitmap pages. This make sure other parallel init_group
970 * on the same buddy page doesn't happen whild holding the buddy page lock.
971 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
972 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
974 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
975 ext4_group_t group, struct ext4_buddy *e4b)
977 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
978 int block, pnum, poff;
979 int blocks_per_page;
980 struct page *page;
982 e4b->bd_buddy_page = NULL;
983 e4b->bd_bitmap_page = NULL;
985 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
987 * the buddy cache inode stores the block bitmap
988 * and buddy information in consecutive blocks.
989 * So for each group we need two blocks.
991 block = group * 2;
992 pnum = block / blocks_per_page;
993 poff = block % blocks_per_page;
994 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
995 if (!page)
996 return -ENOMEM;
997 BUG_ON(page->mapping != inode->i_mapping);
998 e4b->bd_bitmap_page = page;
999 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1001 if (blocks_per_page >= 2) {
1002 /* buddy and bitmap are on the same page */
1003 return 0;
1006 block++;
1007 pnum = block / blocks_per_page;
1008 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1009 if (!page)
1010 return -ENOMEM;
1011 BUG_ON(page->mapping != inode->i_mapping);
1012 e4b->bd_buddy_page = page;
1013 return 0;
1016 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1018 if (e4b->bd_bitmap_page) {
1019 unlock_page(e4b->bd_bitmap_page);
1020 page_cache_release(e4b->bd_bitmap_page);
1022 if (e4b->bd_buddy_page) {
1023 unlock_page(e4b->bd_buddy_page);
1024 page_cache_release(e4b->bd_buddy_page);
1029 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1030 * block group lock of all groups for this page; do not hold the BG lock when
1031 * calling this routine!
1033 static noinline_for_stack
1034 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1037 struct ext4_group_info *this_grp;
1038 struct ext4_buddy e4b;
1039 struct page *page;
1040 int ret = 0;
1042 might_sleep();
1043 mb_debug(1, "init group %u\n", group);
1044 this_grp = ext4_get_group_info(sb, group);
1046 * This ensures that we don't reinit the buddy cache
1047 * page which map to the group from which we are already
1048 * allocating. If we are looking at the buddy cache we would
1049 * have taken a reference using ext4_mb_load_buddy and that
1050 * would have pinned buddy page to page cache.
1051 * The call to ext4_mb_get_buddy_page_lock will mark the
1052 * page accessed.
1054 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1055 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1057 * somebody initialized the group
1058 * return without doing anything
1060 goto err;
1063 page = e4b.bd_bitmap_page;
1064 ret = ext4_mb_init_cache(page, NULL);
1065 if (ret)
1066 goto err;
1067 if (!PageUptodate(page)) {
1068 ret = -EIO;
1069 goto err;
1072 if (e4b.bd_buddy_page == NULL) {
1074 * If both the bitmap and buddy are in
1075 * the same page we don't need to force
1076 * init the buddy
1078 ret = 0;
1079 goto err;
1081 /* init buddy cache */
1082 page = e4b.bd_buddy_page;
1083 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1084 if (ret)
1085 goto err;
1086 if (!PageUptodate(page)) {
1087 ret = -EIO;
1088 goto err;
1090 err:
1091 ext4_mb_put_buddy_page_lock(&e4b);
1092 return ret;
1096 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1097 * block group lock of all groups for this page; do not hold the BG lock when
1098 * calling this routine!
1100 static noinline_for_stack int
1101 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1102 struct ext4_buddy *e4b)
1104 int blocks_per_page;
1105 int block;
1106 int pnum;
1107 int poff;
1108 struct page *page;
1109 int ret;
1110 struct ext4_group_info *grp;
1111 struct ext4_sb_info *sbi = EXT4_SB(sb);
1112 struct inode *inode = sbi->s_buddy_cache;
1114 might_sleep();
1115 mb_debug(1, "load group %u\n", group);
1117 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1118 grp = ext4_get_group_info(sb, group);
1120 e4b->bd_blkbits = sb->s_blocksize_bits;
1121 e4b->bd_info = grp;
1122 e4b->bd_sb = sb;
1123 e4b->bd_group = group;
1124 e4b->bd_buddy_page = NULL;
1125 e4b->bd_bitmap_page = NULL;
1127 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1129 * we need full data about the group
1130 * to make a good selection
1132 ret = ext4_mb_init_group(sb, group);
1133 if (ret)
1134 return ret;
1138 * the buddy cache inode stores the block bitmap
1139 * and buddy information in consecutive blocks.
1140 * So for each group we need two blocks.
1142 block = group * 2;
1143 pnum = block / blocks_per_page;
1144 poff = block % blocks_per_page;
1146 /* we could use find_or_create_page(), but it locks page
1147 * what we'd like to avoid in fast path ... */
1148 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1149 if (page == NULL || !PageUptodate(page)) {
1150 if (page)
1152 * drop the page reference and try
1153 * to get the page with lock. If we
1154 * are not uptodate that implies
1155 * somebody just created the page but
1156 * is yet to initialize the same. So
1157 * wait for it to initialize.
1159 page_cache_release(page);
1160 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1161 if (page) {
1162 BUG_ON(page->mapping != inode->i_mapping);
1163 if (!PageUptodate(page)) {
1164 ret = ext4_mb_init_cache(page, NULL);
1165 if (ret) {
1166 unlock_page(page);
1167 goto err;
1169 mb_cmp_bitmaps(e4b, page_address(page) +
1170 (poff * sb->s_blocksize));
1172 unlock_page(page);
1175 if (page == NULL) {
1176 ret = -ENOMEM;
1177 goto err;
1179 if (!PageUptodate(page)) {
1180 ret = -EIO;
1181 goto err;
1184 /* Pages marked accessed already */
1185 e4b->bd_bitmap_page = page;
1186 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1188 block++;
1189 pnum = block / blocks_per_page;
1190 poff = block % blocks_per_page;
1192 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1193 if (page == NULL || !PageUptodate(page)) {
1194 if (page)
1195 page_cache_release(page);
1196 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1197 if (page) {
1198 BUG_ON(page->mapping != inode->i_mapping);
1199 if (!PageUptodate(page)) {
1200 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1201 if (ret) {
1202 unlock_page(page);
1203 goto err;
1206 unlock_page(page);
1209 if (page == NULL) {
1210 ret = -ENOMEM;
1211 goto err;
1213 if (!PageUptodate(page)) {
1214 ret = -EIO;
1215 goto err;
1218 /* Pages marked accessed already */
1219 e4b->bd_buddy_page = page;
1220 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1222 BUG_ON(e4b->bd_bitmap_page == NULL);
1223 BUG_ON(e4b->bd_buddy_page == NULL);
1225 return 0;
1227 err:
1228 if (page)
1229 page_cache_release(page);
1230 if (e4b->bd_bitmap_page)
1231 page_cache_release(e4b->bd_bitmap_page);
1232 if (e4b->bd_buddy_page)
1233 page_cache_release(e4b->bd_buddy_page);
1234 e4b->bd_buddy = NULL;
1235 e4b->bd_bitmap = NULL;
1236 return ret;
1239 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1241 if (e4b->bd_bitmap_page)
1242 page_cache_release(e4b->bd_bitmap_page);
1243 if (e4b->bd_buddy_page)
1244 page_cache_release(e4b->bd_buddy_page);
1248 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1250 int order = 1;
1251 void *bb;
1253 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1254 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1256 bb = e4b->bd_buddy;
1257 while (order <= e4b->bd_blkbits + 1) {
1258 block = block >> 1;
1259 if (!mb_test_bit(block, bb)) {
1260 /* this block is part of buddy of order 'order' */
1261 return order;
1263 bb += 1 << (e4b->bd_blkbits - order);
1264 order++;
1266 return 0;
1269 static void mb_clear_bits(void *bm, int cur, int len)
1271 __u32 *addr;
1273 len = cur + len;
1274 while (cur < len) {
1275 if ((cur & 31) == 0 && (len - cur) >= 32) {
1276 /* fast path: clear whole word at once */
1277 addr = bm + (cur >> 3);
1278 *addr = 0;
1279 cur += 32;
1280 continue;
1282 mb_clear_bit(cur, bm);
1283 cur++;
1287 /* clear bits in given range
1288 * will return first found zero bit if any, -1 otherwise
1290 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1292 __u32 *addr;
1293 int zero_bit = -1;
1295 len = cur + len;
1296 while (cur < len) {
1297 if ((cur & 31) == 0 && (len - cur) >= 32) {
1298 /* fast path: clear whole word at once */
1299 addr = bm + (cur >> 3);
1300 if (*addr != (__u32)(-1) && zero_bit == -1)
1301 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1302 *addr = 0;
1303 cur += 32;
1304 continue;
1306 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1307 zero_bit = cur;
1308 cur++;
1311 return zero_bit;
1314 void ext4_set_bits(void *bm, int cur, int len)
1316 __u32 *addr;
1318 len = cur + len;
1319 while (cur < len) {
1320 if ((cur & 31) == 0 && (len - cur) >= 32) {
1321 /* fast path: set whole word at once */
1322 addr = bm + (cur >> 3);
1323 *addr = 0xffffffff;
1324 cur += 32;
1325 continue;
1327 mb_set_bit(cur, bm);
1328 cur++;
1333 * _________________________________________________________________ */
1335 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1337 if (mb_test_bit(*bit + side, bitmap)) {
1338 mb_clear_bit(*bit, bitmap);
1339 (*bit) -= side;
1340 return 1;
1342 else {
1343 (*bit) += side;
1344 mb_set_bit(*bit, bitmap);
1345 return -1;
1349 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1351 int max;
1352 int order = 1;
1353 void *buddy = mb_find_buddy(e4b, order, &max);
1355 while (buddy) {
1356 void *buddy2;
1358 /* Bits in range [first; last] are known to be set since
1359 * corresponding blocks were allocated. Bits in range
1360 * (first; last) will stay set because they form buddies on
1361 * upper layer. We just deal with borders if they don't
1362 * align with upper layer and then go up.
1363 * Releasing entire group is all about clearing
1364 * single bit of highest order buddy.
1367 /* Example:
1368 * ---------------------------------
1369 * | 1 | 1 | 1 | 1 |
1370 * ---------------------------------
1371 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1372 * ---------------------------------
1373 * 0 1 2 3 4 5 6 7
1374 * \_____________________/
1376 * Neither [1] nor [6] is aligned to above layer.
1377 * Left neighbour [0] is free, so mark it busy,
1378 * decrease bb_counters and extend range to
1379 * [0; 6]
1380 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1381 * mark [6] free, increase bb_counters and shrink range to
1382 * [0; 5].
1383 * Then shift range to [0; 2], go up and do the same.
1387 if (first & 1)
1388 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1389 if (!(last & 1))
1390 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1391 if (first > last)
1392 break;
1393 order++;
1395 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1396 mb_clear_bits(buddy, first, last - first + 1);
1397 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1398 break;
1400 first >>= 1;
1401 last >>= 1;
1402 buddy = buddy2;
1406 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1407 int first, int count)
1409 int left_is_free = 0;
1410 int right_is_free = 0;
1411 int block;
1412 int last = first + count - 1;
1413 struct super_block *sb = e4b->bd_sb;
1415 if (WARN_ON(count == 0))
1416 return;
1417 BUG_ON(last >= (sb->s_blocksize << 3));
1418 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1419 /* Don't bother if the block group is corrupt. */
1420 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1421 return;
1423 mb_check_buddy(e4b);
1424 mb_free_blocks_double(inode, e4b, first, count);
1426 e4b->bd_info->bb_free += count;
1427 if (first < e4b->bd_info->bb_first_free)
1428 e4b->bd_info->bb_first_free = first;
1430 /* access memory sequentially: check left neighbour,
1431 * clear range and then check right neighbour
1433 if (first != 0)
1434 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1435 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1436 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1437 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1439 if (unlikely(block != -1)) {
1440 struct ext4_sb_info *sbi = EXT4_SB(sb);
1441 ext4_fsblk_t blocknr;
1443 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1444 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1445 ext4_grp_locked_error(sb, e4b->bd_group,
1446 inode ? inode->i_ino : 0,
1447 blocknr,
1448 "freeing already freed block "
1449 "(bit %u); block bitmap corrupt.",
1450 block);
1451 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1452 percpu_counter_sub(&sbi->s_freeclusters_counter,
1453 e4b->bd_info->bb_free);
1454 /* Mark the block group as corrupt. */
1455 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1456 &e4b->bd_info->bb_state);
1457 mb_regenerate_buddy(e4b);
1458 goto done;
1461 /* let's maintain fragments counter */
1462 if (left_is_free && right_is_free)
1463 e4b->bd_info->bb_fragments--;
1464 else if (!left_is_free && !right_is_free)
1465 e4b->bd_info->bb_fragments++;
1467 /* buddy[0] == bd_bitmap is a special case, so handle
1468 * it right away and let mb_buddy_mark_free stay free of
1469 * zero order checks.
1470 * Check if neighbours are to be coaleasced,
1471 * adjust bitmap bb_counters and borders appropriately.
1473 if (first & 1) {
1474 first += !left_is_free;
1475 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1477 if (!(last & 1)) {
1478 last -= !right_is_free;
1479 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1482 if (first <= last)
1483 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1485 done:
1486 mb_set_largest_free_order(sb, e4b->bd_info);
1487 mb_check_buddy(e4b);
1490 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1491 int needed, struct ext4_free_extent *ex)
1493 int next = block;
1494 int max, order;
1495 void *buddy;
1497 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1498 BUG_ON(ex == NULL);
1500 buddy = mb_find_buddy(e4b, 0, &max);
1501 BUG_ON(buddy == NULL);
1502 BUG_ON(block >= max);
1503 if (mb_test_bit(block, buddy)) {
1504 ex->fe_len = 0;
1505 ex->fe_start = 0;
1506 ex->fe_group = 0;
1507 return 0;
1510 /* find actual order */
1511 order = mb_find_order_for_block(e4b, block);
1512 block = block >> order;
1514 ex->fe_len = 1 << order;
1515 ex->fe_start = block << order;
1516 ex->fe_group = e4b->bd_group;
1518 /* calc difference from given start */
1519 next = next - ex->fe_start;
1520 ex->fe_len -= next;
1521 ex->fe_start += next;
1523 while (needed > ex->fe_len &&
1524 mb_find_buddy(e4b, order, &max)) {
1526 if (block + 1 >= max)
1527 break;
1529 next = (block + 1) * (1 << order);
1530 if (mb_test_bit(next, e4b->bd_bitmap))
1531 break;
1533 order = mb_find_order_for_block(e4b, next);
1535 block = next >> order;
1536 ex->fe_len += 1 << order;
1539 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1540 return ex->fe_len;
1543 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1545 int ord;
1546 int mlen = 0;
1547 int max = 0;
1548 int cur;
1549 int start = ex->fe_start;
1550 int len = ex->fe_len;
1551 unsigned ret = 0;
1552 int len0 = len;
1553 void *buddy;
1555 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1556 BUG_ON(e4b->bd_group != ex->fe_group);
1557 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1558 mb_check_buddy(e4b);
1559 mb_mark_used_double(e4b, start, len);
1561 e4b->bd_info->bb_free -= len;
1562 if (e4b->bd_info->bb_first_free == start)
1563 e4b->bd_info->bb_first_free += len;
1565 /* let's maintain fragments counter */
1566 if (start != 0)
1567 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1568 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1569 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1570 if (mlen && max)
1571 e4b->bd_info->bb_fragments++;
1572 else if (!mlen && !max)
1573 e4b->bd_info->bb_fragments--;
1575 /* let's maintain buddy itself */
1576 while (len) {
1577 ord = mb_find_order_for_block(e4b, start);
1579 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1580 /* the whole chunk may be allocated at once! */
1581 mlen = 1 << ord;
1582 buddy = mb_find_buddy(e4b, ord, &max);
1583 BUG_ON((start >> ord) >= max);
1584 mb_set_bit(start >> ord, buddy);
1585 e4b->bd_info->bb_counters[ord]--;
1586 start += mlen;
1587 len -= mlen;
1588 BUG_ON(len < 0);
1589 continue;
1592 /* store for history */
1593 if (ret == 0)
1594 ret = len | (ord << 16);
1596 /* we have to split large buddy */
1597 BUG_ON(ord <= 0);
1598 buddy = mb_find_buddy(e4b, ord, &max);
1599 mb_set_bit(start >> ord, buddy);
1600 e4b->bd_info->bb_counters[ord]--;
1602 ord--;
1603 cur = (start >> ord) & ~1U;
1604 buddy = mb_find_buddy(e4b, ord, &max);
1605 mb_clear_bit(cur, buddy);
1606 mb_clear_bit(cur + 1, buddy);
1607 e4b->bd_info->bb_counters[ord]++;
1608 e4b->bd_info->bb_counters[ord]++;
1610 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1612 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1613 mb_check_buddy(e4b);
1615 return ret;
1619 * Must be called under group lock!
1621 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1622 struct ext4_buddy *e4b)
1624 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1625 int ret;
1627 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1628 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1630 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1631 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1632 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1634 /* preallocation can change ac_b_ex, thus we store actually
1635 * allocated blocks for history */
1636 ac->ac_f_ex = ac->ac_b_ex;
1638 ac->ac_status = AC_STATUS_FOUND;
1639 ac->ac_tail = ret & 0xffff;
1640 ac->ac_buddy = ret >> 16;
1643 * take the page reference. We want the page to be pinned
1644 * so that we don't get a ext4_mb_init_cache_call for this
1645 * group until we update the bitmap. That would mean we
1646 * double allocate blocks. The reference is dropped
1647 * in ext4_mb_release_context
1649 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1650 get_page(ac->ac_bitmap_page);
1651 ac->ac_buddy_page = e4b->bd_buddy_page;
1652 get_page(ac->ac_buddy_page);
1653 /* store last allocated for subsequent stream allocation */
1654 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1655 spin_lock(&sbi->s_md_lock);
1656 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1657 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1658 spin_unlock(&sbi->s_md_lock);
1663 * regular allocator, for general purposes allocation
1666 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1667 struct ext4_buddy *e4b,
1668 int finish_group)
1670 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1671 struct ext4_free_extent *bex = &ac->ac_b_ex;
1672 struct ext4_free_extent *gex = &ac->ac_g_ex;
1673 struct ext4_free_extent ex;
1674 int max;
1676 if (ac->ac_status == AC_STATUS_FOUND)
1677 return;
1679 * We don't want to scan for a whole year
1681 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1682 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1683 ac->ac_status = AC_STATUS_BREAK;
1684 return;
1688 * Haven't found good chunk so far, let's continue
1690 if (bex->fe_len < gex->fe_len)
1691 return;
1693 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1694 && bex->fe_group == e4b->bd_group) {
1695 /* recheck chunk's availability - we don't know
1696 * when it was found (within this lock-unlock
1697 * period or not) */
1698 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1699 if (max >= gex->fe_len) {
1700 ext4_mb_use_best_found(ac, e4b);
1701 return;
1707 * The routine checks whether found extent is good enough. If it is,
1708 * then the extent gets marked used and flag is set to the context
1709 * to stop scanning. Otherwise, the extent is compared with the
1710 * previous found extent and if new one is better, then it's stored
1711 * in the context. Later, the best found extent will be used, if
1712 * mballoc can't find good enough extent.
1714 * FIXME: real allocation policy is to be designed yet!
1716 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1717 struct ext4_free_extent *ex,
1718 struct ext4_buddy *e4b)
1720 struct ext4_free_extent *bex = &ac->ac_b_ex;
1721 struct ext4_free_extent *gex = &ac->ac_g_ex;
1723 BUG_ON(ex->fe_len <= 0);
1724 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1725 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1726 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1728 ac->ac_found++;
1731 * The special case - take what you catch first
1733 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1734 *bex = *ex;
1735 ext4_mb_use_best_found(ac, e4b);
1736 return;
1740 * Let's check whether the chuck is good enough
1742 if (ex->fe_len == gex->fe_len) {
1743 *bex = *ex;
1744 ext4_mb_use_best_found(ac, e4b);
1745 return;
1749 * If this is first found extent, just store it in the context
1751 if (bex->fe_len == 0) {
1752 *bex = *ex;
1753 return;
1757 * If new found extent is better, store it in the context
1759 if (bex->fe_len < gex->fe_len) {
1760 /* if the request isn't satisfied, any found extent
1761 * larger than previous best one is better */
1762 if (ex->fe_len > bex->fe_len)
1763 *bex = *ex;
1764 } else if (ex->fe_len > gex->fe_len) {
1765 /* if the request is satisfied, then we try to find
1766 * an extent that still satisfy the request, but is
1767 * smaller than previous one */
1768 if (ex->fe_len < bex->fe_len)
1769 *bex = *ex;
1772 ext4_mb_check_limits(ac, e4b, 0);
1775 static noinline_for_stack
1776 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1777 struct ext4_buddy *e4b)
1779 struct ext4_free_extent ex = ac->ac_b_ex;
1780 ext4_group_t group = ex.fe_group;
1781 int max;
1782 int err;
1784 BUG_ON(ex.fe_len <= 0);
1785 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1786 if (err)
1787 return err;
1789 ext4_lock_group(ac->ac_sb, group);
1790 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1792 if (max > 0) {
1793 ac->ac_b_ex = ex;
1794 ext4_mb_use_best_found(ac, e4b);
1797 ext4_unlock_group(ac->ac_sb, group);
1798 ext4_mb_unload_buddy(e4b);
1800 return 0;
1803 static noinline_for_stack
1804 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1805 struct ext4_buddy *e4b)
1807 ext4_group_t group = ac->ac_g_ex.fe_group;
1808 int max;
1809 int err;
1810 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1811 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1812 struct ext4_free_extent ex;
1814 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1815 return 0;
1816 if (grp->bb_free == 0)
1817 return 0;
1819 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1820 if (err)
1821 return err;
1823 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1824 ext4_mb_unload_buddy(e4b);
1825 return 0;
1828 ext4_lock_group(ac->ac_sb, group);
1829 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1830 ac->ac_g_ex.fe_len, &ex);
1831 ex.fe_logical = 0xDEADFA11; /* debug value */
1833 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1834 ext4_fsblk_t start;
1836 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1837 ex.fe_start;
1838 /* use do_div to get remainder (would be 64-bit modulo) */
1839 if (do_div(start, sbi->s_stripe) == 0) {
1840 ac->ac_found++;
1841 ac->ac_b_ex = ex;
1842 ext4_mb_use_best_found(ac, e4b);
1844 } else if (max >= ac->ac_g_ex.fe_len) {
1845 BUG_ON(ex.fe_len <= 0);
1846 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1847 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1848 ac->ac_found++;
1849 ac->ac_b_ex = ex;
1850 ext4_mb_use_best_found(ac, e4b);
1851 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1852 /* Sometimes, caller may want to merge even small
1853 * number of blocks to an existing extent */
1854 BUG_ON(ex.fe_len <= 0);
1855 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1856 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1857 ac->ac_found++;
1858 ac->ac_b_ex = ex;
1859 ext4_mb_use_best_found(ac, e4b);
1861 ext4_unlock_group(ac->ac_sb, group);
1862 ext4_mb_unload_buddy(e4b);
1864 return 0;
1868 * The routine scans buddy structures (not bitmap!) from given order
1869 * to max order and tries to find big enough chunk to satisfy the req
1871 static noinline_for_stack
1872 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1873 struct ext4_buddy *e4b)
1875 struct super_block *sb = ac->ac_sb;
1876 struct ext4_group_info *grp = e4b->bd_info;
1877 void *buddy;
1878 int i;
1879 int k;
1880 int max;
1882 BUG_ON(ac->ac_2order <= 0);
1883 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1884 if (grp->bb_counters[i] == 0)
1885 continue;
1887 buddy = mb_find_buddy(e4b, i, &max);
1888 BUG_ON(buddy == NULL);
1890 k = mb_find_next_zero_bit(buddy, max, 0);
1891 BUG_ON(k >= max);
1893 ac->ac_found++;
1895 ac->ac_b_ex.fe_len = 1 << i;
1896 ac->ac_b_ex.fe_start = k << i;
1897 ac->ac_b_ex.fe_group = e4b->bd_group;
1899 ext4_mb_use_best_found(ac, e4b);
1901 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1903 if (EXT4_SB(sb)->s_mb_stats)
1904 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1906 break;
1911 * The routine scans the group and measures all found extents.
1912 * In order to optimize scanning, caller must pass number of
1913 * free blocks in the group, so the routine can know upper limit.
1915 static noinline_for_stack
1916 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1917 struct ext4_buddy *e4b)
1919 struct super_block *sb = ac->ac_sb;
1920 void *bitmap = e4b->bd_bitmap;
1921 struct ext4_free_extent ex;
1922 int i;
1923 int free;
1925 free = e4b->bd_info->bb_free;
1926 BUG_ON(free <= 0);
1928 i = e4b->bd_info->bb_first_free;
1930 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1931 i = mb_find_next_zero_bit(bitmap,
1932 EXT4_CLUSTERS_PER_GROUP(sb), i);
1933 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1935 * IF we have corrupt bitmap, we won't find any
1936 * free blocks even though group info says we
1937 * we have free blocks
1939 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1940 "%d free clusters as per "
1941 "group info. But bitmap says 0",
1942 free);
1943 break;
1946 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1947 BUG_ON(ex.fe_len <= 0);
1948 if (free < ex.fe_len) {
1949 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1950 "%d free clusters as per "
1951 "group info. But got %d blocks",
1952 free, ex.fe_len);
1954 * The number of free blocks differs. This mostly
1955 * indicate that the bitmap is corrupt. So exit
1956 * without claiming the space.
1958 break;
1960 ex.fe_logical = 0xDEADC0DE; /* debug value */
1961 ext4_mb_measure_extent(ac, &ex, e4b);
1963 i += ex.fe_len;
1964 free -= ex.fe_len;
1967 ext4_mb_check_limits(ac, e4b, 1);
1971 * This is a special case for storages like raid5
1972 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1974 static noinline_for_stack
1975 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1976 struct ext4_buddy *e4b)
1978 struct super_block *sb = ac->ac_sb;
1979 struct ext4_sb_info *sbi = EXT4_SB(sb);
1980 void *bitmap = e4b->bd_bitmap;
1981 struct ext4_free_extent ex;
1982 ext4_fsblk_t first_group_block;
1983 ext4_fsblk_t a;
1984 ext4_grpblk_t i;
1985 int max;
1987 BUG_ON(sbi->s_stripe == 0);
1989 /* find first stripe-aligned block in group */
1990 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1992 a = first_group_block + sbi->s_stripe - 1;
1993 do_div(a, sbi->s_stripe);
1994 i = (a * sbi->s_stripe) - first_group_block;
1996 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1997 if (!mb_test_bit(i, bitmap)) {
1998 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
1999 if (max >= sbi->s_stripe) {
2000 ac->ac_found++;
2001 ex.fe_logical = 0xDEADF00D; /* debug value */
2002 ac->ac_b_ex = ex;
2003 ext4_mb_use_best_found(ac, e4b);
2004 break;
2007 i += sbi->s_stripe;
2011 /* This is now called BEFORE we load the buddy bitmap. */
2012 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2013 ext4_group_t group, int cr)
2015 unsigned free, fragments;
2016 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2017 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2019 BUG_ON(cr < 0 || cr >= 4);
2021 free = grp->bb_free;
2022 if (free == 0)
2023 return 0;
2024 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2025 return 0;
2027 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2028 return 0;
2030 /* We only do this if the grp has never been initialized */
2031 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2032 int ret = ext4_mb_init_group(ac->ac_sb, group);
2033 if (ret)
2034 return 0;
2037 fragments = grp->bb_fragments;
2038 if (fragments == 0)
2039 return 0;
2041 switch (cr) {
2042 case 0:
2043 BUG_ON(ac->ac_2order == 0);
2045 /* Avoid using the first bg of a flexgroup for data files */
2046 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2047 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2048 ((group % flex_size) == 0))
2049 return 0;
2051 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2052 (free / fragments) >= ac->ac_g_ex.fe_len)
2053 return 1;
2055 if (grp->bb_largest_free_order < ac->ac_2order)
2056 return 0;
2058 return 1;
2059 case 1:
2060 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2061 return 1;
2062 break;
2063 case 2:
2064 if (free >= ac->ac_g_ex.fe_len)
2065 return 1;
2066 break;
2067 case 3:
2068 return 1;
2069 default:
2070 BUG();
2073 return 0;
2076 static noinline_for_stack int
2077 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2079 ext4_group_t ngroups, group, i;
2080 int cr;
2081 int err = 0;
2082 struct ext4_sb_info *sbi;
2083 struct super_block *sb;
2084 struct ext4_buddy e4b;
2086 sb = ac->ac_sb;
2087 sbi = EXT4_SB(sb);
2088 ngroups = ext4_get_groups_count(sb);
2089 /* non-extent files are limited to low blocks/groups */
2090 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2091 ngroups = sbi->s_blockfile_groups;
2093 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2095 /* first, try the goal */
2096 err = ext4_mb_find_by_goal(ac, &e4b);
2097 if (err || ac->ac_status == AC_STATUS_FOUND)
2098 goto out;
2100 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2101 goto out;
2104 * ac->ac2_order is set only if the fe_len is a power of 2
2105 * if ac2_order is set we also set criteria to 0 so that we
2106 * try exact allocation using buddy.
2108 i = fls(ac->ac_g_ex.fe_len);
2109 ac->ac_2order = 0;
2111 * We search using buddy data only if the order of the request
2112 * is greater than equal to the sbi_s_mb_order2_reqs
2113 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2115 if (i >= sbi->s_mb_order2_reqs) {
2117 * This should tell if fe_len is exactly power of 2
2119 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2120 ac->ac_2order = i - 1;
2123 /* if stream allocation is enabled, use global goal */
2124 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2125 /* TBD: may be hot point */
2126 spin_lock(&sbi->s_md_lock);
2127 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2128 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2129 spin_unlock(&sbi->s_md_lock);
2132 /* Let's just scan groups to find more-less suitable blocks */
2133 cr = ac->ac_2order ? 0 : 1;
2135 * cr == 0 try to get exact allocation,
2136 * cr == 3 try to get anything
2138 repeat:
2139 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2140 ac->ac_criteria = cr;
2142 * searching for the right group start
2143 * from the goal value specified
2145 group = ac->ac_g_ex.fe_group;
2147 for (i = 0; i < ngroups; group++, i++) {
2148 cond_resched();
2150 * Artificially restricted ngroups for non-extent
2151 * files makes group > ngroups possible on first loop.
2153 if (group >= ngroups)
2154 group = 0;
2156 /* This now checks without needing the buddy page */
2157 if (!ext4_mb_good_group(ac, group, cr))
2158 continue;
2160 err = ext4_mb_load_buddy(sb, group, &e4b);
2161 if (err)
2162 goto out;
2164 ext4_lock_group(sb, group);
2167 * We need to check again after locking the
2168 * block group
2170 if (!ext4_mb_good_group(ac, group, cr)) {
2171 ext4_unlock_group(sb, group);
2172 ext4_mb_unload_buddy(&e4b);
2173 continue;
2176 ac->ac_groups_scanned++;
2177 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2178 ext4_mb_simple_scan_group(ac, &e4b);
2179 else if (cr == 1 && sbi->s_stripe &&
2180 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2181 ext4_mb_scan_aligned(ac, &e4b);
2182 else
2183 ext4_mb_complex_scan_group(ac, &e4b);
2185 ext4_unlock_group(sb, group);
2186 ext4_mb_unload_buddy(&e4b);
2188 if (ac->ac_status != AC_STATUS_CONTINUE)
2189 break;
2193 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2194 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2196 * We've been searching too long. Let's try to allocate
2197 * the best chunk we've found so far
2200 ext4_mb_try_best_found(ac, &e4b);
2201 if (ac->ac_status != AC_STATUS_FOUND) {
2203 * Someone more lucky has already allocated it.
2204 * The only thing we can do is just take first
2205 * found block(s)
2206 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2208 ac->ac_b_ex.fe_group = 0;
2209 ac->ac_b_ex.fe_start = 0;
2210 ac->ac_b_ex.fe_len = 0;
2211 ac->ac_status = AC_STATUS_CONTINUE;
2212 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2213 cr = 3;
2214 atomic_inc(&sbi->s_mb_lost_chunks);
2215 goto repeat;
2218 out:
2219 return err;
2222 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2224 struct super_block *sb = seq->private;
2225 ext4_group_t group;
2227 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2228 return NULL;
2229 group = *pos + 1;
2230 return (void *) ((unsigned long) group);
2233 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2235 struct super_block *sb = seq->private;
2236 ext4_group_t group;
2238 ++*pos;
2239 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2240 return NULL;
2241 group = *pos + 1;
2242 return (void *) ((unsigned long) group);
2245 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2247 struct super_block *sb = seq->private;
2248 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2249 int i;
2250 int err, buddy_loaded = 0;
2251 struct ext4_buddy e4b;
2252 struct ext4_group_info *grinfo;
2253 struct sg {
2254 struct ext4_group_info info;
2255 ext4_grpblk_t counters[16];
2256 } sg;
2258 group--;
2259 if (group == 0)
2260 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2261 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2262 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2263 "group", "free", "frags", "first",
2264 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2265 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2267 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2268 sizeof(struct ext4_group_info);
2269 grinfo = ext4_get_group_info(sb, group);
2270 /* Load the group info in memory only if not already loaded. */
2271 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2272 err = ext4_mb_load_buddy(sb, group, &e4b);
2273 if (err) {
2274 seq_printf(seq, "#%-5u: I/O error\n", group);
2275 return 0;
2277 buddy_loaded = 1;
2280 memcpy(&sg, ext4_get_group_info(sb, group), i);
2282 if (buddy_loaded)
2283 ext4_mb_unload_buddy(&e4b);
2285 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2286 sg.info.bb_fragments, sg.info.bb_first_free);
2287 for (i = 0; i <= 13; i++)
2288 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2289 sg.info.bb_counters[i] : 0);
2290 seq_printf(seq, " ]\n");
2292 return 0;
2295 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2299 static const struct seq_operations ext4_mb_seq_groups_ops = {
2300 .start = ext4_mb_seq_groups_start,
2301 .next = ext4_mb_seq_groups_next,
2302 .stop = ext4_mb_seq_groups_stop,
2303 .show = ext4_mb_seq_groups_show,
2306 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2308 struct super_block *sb = PDE_DATA(inode);
2309 int rc;
2311 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2312 if (rc == 0) {
2313 struct seq_file *m = file->private_data;
2314 m->private = sb;
2316 return rc;
2320 static const struct file_operations ext4_mb_seq_groups_fops = {
2321 .owner = THIS_MODULE,
2322 .open = ext4_mb_seq_groups_open,
2323 .read = seq_read,
2324 .llseek = seq_lseek,
2325 .release = seq_release,
2328 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2330 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2331 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2333 BUG_ON(!cachep);
2334 return cachep;
2338 * Allocate the top-level s_group_info array for the specified number
2339 * of groups
2341 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2343 struct ext4_sb_info *sbi = EXT4_SB(sb);
2344 unsigned size;
2345 struct ext4_group_info ***new_groupinfo;
2347 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2348 EXT4_DESC_PER_BLOCK_BITS(sb);
2349 if (size <= sbi->s_group_info_size)
2350 return 0;
2352 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2353 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2354 if (!new_groupinfo) {
2355 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2356 return -ENOMEM;
2358 if (sbi->s_group_info) {
2359 memcpy(new_groupinfo, sbi->s_group_info,
2360 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2361 ext4_kvfree(sbi->s_group_info);
2363 sbi->s_group_info = new_groupinfo;
2364 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2365 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2366 sbi->s_group_info_size);
2367 return 0;
2370 /* Create and initialize ext4_group_info data for the given group. */
2371 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2372 struct ext4_group_desc *desc)
2374 int i;
2375 int metalen = 0;
2376 struct ext4_sb_info *sbi = EXT4_SB(sb);
2377 struct ext4_group_info **meta_group_info;
2378 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2381 * First check if this group is the first of a reserved block.
2382 * If it's true, we have to allocate a new table of pointers
2383 * to ext4_group_info structures
2385 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2386 metalen = sizeof(*meta_group_info) <<
2387 EXT4_DESC_PER_BLOCK_BITS(sb);
2388 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2389 if (meta_group_info == NULL) {
2390 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2391 "for a buddy group");
2392 goto exit_meta_group_info;
2394 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2395 meta_group_info;
2398 meta_group_info =
2399 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2400 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2402 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL);
2403 if (meta_group_info[i] == NULL) {
2404 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2405 goto exit_group_info;
2407 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2408 &(meta_group_info[i]->bb_state));
2411 * initialize bb_free to be able to skip
2412 * empty groups without initialization
2414 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2415 meta_group_info[i]->bb_free =
2416 ext4_free_clusters_after_init(sb, group, desc);
2417 } else {
2418 meta_group_info[i]->bb_free =
2419 ext4_free_group_clusters(sb, desc);
2422 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2423 init_rwsem(&meta_group_info[i]->alloc_sem);
2424 meta_group_info[i]->bb_free_root = RB_ROOT;
2425 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2427 #ifdef DOUBLE_CHECK
2429 struct buffer_head *bh;
2430 meta_group_info[i]->bb_bitmap =
2431 kmalloc(sb->s_blocksize, GFP_KERNEL);
2432 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2433 bh = ext4_read_block_bitmap(sb, group);
2434 BUG_ON(bh == NULL);
2435 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2436 sb->s_blocksize);
2437 put_bh(bh);
2439 #endif
2441 return 0;
2443 exit_group_info:
2444 /* If a meta_group_info table has been allocated, release it now */
2445 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2446 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2447 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2449 exit_meta_group_info:
2450 return -ENOMEM;
2451 } /* ext4_mb_add_groupinfo */
2453 static int ext4_mb_init_backend(struct super_block *sb)
2455 ext4_group_t ngroups = ext4_get_groups_count(sb);
2456 ext4_group_t i;
2457 struct ext4_sb_info *sbi = EXT4_SB(sb);
2458 int err;
2459 struct ext4_group_desc *desc;
2460 struct kmem_cache *cachep;
2462 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2463 if (err)
2464 return err;
2466 sbi->s_buddy_cache = new_inode(sb);
2467 if (sbi->s_buddy_cache == NULL) {
2468 ext4_msg(sb, KERN_ERR, "can't get new inode");
2469 goto err_freesgi;
2471 /* To avoid potentially colliding with an valid on-disk inode number,
2472 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2473 * not in the inode hash, so it should never be found by iget(), but
2474 * this will avoid confusion if it ever shows up during debugging. */
2475 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2476 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2477 for (i = 0; i < ngroups; i++) {
2478 desc = ext4_get_group_desc(sb, i, NULL);
2479 if (desc == NULL) {
2480 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2481 goto err_freebuddy;
2483 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2484 goto err_freebuddy;
2487 return 0;
2489 err_freebuddy:
2490 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2491 while (i-- > 0)
2492 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2493 i = sbi->s_group_info_size;
2494 while (i-- > 0)
2495 kfree(sbi->s_group_info[i]);
2496 iput(sbi->s_buddy_cache);
2497 err_freesgi:
2498 ext4_kvfree(sbi->s_group_info);
2499 return -ENOMEM;
2502 static void ext4_groupinfo_destroy_slabs(void)
2504 int i;
2506 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2507 if (ext4_groupinfo_caches[i])
2508 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2509 ext4_groupinfo_caches[i] = NULL;
2513 static int ext4_groupinfo_create_slab(size_t size)
2515 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2516 int slab_size;
2517 int blocksize_bits = order_base_2(size);
2518 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2519 struct kmem_cache *cachep;
2521 if (cache_index >= NR_GRPINFO_CACHES)
2522 return -EINVAL;
2524 if (unlikely(cache_index < 0))
2525 cache_index = 0;
2527 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2528 if (ext4_groupinfo_caches[cache_index]) {
2529 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2530 return 0; /* Already created */
2533 slab_size = offsetof(struct ext4_group_info,
2534 bb_counters[blocksize_bits + 2]);
2536 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2537 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2538 NULL);
2540 ext4_groupinfo_caches[cache_index] = cachep;
2542 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2543 if (!cachep) {
2544 printk(KERN_EMERG
2545 "EXT4-fs: no memory for groupinfo slab cache\n");
2546 return -ENOMEM;
2549 return 0;
2552 int ext4_mb_init(struct super_block *sb)
2554 struct ext4_sb_info *sbi = EXT4_SB(sb);
2555 unsigned i, j;
2556 unsigned offset;
2557 unsigned max;
2558 int ret;
2560 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2562 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2563 if (sbi->s_mb_offsets == NULL) {
2564 ret = -ENOMEM;
2565 goto out;
2568 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2569 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2570 if (sbi->s_mb_maxs == NULL) {
2571 ret = -ENOMEM;
2572 goto out;
2575 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2576 if (ret < 0)
2577 goto out;
2579 /* order 0 is regular bitmap */
2580 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2581 sbi->s_mb_offsets[0] = 0;
2583 i = 1;
2584 offset = 0;
2585 max = sb->s_blocksize << 2;
2586 do {
2587 sbi->s_mb_offsets[i] = offset;
2588 sbi->s_mb_maxs[i] = max;
2589 offset += 1 << (sb->s_blocksize_bits - i);
2590 max = max >> 1;
2591 i++;
2592 } while (i <= sb->s_blocksize_bits + 1);
2594 spin_lock_init(&sbi->s_md_lock);
2595 spin_lock_init(&sbi->s_bal_lock);
2597 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2598 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2599 sbi->s_mb_stats = MB_DEFAULT_STATS;
2600 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2601 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2603 * The default group preallocation is 512, which for 4k block
2604 * sizes translates to 2 megabytes. However for bigalloc file
2605 * systems, this is probably too big (i.e, if the cluster size
2606 * is 1 megabyte, then group preallocation size becomes half a
2607 * gigabyte!). As a default, we will keep a two megabyte
2608 * group pralloc size for cluster sizes up to 64k, and after
2609 * that, we will force a minimum group preallocation size of
2610 * 32 clusters. This translates to 8 megs when the cluster
2611 * size is 256k, and 32 megs when the cluster size is 1 meg,
2612 * which seems reasonable as a default.
2614 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2615 sbi->s_cluster_bits, 32);
2617 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2618 * to the lowest multiple of s_stripe which is bigger than
2619 * the s_mb_group_prealloc as determined above. We want
2620 * the preallocation size to be an exact multiple of the
2621 * RAID stripe size so that preallocations don't fragment
2622 * the stripes.
2624 if (sbi->s_stripe > 1) {
2625 sbi->s_mb_group_prealloc = roundup(
2626 sbi->s_mb_group_prealloc, sbi->s_stripe);
2629 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2630 if (sbi->s_locality_groups == NULL) {
2631 ret = -ENOMEM;
2632 goto out;
2634 for_each_possible_cpu(i) {
2635 struct ext4_locality_group *lg;
2636 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2637 mutex_init(&lg->lg_mutex);
2638 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2639 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2640 spin_lock_init(&lg->lg_prealloc_lock);
2643 /* init file for buddy data */
2644 ret = ext4_mb_init_backend(sb);
2645 if (ret != 0)
2646 goto out_free_locality_groups;
2648 if (sbi->s_proc)
2649 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2650 &ext4_mb_seq_groups_fops, sb);
2652 return 0;
2654 out_free_locality_groups:
2655 free_percpu(sbi->s_locality_groups);
2656 sbi->s_locality_groups = NULL;
2657 out:
2658 kfree(sbi->s_mb_offsets);
2659 sbi->s_mb_offsets = NULL;
2660 kfree(sbi->s_mb_maxs);
2661 sbi->s_mb_maxs = NULL;
2662 return ret;
2665 /* need to called with the ext4 group lock held */
2666 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2668 struct ext4_prealloc_space *pa;
2669 struct list_head *cur, *tmp;
2670 int count = 0;
2672 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2673 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2674 list_del(&pa->pa_group_list);
2675 count++;
2676 kmem_cache_free(ext4_pspace_cachep, pa);
2678 if (count)
2679 mb_debug(1, "mballoc: %u PAs left\n", count);
2683 int ext4_mb_release(struct super_block *sb)
2685 ext4_group_t ngroups = ext4_get_groups_count(sb);
2686 ext4_group_t i;
2687 int num_meta_group_infos;
2688 struct ext4_group_info *grinfo;
2689 struct ext4_sb_info *sbi = EXT4_SB(sb);
2690 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2692 if (sbi->s_proc)
2693 remove_proc_entry("mb_groups", sbi->s_proc);
2695 if (sbi->s_group_info) {
2696 for (i = 0; i < ngroups; i++) {
2697 grinfo = ext4_get_group_info(sb, i);
2698 #ifdef DOUBLE_CHECK
2699 kfree(grinfo->bb_bitmap);
2700 #endif
2701 ext4_lock_group(sb, i);
2702 ext4_mb_cleanup_pa(grinfo);
2703 ext4_unlock_group(sb, i);
2704 kmem_cache_free(cachep, grinfo);
2706 num_meta_group_infos = (ngroups +
2707 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2708 EXT4_DESC_PER_BLOCK_BITS(sb);
2709 for (i = 0; i < num_meta_group_infos; i++)
2710 kfree(sbi->s_group_info[i]);
2711 ext4_kvfree(sbi->s_group_info);
2713 kfree(sbi->s_mb_offsets);
2714 kfree(sbi->s_mb_maxs);
2715 if (sbi->s_buddy_cache)
2716 iput(sbi->s_buddy_cache);
2717 if (sbi->s_mb_stats) {
2718 ext4_msg(sb, KERN_INFO,
2719 "mballoc: %u blocks %u reqs (%u success)",
2720 atomic_read(&sbi->s_bal_allocated),
2721 atomic_read(&sbi->s_bal_reqs),
2722 atomic_read(&sbi->s_bal_success));
2723 ext4_msg(sb, KERN_INFO,
2724 "mballoc: %u extents scanned, %u goal hits, "
2725 "%u 2^N hits, %u breaks, %u lost",
2726 atomic_read(&sbi->s_bal_ex_scanned),
2727 atomic_read(&sbi->s_bal_goals),
2728 atomic_read(&sbi->s_bal_2orders),
2729 atomic_read(&sbi->s_bal_breaks),
2730 atomic_read(&sbi->s_mb_lost_chunks));
2731 ext4_msg(sb, KERN_INFO,
2732 "mballoc: %lu generated and it took %Lu",
2733 sbi->s_mb_buddies_generated,
2734 sbi->s_mb_generation_time);
2735 ext4_msg(sb, KERN_INFO,
2736 "mballoc: %u preallocated, %u discarded",
2737 atomic_read(&sbi->s_mb_preallocated),
2738 atomic_read(&sbi->s_mb_discarded));
2741 free_percpu(sbi->s_locality_groups);
2743 return 0;
2746 static inline int ext4_issue_discard(struct super_block *sb,
2747 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2749 ext4_fsblk_t discard_block;
2751 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2752 ext4_group_first_block_no(sb, block_group));
2753 count = EXT4_C2B(EXT4_SB(sb), count);
2754 trace_ext4_discard_blocks(sb,
2755 (unsigned long long) discard_block, count);
2756 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2760 * This function is called by the jbd2 layer once the commit has finished,
2761 * so we know we can free the blocks that were released with that commit.
2763 static void ext4_free_data_callback(struct super_block *sb,
2764 struct ext4_journal_cb_entry *jce,
2765 int rc)
2767 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2768 struct ext4_buddy e4b;
2769 struct ext4_group_info *db;
2770 int err, count = 0, count2 = 0;
2772 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2773 entry->efd_count, entry->efd_group, entry);
2775 if (test_opt(sb, DISCARD)) {
2776 err = ext4_issue_discard(sb, entry->efd_group,
2777 entry->efd_start_cluster,
2778 entry->efd_count);
2779 if (err && err != -EOPNOTSUPP)
2780 ext4_msg(sb, KERN_WARNING, "discard request in"
2781 " group:%d block:%d count:%d failed"
2782 " with %d", entry->efd_group,
2783 entry->efd_start_cluster,
2784 entry->efd_count, err);
2787 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2788 /* we expect to find existing buddy because it's pinned */
2789 BUG_ON(err != 0);
2792 db = e4b.bd_info;
2793 /* there are blocks to put in buddy to make them really free */
2794 count += entry->efd_count;
2795 count2++;
2796 ext4_lock_group(sb, entry->efd_group);
2797 /* Take it out of per group rb tree */
2798 rb_erase(&entry->efd_node, &(db->bb_free_root));
2799 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2802 * Clear the trimmed flag for the group so that the next
2803 * ext4_trim_fs can trim it.
2804 * If the volume is mounted with -o discard, online discard
2805 * is supported and the free blocks will be trimmed online.
2807 if (!test_opt(sb, DISCARD))
2808 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2810 if (!db->bb_free_root.rb_node) {
2811 /* No more items in the per group rb tree
2812 * balance refcounts from ext4_mb_free_metadata()
2814 page_cache_release(e4b.bd_buddy_page);
2815 page_cache_release(e4b.bd_bitmap_page);
2817 ext4_unlock_group(sb, entry->efd_group);
2818 kmem_cache_free(ext4_free_data_cachep, entry);
2819 ext4_mb_unload_buddy(&e4b);
2821 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2824 int __init ext4_init_mballoc(void)
2826 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2827 SLAB_RECLAIM_ACCOUNT);
2828 if (ext4_pspace_cachep == NULL)
2829 return -ENOMEM;
2831 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2832 SLAB_RECLAIM_ACCOUNT);
2833 if (ext4_ac_cachep == NULL) {
2834 kmem_cache_destroy(ext4_pspace_cachep);
2835 return -ENOMEM;
2838 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2839 SLAB_RECLAIM_ACCOUNT);
2840 if (ext4_free_data_cachep == NULL) {
2841 kmem_cache_destroy(ext4_pspace_cachep);
2842 kmem_cache_destroy(ext4_ac_cachep);
2843 return -ENOMEM;
2845 return 0;
2848 void ext4_exit_mballoc(void)
2851 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2852 * before destroying the slab cache.
2854 rcu_barrier();
2855 kmem_cache_destroy(ext4_pspace_cachep);
2856 kmem_cache_destroy(ext4_ac_cachep);
2857 kmem_cache_destroy(ext4_free_data_cachep);
2858 ext4_groupinfo_destroy_slabs();
2863 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2864 * Returns 0 if success or error code
2866 static noinline_for_stack int
2867 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2868 handle_t *handle, unsigned int reserv_clstrs)
2870 struct buffer_head *bitmap_bh = NULL;
2871 struct ext4_group_desc *gdp;
2872 struct buffer_head *gdp_bh;
2873 struct ext4_sb_info *sbi;
2874 struct super_block *sb;
2875 ext4_fsblk_t block;
2876 int err, len;
2878 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2879 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2881 sb = ac->ac_sb;
2882 sbi = EXT4_SB(sb);
2884 err = -EIO;
2885 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2886 if (!bitmap_bh)
2887 goto out_err;
2889 BUFFER_TRACE(bitmap_bh, "getting write access");
2890 err = ext4_journal_get_write_access(handle, bitmap_bh);
2891 if (err)
2892 goto out_err;
2894 err = -EIO;
2895 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2896 if (!gdp)
2897 goto out_err;
2899 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2900 ext4_free_group_clusters(sb, gdp));
2902 BUFFER_TRACE(gdp_bh, "get_write_access");
2903 err = ext4_journal_get_write_access(handle, gdp_bh);
2904 if (err)
2905 goto out_err;
2907 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2909 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2910 if (!ext4_data_block_valid(sbi, block, len)) {
2911 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2912 "fs metadata", block, block+len);
2913 /* File system mounted not to panic on error
2914 * Fix the bitmap and repeat the block allocation
2915 * We leak some of the blocks here.
2917 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2918 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2919 ac->ac_b_ex.fe_len);
2920 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2921 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2922 if (!err)
2923 err = -EAGAIN;
2924 goto out_err;
2927 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2928 #ifdef AGGRESSIVE_CHECK
2930 int i;
2931 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2932 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2933 bitmap_bh->b_data));
2936 #endif
2937 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2938 ac->ac_b_ex.fe_len);
2939 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2940 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2941 ext4_free_group_clusters_set(sb, gdp,
2942 ext4_free_clusters_after_init(sb,
2943 ac->ac_b_ex.fe_group, gdp));
2945 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2946 ext4_free_group_clusters_set(sb, gdp, len);
2947 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2948 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2950 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2951 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2953 * Now reduce the dirty block count also. Should not go negative
2955 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2956 /* release all the reserved blocks if non delalloc */
2957 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2958 reserv_clstrs);
2960 if (sbi->s_log_groups_per_flex) {
2961 ext4_group_t flex_group = ext4_flex_group(sbi,
2962 ac->ac_b_ex.fe_group);
2963 atomic64_sub(ac->ac_b_ex.fe_len,
2964 &sbi->s_flex_groups[flex_group].free_clusters);
2967 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2968 if (err)
2969 goto out_err;
2970 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2972 out_err:
2973 brelse(bitmap_bh);
2974 return err;
2978 * here we normalize request for locality group
2979 * Group request are normalized to s_mb_group_prealloc, which goes to
2980 * s_strip if we set the same via mount option.
2981 * s_mb_group_prealloc can be configured via
2982 * /sys/fs/ext4/<partition>/mb_group_prealloc
2984 * XXX: should we try to preallocate more than the group has now?
2986 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2988 struct super_block *sb = ac->ac_sb;
2989 struct ext4_locality_group *lg = ac->ac_lg;
2991 BUG_ON(lg == NULL);
2992 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2993 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2994 current->pid, ac->ac_g_ex.fe_len);
2998 * Normalization means making request better in terms of
2999 * size and alignment
3001 static noinline_for_stack void
3002 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3003 struct ext4_allocation_request *ar)
3005 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3006 int bsbits, max;
3007 ext4_lblk_t end;
3008 loff_t size, start_off;
3009 loff_t orig_size __maybe_unused;
3010 ext4_lblk_t start;
3011 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3012 struct ext4_prealloc_space *pa;
3014 /* do normalize only data requests, metadata requests
3015 do not need preallocation */
3016 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3017 return;
3019 /* sometime caller may want exact blocks */
3020 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3021 return;
3023 /* caller may indicate that preallocation isn't
3024 * required (it's a tail, for example) */
3025 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3026 return;
3028 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3029 ext4_mb_normalize_group_request(ac);
3030 return ;
3033 bsbits = ac->ac_sb->s_blocksize_bits;
3035 /* first, let's learn actual file size
3036 * given current request is allocated */
3037 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3038 size = size << bsbits;
3039 if (size < i_size_read(ac->ac_inode))
3040 size = i_size_read(ac->ac_inode);
3041 orig_size = size;
3043 /* max size of free chunks */
3044 max = 2 << bsbits;
3046 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3047 (req <= (size) || max <= (chunk_size))
3049 /* first, try to predict filesize */
3050 /* XXX: should this table be tunable? */
3051 start_off = 0;
3052 if (size <= 16 * 1024) {
3053 size = 16 * 1024;
3054 } else if (size <= 32 * 1024) {
3055 size = 32 * 1024;
3056 } else if (size <= 64 * 1024) {
3057 size = 64 * 1024;
3058 } else if (size <= 128 * 1024) {
3059 size = 128 * 1024;
3060 } else if (size <= 256 * 1024) {
3061 size = 256 * 1024;
3062 } else if (size <= 512 * 1024) {
3063 size = 512 * 1024;
3064 } else if (size <= 1024 * 1024) {
3065 size = 1024 * 1024;
3066 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3067 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3068 (21 - bsbits)) << 21;
3069 size = 2 * 1024 * 1024;
3070 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3071 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3072 (22 - bsbits)) << 22;
3073 size = 4 * 1024 * 1024;
3074 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3075 (8<<20)>>bsbits, max, 8 * 1024)) {
3076 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3077 (23 - bsbits)) << 23;
3078 size = 8 * 1024 * 1024;
3079 } else {
3080 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3081 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3082 ac->ac_o_ex.fe_len) << bsbits;
3084 size = size >> bsbits;
3085 start = start_off >> bsbits;
3087 /* don't cover already allocated blocks in selected range */
3088 if (ar->pleft && start <= ar->lleft) {
3089 size -= ar->lleft + 1 - start;
3090 start = ar->lleft + 1;
3092 if (ar->pright && start + size - 1 >= ar->lright)
3093 size -= start + size - ar->lright;
3095 end = start + size;
3097 /* check we don't cross already preallocated blocks */
3098 rcu_read_lock();
3099 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3100 ext4_lblk_t pa_end;
3102 if (pa->pa_deleted)
3103 continue;
3104 spin_lock(&pa->pa_lock);
3105 if (pa->pa_deleted) {
3106 spin_unlock(&pa->pa_lock);
3107 continue;
3110 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3111 pa->pa_len);
3113 /* PA must not overlap original request */
3114 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3115 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3117 /* skip PAs this normalized request doesn't overlap with */
3118 if (pa->pa_lstart >= end || pa_end <= start) {
3119 spin_unlock(&pa->pa_lock);
3120 continue;
3122 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3124 /* adjust start or end to be adjacent to this pa */
3125 if (pa_end <= ac->ac_o_ex.fe_logical) {
3126 BUG_ON(pa_end < start);
3127 start = pa_end;
3128 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3129 BUG_ON(pa->pa_lstart > end);
3130 end = pa->pa_lstart;
3132 spin_unlock(&pa->pa_lock);
3134 rcu_read_unlock();
3135 size = end - start;
3137 /* XXX: extra loop to check we really don't overlap preallocations */
3138 rcu_read_lock();
3139 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3140 ext4_lblk_t pa_end;
3142 spin_lock(&pa->pa_lock);
3143 if (pa->pa_deleted == 0) {
3144 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3145 pa->pa_len);
3146 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3148 spin_unlock(&pa->pa_lock);
3150 rcu_read_unlock();
3152 if (start + size <= ac->ac_o_ex.fe_logical &&
3153 start > ac->ac_o_ex.fe_logical) {
3154 ext4_msg(ac->ac_sb, KERN_ERR,
3155 "start %lu, size %lu, fe_logical %lu",
3156 (unsigned long) start, (unsigned long) size,
3157 (unsigned long) ac->ac_o_ex.fe_logical);
3158 BUG();
3160 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3162 /* now prepare goal request */
3164 /* XXX: is it better to align blocks WRT to logical
3165 * placement or satisfy big request as is */
3166 ac->ac_g_ex.fe_logical = start;
3167 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3169 /* define goal start in order to merge */
3170 if (ar->pright && (ar->lright == (start + size))) {
3171 /* merge to the right */
3172 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3173 &ac->ac_f_ex.fe_group,
3174 &ac->ac_f_ex.fe_start);
3175 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3177 if (ar->pleft && (ar->lleft + 1 == start)) {
3178 /* merge to the left */
3179 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3180 &ac->ac_f_ex.fe_group,
3181 &ac->ac_f_ex.fe_start);
3182 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3185 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3186 (unsigned) orig_size, (unsigned) start);
3189 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3191 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3193 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3194 atomic_inc(&sbi->s_bal_reqs);
3195 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3196 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3197 atomic_inc(&sbi->s_bal_success);
3198 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3199 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3200 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3201 atomic_inc(&sbi->s_bal_goals);
3202 if (ac->ac_found > sbi->s_mb_max_to_scan)
3203 atomic_inc(&sbi->s_bal_breaks);
3206 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3207 trace_ext4_mballoc_alloc(ac);
3208 else
3209 trace_ext4_mballoc_prealloc(ac);
3213 * Called on failure; free up any blocks from the inode PA for this
3214 * context. We don't need this for MB_GROUP_PA because we only change
3215 * pa_free in ext4_mb_release_context(), but on failure, we've already
3216 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3218 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3220 struct ext4_prealloc_space *pa = ac->ac_pa;
3221 struct ext4_buddy e4b;
3222 int err;
3224 if (pa == NULL) {
3225 if (ac->ac_f_ex.fe_len == 0)
3226 return;
3227 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3228 if (err) {
3230 * This should never happen since we pin the
3231 * pages in the ext4_allocation_context so
3232 * ext4_mb_load_buddy() should never fail.
3234 WARN(1, "mb_load_buddy failed (%d)", err);
3235 return;
3237 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3238 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3239 ac->ac_f_ex.fe_len);
3240 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3241 ext4_mb_unload_buddy(&e4b);
3242 return;
3244 if (pa->pa_type == MB_INODE_PA)
3245 pa->pa_free += ac->ac_b_ex.fe_len;
3249 * use blocks preallocated to inode
3251 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3252 struct ext4_prealloc_space *pa)
3254 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3255 ext4_fsblk_t start;
3256 ext4_fsblk_t end;
3257 int len;
3259 /* found preallocated blocks, use them */
3260 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3261 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3262 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3263 len = EXT4_NUM_B2C(sbi, end - start);
3264 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3265 &ac->ac_b_ex.fe_start);
3266 ac->ac_b_ex.fe_len = len;
3267 ac->ac_status = AC_STATUS_FOUND;
3268 ac->ac_pa = pa;
3270 BUG_ON(start < pa->pa_pstart);
3271 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3272 BUG_ON(pa->pa_free < len);
3273 pa->pa_free -= len;
3275 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3279 * use blocks preallocated to locality group
3281 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3282 struct ext4_prealloc_space *pa)
3284 unsigned int len = ac->ac_o_ex.fe_len;
3286 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3287 &ac->ac_b_ex.fe_group,
3288 &ac->ac_b_ex.fe_start);
3289 ac->ac_b_ex.fe_len = len;
3290 ac->ac_status = AC_STATUS_FOUND;
3291 ac->ac_pa = pa;
3293 /* we don't correct pa_pstart or pa_plen here to avoid
3294 * possible race when the group is being loaded concurrently
3295 * instead we correct pa later, after blocks are marked
3296 * in on-disk bitmap -- see ext4_mb_release_context()
3297 * Other CPUs are prevented from allocating from this pa by lg_mutex
3299 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3303 * Return the prealloc space that have minimal distance
3304 * from the goal block. @cpa is the prealloc
3305 * space that is having currently known minimal distance
3306 * from the goal block.
3308 static struct ext4_prealloc_space *
3309 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3310 struct ext4_prealloc_space *pa,
3311 struct ext4_prealloc_space *cpa)
3313 ext4_fsblk_t cur_distance, new_distance;
3315 if (cpa == NULL) {
3316 atomic_inc(&pa->pa_count);
3317 return pa;
3319 cur_distance = abs(goal_block - cpa->pa_pstart);
3320 new_distance = abs(goal_block - pa->pa_pstart);
3322 if (cur_distance <= new_distance)
3323 return cpa;
3325 /* drop the previous reference */
3326 atomic_dec(&cpa->pa_count);
3327 atomic_inc(&pa->pa_count);
3328 return pa;
3332 * search goal blocks in preallocated space
3334 static noinline_for_stack int
3335 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3337 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3338 int order, i;
3339 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3340 struct ext4_locality_group *lg;
3341 struct ext4_prealloc_space *pa, *cpa = NULL;
3342 ext4_fsblk_t goal_block;
3344 /* only data can be preallocated */
3345 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3346 return 0;
3348 /* first, try per-file preallocation */
3349 rcu_read_lock();
3350 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3352 /* all fields in this condition don't change,
3353 * so we can skip locking for them */
3354 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3355 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3356 EXT4_C2B(sbi, pa->pa_len)))
3357 continue;
3359 /* non-extent files can't have physical blocks past 2^32 */
3360 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3361 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3362 EXT4_MAX_BLOCK_FILE_PHYS))
3363 continue;
3365 /* found preallocated blocks, use them */
3366 spin_lock(&pa->pa_lock);
3367 if (pa->pa_deleted == 0 && pa->pa_free) {
3368 atomic_inc(&pa->pa_count);
3369 ext4_mb_use_inode_pa(ac, pa);
3370 spin_unlock(&pa->pa_lock);
3371 ac->ac_criteria = 10;
3372 rcu_read_unlock();
3373 return 1;
3375 spin_unlock(&pa->pa_lock);
3377 rcu_read_unlock();
3379 /* can we use group allocation? */
3380 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3381 return 0;
3383 /* inode may have no locality group for some reason */
3384 lg = ac->ac_lg;
3385 if (lg == NULL)
3386 return 0;
3387 order = fls(ac->ac_o_ex.fe_len) - 1;
3388 if (order > PREALLOC_TB_SIZE - 1)
3389 /* The max size of hash table is PREALLOC_TB_SIZE */
3390 order = PREALLOC_TB_SIZE - 1;
3392 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3394 * search for the prealloc space that is having
3395 * minimal distance from the goal block.
3397 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3398 rcu_read_lock();
3399 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3400 pa_inode_list) {
3401 spin_lock(&pa->pa_lock);
3402 if (pa->pa_deleted == 0 &&
3403 pa->pa_free >= ac->ac_o_ex.fe_len) {
3405 cpa = ext4_mb_check_group_pa(goal_block,
3406 pa, cpa);
3408 spin_unlock(&pa->pa_lock);
3410 rcu_read_unlock();
3412 if (cpa) {
3413 ext4_mb_use_group_pa(ac, cpa);
3414 ac->ac_criteria = 20;
3415 return 1;
3417 return 0;
3421 * the function goes through all block freed in the group
3422 * but not yet committed and marks them used in in-core bitmap.
3423 * buddy must be generated from this bitmap
3424 * Need to be called with the ext4 group lock held
3426 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3427 ext4_group_t group)
3429 struct rb_node *n;
3430 struct ext4_group_info *grp;
3431 struct ext4_free_data *entry;
3433 grp = ext4_get_group_info(sb, group);
3434 n = rb_first(&(grp->bb_free_root));
3436 while (n) {
3437 entry = rb_entry(n, struct ext4_free_data, efd_node);
3438 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3439 n = rb_next(n);
3441 return;
3445 * the function goes through all preallocation in this group and marks them
3446 * used in in-core bitmap. buddy must be generated from this bitmap
3447 * Need to be called with ext4 group lock held
3449 static noinline_for_stack
3450 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3451 ext4_group_t group)
3453 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3454 struct ext4_prealloc_space *pa;
3455 struct list_head *cur;
3456 ext4_group_t groupnr;
3457 ext4_grpblk_t start;
3458 int preallocated = 0;
3459 int len;
3461 /* all form of preallocation discards first load group,
3462 * so the only competing code is preallocation use.
3463 * we don't need any locking here
3464 * notice we do NOT ignore preallocations with pa_deleted
3465 * otherwise we could leave used blocks available for
3466 * allocation in buddy when concurrent ext4_mb_put_pa()
3467 * is dropping preallocation
3469 list_for_each(cur, &grp->bb_prealloc_list) {
3470 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3471 spin_lock(&pa->pa_lock);
3472 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3473 &groupnr, &start);
3474 len = pa->pa_len;
3475 spin_unlock(&pa->pa_lock);
3476 if (unlikely(len == 0))
3477 continue;
3478 BUG_ON(groupnr != group);
3479 ext4_set_bits(bitmap, start, len);
3480 preallocated += len;
3482 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3485 static void ext4_mb_pa_callback(struct rcu_head *head)
3487 struct ext4_prealloc_space *pa;
3488 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3490 BUG_ON(atomic_read(&pa->pa_count));
3491 BUG_ON(pa->pa_deleted == 0);
3492 kmem_cache_free(ext4_pspace_cachep, pa);
3496 * drops a reference to preallocated space descriptor
3497 * if this was the last reference and the space is consumed
3499 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3500 struct super_block *sb, struct ext4_prealloc_space *pa)
3502 ext4_group_t grp;
3503 ext4_fsblk_t grp_blk;
3505 /* in this short window concurrent discard can set pa_deleted */
3506 spin_lock(&pa->pa_lock);
3507 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3508 spin_unlock(&pa->pa_lock);
3509 return;
3512 if (pa->pa_deleted == 1) {
3513 spin_unlock(&pa->pa_lock);
3514 return;
3517 pa->pa_deleted = 1;
3518 spin_unlock(&pa->pa_lock);
3520 grp_blk = pa->pa_pstart;
3522 * If doing group-based preallocation, pa_pstart may be in the
3523 * next group when pa is used up
3525 if (pa->pa_type == MB_GROUP_PA)
3526 grp_blk--;
3528 grp = ext4_get_group_number(sb, grp_blk);
3531 * possible race:
3533 * P1 (buddy init) P2 (regular allocation)
3534 * find block B in PA
3535 * copy on-disk bitmap to buddy
3536 * mark B in on-disk bitmap
3537 * drop PA from group
3538 * mark all PAs in buddy
3540 * thus, P1 initializes buddy with B available. to prevent this
3541 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3542 * against that pair
3544 ext4_lock_group(sb, grp);
3545 list_del(&pa->pa_group_list);
3546 ext4_unlock_group(sb, grp);
3548 spin_lock(pa->pa_obj_lock);
3549 list_del_rcu(&pa->pa_inode_list);
3550 spin_unlock(pa->pa_obj_lock);
3552 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3556 * creates new preallocated space for given inode
3558 static noinline_for_stack int
3559 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3561 struct super_block *sb = ac->ac_sb;
3562 struct ext4_sb_info *sbi = EXT4_SB(sb);
3563 struct ext4_prealloc_space *pa;
3564 struct ext4_group_info *grp;
3565 struct ext4_inode_info *ei;
3567 /* preallocate only when found space is larger then requested */
3568 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3569 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3570 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3572 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3573 if (pa == NULL)
3574 return -ENOMEM;
3576 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3577 int winl;
3578 int wins;
3579 int win;
3580 int offs;
3582 /* we can't allocate as much as normalizer wants.
3583 * so, found space must get proper lstart
3584 * to cover original request */
3585 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3586 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3588 /* we're limited by original request in that
3589 * logical block must be covered any way
3590 * winl is window we can move our chunk within */
3591 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3593 /* also, we should cover whole original request */
3594 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3596 /* the smallest one defines real window */
3597 win = min(winl, wins);
3599 offs = ac->ac_o_ex.fe_logical %
3600 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3601 if (offs && offs < win)
3602 win = offs;
3604 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3605 EXT4_NUM_B2C(sbi, win);
3606 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3607 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3610 /* preallocation can change ac_b_ex, thus we store actually
3611 * allocated blocks for history */
3612 ac->ac_f_ex = ac->ac_b_ex;
3614 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3615 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3616 pa->pa_len = ac->ac_b_ex.fe_len;
3617 pa->pa_free = pa->pa_len;
3618 atomic_set(&pa->pa_count, 1);
3619 spin_lock_init(&pa->pa_lock);
3620 INIT_LIST_HEAD(&pa->pa_inode_list);
3621 INIT_LIST_HEAD(&pa->pa_group_list);
3622 pa->pa_deleted = 0;
3623 pa->pa_type = MB_INODE_PA;
3625 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3626 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3627 trace_ext4_mb_new_inode_pa(ac, pa);
3629 ext4_mb_use_inode_pa(ac, pa);
3630 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3632 ei = EXT4_I(ac->ac_inode);
3633 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3635 pa->pa_obj_lock = &ei->i_prealloc_lock;
3636 pa->pa_inode = ac->ac_inode;
3638 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3639 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3640 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3642 spin_lock(pa->pa_obj_lock);
3643 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3644 spin_unlock(pa->pa_obj_lock);
3646 return 0;
3650 * creates new preallocated space for locality group inodes belongs to
3652 static noinline_for_stack int
3653 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3655 struct super_block *sb = ac->ac_sb;
3656 struct ext4_locality_group *lg;
3657 struct ext4_prealloc_space *pa;
3658 struct ext4_group_info *grp;
3660 /* preallocate only when found space is larger then requested */
3661 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3662 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3663 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3665 BUG_ON(ext4_pspace_cachep == NULL);
3666 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3667 if (pa == NULL)
3668 return -ENOMEM;
3670 /* preallocation can change ac_b_ex, thus we store actually
3671 * allocated blocks for history */
3672 ac->ac_f_ex = ac->ac_b_ex;
3674 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3675 pa->pa_lstart = pa->pa_pstart;
3676 pa->pa_len = ac->ac_b_ex.fe_len;
3677 pa->pa_free = pa->pa_len;
3678 atomic_set(&pa->pa_count, 1);
3679 spin_lock_init(&pa->pa_lock);
3680 INIT_LIST_HEAD(&pa->pa_inode_list);
3681 INIT_LIST_HEAD(&pa->pa_group_list);
3682 pa->pa_deleted = 0;
3683 pa->pa_type = MB_GROUP_PA;
3685 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3686 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3687 trace_ext4_mb_new_group_pa(ac, pa);
3689 ext4_mb_use_group_pa(ac, pa);
3690 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3692 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3693 lg = ac->ac_lg;
3694 BUG_ON(lg == NULL);
3696 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3697 pa->pa_inode = NULL;
3699 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3700 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3701 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3704 * We will later add the new pa to the right bucket
3705 * after updating the pa_free in ext4_mb_release_context
3707 return 0;
3710 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3712 int err;
3714 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3715 err = ext4_mb_new_group_pa(ac);
3716 else
3717 err = ext4_mb_new_inode_pa(ac);
3718 return err;
3722 * finds all unused blocks in on-disk bitmap, frees them in
3723 * in-core bitmap and buddy.
3724 * @pa must be unlinked from inode and group lists, so that
3725 * nobody else can find/use it.
3726 * the caller MUST hold group/inode locks.
3727 * TODO: optimize the case when there are no in-core structures yet
3729 static noinline_for_stack int
3730 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3731 struct ext4_prealloc_space *pa)
3733 struct super_block *sb = e4b->bd_sb;
3734 struct ext4_sb_info *sbi = EXT4_SB(sb);
3735 unsigned int end;
3736 unsigned int next;
3737 ext4_group_t group;
3738 ext4_grpblk_t bit;
3739 unsigned long long grp_blk_start;
3740 int err = 0;
3741 int free = 0;
3743 BUG_ON(pa->pa_deleted == 0);
3744 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3745 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3746 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3747 end = bit + pa->pa_len;
3749 while (bit < end) {
3750 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3751 if (bit >= end)
3752 break;
3753 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3754 mb_debug(1, " free preallocated %u/%u in group %u\n",
3755 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3756 (unsigned) next - bit, (unsigned) group);
3757 free += next - bit;
3759 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3760 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3761 EXT4_C2B(sbi, bit)),
3762 next - bit);
3763 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3764 bit = next + 1;
3766 if (free != pa->pa_free) {
3767 ext4_msg(e4b->bd_sb, KERN_CRIT,
3768 "pa %p: logic %lu, phys. %lu, len %lu",
3769 pa, (unsigned long) pa->pa_lstart,
3770 (unsigned long) pa->pa_pstart,
3771 (unsigned long) pa->pa_len);
3772 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3773 free, pa->pa_free);
3775 * pa is already deleted so we use the value obtained
3776 * from the bitmap and continue.
3779 atomic_add(free, &sbi->s_mb_discarded);
3781 return err;
3784 static noinline_for_stack int
3785 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3786 struct ext4_prealloc_space *pa)
3788 struct super_block *sb = e4b->bd_sb;
3789 ext4_group_t group;
3790 ext4_grpblk_t bit;
3792 trace_ext4_mb_release_group_pa(sb, pa);
3793 BUG_ON(pa->pa_deleted == 0);
3794 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3795 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3796 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3797 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3798 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3800 return 0;
3804 * releases all preallocations in given group
3806 * first, we need to decide discard policy:
3807 * - when do we discard
3808 * 1) ENOSPC
3809 * - how many do we discard
3810 * 1) how many requested
3812 static noinline_for_stack int
3813 ext4_mb_discard_group_preallocations(struct super_block *sb,
3814 ext4_group_t group, int needed)
3816 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3817 struct buffer_head *bitmap_bh = NULL;
3818 struct ext4_prealloc_space *pa, *tmp;
3819 struct list_head list;
3820 struct ext4_buddy e4b;
3821 int err;
3822 int busy = 0;
3823 int free = 0;
3825 mb_debug(1, "discard preallocation for group %u\n", group);
3827 if (list_empty(&grp->bb_prealloc_list))
3828 return 0;
3830 bitmap_bh = ext4_read_block_bitmap(sb, group);
3831 if (bitmap_bh == NULL) {
3832 ext4_error(sb, "Error reading block bitmap for %u", group);
3833 return 0;
3836 err = ext4_mb_load_buddy(sb, group, &e4b);
3837 if (err) {
3838 ext4_error(sb, "Error loading buddy information for %u", group);
3839 put_bh(bitmap_bh);
3840 return 0;
3843 if (needed == 0)
3844 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3846 INIT_LIST_HEAD(&list);
3847 repeat:
3848 ext4_lock_group(sb, group);
3849 list_for_each_entry_safe(pa, tmp,
3850 &grp->bb_prealloc_list, pa_group_list) {
3851 spin_lock(&pa->pa_lock);
3852 if (atomic_read(&pa->pa_count)) {
3853 spin_unlock(&pa->pa_lock);
3854 busy = 1;
3855 continue;
3857 if (pa->pa_deleted) {
3858 spin_unlock(&pa->pa_lock);
3859 continue;
3862 /* seems this one can be freed ... */
3863 pa->pa_deleted = 1;
3865 /* we can trust pa_free ... */
3866 free += pa->pa_free;
3868 spin_unlock(&pa->pa_lock);
3870 list_del(&pa->pa_group_list);
3871 list_add(&pa->u.pa_tmp_list, &list);
3874 /* if we still need more blocks and some PAs were used, try again */
3875 if (free < needed && busy) {
3876 busy = 0;
3877 ext4_unlock_group(sb, group);
3878 cond_resched();
3879 goto repeat;
3882 /* found anything to free? */
3883 if (list_empty(&list)) {
3884 BUG_ON(free != 0);
3885 goto out;
3888 /* now free all selected PAs */
3889 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3891 /* remove from object (inode or locality group) */
3892 spin_lock(pa->pa_obj_lock);
3893 list_del_rcu(&pa->pa_inode_list);
3894 spin_unlock(pa->pa_obj_lock);
3896 if (pa->pa_type == MB_GROUP_PA)
3897 ext4_mb_release_group_pa(&e4b, pa);
3898 else
3899 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3901 list_del(&pa->u.pa_tmp_list);
3902 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3905 out:
3906 ext4_unlock_group(sb, group);
3907 ext4_mb_unload_buddy(&e4b);
3908 put_bh(bitmap_bh);
3909 return free;
3913 * releases all non-used preallocated blocks for given inode
3915 * It's important to discard preallocations under i_data_sem
3916 * We don't want another block to be served from the prealloc
3917 * space when we are discarding the inode prealloc space.
3919 * FIXME!! Make sure it is valid at all the call sites
3921 void ext4_discard_preallocations(struct inode *inode)
3923 struct ext4_inode_info *ei = EXT4_I(inode);
3924 struct super_block *sb = inode->i_sb;
3925 struct buffer_head *bitmap_bh = NULL;
3926 struct ext4_prealloc_space *pa, *tmp;
3927 ext4_group_t group = 0;
3928 struct list_head list;
3929 struct ext4_buddy e4b;
3930 int err;
3932 if (!S_ISREG(inode->i_mode)) {
3933 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3934 return;
3937 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3938 trace_ext4_discard_preallocations(inode);
3940 INIT_LIST_HEAD(&list);
3942 repeat:
3943 /* first, collect all pa's in the inode */
3944 spin_lock(&ei->i_prealloc_lock);
3945 while (!list_empty(&ei->i_prealloc_list)) {
3946 pa = list_entry(ei->i_prealloc_list.next,
3947 struct ext4_prealloc_space, pa_inode_list);
3948 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3949 spin_lock(&pa->pa_lock);
3950 if (atomic_read(&pa->pa_count)) {
3951 /* this shouldn't happen often - nobody should
3952 * use preallocation while we're discarding it */
3953 spin_unlock(&pa->pa_lock);
3954 spin_unlock(&ei->i_prealloc_lock);
3955 ext4_msg(sb, KERN_ERR,
3956 "uh-oh! used pa while discarding");
3957 WARN_ON(1);
3958 schedule_timeout_uninterruptible(HZ);
3959 goto repeat;
3962 if (pa->pa_deleted == 0) {
3963 pa->pa_deleted = 1;
3964 spin_unlock(&pa->pa_lock);
3965 list_del_rcu(&pa->pa_inode_list);
3966 list_add(&pa->u.pa_tmp_list, &list);
3967 continue;
3970 /* someone is deleting pa right now */
3971 spin_unlock(&pa->pa_lock);
3972 spin_unlock(&ei->i_prealloc_lock);
3974 /* we have to wait here because pa_deleted
3975 * doesn't mean pa is already unlinked from
3976 * the list. as we might be called from
3977 * ->clear_inode() the inode will get freed
3978 * and concurrent thread which is unlinking
3979 * pa from inode's list may access already
3980 * freed memory, bad-bad-bad */
3982 /* XXX: if this happens too often, we can
3983 * add a flag to force wait only in case
3984 * of ->clear_inode(), but not in case of
3985 * regular truncate */
3986 schedule_timeout_uninterruptible(HZ);
3987 goto repeat;
3989 spin_unlock(&ei->i_prealloc_lock);
3991 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3992 BUG_ON(pa->pa_type != MB_INODE_PA);
3993 group = ext4_get_group_number(sb, pa->pa_pstart);
3995 err = ext4_mb_load_buddy(sb, group, &e4b);
3996 if (err) {
3997 ext4_error(sb, "Error loading buddy information for %u",
3998 group);
3999 continue;
4002 bitmap_bh = ext4_read_block_bitmap(sb, group);
4003 if (bitmap_bh == NULL) {
4004 ext4_error(sb, "Error reading block bitmap for %u",
4005 group);
4006 ext4_mb_unload_buddy(&e4b);
4007 continue;
4010 ext4_lock_group(sb, group);
4011 list_del(&pa->pa_group_list);
4012 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4013 ext4_unlock_group(sb, group);
4015 ext4_mb_unload_buddy(&e4b);
4016 put_bh(bitmap_bh);
4018 list_del(&pa->u.pa_tmp_list);
4019 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4023 #ifdef CONFIG_EXT4_DEBUG
4024 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4026 struct super_block *sb = ac->ac_sb;
4027 ext4_group_t ngroups, i;
4029 if (!ext4_mballoc_debug ||
4030 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4031 return;
4033 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4034 " Allocation context details:");
4035 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4036 ac->ac_status, ac->ac_flags);
4037 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4038 "goal %lu/%lu/%lu@%lu, "
4039 "best %lu/%lu/%lu@%lu cr %d",
4040 (unsigned long)ac->ac_o_ex.fe_group,
4041 (unsigned long)ac->ac_o_ex.fe_start,
4042 (unsigned long)ac->ac_o_ex.fe_len,
4043 (unsigned long)ac->ac_o_ex.fe_logical,
4044 (unsigned long)ac->ac_g_ex.fe_group,
4045 (unsigned long)ac->ac_g_ex.fe_start,
4046 (unsigned long)ac->ac_g_ex.fe_len,
4047 (unsigned long)ac->ac_g_ex.fe_logical,
4048 (unsigned long)ac->ac_b_ex.fe_group,
4049 (unsigned long)ac->ac_b_ex.fe_start,
4050 (unsigned long)ac->ac_b_ex.fe_len,
4051 (unsigned long)ac->ac_b_ex.fe_logical,
4052 (int)ac->ac_criteria);
4053 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4054 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4055 ngroups = ext4_get_groups_count(sb);
4056 for (i = 0; i < ngroups; i++) {
4057 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4058 struct ext4_prealloc_space *pa;
4059 ext4_grpblk_t start;
4060 struct list_head *cur;
4061 ext4_lock_group(sb, i);
4062 list_for_each(cur, &grp->bb_prealloc_list) {
4063 pa = list_entry(cur, struct ext4_prealloc_space,
4064 pa_group_list);
4065 spin_lock(&pa->pa_lock);
4066 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4067 NULL, &start);
4068 spin_unlock(&pa->pa_lock);
4069 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4070 start, pa->pa_len);
4072 ext4_unlock_group(sb, i);
4074 if (grp->bb_free == 0)
4075 continue;
4076 printk(KERN_ERR "%u: %d/%d \n",
4077 i, grp->bb_free, grp->bb_fragments);
4079 printk(KERN_ERR "\n");
4081 #else
4082 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4084 return;
4086 #endif
4089 * We use locality group preallocation for small size file. The size of the
4090 * file is determined by the current size or the resulting size after
4091 * allocation which ever is larger
4093 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4095 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4097 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4098 int bsbits = ac->ac_sb->s_blocksize_bits;
4099 loff_t size, isize;
4101 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4102 return;
4104 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4105 return;
4107 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4108 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4109 >> bsbits;
4111 if ((size == isize) &&
4112 !ext4_fs_is_busy(sbi) &&
4113 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4114 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4115 return;
4118 if (sbi->s_mb_group_prealloc <= 0) {
4119 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4120 return;
4123 /* don't use group allocation for large files */
4124 size = max(size, isize);
4125 if (size > sbi->s_mb_stream_request) {
4126 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4127 return;
4130 BUG_ON(ac->ac_lg != NULL);
4132 * locality group prealloc space are per cpu. The reason for having
4133 * per cpu locality group is to reduce the contention between block
4134 * request from multiple CPUs.
4136 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4138 /* we're going to use group allocation */
4139 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4141 /* serialize all allocations in the group */
4142 mutex_lock(&ac->ac_lg->lg_mutex);
4145 static noinline_for_stack int
4146 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4147 struct ext4_allocation_request *ar)
4149 struct super_block *sb = ar->inode->i_sb;
4150 struct ext4_sb_info *sbi = EXT4_SB(sb);
4151 struct ext4_super_block *es = sbi->s_es;
4152 ext4_group_t group;
4153 unsigned int len;
4154 ext4_fsblk_t goal;
4155 ext4_grpblk_t block;
4157 /* we can't allocate > group size */
4158 len = ar->len;
4160 /* just a dirty hack to filter too big requests */
4161 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4162 len = EXT4_CLUSTERS_PER_GROUP(sb);
4164 /* start searching from the goal */
4165 goal = ar->goal;
4166 if (goal < le32_to_cpu(es->s_first_data_block) ||
4167 goal >= ext4_blocks_count(es))
4168 goal = le32_to_cpu(es->s_first_data_block);
4169 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4171 /* set up allocation goals */
4172 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4173 ac->ac_status = AC_STATUS_CONTINUE;
4174 ac->ac_sb = sb;
4175 ac->ac_inode = ar->inode;
4176 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4177 ac->ac_o_ex.fe_group = group;
4178 ac->ac_o_ex.fe_start = block;
4179 ac->ac_o_ex.fe_len = len;
4180 ac->ac_g_ex = ac->ac_o_ex;
4181 ac->ac_flags = ar->flags;
4183 /* we have to define context: we'll we work with a file or
4184 * locality group. this is a policy, actually */
4185 ext4_mb_group_or_file(ac);
4187 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4188 "left: %u/%u, right %u/%u to %swritable\n",
4189 (unsigned) ar->len, (unsigned) ar->logical,
4190 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4191 (unsigned) ar->lleft, (unsigned) ar->pleft,
4192 (unsigned) ar->lright, (unsigned) ar->pright,
4193 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4194 return 0;
4198 static noinline_for_stack void
4199 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4200 struct ext4_locality_group *lg,
4201 int order, int total_entries)
4203 ext4_group_t group = 0;
4204 struct ext4_buddy e4b;
4205 struct list_head discard_list;
4206 struct ext4_prealloc_space *pa, *tmp;
4208 mb_debug(1, "discard locality group preallocation\n");
4210 INIT_LIST_HEAD(&discard_list);
4212 spin_lock(&lg->lg_prealloc_lock);
4213 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4214 pa_inode_list) {
4215 spin_lock(&pa->pa_lock);
4216 if (atomic_read(&pa->pa_count)) {
4218 * This is the pa that we just used
4219 * for block allocation. So don't
4220 * free that
4222 spin_unlock(&pa->pa_lock);
4223 continue;
4225 if (pa->pa_deleted) {
4226 spin_unlock(&pa->pa_lock);
4227 continue;
4229 /* only lg prealloc space */
4230 BUG_ON(pa->pa_type != MB_GROUP_PA);
4232 /* seems this one can be freed ... */
4233 pa->pa_deleted = 1;
4234 spin_unlock(&pa->pa_lock);
4236 list_del_rcu(&pa->pa_inode_list);
4237 list_add(&pa->u.pa_tmp_list, &discard_list);
4239 total_entries--;
4240 if (total_entries <= 5) {
4242 * we want to keep only 5 entries
4243 * allowing it to grow to 8. This
4244 * mak sure we don't call discard
4245 * soon for this list.
4247 break;
4250 spin_unlock(&lg->lg_prealloc_lock);
4252 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4254 group = ext4_get_group_number(sb, pa->pa_pstart);
4255 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4256 ext4_error(sb, "Error loading buddy information for %u",
4257 group);
4258 continue;
4260 ext4_lock_group(sb, group);
4261 list_del(&pa->pa_group_list);
4262 ext4_mb_release_group_pa(&e4b, pa);
4263 ext4_unlock_group(sb, group);
4265 ext4_mb_unload_buddy(&e4b);
4266 list_del(&pa->u.pa_tmp_list);
4267 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4272 * We have incremented pa_count. So it cannot be freed at this
4273 * point. Also we hold lg_mutex. So no parallel allocation is
4274 * possible from this lg. That means pa_free cannot be updated.
4276 * A parallel ext4_mb_discard_group_preallocations is possible.
4277 * which can cause the lg_prealloc_list to be updated.
4280 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4282 int order, added = 0, lg_prealloc_count = 1;
4283 struct super_block *sb = ac->ac_sb;
4284 struct ext4_locality_group *lg = ac->ac_lg;
4285 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4287 order = fls(pa->pa_free) - 1;
4288 if (order > PREALLOC_TB_SIZE - 1)
4289 /* The max size of hash table is PREALLOC_TB_SIZE */
4290 order = PREALLOC_TB_SIZE - 1;
4291 /* Add the prealloc space to lg */
4292 spin_lock(&lg->lg_prealloc_lock);
4293 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4294 pa_inode_list) {
4295 spin_lock(&tmp_pa->pa_lock);
4296 if (tmp_pa->pa_deleted) {
4297 spin_unlock(&tmp_pa->pa_lock);
4298 continue;
4300 if (!added && pa->pa_free < tmp_pa->pa_free) {
4301 /* Add to the tail of the previous entry */
4302 list_add_tail_rcu(&pa->pa_inode_list,
4303 &tmp_pa->pa_inode_list);
4304 added = 1;
4306 * we want to count the total
4307 * number of entries in the list
4310 spin_unlock(&tmp_pa->pa_lock);
4311 lg_prealloc_count++;
4313 if (!added)
4314 list_add_tail_rcu(&pa->pa_inode_list,
4315 &lg->lg_prealloc_list[order]);
4316 spin_unlock(&lg->lg_prealloc_lock);
4318 /* Now trim the list to be not more than 8 elements */
4319 if (lg_prealloc_count > 8) {
4320 ext4_mb_discard_lg_preallocations(sb, lg,
4321 order, lg_prealloc_count);
4322 return;
4324 return ;
4328 * release all resource we used in allocation
4330 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4332 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4333 struct ext4_prealloc_space *pa = ac->ac_pa;
4334 if (pa) {
4335 if (pa->pa_type == MB_GROUP_PA) {
4336 /* see comment in ext4_mb_use_group_pa() */
4337 spin_lock(&pa->pa_lock);
4338 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4339 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4340 pa->pa_free -= ac->ac_b_ex.fe_len;
4341 pa->pa_len -= ac->ac_b_ex.fe_len;
4342 spin_unlock(&pa->pa_lock);
4345 if (pa) {
4347 * We want to add the pa to the right bucket.
4348 * Remove it from the list and while adding
4349 * make sure the list to which we are adding
4350 * doesn't grow big.
4352 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4353 spin_lock(pa->pa_obj_lock);
4354 list_del_rcu(&pa->pa_inode_list);
4355 spin_unlock(pa->pa_obj_lock);
4356 ext4_mb_add_n_trim(ac);
4358 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4360 if (ac->ac_bitmap_page)
4361 page_cache_release(ac->ac_bitmap_page);
4362 if (ac->ac_buddy_page)
4363 page_cache_release(ac->ac_buddy_page);
4364 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4365 mutex_unlock(&ac->ac_lg->lg_mutex);
4366 ext4_mb_collect_stats(ac);
4367 return 0;
4370 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4372 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4373 int ret;
4374 int freed = 0;
4376 trace_ext4_mb_discard_preallocations(sb, needed);
4377 for (i = 0; i < ngroups && needed > 0; i++) {
4378 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4379 freed += ret;
4380 needed -= ret;
4383 return freed;
4387 * Main entry point into mballoc to allocate blocks
4388 * it tries to use preallocation first, then falls back
4389 * to usual allocation
4391 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4392 struct ext4_allocation_request *ar, int *errp)
4394 int freed;
4395 struct ext4_allocation_context *ac = NULL;
4396 struct ext4_sb_info *sbi;
4397 struct super_block *sb;
4398 ext4_fsblk_t block = 0;
4399 unsigned int inquota = 0;
4400 unsigned int reserv_clstrs = 0;
4402 might_sleep();
4403 sb = ar->inode->i_sb;
4404 sbi = EXT4_SB(sb);
4406 trace_ext4_request_blocks(ar);
4408 /* Allow to use superuser reservation for quota file */
4409 if (IS_NOQUOTA(ar->inode))
4410 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4412 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4413 /* Without delayed allocation we need to verify
4414 * there is enough free blocks to do block allocation
4415 * and verify allocation doesn't exceed the quota limits.
4417 while (ar->len &&
4418 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4420 /* let others to free the space */
4421 cond_resched();
4422 ar->len = ar->len >> 1;
4424 if (!ar->len) {
4425 *errp = -ENOSPC;
4426 return 0;
4428 reserv_clstrs = ar->len;
4429 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4430 dquot_alloc_block_nofail(ar->inode,
4431 EXT4_C2B(sbi, ar->len));
4432 } else {
4433 while (ar->len &&
4434 dquot_alloc_block(ar->inode,
4435 EXT4_C2B(sbi, ar->len))) {
4437 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4438 ar->len--;
4441 inquota = ar->len;
4442 if (ar->len == 0) {
4443 *errp = -EDQUOT;
4444 goto out;
4448 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4449 if (!ac) {
4450 ar->len = 0;
4451 *errp = -ENOMEM;
4452 goto out;
4455 *errp = ext4_mb_initialize_context(ac, ar);
4456 if (*errp) {
4457 ar->len = 0;
4458 goto out;
4461 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4462 if (!ext4_mb_use_preallocated(ac)) {
4463 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4464 ext4_mb_normalize_request(ac, ar);
4465 repeat:
4466 /* allocate space in core */
4467 *errp = ext4_mb_regular_allocator(ac);
4468 if (*errp)
4469 goto discard_and_exit;
4471 /* as we've just preallocated more space than
4472 * user requested originally, we store allocated
4473 * space in a special descriptor */
4474 if (ac->ac_status == AC_STATUS_FOUND &&
4475 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4476 *errp = ext4_mb_new_preallocation(ac);
4477 if (*errp) {
4478 discard_and_exit:
4479 ext4_discard_allocated_blocks(ac);
4480 goto errout;
4483 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4484 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4485 if (*errp == -EAGAIN) {
4487 * drop the reference that we took
4488 * in ext4_mb_use_best_found
4490 ext4_mb_release_context(ac);
4491 ac->ac_b_ex.fe_group = 0;
4492 ac->ac_b_ex.fe_start = 0;
4493 ac->ac_b_ex.fe_len = 0;
4494 ac->ac_status = AC_STATUS_CONTINUE;
4495 goto repeat;
4496 } else if (*errp) {
4497 ext4_discard_allocated_blocks(ac);
4498 goto errout;
4499 } else {
4500 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4501 ar->len = ac->ac_b_ex.fe_len;
4503 } else {
4504 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4505 if (freed)
4506 goto repeat;
4507 *errp = -ENOSPC;
4510 errout:
4511 if (*errp) {
4512 ac->ac_b_ex.fe_len = 0;
4513 ar->len = 0;
4514 ext4_mb_show_ac(ac);
4516 ext4_mb_release_context(ac);
4517 out:
4518 if (ac)
4519 kmem_cache_free(ext4_ac_cachep, ac);
4520 if (inquota && ar->len < inquota)
4521 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4522 if (!ar->len) {
4523 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4524 /* release all the reserved blocks if non delalloc */
4525 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4526 reserv_clstrs);
4529 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4531 return block;
4535 * We can merge two free data extents only if the physical blocks
4536 * are contiguous, AND the extents were freed by the same transaction,
4537 * AND the blocks are associated with the same group.
4539 static int can_merge(struct ext4_free_data *entry1,
4540 struct ext4_free_data *entry2)
4542 if ((entry1->efd_tid == entry2->efd_tid) &&
4543 (entry1->efd_group == entry2->efd_group) &&
4544 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4545 return 1;
4546 return 0;
4549 static noinline_for_stack int
4550 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4551 struct ext4_free_data *new_entry)
4553 ext4_group_t group = e4b->bd_group;
4554 ext4_grpblk_t cluster;
4555 struct ext4_free_data *entry;
4556 struct ext4_group_info *db = e4b->bd_info;
4557 struct super_block *sb = e4b->bd_sb;
4558 struct ext4_sb_info *sbi = EXT4_SB(sb);
4559 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4560 struct rb_node *parent = NULL, *new_node;
4562 BUG_ON(!ext4_handle_valid(handle));
4563 BUG_ON(e4b->bd_bitmap_page == NULL);
4564 BUG_ON(e4b->bd_buddy_page == NULL);
4566 new_node = &new_entry->efd_node;
4567 cluster = new_entry->efd_start_cluster;
4569 if (!*n) {
4570 /* first free block exent. We need to
4571 protect buddy cache from being freed,
4572 * otherwise we'll refresh it from
4573 * on-disk bitmap and lose not-yet-available
4574 * blocks */
4575 page_cache_get(e4b->bd_buddy_page);
4576 page_cache_get(e4b->bd_bitmap_page);
4578 while (*n) {
4579 parent = *n;
4580 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4581 if (cluster < entry->efd_start_cluster)
4582 n = &(*n)->rb_left;
4583 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4584 n = &(*n)->rb_right;
4585 else {
4586 ext4_grp_locked_error(sb, group, 0,
4587 ext4_group_first_block_no(sb, group) +
4588 EXT4_C2B(sbi, cluster),
4589 "Block already on to-be-freed list");
4590 return 0;
4594 rb_link_node(new_node, parent, n);
4595 rb_insert_color(new_node, &db->bb_free_root);
4597 /* Now try to see the extent can be merged to left and right */
4598 node = rb_prev(new_node);
4599 if (node) {
4600 entry = rb_entry(node, struct ext4_free_data, efd_node);
4601 if (can_merge(entry, new_entry) &&
4602 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4603 new_entry->efd_start_cluster = entry->efd_start_cluster;
4604 new_entry->efd_count += entry->efd_count;
4605 rb_erase(node, &(db->bb_free_root));
4606 kmem_cache_free(ext4_free_data_cachep, entry);
4610 node = rb_next(new_node);
4611 if (node) {
4612 entry = rb_entry(node, struct ext4_free_data, efd_node);
4613 if (can_merge(new_entry, entry) &&
4614 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4615 new_entry->efd_count += entry->efd_count;
4616 rb_erase(node, &(db->bb_free_root));
4617 kmem_cache_free(ext4_free_data_cachep, entry);
4620 /* Add the extent to transaction's private list */
4621 ext4_journal_callback_add(handle, ext4_free_data_callback,
4622 &new_entry->efd_jce);
4623 return 0;
4627 * ext4_free_blocks() -- Free given blocks and update quota
4628 * @handle: handle for this transaction
4629 * @inode: inode
4630 * @block: start physical block to free
4631 * @count: number of blocks to count
4632 * @flags: flags used by ext4_free_blocks
4634 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4635 struct buffer_head *bh, ext4_fsblk_t block,
4636 unsigned long count, int flags)
4638 struct buffer_head *bitmap_bh = NULL;
4639 struct super_block *sb = inode->i_sb;
4640 struct ext4_group_desc *gdp;
4641 unsigned int overflow;
4642 ext4_grpblk_t bit;
4643 struct buffer_head *gd_bh;
4644 ext4_group_t block_group;
4645 struct ext4_sb_info *sbi;
4646 struct ext4_buddy e4b;
4647 unsigned int count_clusters;
4648 int err = 0;
4649 int ret;
4651 might_sleep();
4652 if (bh) {
4653 if (block)
4654 BUG_ON(block != bh->b_blocknr);
4655 else
4656 block = bh->b_blocknr;
4659 sbi = EXT4_SB(sb);
4660 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4661 !ext4_data_block_valid(sbi, block, count)) {
4662 ext4_error(sb, "Freeing blocks not in datazone - "
4663 "block = %llu, count = %lu", block, count);
4664 goto error_return;
4667 ext4_debug("freeing block %llu\n", block);
4668 trace_ext4_free_blocks(inode, block, count, flags);
4670 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4671 struct buffer_head *tbh = bh;
4672 int i;
4674 BUG_ON(bh && (count > 1));
4676 for (i = 0; i < count; i++) {
4677 cond_resched();
4678 if (!bh)
4679 tbh = sb_find_get_block(inode->i_sb,
4680 block + i);
4681 if (!tbh)
4682 continue;
4683 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4684 inode, tbh, block + i);
4689 * We need to make sure we don't reuse the freed block until
4690 * after the transaction is committed, which we can do by
4691 * treating the block as metadata, below. We make an
4692 * exception if the inode is to be written in writeback mode
4693 * since writeback mode has weak data consistency guarantees.
4695 if (!ext4_should_writeback_data(inode))
4696 flags |= EXT4_FREE_BLOCKS_METADATA;
4699 * If the extent to be freed does not begin on a cluster
4700 * boundary, we need to deal with partial clusters at the
4701 * beginning and end of the extent. Normally we will free
4702 * blocks at the beginning or the end unless we are explicitly
4703 * requested to avoid doing so.
4705 overflow = EXT4_PBLK_COFF(sbi, block);
4706 if (overflow) {
4707 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4708 overflow = sbi->s_cluster_ratio - overflow;
4709 block += overflow;
4710 if (count > overflow)
4711 count -= overflow;
4712 else
4713 return;
4714 } else {
4715 block -= overflow;
4716 count += overflow;
4719 overflow = EXT4_LBLK_COFF(sbi, count);
4720 if (overflow) {
4721 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4722 if (count > overflow)
4723 count -= overflow;
4724 else
4725 return;
4726 } else
4727 count += sbi->s_cluster_ratio - overflow;
4730 do_more:
4731 overflow = 0;
4732 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4734 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4735 ext4_get_group_info(sb, block_group))))
4736 return;
4739 * Check to see if we are freeing blocks across a group
4740 * boundary.
4742 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4743 overflow = EXT4_C2B(sbi, bit) + count -
4744 EXT4_BLOCKS_PER_GROUP(sb);
4745 count -= overflow;
4747 count_clusters = EXT4_NUM_B2C(sbi, count);
4748 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4749 if (!bitmap_bh) {
4750 err = -EIO;
4751 goto error_return;
4753 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4754 if (!gdp) {
4755 err = -EIO;
4756 goto error_return;
4759 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4760 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4761 in_range(block, ext4_inode_table(sb, gdp),
4762 EXT4_SB(sb)->s_itb_per_group) ||
4763 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4764 EXT4_SB(sb)->s_itb_per_group)) {
4766 ext4_error(sb, "Freeing blocks in system zone - "
4767 "Block = %llu, count = %lu", block, count);
4768 /* err = 0. ext4_std_error should be a no op */
4769 goto error_return;
4772 BUFFER_TRACE(bitmap_bh, "getting write access");
4773 err = ext4_journal_get_write_access(handle, bitmap_bh);
4774 if (err)
4775 goto error_return;
4778 * We are about to modify some metadata. Call the journal APIs
4779 * to unshare ->b_data if a currently-committing transaction is
4780 * using it
4782 BUFFER_TRACE(gd_bh, "get_write_access");
4783 err = ext4_journal_get_write_access(handle, gd_bh);
4784 if (err)
4785 goto error_return;
4786 #ifdef AGGRESSIVE_CHECK
4788 int i;
4789 for (i = 0; i < count_clusters; i++)
4790 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4792 #endif
4793 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4795 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4796 if (err)
4797 goto error_return;
4799 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4800 struct ext4_free_data *new_entry;
4802 * blocks being freed are metadata. these blocks shouldn't
4803 * be used until this transaction is committed
4805 retry:
4806 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4807 if (!new_entry) {
4809 * We use a retry loop because
4810 * ext4_free_blocks() is not allowed to fail.
4812 cond_resched();
4813 congestion_wait(BLK_RW_ASYNC, HZ/50);
4814 goto retry;
4816 new_entry->efd_start_cluster = bit;
4817 new_entry->efd_group = block_group;
4818 new_entry->efd_count = count_clusters;
4819 new_entry->efd_tid = handle->h_transaction->t_tid;
4821 ext4_lock_group(sb, block_group);
4822 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4823 ext4_mb_free_metadata(handle, &e4b, new_entry);
4824 } else {
4825 /* need to update group_info->bb_free and bitmap
4826 * with group lock held. generate_buddy look at
4827 * them with group lock_held
4829 if (test_opt(sb, DISCARD)) {
4830 err = ext4_issue_discard(sb, block_group, bit, count);
4831 if (err && err != -EOPNOTSUPP)
4832 ext4_msg(sb, KERN_WARNING, "discard request in"
4833 " group:%d block:%d count:%lu failed"
4834 " with %d", block_group, bit, count,
4835 err);
4836 } else
4837 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4839 ext4_lock_group(sb, block_group);
4840 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4841 mb_free_blocks(inode, &e4b, bit, count_clusters);
4844 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4845 ext4_free_group_clusters_set(sb, gdp, ret);
4846 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4847 ext4_group_desc_csum_set(sb, block_group, gdp);
4848 ext4_unlock_group(sb, block_group);
4850 if (sbi->s_log_groups_per_flex) {
4851 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4852 atomic64_add(count_clusters,
4853 &sbi->s_flex_groups[flex_group].free_clusters);
4856 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4857 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4858 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4860 ext4_mb_unload_buddy(&e4b);
4862 /* We dirtied the bitmap block */
4863 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4864 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4866 /* And the group descriptor block */
4867 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4868 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4869 if (!err)
4870 err = ret;
4872 if (overflow && !err) {
4873 block += count;
4874 count = overflow;
4875 put_bh(bitmap_bh);
4876 goto do_more;
4878 error_return:
4879 brelse(bitmap_bh);
4880 ext4_std_error(sb, err);
4881 return;
4885 * ext4_group_add_blocks() -- Add given blocks to an existing group
4886 * @handle: handle to this transaction
4887 * @sb: super block
4888 * @block: start physical block to add to the block group
4889 * @count: number of blocks to free
4891 * This marks the blocks as free in the bitmap and buddy.
4893 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4894 ext4_fsblk_t block, unsigned long count)
4896 struct buffer_head *bitmap_bh = NULL;
4897 struct buffer_head *gd_bh;
4898 ext4_group_t block_group;
4899 ext4_grpblk_t bit;
4900 unsigned int i;
4901 struct ext4_group_desc *desc;
4902 struct ext4_sb_info *sbi = EXT4_SB(sb);
4903 struct ext4_buddy e4b;
4904 int err = 0, ret, blk_free_count;
4905 ext4_grpblk_t blocks_freed;
4907 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4909 if (count == 0)
4910 return 0;
4912 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4914 * Check to see if we are freeing blocks across a group
4915 * boundary.
4917 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4918 ext4_warning(sb, "too much blocks added to group %u\n",
4919 block_group);
4920 err = -EINVAL;
4921 goto error_return;
4924 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4925 if (!bitmap_bh) {
4926 err = -EIO;
4927 goto error_return;
4930 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4931 if (!desc) {
4932 err = -EIO;
4933 goto error_return;
4936 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4937 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4938 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4939 in_range(block + count - 1, ext4_inode_table(sb, desc),
4940 sbi->s_itb_per_group)) {
4941 ext4_error(sb, "Adding blocks in system zones - "
4942 "Block = %llu, count = %lu",
4943 block, count);
4944 err = -EINVAL;
4945 goto error_return;
4948 BUFFER_TRACE(bitmap_bh, "getting write access");
4949 err = ext4_journal_get_write_access(handle, bitmap_bh);
4950 if (err)
4951 goto error_return;
4954 * We are about to modify some metadata. Call the journal APIs
4955 * to unshare ->b_data if a currently-committing transaction is
4956 * using it
4958 BUFFER_TRACE(gd_bh, "get_write_access");
4959 err = ext4_journal_get_write_access(handle, gd_bh);
4960 if (err)
4961 goto error_return;
4963 for (i = 0, blocks_freed = 0; i < count; i++) {
4964 BUFFER_TRACE(bitmap_bh, "clear bit");
4965 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4966 ext4_error(sb, "bit already cleared for block %llu",
4967 (ext4_fsblk_t)(block + i));
4968 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4969 } else {
4970 blocks_freed++;
4974 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4975 if (err)
4976 goto error_return;
4979 * need to update group_info->bb_free and bitmap
4980 * with group lock held. generate_buddy look at
4981 * them with group lock_held
4983 ext4_lock_group(sb, block_group);
4984 mb_clear_bits(bitmap_bh->b_data, bit, count);
4985 mb_free_blocks(NULL, &e4b, bit, count);
4986 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4987 ext4_free_group_clusters_set(sb, desc, blk_free_count);
4988 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4989 ext4_group_desc_csum_set(sb, block_group, desc);
4990 ext4_unlock_group(sb, block_group);
4991 percpu_counter_add(&sbi->s_freeclusters_counter,
4992 EXT4_NUM_B2C(sbi, blocks_freed));
4994 if (sbi->s_log_groups_per_flex) {
4995 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4996 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
4997 &sbi->s_flex_groups[flex_group].free_clusters);
5000 ext4_mb_unload_buddy(&e4b);
5002 /* We dirtied the bitmap block */
5003 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5004 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5006 /* And the group descriptor block */
5007 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5008 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5009 if (!err)
5010 err = ret;
5012 error_return:
5013 brelse(bitmap_bh);
5014 ext4_std_error(sb, err);
5015 return err;
5019 * ext4_trim_extent -- function to TRIM one single free extent in the group
5020 * @sb: super block for the file system
5021 * @start: starting block of the free extent in the alloc. group
5022 * @count: number of blocks to TRIM
5023 * @group: alloc. group we are working with
5024 * @e4b: ext4 buddy for the group
5026 * Trim "count" blocks starting at "start" in the "group". To assure that no
5027 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5028 * be called with under the group lock.
5030 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5031 ext4_group_t group, struct ext4_buddy *e4b)
5032 __releases(bitlock)
5033 __acquires(bitlock)
5035 struct ext4_free_extent ex;
5036 int ret = 0;
5038 trace_ext4_trim_extent(sb, group, start, count);
5040 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5042 ex.fe_start = start;
5043 ex.fe_group = group;
5044 ex.fe_len = count;
5047 * Mark blocks used, so no one can reuse them while
5048 * being trimmed.
5050 mb_mark_used(e4b, &ex);
5051 ext4_unlock_group(sb, group);
5052 ret = ext4_issue_discard(sb, group, start, count);
5053 ext4_lock_group(sb, group);
5054 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5055 return ret;
5059 * ext4_trim_all_free -- function to trim all free space in alloc. group
5060 * @sb: super block for file system
5061 * @group: group to be trimmed
5062 * @start: first group block to examine
5063 * @max: last group block to examine
5064 * @minblocks: minimum extent block count
5066 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5067 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5068 * the extent.
5071 * ext4_trim_all_free walks through group's block bitmap searching for free
5072 * extents. When the free extent is found, mark it as used in group buddy
5073 * bitmap. Then issue a TRIM command on this extent and free the extent in
5074 * the group buddy bitmap. This is done until whole group is scanned.
5076 static ext4_grpblk_t
5077 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5078 ext4_grpblk_t start, ext4_grpblk_t max,
5079 ext4_grpblk_t minblocks)
5081 void *bitmap;
5082 ext4_grpblk_t next, count = 0, free_count = 0;
5083 struct ext4_buddy e4b;
5084 int ret = 0;
5086 trace_ext4_trim_all_free(sb, group, start, max);
5088 ret = ext4_mb_load_buddy(sb, group, &e4b);
5089 if (ret) {
5090 ext4_error(sb, "Error in loading buddy "
5091 "information for %u", group);
5092 return ret;
5094 bitmap = e4b.bd_bitmap;
5096 ext4_lock_group(sb, group);
5097 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5098 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5099 goto out;
5101 start = (e4b.bd_info->bb_first_free > start) ?
5102 e4b.bd_info->bb_first_free : start;
5104 while (start <= max) {
5105 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5106 if (start > max)
5107 break;
5108 next = mb_find_next_bit(bitmap, max + 1, start);
5110 if ((next - start) >= minblocks) {
5111 ret = ext4_trim_extent(sb, start,
5112 next - start, group, &e4b);
5113 if (ret && ret != -EOPNOTSUPP)
5114 break;
5115 ret = 0;
5116 count += next - start;
5118 free_count += next - start;
5119 start = next + 1;
5121 if (fatal_signal_pending(current)) {
5122 count = -ERESTARTSYS;
5123 break;
5126 if (need_resched()) {
5127 ext4_unlock_group(sb, group);
5128 cond_resched();
5129 ext4_lock_group(sb, group);
5132 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5133 break;
5136 if (!ret) {
5137 ret = count;
5138 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5140 out:
5141 ext4_unlock_group(sb, group);
5142 ext4_mb_unload_buddy(&e4b);
5144 ext4_debug("trimmed %d blocks in the group %d\n",
5145 count, group);
5147 return ret;
5151 * ext4_trim_fs() -- trim ioctl handle function
5152 * @sb: superblock for filesystem
5153 * @range: fstrim_range structure
5155 * start: First Byte to trim
5156 * len: number of Bytes to trim from start
5157 * minlen: minimum extent length in Bytes
5158 * ext4_trim_fs goes through all allocation groups containing Bytes from
5159 * start to start+len. For each such a group ext4_trim_all_free function
5160 * is invoked to trim all free space.
5162 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5164 struct ext4_group_info *grp;
5165 ext4_group_t group, first_group, last_group;
5166 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5167 uint64_t start, end, minlen, trimmed = 0;
5168 ext4_fsblk_t first_data_blk =
5169 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5170 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5171 int ret = 0;
5173 start = range->start >> sb->s_blocksize_bits;
5174 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5175 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5176 range->minlen >> sb->s_blocksize_bits);
5178 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5179 start >= max_blks ||
5180 range->len < sb->s_blocksize)
5181 return -EINVAL;
5182 if (end >= max_blks)
5183 end = max_blks - 1;
5184 if (end <= first_data_blk)
5185 goto out;
5186 if (start < first_data_blk)
5187 start = first_data_blk;
5189 /* Determine first and last group to examine based on start and end */
5190 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5191 &first_group, &first_cluster);
5192 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5193 &last_group, &last_cluster);
5195 /* end now represents the last cluster to discard in this group */
5196 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5198 for (group = first_group; group <= last_group; group++) {
5199 grp = ext4_get_group_info(sb, group);
5200 /* We only do this if the grp has never been initialized */
5201 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5202 ret = ext4_mb_init_group(sb, group);
5203 if (ret)
5204 break;
5208 * For all the groups except the last one, last cluster will
5209 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5210 * change it for the last group, note that last_cluster is
5211 * already computed earlier by ext4_get_group_no_and_offset()
5213 if (group == last_group)
5214 end = last_cluster;
5216 if (grp->bb_free >= minlen) {
5217 cnt = ext4_trim_all_free(sb, group, first_cluster,
5218 end, minlen);
5219 if (cnt < 0) {
5220 ret = cnt;
5221 break;
5223 trimmed += cnt;
5227 * For every group except the first one, we are sure
5228 * that the first cluster to discard will be cluster #0.
5230 first_cluster = 0;
5233 if (!ret)
5234 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5236 out:
5237 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5238 return ret;