2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
24 #include "ext4_jbd2.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly
;
34 module_param_named(mballoc_debug
, ext4_mballoc_debug
, ushort
, 0644);
35 MODULE_PARM_DESC(mballoc_debug
, "Debugging level for ext4's mballoc");
40 * - test ext4_ext_search_left() and ext4_ext_search_right()
41 * - search for metadata in few groups
44 * - normalization should take into account whether file is still open
45 * - discard preallocations if no free space left (policy?)
46 * - don't normalize tails
48 * - reservation for superuser
51 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
52 * - track min/max extents in each group for better group selection
53 * - mb_mark_used() may allocate chunk right after splitting buddy
54 * - tree of groups sorted by number of free blocks
59 * The allocation request involve request for multiple number of blocks
60 * near to the goal(block) value specified.
62 * During initialization phase of the allocator we decide to use the
63 * group preallocation or inode preallocation depending on the size of
64 * the file. The size of the file could be the resulting file size we
65 * would have after allocation, or the current file size, which ever
66 * is larger. If the size is less than sbi->s_mb_stream_request we
67 * select to use the group preallocation. The default value of
68 * s_mb_stream_request is 16 blocks. This can also be tuned via
69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70 * terms of number of blocks.
72 * The main motivation for having small file use group preallocation is to
73 * ensure that we have small files closer together on the disk.
75 * First stage the allocator looks at the inode prealloc list,
76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77 * spaces for this particular inode. The inode prealloc space is
80 * pa_lstart -> the logical start block for this prealloc space
81 * pa_pstart -> the physical start block for this prealloc space
82 * pa_len -> length for this prealloc space (in clusters)
83 * pa_free -> free space available in this prealloc space (in clusters)
85 * The inode preallocation space is used looking at the _logical_ start
86 * block. If only the logical file block falls within the range of prealloc
87 * space we will consume the particular prealloc space. This makes sure that
88 * we have contiguous physical blocks representing the file blocks
90 * The important thing to be noted in case of inode prealloc space is that
91 * we don't modify the values associated to inode prealloc space except
94 * If we are not able to find blocks in the inode prealloc space and if we
95 * have the group allocation flag set then we look at the locality group
96 * prealloc space. These are per CPU prealloc list represented as
98 * ext4_sb_info.s_locality_groups[smp_processor_id()]
100 * The reason for having a per cpu locality group is to reduce the contention
101 * between CPUs. It is possible to get scheduled at this point.
103 * The locality group prealloc space is used looking at whether we have
104 * enough free space (pa_free) within the prealloc space.
106 * If we can't allocate blocks via inode prealloc or/and locality group
107 * prealloc then we look at the buddy cache. The buddy cache is represented
108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109 * mapped to the buddy and bitmap information regarding different
110 * groups. The buddy information is attached to buddy cache inode so that
111 * we can access them through the page cache. The information regarding
112 * each group is loaded via ext4_mb_load_buddy. The information involve
113 * block bitmap and buddy information. The information are stored in the
117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
120 * one block each for bitmap and buddy information. So for each group we
121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122 * blocksize) blocks. So it can have information regarding groups_per_page
123 * which is blocks_per_page/2
125 * The buddy cache inode is not stored on disk. The inode is thrown
126 * away when the filesystem is unmounted.
128 * We look for count number of blocks in the buddy cache. If we were able
129 * to locate that many free blocks we return with additional information
130 * regarding rest of the contiguous physical block available
132 * Before allocating blocks via buddy cache we normalize the request
133 * blocks. This ensure we ask for more blocks that we needed. The extra
134 * blocks that we get after allocation is added to the respective prealloc
135 * list. In case of inode preallocation we follow a list of heuristics
136 * based on file size. This can be found in ext4_mb_normalize_request. If
137 * we are doing a group prealloc we try to normalize the request to
138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
139 * dependent on the cluster size; for non-bigalloc file systems, it is
140 * 512 blocks. This can be tuned via
141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142 * terms of number of blocks. If we have mounted the file system with -O
143 * stripe=<value> option the group prealloc request is normalized to the
144 * the smallest multiple of the stripe value (sbi->s_stripe) which is
145 * greater than the default mb_group_prealloc.
147 * The regular allocator (using the buddy cache) supports a few tunables.
149 * /sys/fs/ext4/<partition>/mb_min_to_scan
150 * /sys/fs/ext4/<partition>/mb_max_to_scan
151 * /sys/fs/ext4/<partition>/mb_order2_req
153 * The regular allocator uses buddy scan only if the request len is power of
154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155 * value of s_mb_order2_reqs can be tuned via
156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
157 * stripe size (sbi->s_stripe), we try to search for contiguous block in
158 * stripe size. This should result in better allocation on RAID setups. If
159 * not, we search in the specific group using bitmap for best extents. The
160 * tunable min_to_scan and max_to_scan control the behaviour here.
161 * min_to_scan indicate how long the mballoc __must__ look for a best
162 * extent and max_to_scan indicates how long the mballoc __can__ look for a
163 * best extent in the found extents. Searching for the blocks starts with
164 * the group specified as the goal value in allocation context via
165 * ac_g_ex. Each group is first checked based on the criteria whether it
166 * can be used for allocation. ext4_mb_good_group explains how the groups are
169 * Both the prealloc space are getting populated as above. So for the first
170 * request we will hit the buddy cache which will result in this prealloc
171 * space getting filled. The prealloc space is then later used for the
172 * subsequent request.
176 * mballoc operates on the following data:
178 * - in-core buddy (actually includes buddy and bitmap)
179 * - preallocation descriptors (PAs)
181 * there are two types of preallocations:
183 * assiged to specific inode and can be used for this inode only.
184 * it describes part of inode's space preallocated to specific
185 * physical blocks. any block from that preallocated can be used
186 * independent. the descriptor just tracks number of blocks left
187 * unused. so, before taking some block from descriptor, one must
188 * make sure corresponded logical block isn't allocated yet. this
189 * also means that freeing any block within descriptor's range
190 * must discard all preallocated blocks.
192 * assigned to specific locality group which does not translate to
193 * permanent set of inodes: inode can join and leave group. space
194 * from this type of preallocation can be used for any inode. thus
195 * it's consumed from the beginning to the end.
197 * relation between them can be expressed as:
198 * in-core buddy = on-disk bitmap + preallocation descriptors
200 * this mean blocks mballoc considers used are:
201 * - allocated blocks (persistent)
202 * - preallocated blocks (non-persistent)
204 * consistency in mballoc world means that at any time a block is either
205 * free or used in ALL structures. notice: "any time" should not be read
206 * literally -- time is discrete and delimited by locks.
208 * to keep it simple, we don't use block numbers, instead we count number of
209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
211 * all operations can be expressed as:
212 * - init buddy: buddy = on-disk + PAs
213 * - new PA: buddy += N; PA = N
214 * - use inode PA: on-disk += N; PA -= N
215 * - discard inode PA buddy -= on-disk - PA; PA = 0
216 * - use locality group PA on-disk += N; PA -= N
217 * - discard locality group PA buddy -= PA; PA = 0
218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219 * is used in real operation because we can't know actual used
220 * bits from PA, only from on-disk bitmap
222 * if we follow this strict logic, then all operations above should be atomic.
223 * given some of them can block, we'd have to use something like semaphores
224 * killing performance on high-end SMP hardware. let's try to relax it using
225 * the following knowledge:
226 * 1) if buddy is referenced, it's already initialized
227 * 2) while block is used in buddy and the buddy is referenced,
228 * nobody can re-allocate that block
229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230 * bit set and PA claims same block, it's OK. IOW, one can set bit in
231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
234 * so, now we're building a concurrency table:
237 * blocks for PA are allocated in the buddy, buddy must be referenced
238 * until PA is linked to allocation group to avoid concurrent buddy init
240 * we need to make sure that either on-disk bitmap or PA has uptodate data
241 * given (3) we care that PA-=N operation doesn't interfere with init
243 * the simplest way would be to have buddy initialized by the discard
244 * - use locality group PA
245 * again PA-=N must be serialized with init
246 * - discard locality group PA
247 * the simplest way would be to have buddy initialized by the discard
250 * i_data_sem serializes them
252 * discard process must wait until PA isn't used by another process
253 * - use locality group PA
254 * some mutex should serialize them
255 * - discard locality group PA
256 * discard process must wait until PA isn't used by another process
259 * i_data_sem or another mutex should serializes them
261 * discard process must wait until PA isn't used by another process
262 * - use locality group PA
263 * nothing wrong here -- they're different PAs covering different blocks
264 * - discard locality group PA
265 * discard process must wait until PA isn't used by another process
267 * now we're ready to make few consequences:
268 * - PA is referenced and while it is no discard is possible
269 * - PA is referenced until block isn't marked in on-disk bitmap
270 * - PA changes only after on-disk bitmap
271 * - discard must not compete with init. either init is done before
272 * any discard or they're serialized somehow
273 * - buddy init as sum of on-disk bitmap and PAs is done atomically
275 * a special case when we've used PA to emptiness. no need to modify buddy
276 * in this case, but we should care about concurrent init
281 * Logic in few words:
286 * mark bits in on-disk bitmap
289 * - use preallocation:
290 * find proper PA (per-inode or group)
292 * mark bits in on-disk bitmap
298 * mark bits in on-disk bitmap
301 * - discard preallocations in group:
303 * move them onto local list
304 * load on-disk bitmap
306 * remove PA from object (inode or locality group)
307 * mark free blocks in-core
309 * - discard inode's preallocations:
316 * - bitlock on a group (group)
317 * - object (inode/locality) (object)
328 * - release consumed pa:
333 * - generate in-core bitmap:
337 * - discard all for given object (inode, locality group):
342 * - discard all for given group:
349 static struct kmem_cache
*ext4_pspace_cachep
;
350 static struct kmem_cache
*ext4_ac_cachep
;
351 static struct kmem_cache
*ext4_free_data_cachep
;
353 /* We create slab caches for groupinfo data structures based on the
354 * superblock block size. There will be one per mounted filesystem for
355 * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache
*ext4_groupinfo_caches
[NR_GRPINFO_CACHES
];
359 static const char *ext4_groupinfo_slab_names
[NR_GRPINFO_CACHES
] = {
360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
365 static void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
367 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
369 static void ext4_free_data_callback(struct super_block
*sb
,
370 struct ext4_journal_cb_entry
*jce
, int rc
);
372 static inline void *mb_correct_addr_and_bit(int *bit
, void *addr
)
374 #if BITS_PER_LONG == 64
375 *bit
+= ((unsigned long) addr
& 7UL) << 3;
376 addr
= (void *) ((unsigned long) addr
& ~7UL);
377 #elif BITS_PER_LONG == 32
378 *bit
+= ((unsigned long) addr
& 3UL) << 3;
379 addr
= (void *) ((unsigned long) addr
& ~3UL);
381 #error "how many bits you are?!"
386 static inline int mb_test_bit(int bit
, void *addr
)
389 * ext4_test_bit on architecture like powerpc
390 * needs unsigned long aligned address
392 addr
= mb_correct_addr_and_bit(&bit
, addr
);
393 return ext4_test_bit(bit
, addr
);
396 static inline void mb_set_bit(int bit
, void *addr
)
398 addr
= mb_correct_addr_and_bit(&bit
, addr
);
399 ext4_set_bit(bit
, addr
);
402 static inline void mb_clear_bit(int bit
, void *addr
)
404 addr
= mb_correct_addr_and_bit(&bit
, addr
);
405 ext4_clear_bit(bit
, addr
);
408 static inline int mb_test_and_clear_bit(int bit
, void *addr
)
410 addr
= mb_correct_addr_and_bit(&bit
, addr
);
411 return ext4_test_and_clear_bit(bit
, addr
);
414 static inline int mb_find_next_zero_bit(void *addr
, int max
, int start
)
416 int fix
= 0, ret
, tmpmax
;
417 addr
= mb_correct_addr_and_bit(&fix
, addr
);
421 ret
= ext4_find_next_zero_bit(addr
, tmpmax
, start
) - fix
;
427 static inline int mb_find_next_bit(void *addr
, int max
, int start
)
429 int fix
= 0, ret
, tmpmax
;
430 addr
= mb_correct_addr_and_bit(&fix
, addr
);
434 ret
= ext4_find_next_bit(addr
, tmpmax
, start
) - fix
;
440 static void *mb_find_buddy(struct ext4_buddy
*e4b
, int order
, int *max
)
444 BUG_ON(e4b
->bd_bitmap
== e4b
->bd_buddy
);
447 if (order
> e4b
->bd_blkbits
+ 1) {
452 /* at order 0 we see each particular block */
454 *max
= 1 << (e4b
->bd_blkbits
+ 3);
455 return e4b
->bd_bitmap
;
458 bb
= e4b
->bd_buddy
+ EXT4_SB(e4b
->bd_sb
)->s_mb_offsets
[order
];
459 *max
= EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[order
];
465 static void mb_free_blocks_double(struct inode
*inode
, struct ext4_buddy
*e4b
,
466 int first
, int count
)
469 struct super_block
*sb
= e4b
->bd_sb
;
471 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
473 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
474 for (i
= 0; i
< count
; i
++) {
475 if (!mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
)) {
476 ext4_fsblk_t blocknr
;
478 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
479 blocknr
+= EXT4_C2B(EXT4_SB(sb
), first
+ i
);
480 ext4_grp_locked_error(sb
, e4b
->bd_group
,
481 inode
? inode
->i_ino
: 0,
483 "freeing block already freed "
487 mb_clear_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
491 static void mb_mark_used_double(struct ext4_buddy
*e4b
, int first
, int count
)
495 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
497 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
498 for (i
= 0; i
< count
; i
++) {
499 BUG_ON(mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
));
500 mb_set_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
504 static void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
506 if (memcmp(e4b
->bd_info
->bb_bitmap
, bitmap
, e4b
->bd_sb
->s_blocksize
)) {
507 unsigned char *b1
, *b2
;
509 b1
= (unsigned char *) e4b
->bd_info
->bb_bitmap
;
510 b2
= (unsigned char *) bitmap
;
511 for (i
= 0; i
< e4b
->bd_sb
->s_blocksize
; i
++) {
512 if (b1
[i
] != b2
[i
]) {
513 ext4_msg(e4b
->bd_sb
, KERN_ERR
,
514 "corruption in group %u "
515 "at byte %u(%u): %x in copy != %x "
517 e4b
->bd_group
, i
, i
* 8, b1
[i
], b2
[i
]);
525 static inline void mb_free_blocks_double(struct inode
*inode
,
526 struct ext4_buddy
*e4b
, int first
, int count
)
530 static inline void mb_mark_used_double(struct ext4_buddy
*e4b
,
531 int first
, int count
)
535 static inline void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
541 #ifdef AGGRESSIVE_CHECK
543 #define MB_CHECK_ASSERT(assert) \
547 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
548 function, file, line, # assert); \
553 static int __mb_check_buddy(struct ext4_buddy
*e4b
, char *file
,
554 const char *function
, int line
)
556 struct super_block
*sb
= e4b
->bd_sb
;
557 int order
= e4b
->bd_blkbits
+ 1;
564 struct ext4_group_info
*grp
;
567 struct list_head
*cur
;
572 static int mb_check_counter
;
573 if (mb_check_counter
++ % 100 != 0)
578 buddy
= mb_find_buddy(e4b
, order
, &max
);
579 MB_CHECK_ASSERT(buddy
);
580 buddy2
= mb_find_buddy(e4b
, order
- 1, &max2
);
581 MB_CHECK_ASSERT(buddy2
);
582 MB_CHECK_ASSERT(buddy
!= buddy2
);
583 MB_CHECK_ASSERT(max
* 2 == max2
);
586 for (i
= 0; i
< max
; i
++) {
588 if (mb_test_bit(i
, buddy
)) {
589 /* only single bit in buddy2 may be 1 */
590 if (!mb_test_bit(i
<< 1, buddy2
)) {
592 mb_test_bit((i
<<1)+1, buddy2
));
593 } else if (!mb_test_bit((i
<< 1) + 1, buddy2
)) {
595 mb_test_bit(i
<< 1, buddy2
));
600 /* both bits in buddy2 must be 1 */
601 MB_CHECK_ASSERT(mb_test_bit(i
<< 1, buddy2
));
602 MB_CHECK_ASSERT(mb_test_bit((i
<< 1) + 1, buddy2
));
604 for (j
= 0; j
< (1 << order
); j
++) {
605 k
= (i
* (1 << order
)) + j
;
607 !mb_test_bit(k
, e4b
->bd_bitmap
));
611 MB_CHECK_ASSERT(e4b
->bd_info
->bb_counters
[order
] == count
);
616 buddy
= mb_find_buddy(e4b
, 0, &max
);
617 for (i
= 0; i
< max
; i
++) {
618 if (!mb_test_bit(i
, buddy
)) {
619 MB_CHECK_ASSERT(i
>= e4b
->bd_info
->bb_first_free
);
627 /* check used bits only */
628 for (j
= 0; j
< e4b
->bd_blkbits
+ 1; j
++) {
629 buddy2
= mb_find_buddy(e4b
, j
, &max2
);
631 MB_CHECK_ASSERT(k
< max2
);
632 MB_CHECK_ASSERT(mb_test_bit(k
, buddy2
));
635 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b
->bd_info
));
636 MB_CHECK_ASSERT(e4b
->bd_info
->bb_fragments
== fragments
);
638 grp
= ext4_get_group_info(sb
, e4b
->bd_group
);
639 list_for_each(cur
, &grp
->bb_prealloc_list
) {
640 ext4_group_t groupnr
;
641 struct ext4_prealloc_space
*pa
;
642 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
643 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &groupnr
, &k
);
644 MB_CHECK_ASSERT(groupnr
== e4b
->bd_group
);
645 for (i
= 0; i
< pa
->pa_len
; i
++)
646 MB_CHECK_ASSERT(mb_test_bit(k
+ i
, buddy
));
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
652 __FILE__, __func__, __LINE__)
654 #define mb_check_buddy(e4b)
658 * Divide blocks started from @first with length @len into
659 * smaller chunks with power of 2 blocks.
660 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661 * then increase bb_counters[] for corresponded chunk size.
663 static void ext4_mb_mark_free_simple(struct super_block
*sb
,
664 void *buddy
, ext4_grpblk_t first
, ext4_grpblk_t len
,
665 struct ext4_group_info
*grp
)
667 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
671 unsigned short border
;
673 BUG_ON(len
> EXT4_CLUSTERS_PER_GROUP(sb
));
675 border
= 2 << sb
->s_blocksize_bits
;
678 /* find how many blocks can be covered since this position */
679 max
= ffs(first
| border
) - 1;
681 /* find how many blocks of power 2 we need to mark */
688 /* mark multiblock chunks only */
689 grp
->bb_counters
[min
]++;
691 mb_clear_bit(first
>> min
,
692 buddy
+ sbi
->s_mb_offsets
[min
]);
700 * Cache the order of the largest free extent we have available in this block
704 mb_set_largest_free_order(struct super_block
*sb
, struct ext4_group_info
*grp
)
709 grp
->bb_largest_free_order
= -1; /* uninit */
711 bits
= sb
->s_blocksize_bits
+ 1;
712 for (i
= bits
; i
>= 0; i
--) {
713 if (grp
->bb_counters
[i
] > 0) {
714 grp
->bb_largest_free_order
= i
;
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block
*sb
,
722 void *buddy
, void *bitmap
, ext4_group_t group
)
724 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
725 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
726 ext4_grpblk_t max
= EXT4_CLUSTERS_PER_GROUP(sb
);
731 unsigned fragments
= 0;
732 unsigned long long period
= get_cycles();
734 /* initialize buddy from bitmap which is aggregation
735 * of on-disk bitmap and preallocations */
736 i
= mb_find_next_zero_bit(bitmap
, max
, 0);
737 grp
->bb_first_free
= i
;
741 i
= mb_find_next_bit(bitmap
, max
, i
);
745 ext4_mb_mark_free_simple(sb
, buddy
, first
, len
, grp
);
747 grp
->bb_counters
[0]++;
749 i
= mb_find_next_zero_bit(bitmap
, max
, i
);
751 grp
->bb_fragments
= fragments
;
753 if (free
!= grp
->bb_free
) {
754 ext4_grp_locked_error(sb
, group
, 0, 0,
755 "block bitmap and bg descriptor "
756 "inconsistent: %u vs %u free clusters",
759 * If we intend to continue, we consider group descriptor
760 * corrupt and update bb_free using bitmap value
763 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp
))
764 percpu_counter_sub(&sbi
->s_freeclusters_counter
,
766 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT
, &grp
->bb_state
);
768 mb_set_largest_free_order(sb
, grp
);
770 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
, &(grp
->bb_state
));
772 period
= get_cycles() - period
;
773 spin_lock(&EXT4_SB(sb
)->s_bal_lock
);
774 EXT4_SB(sb
)->s_mb_buddies_generated
++;
775 EXT4_SB(sb
)->s_mb_generation_time
+= period
;
776 spin_unlock(&EXT4_SB(sb
)->s_bal_lock
);
779 static void mb_regenerate_buddy(struct ext4_buddy
*e4b
)
785 while ((buddy
= mb_find_buddy(e4b
, order
++, &count
))) {
786 ext4_set_bits(buddy
, 0, count
);
788 e4b
->bd_info
->bb_fragments
= 0;
789 memset(e4b
->bd_info
->bb_counters
, 0,
790 sizeof(*e4b
->bd_info
->bb_counters
) *
791 (e4b
->bd_sb
->s_blocksize_bits
+ 2));
793 ext4_mb_generate_buddy(e4b
->bd_sb
, e4b
->bd_buddy
,
794 e4b
->bd_bitmap
, e4b
->bd_group
);
797 /* The buddy information is attached the buddy cache inode
798 * for convenience. The information regarding each group
799 * is loaded via ext4_mb_load_buddy. The information involve
800 * block bitmap and buddy information. The information are
801 * stored in the inode as
804 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
807 * one block each for bitmap and buddy information.
808 * So for each group we take up 2 blocks. A page can
809 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
810 * So it can have information regarding groups_per_page which
811 * is blocks_per_page/2
813 * Locking note: This routine takes the block group lock of all groups
814 * for this page; do not hold this lock when calling this routine!
817 static int ext4_mb_init_cache(struct page
*page
, char *incore
)
819 ext4_group_t ngroups
;
825 ext4_group_t first_group
, group
;
827 struct super_block
*sb
;
828 struct buffer_head
*bhs
;
829 struct buffer_head
**bh
= NULL
;
833 struct ext4_group_info
*grinfo
;
835 mb_debug(1, "init page %lu\n", page
->index
);
837 inode
= page
->mapping
->host
;
839 ngroups
= ext4_get_groups_count(sb
);
840 blocksize
= 1 << inode
->i_blkbits
;
841 blocks_per_page
= PAGE_CACHE_SIZE
/ blocksize
;
843 groups_per_page
= blocks_per_page
>> 1;
844 if (groups_per_page
== 0)
847 /* allocate buffer_heads to read bitmaps */
848 if (groups_per_page
> 1) {
849 i
= sizeof(struct buffer_head
*) * groups_per_page
;
850 bh
= kzalloc(i
, GFP_NOFS
);
858 first_group
= page
->index
* blocks_per_page
/ 2;
860 /* read all groups the page covers into the cache */
861 for (i
= 0, group
= first_group
; i
< groups_per_page
; i
++, group
++) {
862 if (group
>= ngroups
)
865 grinfo
= ext4_get_group_info(sb
, group
);
867 * If page is uptodate then we came here after online resize
868 * which added some new uninitialized group info structs, so
869 * we must skip all initialized uptodate buddies on the page,
870 * which may be currently in use by an allocating task.
872 if (PageUptodate(page
) && !EXT4_MB_GRP_NEED_INIT(grinfo
)) {
876 if (!(bh
[i
] = ext4_read_block_bitmap_nowait(sb
, group
))) {
880 mb_debug(1, "read bitmap for group %u\n", group
);
883 /* wait for I/O completion */
884 for (i
= 0, group
= first_group
; i
< groups_per_page
; i
++, group
++) {
885 if (bh
[i
] && ext4_wait_block_bitmap(sb
, group
, bh
[i
])) {
891 first_block
= page
->index
* blocks_per_page
;
892 for (i
= 0; i
< blocks_per_page
; i
++) {
893 group
= (first_block
+ i
) >> 1;
894 if (group
>= ngroups
)
897 if (!bh
[group
- first_group
])
898 /* skip initialized uptodate buddy */
902 * data carry information regarding this
903 * particular group in the format specified
907 data
= page_address(page
) + (i
* blocksize
);
908 bitmap
= bh
[group
- first_group
]->b_data
;
911 * We place the buddy block and bitmap block
914 if ((first_block
+ i
) & 1) {
915 /* this is block of buddy */
916 BUG_ON(incore
== NULL
);
917 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
918 group
, page
->index
, i
* blocksize
);
919 trace_ext4_mb_buddy_bitmap_load(sb
, group
);
920 grinfo
= ext4_get_group_info(sb
, group
);
921 grinfo
->bb_fragments
= 0;
922 memset(grinfo
->bb_counters
, 0,
923 sizeof(*grinfo
->bb_counters
) *
924 (sb
->s_blocksize_bits
+2));
926 * incore got set to the group block bitmap below
928 ext4_lock_group(sb
, group
);
930 memset(data
, 0xff, blocksize
);
931 ext4_mb_generate_buddy(sb
, data
, incore
, group
);
932 ext4_unlock_group(sb
, group
);
935 /* this is block of bitmap */
936 BUG_ON(incore
!= NULL
);
937 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
938 group
, page
->index
, i
* blocksize
);
939 trace_ext4_mb_bitmap_load(sb
, group
);
941 /* see comments in ext4_mb_put_pa() */
942 ext4_lock_group(sb
, group
);
943 memcpy(data
, bitmap
, blocksize
);
945 /* mark all preallocated blks used in in-core bitmap */
946 ext4_mb_generate_from_pa(sb
, data
, group
);
947 ext4_mb_generate_from_freelist(sb
, data
, group
);
948 ext4_unlock_group(sb
, group
);
950 /* set incore so that the buddy information can be
951 * generated using this
956 SetPageUptodate(page
);
960 for (i
= 0; i
< groups_per_page
; i
++)
969 * Lock the buddy and bitmap pages. This make sure other parallel init_group
970 * on the same buddy page doesn't happen whild holding the buddy page lock.
971 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
972 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
974 static int ext4_mb_get_buddy_page_lock(struct super_block
*sb
,
975 ext4_group_t group
, struct ext4_buddy
*e4b
)
977 struct inode
*inode
= EXT4_SB(sb
)->s_buddy_cache
;
978 int block
, pnum
, poff
;
982 e4b
->bd_buddy_page
= NULL
;
983 e4b
->bd_bitmap_page
= NULL
;
985 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
987 * the buddy cache inode stores the block bitmap
988 * and buddy information in consecutive blocks.
989 * So for each group we need two blocks.
992 pnum
= block
/ blocks_per_page
;
993 poff
= block
% blocks_per_page
;
994 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
997 BUG_ON(page
->mapping
!= inode
->i_mapping
);
998 e4b
->bd_bitmap_page
= page
;
999 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1001 if (blocks_per_page
>= 2) {
1002 /* buddy and bitmap are on the same page */
1007 pnum
= block
/ blocks_per_page
;
1008 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1011 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1012 e4b
->bd_buddy_page
= page
;
1016 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy
*e4b
)
1018 if (e4b
->bd_bitmap_page
) {
1019 unlock_page(e4b
->bd_bitmap_page
);
1020 page_cache_release(e4b
->bd_bitmap_page
);
1022 if (e4b
->bd_buddy_page
) {
1023 unlock_page(e4b
->bd_buddy_page
);
1024 page_cache_release(e4b
->bd_buddy_page
);
1029 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1030 * block group lock of all groups for this page; do not hold the BG lock when
1031 * calling this routine!
1033 static noinline_for_stack
1034 int ext4_mb_init_group(struct super_block
*sb
, ext4_group_t group
)
1037 struct ext4_group_info
*this_grp
;
1038 struct ext4_buddy e4b
;
1043 mb_debug(1, "init group %u\n", group
);
1044 this_grp
= ext4_get_group_info(sb
, group
);
1046 * This ensures that we don't reinit the buddy cache
1047 * page which map to the group from which we are already
1048 * allocating. If we are looking at the buddy cache we would
1049 * have taken a reference using ext4_mb_load_buddy and that
1050 * would have pinned buddy page to page cache.
1051 * The call to ext4_mb_get_buddy_page_lock will mark the
1054 ret
= ext4_mb_get_buddy_page_lock(sb
, group
, &e4b
);
1055 if (ret
|| !EXT4_MB_GRP_NEED_INIT(this_grp
)) {
1057 * somebody initialized the group
1058 * return without doing anything
1063 page
= e4b
.bd_bitmap_page
;
1064 ret
= ext4_mb_init_cache(page
, NULL
);
1067 if (!PageUptodate(page
)) {
1072 if (e4b
.bd_buddy_page
== NULL
) {
1074 * If both the bitmap and buddy are in
1075 * the same page we don't need to force
1081 /* init buddy cache */
1082 page
= e4b
.bd_buddy_page
;
1083 ret
= ext4_mb_init_cache(page
, e4b
.bd_bitmap
);
1086 if (!PageUptodate(page
)) {
1091 ext4_mb_put_buddy_page_lock(&e4b
);
1096 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1097 * block group lock of all groups for this page; do not hold the BG lock when
1098 * calling this routine!
1100 static noinline_for_stack
int
1101 ext4_mb_load_buddy(struct super_block
*sb
, ext4_group_t group
,
1102 struct ext4_buddy
*e4b
)
1104 int blocks_per_page
;
1110 struct ext4_group_info
*grp
;
1111 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1112 struct inode
*inode
= sbi
->s_buddy_cache
;
1115 mb_debug(1, "load group %u\n", group
);
1117 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
1118 grp
= ext4_get_group_info(sb
, group
);
1120 e4b
->bd_blkbits
= sb
->s_blocksize_bits
;
1123 e4b
->bd_group
= group
;
1124 e4b
->bd_buddy_page
= NULL
;
1125 e4b
->bd_bitmap_page
= NULL
;
1127 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
1129 * we need full data about the group
1130 * to make a good selection
1132 ret
= ext4_mb_init_group(sb
, group
);
1138 * the buddy cache inode stores the block bitmap
1139 * and buddy information in consecutive blocks.
1140 * So for each group we need two blocks.
1143 pnum
= block
/ blocks_per_page
;
1144 poff
= block
% blocks_per_page
;
1146 /* we could use find_or_create_page(), but it locks page
1147 * what we'd like to avoid in fast path ... */
1148 page
= find_get_page_flags(inode
->i_mapping
, pnum
, FGP_ACCESSED
);
1149 if (page
== NULL
|| !PageUptodate(page
)) {
1152 * drop the page reference and try
1153 * to get the page with lock. If we
1154 * are not uptodate that implies
1155 * somebody just created the page but
1156 * is yet to initialize the same. So
1157 * wait for it to initialize.
1159 page_cache_release(page
);
1160 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1162 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1163 if (!PageUptodate(page
)) {
1164 ret
= ext4_mb_init_cache(page
, NULL
);
1169 mb_cmp_bitmaps(e4b
, page_address(page
) +
1170 (poff
* sb
->s_blocksize
));
1179 if (!PageUptodate(page
)) {
1184 /* Pages marked accessed already */
1185 e4b
->bd_bitmap_page
= page
;
1186 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1189 pnum
= block
/ blocks_per_page
;
1190 poff
= block
% blocks_per_page
;
1192 page
= find_get_page_flags(inode
->i_mapping
, pnum
, FGP_ACCESSED
);
1193 if (page
== NULL
|| !PageUptodate(page
)) {
1195 page_cache_release(page
);
1196 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1198 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1199 if (!PageUptodate(page
)) {
1200 ret
= ext4_mb_init_cache(page
, e4b
->bd_bitmap
);
1213 if (!PageUptodate(page
)) {
1218 /* Pages marked accessed already */
1219 e4b
->bd_buddy_page
= page
;
1220 e4b
->bd_buddy
= page_address(page
) + (poff
* sb
->s_blocksize
);
1222 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
1223 BUG_ON(e4b
->bd_buddy_page
== NULL
);
1229 page_cache_release(page
);
1230 if (e4b
->bd_bitmap_page
)
1231 page_cache_release(e4b
->bd_bitmap_page
);
1232 if (e4b
->bd_buddy_page
)
1233 page_cache_release(e4b
->bd_buddy_page
);
1234 e4b
->bd_buddy
= NULL
;
1235 e4b
->bd_bitmap
= NULL
;
1239 static void ext4_mb_unload_buddy(struct ext4_buddy
*e4b
)
1241 if (e4b
->bd_bitmap_page
)
1242 page_cache_release(e4b
->bd_bitmap_page
);
1243 if (e4b
->bd_buddy_page
)
1244 page_cache_release(e4b
->bd_buddy_page
);
1248 static int mb_find_order_for_block(struct ext4_buddy
*e4b
, int block
)
1253 BUG_ON(e4b
->bd_bitmap
== e4b
->bd_buddy
);
1254 BUG_ON(block
>= (1 << (e4b
->bd_blkbits
+ 3)));
1257 while (order
<= e4b
->bd_blkbits
+ 1) {
1259 if (!mb_test_bit(block
, bb
)) {
1260 /* this block is part of buddy of order 'order' */
1263 bb
+= 1 << (e4b
->bd_blkbits
- order
);
1269 static void mb_clear_bits(void *bm
, int cur
, int len
)
1275 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1276 /* fast path: clear whole word at once */
1277 addr
= bm
+ (cur
>> 3);
1282 mb_clear_bit(cur
, bm
);
1287 /* clear bits in given range
1288 * will return first found zero bit if any, -1 otherwise
1290 static int mb_test_and_clear_bits(void *bm
, int cur
, int len
)
1297 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1298 /* fast path: clear whole word at once */
1299 addr
= bm
+ (cur
>> 3);
1300 if (*addr
!= (__u32
)(-1) && zero_bit
== -1)
1301 zero_bit
= cur
+ mb_find_next_zero_bit(addr
, 32, 0);
1306 if (!mb_test_and_clear_bit(cur
, bm
) && zero_bit
== -1)
1314 void ext4_set_bits(void *bm
, int cur
, int len
)
1320 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1321 /* fast path: set whole word at once */
1322 addr
= bm
+ (cur
>> 3);
1327 mb_set_bit(cur
, bm
);
1333 * _________________________________________________________________ */
1335 static inline int mb_buddy_adjust_border(int* bit
, void* bitmap
, int side
)
1337 if (mb_test_bit(*bit
+ side
, bitmap
)) {
1338 mb_clear_bit(*bit
, bitmap
);
1344 mb_set_bit(*bit
, bitmap
);
1349 static void mb_buddy_mark_free(struct ext4_buddy
*e4b
, int first
, int last
)
1353 void *buddy
= mb_find_buddy(e4b
, order
, &max
);
1358 /* Bits in range [first; last] are known to be set since
1359 * corresponding blocks were allocated. Bits in range
1360 * (first; last) will stay set because they form buddies on
1361 * upper layer. We just deal with borders if they don't
1362 * align with upper layer and then go up.
1363 * Releasing entire group is all about clearing
1364 * single bit of highest order buddy.
1368 * ---------------------------------
1370 * ---------------------------------
1371 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1372 * ---------------------------------
1374 * \_____________________/
1376 * Neither [1] nor [6] is aligned to above layer.
1377 * Left neighbour [0] is free, so mark it busy,
1378 * decrease bb_counters and extend range to
1380 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1381 * mark [6] free, increase bb_counters and shrink range to
1383 * Then shift range to [0; 2], go up and do the same.
1388 e4b
->bd_info
->bb_counters
[order
] += mb_buddy_adjust_border(&first
, buddy
, -1);
1390 e4b
->bd_info
->bb_counters
[order
] += mb_buddy_adjust_border(&last
, buddy
, 1);
1395 if (first
== last
|| !(buddy2
= mb_find_buddy(e4b
, order
, &max
))) {
1396 mb_clear_bits(buddy
, first
, last
- first
+ 1);
1397 e4b
->bd_info
->bb_counters
[order
- 1] += last
- first
+ 1;
1406 static void mb_free_blocks(struct inode
*inode
, struct ext4_buddy
*e4b
,
1407 int first
, int count
)
1409 int left_is_free
= 0;
1410 int right_is_free
= 0;
1412 int last
= first
+ count
- 1;
1413 struct super_block
*sb
= e4b
->bd_sb
;
1415 if (WARN_ON(count
== 0))
1417 BUG_ON(last
>= (sb
->s_blocksize
<< 3));
1418 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
1419 /* Don't bother if the block group is corrupt. */
1420 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b
->bd_info
)))
1423 mb_check_buddy(e4b
);
1424 mb_free_blocks_double(inode
, e4b
, first
, count
);
1426 e4b
->bd_info
->bb_free
+= count
;
1427 if (first
< e4b
->bd_info
->bb_first_free
)
1428 e4b
->bd_info
->bb_first_free
= first
;
1430 /* access memory sequentially: check left neighbour,
1431 * clear range and then check right neighbour
1434 left_is_free
= !mb_test_bit(first
- 1, e4b
->bd_bitmap
);
1435 block
= mb_test_and_clear_bits(e4b
->bd_bitmap
, first
, count
);
1436 if (last
+ 1 < EXT4_SB(sb
)->s_mb_maxs
[0])
1437 right_is_free
= !mb_test_bit(last
+ 1, e4b
->bd_bitmap
);
1439 if (unlikely(block
!= -1)) {
1440 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1441 ext4_fsblk_t blocknr
;
1443 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
1444 blocknr
+= EXT4_C2B(EXT4_SB(sb
), block
);
1445 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1446 inode
? inode
->i_ino
: 0,
1448 "freeing already freed block "
1449 "(bit %u); block bitmap corrupt.",
1451 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b
->bd_info
))
1452 percpu_counter_sub(&sbi
->s_freeclusters_counter
,
1453 e4b
->bd_info
->bb_free
);
1454 /* Mark the block group as corrupt. */
1455 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT
,
1456 &e4b
->bd_info
->bb_state
);
1457 mb_regenerate_buddy(e4b
);
1461 /* let's maintain fragments counter */
1462 if (left_is_free
&& right_is_free
)
1463 e4b
->bd_info
->bb_fragments
--;
1464 else if (!left_is_free
&& !right_is_free
)
1465 e4b
->bd_info
->bb_fragments
++;
1467 /* buddy[0] == bd_bitmap is a special case, so handle
1468 * it right away and let mb_buddy_mark_free stay free of
1469 * zero order checks.
1470 * Check if neighbours are to be coaleasced,
1471 * adjust bitmap bb_counters and borders appropriately.
1474 first
+= !left_is_free
;
1475 e4b
->bd_info
->bb_counters
[0] += left_is_free
? -1 : 1;
1478 last
-= !right_is_free
;
1479 e4b
->bd_info
->bb_counters
[0] += right_is_free
? -1 : 1;
1483 mb_buddy_mark_free(e4b
, first
>> 1, last
>> 1);
1486 mb_set_largest_free_order(sb
, e4b
->bd_info
);
1487 mb_check_buddy(e4b
);
1490 static int mb_find_extent(struct ext4_buddy
*e4b
, int block
,
1491 int needed
, struct ext4_free_extent
*ex
)
1497 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1500 buddy
= mb_find_buddy(e4b
, 0, &max
);
1501 BUG_ON(buddy
== NULL
);
1502 BUG_ON(block
>= max
);
1503 if (mb_test_bit(block
, buddy
)) {
1510 /* find actual order */
1511 order
= mb_find_order_for_block(e4b
, block
);
1512 block
= block
>> order
;
1514 ex
->fe_len
= 1 << order
;
1515 ex
->fe_start
= block
<< order
;
1516 ex
->fe_group
= e4b
->bd_group
;
1518 /* calc difference from given start */
1519 next
= next
- ex
->fe_start
;
1521 ex
->fe_start
+= next
;
1523 while (needed
> ex
->fe_len
&&
1524 mb_find_buddy(e4b
, order
, &max
)) {
1526 if (block
+ 1 >= max
)
1529 next
= (block
+ 1) * (1 << order
);
1530 if (mb_test_bit(next
, e4b
->bd_bitmap
))
1533 order
= mb_find_order_for_block(e4b
, next
);
1535 block
= next
>> order
;
1536 ex
->fe_len
+= 1 << order
;
1539 BUG_ON(ex
->fe_start
+ ex
->fe_len
> (1 << (e4b
->bd_blkbits
+ 3)));
1543 static int mb_mark_used(struct ext4_buddy
*e4b
, struct ext4_free_extent
*ex
)
1549 int start
= ex
->fe_start
;
1550 int len
= ex
->fe_len
;
1555 BUG_ON(start
+ len
> (e4b
->bd_sb
->s_blocksize
<< 3));
1556 BUG_ON(e4b
->bd_group
!= ex
->fe_group
);
1557 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1558 mb_check_buddy(e4b
);
1559 mb_mark_used_double(e4b
, start
, len
);
1561 e4b
->bd_info
->bb_free
-= len
;
1562 if (e4b
->bd_info
->bb_first_free
== start
)
1563 e4b
->bd_info
->bb_first_free
+= len
;
1565 /* let's maintain fragments counter */
1567 mlen
= !mb_test_bit(start
- 1, e4b
->bd_bitmap
);
1568 if (start
+ len
< EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[0])
1569 max
= !mb_test_bit(start
+ len
, e4b
->bd_bitmap
);
1571 e4b
->bd_info
->bb_fragments
++;
1572 else if (!mlen
&& !max
)
1573 e4b
->bd_info
->bb_fragments
--;
1575 /* let's maintain buddy itself */
1577 ord
= mb_find_order_for_block(e4b
, start
);
1579 if (((start
>> ord
) << ord
) == start
&& len
>= (1 << ord
)) {
1580 /* the whole chunk may be allocated at once! */
1582 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1583 BUG_ON((start
>> ord
) >= max
);
1584 mb_set_bit(start
>> ord
, buddy
);
1585 e4b
->bd_info
->bb_counters
[ord
]--;
1592 /* store for history */
1594 ret
= len
| (ord
<< 16);
1596 /* we have to split large buddy */
1598 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1599 mb_set_bit(start
>> ord
, buddy
);
1600 e4b
->bd_info
->bb_counters
[ord
]--;
1603 cur
= (start
>> ord
) & ~1U;
1604 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1605 mb_clear_bit(cur
, buddy
);
1606 mb_clear_bit(cur
+ 1, buddy
);
1607 e4b
->bd_info
->bb_counters
[ord
]++;
1608 e4b
->bd_info
->bb_counters
[ord
]++;
1610 mb_set_largest_free_order(e4b
->bd_sb
, e4b
->bd_info
);
1612 ext4_set_bits(e4b
->bd_bitmap
, ex
->fe_start
, len0
);
1613 mb_check_buddy(e4b
);
1619 * Must be called under group lock!
1621 static void ext4_mb_use_best_found(struct ext4_allocation_context
*ac
,
1622 struct ext4_buddy
*e4b
)
1624 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1627 BUG_ON(ac
->ac_b_ex
.fe_group
!= e4b
->bd_group
);
1628 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
1630 ac
->ac_b_ex
.fe_len
= min(ac
->ac_b_ex
.fe_len
, ac
->ac_g_ex
.fe_len
);
1631 ac
->ac_b_ex
.fe_logical
= ac
->ac_g_ex
.fe_logical
;
1632 ret
= mb_mark_used(e4b
, &ac
->ac_b_ex
);
1634 /* preallocation can change ac_b_ex, thus we store actually
1635 * allocated blocks for history */
1636 ac
->ac_f_ex
= ac
->ac_b_ex
;
1638 ac
->ac_status
= AC_STATUS_FOUND
;
1639 ac
->ac_tail
= ret
& 0xffff;
1640 ac
->ac_buddy
= ret
>> 16;
1643 * take the page reference. We want the page to be pinned
1644 * so that we don't get a ext4_mb_init_cache_call for this
1645 * group until we update the bitmap. That would mean we
1646 * double allocate blocks. The reference is dropped
1647 * in ext4_mb_release_context
1649 ac
->ac_bitmap_page
= e4b
->bd_bitmap_page
;
1650 get_page(ac
->ac_bitmap_page
);
1651 ac
->ac_buddy_page
= e4b
->bd_buddy_page
;
1652 get_page(ac
->ac_buddy_page
);
1653 /* store last allocated for subsequent stream allocation */
1654 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
1655 spin_lock(&sbi
->s_md_lock
);
1656 sbi
->s_mb_last_group
= ac
->ac_f_ex
.fe_group
;
1657 sbi
->s_mb_last_start
= ac
->ac_f_ex
.fe_start
;
1658 spin_unlock(&sbi
->s_md_lock
);
1663 * regular allocator, for general purposes allocation
1666 static void ext4_mb_check_limits(struct ext4_allocation_context
*ac
,
1667 struct ext4_buddy
*e4b
,
1670 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1671 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1672 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1673 struct ext4_free_extent ex
;
1676 if (ac
->ac_status
== AC_STATUS_FOUND
)
1679 * We don't want to scan for a whole year
1681 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
&&
1682 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1683 ac
->ac_status
= AC_STATUS_BREAK
;
1688 * Haven't found good chunk so far, let's continue
1690 if (bex
->fe_len
< gex
->fe_len
)
1693 if ((finish_group
|| ac
->ac_found
> sbi
->s_mb_min_to_scan
)
1694 && bex
->fe_group
== e4b
->bd_group
) {
1695 /* recheck chunk's availability - we don't know
1696 * when it was found (within this lock-unlock
1698 max
= mb_find_extent(e4b
, bex
->fe_start
, gex
->fe_len
, &ex
);
1699 if (max
>= gex
->fe_len
) {
1700 ext4_mb_use_best_found(ac
, e4b
);
1707 * The routine checks whether found extent is good enough. If it is,
1708 * then the extent gets marked used and flag is set to the context
1709 * to stop scanning. Otherwise, the extent is compared with the
1710 * previous found extent and if new one is better, then it's stored
1711 * in the context. Later, the best found extent will be used, if
1712 * mballoc can't find good enough extent.
1714 * FIXME: real allocation policy is to be designed yet!
1716 static void ext4_mb_measure_extent(struct ext4_allocation_context
*ac
,
1717 struct ext4_free_extent
*ex
,
1718 struct ext4_buddy
*e4b
)
1720 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1721 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1723 BUG_ON(ex
->fe_len
<= 0);
1724 BUG_ON(ex
->fe_len
> EXT4_CLUSTERS_PER_GROUP(ac
->ac_sb
));
1725 BUG_ON(ex
->fe_start
>= EXT4_CLUSTERS_PER_GROUP(ac
->ac_sb
));
1726 BUG_ON(ac
->ac_status
!= AC_STATUS_CONTINUE
);
1731 * The special case - take what you catch first
1733 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1735 ext4_mb_use_best_found(ac
, e4b
);
1740 * Let's check whether the chuck is good enough
1742 if (ex
->fe_len
== gex
->fe_len
) {
1744 ext4_mb_use_best_found(ac
, e4b
);
1749 * If this is first found extent, just store it in the context
1751 if (bex
->fe_len
== 0) {
1757 * If new found extent is better, store it in the context
1759 if (bex
->fe_len
< gex
->fe_len
) {
1760 /* if the request isn't satisfied, any found extent
1761 * larger than previous best one is better */
1762 if (ex
->fe_len
> bex
->fe_len
)
1764 } else if (ex
->fe_len
> gex
->fe_len
) {
1765 /* if the request is satisfied, then we try to find
1766 * an extent that still satisfy the request, but is
1767 * smaller than previous one */
1768 if (ex
->fe_len
< bex
->fe_len
)
1772 ext4_mb_check_limits(ac
, e4b
, 0);
1775 static noinline_for_stack
1776 int ext4_mb_try_best_found(struct ext4_allocation_context
*ac
,
1777 struct ext4_buddy
*e4b
)
1779 struct ext4_free_extent ex
= ac
->ac_b_ex
;
1780 ext4_group_t group
= ex
.fe_group
;
1784 BUG_ON(ex
.fe_len
<= 0);
1785 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1789 ext4_lock_group(ac
->ac_sb
, group
);
1790 max
= mb_find_extent(e4b
, ex
.fe_start
, ex
.fe_len
, &ex
);
1794 ext4_mb_use_best_found(ac
, e4b
);
1797 ext4_unlock_group(ac
->ac_sb
, group
);
1798 ext4_mb_unload_buddy(e4b
);
1803 static noinline_for_stack
1804 int ext4_mb_find_by_goal(struct ext4_allocation_context
*ac
,
1805 struct ext4_buddy
*e4b
)
1807 ext4_group_t group
= ac
->ac_g_ex
.fe_group
;
1810 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1811 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
1812 struct ext4_free_extent ex
;
1814 if (!(ac
->ac_flags
& EXT4_MB_HINT_TRY_GOAL
))
1816 if (grp
->bb_free
== 0)
1819 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1823 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b
->bd_info
))) {
1824 ext4_mb_unload_buddy(e4b
);
1828 ext4_lock_group(ac
->ac_sb
, group
);
1829 max
= mb_find_extent(e4b
, ac
->ac_g_ex
.fe_start
,
1830 ac
->ac_g_ex
.fe_len
, &ex
);
1831 ex
.fe_logical
= 0xDEADFA11; /* debug value */
1833 if (max
>= ac
->ac_g_ex
.fe_len
&& ac
->ac_g_ex
.fe_len
== sbi
->s_stripe
) {
1836 start
= ext4_group_first_block_no(ac
->ac_sb
, e4b
->bd_group
) +
1838 /* use do_div to get remainder (would be 64-bit modulo) */
1839 if (do_div(start
, sbi
->s_stripe
) == 0) {
1842 ext4_mb_use_best_found(ac
, e4b
);
1844 } else if (max
>= ac
->ac_g_ex
.fe_len
) {
1845 BUG_ON(ex
.fe_len
<= 0);
1846 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1847 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1850 ext4_mb_use_best_found(ac
, e4b
);
1851 } else if (max
> 0 && (ac
->ac_flags
& EXT4_MB_HINT_MERGE
)) {
1852 /* Sometimes, caller may want to merge even small
1853 * number of blocks to an existing extent */
1854 BUG_ON(ex
.fe_len
<= 0);
1855 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1856 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1859 ext4_mb_use_best_found(ac
, e4b
);
1861 ext4_unlock_group(ac
->ac_sb
, group
);
1862 ext4_mb_unload_buddy(e4b
);
1868 * The routine scans buddy structures (not bitmap!) from given order
1869 * to max order and tries to find big enough chunk to satisfy the req
1871 static noinline_for_stack
1872 void ext4_mb_simple_scan_group(struct ext4_allocation_context
*ac
,
1873 struct ext4_buddy
*e4b
)
1875 struct super_block
*sb
= ac
->ac_sb
;
1876 struct ext4_group_info
*grp
= e4b
->bd_info
;
1882 BUG_ON(ac
->ac_2order
<= 0);
1883 for (i
= ac
->ac_2order
; i
<= sb
->s_blocksize_bits
+ 1; i
++) {
1884 if (grp
->bb_counters
[i
] == 0)
1887 buddy
= mb_find_buddy(e4b
, i
, &max
);
1888 BUG_ON(buddy
== NULL
);
1890 k
= mb_find_next_zero_bit(buddy
, max
, 0);
1895 ac
->ac_b_ex
.fe_len
= 1 << i
;
1896 ac
->ac_b_ex
.fe_start
= k
<< i
;
1897 ac
->ac_b_ex
.fe_group
= e4b
->bd_group
;
1899 ext4_mb_use_best_found(ac
, e4b
);
1901 BUG_ON(ac
->ac_b_ex
.fe_len
!= ac
->ac_g_ex
.fe_len
);
1903 if (EXT4_SB(sb
)->s_mb_stats
)
1904 atomic_inc(&EXT4_SB(sb
)->s_bal_2orders
);
1911 * The routine scans the group and measures all found extents.
1912 * In order to optimize scanning, caller must pass number of
1913 * free blocks in the group, so the routine can know upper limit.
1915 static noinline_for_stack
1916 void ext4_mb_complex_scan_group(struct ext4_allocation_context
*ac
,
1917 struct ext4_buddy
*e4b
)
1919 struct super_block
*sb
= ac
->ac_sb
;
1920 void *bitmap
= e4b
->bd_bitmap
;
1921 struct ext4_free_extent ex
;
1925 free
= e4b
->bd_info
->bb_free
;
1928 i
= e4b
->bd_info
->bb_first_free
;
1930 while (free
&& ac
->ac_status
== AC_STATUS_CONTINUE
) {
1931 i
= mb_find_next_zero_bit(bitmap
,
1932 EXT4_CLUSTERS_PER_GROUP(sb
), i
);
1933 if (i
>= EXT4_CLUSTERS_PER_GROUP(sb
)) {
1935 * IF we have corrupt bitmap, we won't find any
1936 * free blocks even though group info says we
1937 * we have free blocks
1939 ext4_grp_locked_error(sb
, e4b
->bd_group
, 0, 0,
1940 "%d free clusters as per "
1941 "group info. But bitmap says 0",
1946 mb_find_extent(e4b
, i
, ac
->ac_g_ex
.fe_len
, &ex
);
1947 BUG_ON(ex
.fe_len
<= 0);
1948 if (free
< ex
.fe_len
) {
1949 ext4_grp_locked_error(sb
, e4b
->bd_group
, 0, 0,
1950 "%d free clusters as per "
1951 "group info. But got %d blocks",
1954 * The number of free blocks differs. This mostly
1955 * indicate that the bitmap is corrupt. So exit
1956 * without claiming the space.
1960 ex
.fe_logical
= 0xDEADC0DE; /* debug value */
1961 ext4_mb_measure_extent(ac
, &ex
, e4b
);
1967 ext4_mb_check_limits(ac
, e4b
, 1);
1971 * This is a special case for storages like raid5
1972 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1974 static noinline_for_stack
1975 void ext4_mb_scan_aligned(struct ext4_allocation_context
*ac
,
1976 struct ext4_buddy
*e4b
)
1978 struct super_block
*sb
= ac
->ac_sb
;
1979 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1980 void *bitmap
= e4b
->bd_bitmap
;
1981 struct ext4_free_extent ex
;
1982 ext4_fsblk_t first_group_block
;
1987 BUG_ON(sbi
->s_stripe
== 0);
1989 /* find first stripe-aligned block in group */
1990 first_group_block
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
1992 a
= first_group_block
+ sbi
->s_stripe
- 1;
1993 do_div(a
, sbi
->s_stripe
);
1994 i
= (a
* sbi
->s_stripe
) - first_group_block
;
1996 while (i
< EXT4_CLUSTERS_PER_GROUP(sb
)) {
1997 if (!mb_test_bit(i
, bitmap
)) {
1998 max
= mb_find_extent(e4b
, i
, sbi
->s_stripe
, &ex
);
1999 if (max
>= sbi
->s_stripe
) {
2001 ex
.fe_logical
= 0xDEADF00D; /* debug value */
2003 ext4_mb_use_best_found(ac
, e4b
);
2011 /* This is now called BEFORE we load the buddy bitmap. */
2012 static int ext4_mb_good_group(struct ext4_allocation_context
*ac
,
2013 ext4_group_t group
, int cr
)
2015 unsigned free
, fragments
;
2016 int flex_size
= ext4_flex_bg_size(EXT4_SB(ac
->ac_sb
));
2017 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
2019 BUG_ON(cr
< 0 || cr
>= 4);
2021 free
= grp
->bb_free
;
2024 if (cr
<= 2 && free
< ac
->ac_g_ex
.fe_len
)
2027 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp
)))
2030 /* We only do this if the grp has never been initialized */
2031 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
2032 int ret
= ext4_mb_init_group(ac
->ac_sb
, group
);
2037 fragments
= grp
->bb_fragments
;
2043 BUG_ON(ac
->ac_2order
== 0);
2045 /* Avoid using the first bg of a flexgroup for data files */
2046 if ((ac
->ac_flags
& EXT4_MB_HINT_DATA
) &&
2047 (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) &&
2048 ((group
% flex_size
) == 0))
2051 if ((ac
->ac_2order
> ac
->ac_sb
->s_blocksize_bits
+1) ||
2052 (free
/ fragments
) >= ac
->ac_g_ex
.fe_len
)
2055 if (grp
->bb_largest_free_order
< ac
->ac_2order
)
2060 if ((free
/ fragments
) >= ac
->ac_g_ex
.fe_len
)
2064 if (free
>= ac
->ac_g_ex
.fe_len
)
2076 static noinline_for_stack
int
2077 ext4_mb_regular_allocator(struct ext4_allocation_context
*ac
)
2079 ext4_group_t ngroups
, group
, i
;
2082 struct ext4_sb_info
*sbi
;
2083 struct super_block
*sb
;
2084 struct ext4_buddy e4b
;
2088 ngroups
= ext4_get_groups_count(sb
);
2089 /* non-extent files are limited to low blocks/groups */
2090 if (!(ext4_test_inode_flag(ac
->ac_inode
, EXT4_INODE_EXTENTS
)))
2091 ngroups
= sbi
->s_blockfile_groups
;
2093 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
2095 /* first, try the goal */
2096 err
= ext4_mb_find_by_goal(ac
, &e4b
);
2097 if (err
|| ac
->ac_status
== AC_STATUS_FOUND
)
2100 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
2104 * ac->ac2_order is set only if the fe_len is a power of 2
2105 * if ac2_order is set we also set criteria to 0 so that we
2106 * try exact allocation using buddy.
2108 i
= fls(ac
->ac_g_ex
.fe_len
);
2111 * We search using buddy data only if the order of the request
2112 * is greater than equal to the sbi_s_mb_order2_reqs
2113 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2115 if (i
>= sbi
->s_mb_order2_reqs
) {
2117 * This should tell if fe_len is exactly power of 2
2119 if ((ac
->ac_g_ex
.fe_len
& (~(1 << (i
- 1)))) == 0)
2120 ac
->ac_2order
= i
- 1;
2123 /* if stream allocation is enabled, use global goal */
2124 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
2125 /* TBD: may be hot point */
2126 spin_lock(&sbi
->s_md_lock
);
2127 ac
->ac_g_ex
.fe_group
= sbi
->s_mb_last_group
;
2128 ac
->ac_g_ex
.fe_start
= sbi
->s_mb_last_start
;
2129 spin_unlock(&sbi
->s_md_lock
);
2132 /* Let's just scan groups to find more-less suitable blocks */
2133 cr
= ac
->ac_2order
? 0 : 1;
2135 * cr == 0 try to get exact allocation,
2136 * cr == 3 try to get anything
2139 for (; cr
< 4 && ac
->ac_status
== AC_STATUS_CONTINUE
; cr
++) {
2140 ac
->ac_criteria
= cr
;
2142 * searching for the right group start
2143 * from the goal value specified
2145 group
= ac
->ac_g_ex
.fe_group
;
2147 for (i
= 0; i
< ngroups
; group
++, i
++) {
2150 * Artificially restricted ngroups for non-extent
2151 * files makes group > ngroups possible on first loop.
2153 if (group
>= ngroups
)
2156 /* This now checks without needing the buddy page */
2157 if (!ext4_mb_good_group(ac
, group
, cr
))
2160 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2164 ext4_lock_group(sb
, group
);
2167 * We need to check again after locking the
2170 if (!ext4_mb_good_group(ac
, group
, cr
)) {
2171 ext4_unlock_group(sb
, group
);
2172 ext4_mb_unload_buddy(&e4b
);
2176 ac
->ac_groups_scanned
++;
2177 if (cr
== 0 && ac
->ac_2order
< sb
->s_blocksize_bits
+2)
2178 ext4_mb_simple_scan_group(ac
, &e4b
);
2179 else if (cr
== 1 && sbi
->s_stripe
&&
2180 !(ac
->ac_g_ex
.fe_len
% sbi
->s_stripe
))
2181 ext4_mb_scan_aligned(ac
, &e4b
);
2183 ext4_mb_complex_scan_group(ac
, &e4b
);
2185 ext4_unlock_group(sb
, group
);
2186 ext4_mb_unload_buddy(&e4b
);
2188 if (ac
->ac_status
!= AC_STATUS_CONTINUE
)
2193 if (ac
->ac_b_ex
.fe_len
> 0 && ac
->ac_status
!= AC_STATUS_FOUND
&&
2194 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
2196 * We've been searching too long. Let's try to allocate
2197 * the best chunk we've found so far
2200 ext4_mb_try_best_found(ac
, &e4b
);
2201 if (ac
->ac_status
!= AC_STATUS_FOUND
) {
2203 * Someone more lucky has already allocated it.
2204 * The only thing we can do is just take first
2206 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2208 ac
->ac_b_ex
.fe_group
= 0;
2209 ac
->ac_b_ex
.fe_start
= 0;
2210 ac
->ac_b_ex
.fe_len
= 0;
2211 ac
->ac_status
= AC_STATUS_CONTINUE
;
2212 ac
->ac_flags
|= EXT4_MB_HINT_FIRST
;
2214 atomic_inc(&sbi
->s_mb_lost_chunks
);
2222 static void *ext4_mb_seq_groups_start(struct seq_file
*seq
, loff_t
*pos
)
2224 struct super_block
*sb
= seq
->private;
2227 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2230 return (void *) ((unsigned long) group
);
2233 static void *ext4_mb_seq_groups_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2235 struct super_block
*sb
= seq
->private;
2239 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2242 return (void *) ((unsigned long) group
);
2245 static int ext4_mb_seq_groups_show(struct seq_file
*seq
, void *v
)
2247 struct super_block
*sb
= seq
->private;
2248 ext4_group_t group
= (ext4_group_t
) ((unsigned long) v
);
2250 int err
, buddy_loaded
= 0;
2251 struct ext4_buddy e4b
;
2252 struct ext4_group_info
*grinfo
;
2254 struct ext4_group_info info
;
2255 ext4_grpblk_t counters
[16];
2260 seq_printf(seq
, "#%-5s: %-5s %-5s %-5s "
2261 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2262 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2263 "group", "free", "frags", "first",
2264 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2265 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2267 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(sg
.info
.bb_counters
[0]) +
2268 sizeof(struct ext4_group_info
);
2269 grinfo
= ext4_get_group_info(sb
, group
);
2270 /* Load the group info in memory only if not already loaded. */
2271 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo
))) {
2272 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2274 seq_printf(seq
, "#%-5u: I/O error\n", group
);
2280 memcpy(&sg
, ext4_get_group_info(sb
, group
), i
);
2283 ext4_mb_unload_buddy(&e4b
);
2285 seq_printf(seq
, "#%-5u: %-5u %-5u %-5u [", group
, sg
.info
.bb_free
,
2286 sg
.info
.bb_fragments
, sg
.info
.bb_first_free
);
2287 for (i
= 0; i
<= 13; i
++)
2288 seq_printf(seq
, " %-5u", i
<= sb
->s_blocksize_bits
+ 1 ?
2289 sg
.info
.bb_counters
[i
] : 0);
2290 seq_printf(seq
, " ]\n");
2295 static void ext4_mb_seq_groups_stop(struct seq_file
*seq
, void *v
)
2299 static const struct seq_operations ext4_mb_seq_groups_ops
= {
2300 .start
= ext4_mb_seq_groups_start
,
2301 .next
= ext4_mb_seq_groups_next
,
2302 .stop
= ext4_mb_seq_groups_stop
,
2303 .show
= ext4_mb_seq_groups_show
,
2306 static int ext4_mb_seq_groups_open(struct inode
*inode
, struct file
*file
)
2308 struct super_block
*sb
= PDE_DATA(inode
);
2311 rc
= seq_open(file
, &ext4_mb_seq_groups_ops
);
2313 struct seq_file
*m
= file
->private_data
;
2320 static const struct file_operations ext4_mb_seq_groups_fops
= {
2321 .owner
= THIS_MODULE
,
2322 .open
= ext4_mb_seq_groups_open
,
2324 .llseek
= seq_lseek
,
2325 .release
= seq_release
,
2328 static struct kmem_cache
*get_groupinfo_cache(int blocksize_bits
)
2330 int cache_index
= blocksize_bits
- EXT4_MIN_BLOCK_LOG_SIZE
;
2331 struct kmem_cache
*cachep
= ext4_groupinfo_caches
[cache_index
];
2338 * Allocate the top-level s_group_info array for the specified number
2341 int ext4_mb_alloc_groupinfo(struct super_block
*sb
, ext4_group_t ngroups
)
2343 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2345 struct ext4_group_info
***new_groupinfo
;
2347 size
= (ngroups
+ EXT4_DESC_PER_BLOCK(sb
) - 1) >>
2348 EXT4_DESC_PER_BLOCK_BITS(sb
);
2349 if (size
<= sbi
->s_group_info_size
)
2352 size
= roundup_pow_of_two(sizeof(*sbi
->s_group_info
) * size
);
2353 new_groupinfo
= ext4_kvzalloc(size
, GFP_KERNEL
);
2354 if (!new_groupinfo
) {
2355 ext4_msg(sb
, KERN_ERR
, "can't allocate buddy meta group");
2358 if (sbi
->s_group_info
) {
2359 memcpy(new_groupinfo
, sbi
->s_group_info
,
2360 sbi
->s_group_info_size
* sizeof(*sbi
->s_group_info
));
2361 ext4_kvfree(sbi
->s_group_info
);
2363 sbi
->s_group_info
= new_groupinfo
;
2364 sbi
->s_group_info_size
= size
/ sizeof(*sbi
->s_group_info
);
2365 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2366 sbi
->s_group_info_size
);
2370 /* Create and initialize ext4_group_info data for the given group. */
2371 int ext4_mb_add_groupinfo(struct super_block
*sb
, ext4_group_t group
,
2372 struct ext4_group_desc
*desc
)
2376 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2377 struct ext4_group_info
**meta_group_info
;
2378 struct kmem_cache
*cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2381 * First check if this group is the first of a reserved block.
2382 * If it's true, we have to allocate a new table of pointers
2383 * to ext4_group_info structures
2385 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2386 metalen
= sizeof(*meta_group_info
) <<
2387 EXT4_DESC_PER_BLOCK_BITS(sb
);
2388 meta_group_info
= kmalloc(metalen
, GFP_KERNEL
);
2389 if (meta_group_info
== NULL
) {
2390 ext4_msg(sb
, KERN_ERR
, "can't allocate mem "
2391 "for a buddy group");
2392 goto exit_meta_group_info
;
2394 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)] =
2399 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)];
2400 i
= group
& (EXT4_DESC_PER_BLOCK(sb
) - 1);
2402 meta_group_info
[i
] = kmem_cache_zalloc(cachep
, GFP_KERNEL
);
2403 if (meta_group_info
[i
] == NULL
) {
2404 ext4_msg(sb
, KERN_ERR
, "can't allocate buddy mem");
2405 goto exit_group_info
;
2407 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
,
2408 &(meta_group_info
[i
]->bb_state
));
2411 * initialize bb_free to be able to skip
2412 * empty groups without initialization
2414 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
2415 meta_group_info
[i
]->bb_free
=
2416 ext4_free_clusters_after_init(sb
, group
, desc
);
2418 meta_group_info
[i
]->bb_free
=
2419 ext4_free_group_clusters(sb
, desc
);
2422 INIT_LIST_HEAD(&meta_group_info
[i
]->bb_prealloc_list
);
2423 init_rwsem(&meta_group_info
[i
]->alloc_sem
);
2424 meta_group_info
[i
]->bb_free_root
= RB_ROOT
;
2425 meta_group_info
[i
]->bb_largest_free_order
= -1; /* uninit */
2429 struct buffer_head
*bh
;
2430 meta_group_info
[i
]->bb_bitmap
=
2431 kmalloc(sb
->s_blocksize
, GFP_KERNEL
);
2432 BUG_ON(meta_group_info
[i
]->bb_bitmap
== NULL
);
2433 bh
= ext4_read_block_bitmap(sb
, group
);
2435 memcpy(meta_group_info
[i
]->bb_bitmap
, bh
->b_data
,
2444 /* If a meta_group_info table has been allocated, release it now */
2445 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2446 kfree(sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)]);
2447 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)] = NULL
;
2449 exit_meta_group_info
:
2451 } /* ext4_mb_add_groupinfo */
2453 static int ext4_mb_init_backend(struct super_block
*sb
)
2455 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2457 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2459 struct ext4_group_desc
*desc
;
2460 struct kmem_cache
*cachep
;
2462 err
= ext4_mb_alloc_groupinfo(sb
, ngroups
);
2466 sbi
->s_buddy_cache
= new_inode(sb
);
2467 if (sbi
->s_buddy_cache
== NULL
) {
2468 ext4_msg(sb
, KERN_ERR
, "can't get new inode");
2471 /* To avoid potentially colliding with an valid on-disk inode number,
2472 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2473 * not in the inode hash, so it should never be found by iget(), but
2474 * this will avoid confusion if it ever shows up during debugging. */
2475 sbi
->s_buddy_cache
->i_ino
= EXT4_BAD_INO
;
2476 EXT4_I(sbi
->s_buddy_cache
)->i_disksize
= 0;
2477 for (i
= 0; i
< ngroups
; i
++) {
2478 desc
= ext4_get_group_desc(sb
, i
, NULL
);
2480 ext4_msg(sb
, KERN_ERR
, "can't read descriptor %u", i
);
2483 if (ext4_mb_add_groupinfo(sb
, i
, desc
) != 0)
2490 cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2492 kmem_cache_free(cachep
, ext4_get_group_info(sb
, i
));
2493 i
= sbi
->s_group_info_size
;
2495 kfree(sbi
->s_group_info
[i
]);
2496 iput(sbi
->s_buddy_cache
);
2498 ext4_kvfree(sbi
->s_group_info
);
2502 static void ext4_groupinfo_destroy_slabs(void)
2506 for (i
= 0; i
< NR_GRPINFO_CACHES
; i
++) {
2507 if (ext4_groupinfo_caches
[i
])
2508 kmem_cache_destroy(ext4_groupinfo_caches
[i
]);
2509 ext4_groupinfo_caches
[i
] = NULL
;
2513 static int ext4_groupinfo_create_slab(size_t size
)
2515 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex
);
2517 int blocksize_bits
= order_base_2(size
);
2518 int cache_index
= blocksize_bits
- EXT4_MIN_BLOCK_LOG_SIZE
;
2519 struct kmem_cache
*cachep
;
2521 if (cache_index
>= NR_GRPINFO_CACHES
)
2524 if (unlikely(cache_index
< 0))
2527 mutex_lock(&ext4_grpinfo_slab_create_mutex
);
2528 if (ext4_groupinfo_caches
[cache_index
]) {
2529 mutex_unlock(&ext4_grpinfo_slab_create_mutex
);
2530 return 0; /* Already created */
2533 slab_size
= offsetof(struct ext4_group_info
,
2534 bb_counters
[blocksize_bits
+ 2]);
2536 cachep
= kmem_cache_create(ext4_groupinfo_slab_names
[cache_index
],
2537 slab_size
, 0, SLAB_RECLAIM_ACCOUNT
,
2540 ext4_groupinfo_caches
[cache_index
] = cachep
;
2542 mutex_unlock(&ext4_grpinfo_slab_create_mutex
);
2545 "EXT4-fs: no memory for groupinfo slab cache\n");
2552 int ext4_mb_init(struct super_block
*sb
)
2554 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2560 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_offsets
);
2562 sbi
->s_mb_offsets
= kmalloc(i
, GFP_KERNEL
);
2563 if (sbi
->s_mb_offsets
== NULL
) {
2568 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_maxs
);
2569 sbi
->s_mb_maxs
= kmalloc(i
, GFP_KERNEL
);
2570 if (sbi
->s_mb_maxs
== NULL
) {
2575 ret
= ext4_groupinfo_create_slab(sb
->s_blocksize
);
2579 /* order 0 is regular bitmap */
2580 sbi
->s_mb_maxs
[0] = sb
->s_blocksize
<< 3;
2581 sbi
->s_mb_offsets
[0] = 0;
2585 max
= sb
->s_blocksize
<< 2;
2587 sbi
->s_mb_offsets
[i
] = offset
;
2588 sbi
->s_mb_maxs
[i
] = max
;
2589 offset
+= 1 << (sb
->s_blocksize_bits
- i
);
2592 } while (i
<= sb
->s_blocksize_bits
+ 1);
2594 spin_lock_init(&sbi
->s_md_lock
);
2595 spin_lock_init(&sbi
->s_bal_lock
);
2597 sbi
->s_mb_max_to_scan
= MB_DEFAULT_MAX_TO_SCAN
;
2598 sbi
->s_mb_min_to_scan
= MB_DEFAULT_MIN_TO_SCAN
;
2599 sbi
->s_mb_stats
= MB_DEFAULT_STATS
;
2600 sbi
->s_mb_stream_request
= MB_DEFAULT_STREAM_THRESHOLD
;
2601 sbi
->s_mb_order2_reqs
= MB_DEFAULT_ORDER2_REQS
;
2603 * The default group preallocation is 512, which for 4k block
2604 * sizes translates to 2 megabytes. However for bigalloc file
2605 * systems, this is probably too big (i.e, if the cluster size
2606 * is 1 megabyte, then group preallocation size becomes half a
2607 * gigabyte!). As a default, we will keep a two megabyte
2608 * group pralloc size for cluster sizes up to 64k, and after
2609 * that, we will force a minimum group preallocation size of
2610 * 32 clusters. This translates to 8 megs when the cluster
2611 * size is 256k, and 32 megs when the cluster size is 1 meg,
2612 * which seems reasonable as a default.
2614 sbi
->s_mb_group_prealloc
= max(MB_DEFAULT_GROUP_PREALLOC
>>
2615 sbi
->s_cluster_bits
, 32);
2617 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2618 * to the lowest multiple of s_stripe which is bigger than
2619 * the s_mb_group_prealloc as determined above. We want
2620 * the preallocation size to be an exact multiple of the
2621 * RAID stripe size so that preallocations don't fragment
2624 if (sbi
->s_stripe
> 1) {
2625 sbi
->s_mb_group_prealloc
= roundup(
2626 sbi
->s_mb_group_prealloc
, sbi
->s_stripe
);
2629 sbi
->s_locality_groups
= alloc_percpu(struct ext4_locality_group
);
2630 if (sbi
->s_locality_groups
== NULL
) {
2634 for_each_possible_cpu(i
) {
2635 struct ext4_locality_group
*lg
;
2636 lg
= per_cpu_ptr(sbi
->s_locality_groups
, i
);
2637 mutex_init(&lg
->lg_mutex
);
2638 for (j
= 0; j
< PREALLOC_TB_SIZE
; j
++)
2639 INIT_LIST_HEAD(&lg
->lg_prealloc_list
[j
]);
2640 spin_lock_init(&lg
->lg_prealloc_lock
);
2643 /* init file for buddy data */
2644 ret
= ext4_mb_init_backend(sb
);
2646 goto out_free_locality_groups
;
2649 proc_create_data("mb_groups", S_IRUGO
, sbi
->s_proc
,
2650 &ext4_mb_seq_groups_fops
, sb
);
2654 out_free_locality_groups
:
2655 free_percpu(sbi
->s_locality_groups
);
2656 sbi
->s_locality_groups
= NULL
;
2658 kfree(sbi
->s_mb_offsets
);
2659 sbi
->s_mb_offsets
= NULL
;
2660 kfree(sbi
->s_mb_maxs
);
2661 sbi
->s_mb_maxs
= NULL
;
2665 /* need to called with the ext4 group lock held */
2666 static void ext4_mb_cleanup_pa(struct ext4_group_info
*grp
)
2668 struct ext4_prealloc_space
*pa
;
2669 struct list_head
*cur
, *tmp
;
2672 list_for_each_safe(cur
, tmp
, &grp
->bb_prealloc_list
) {
2673 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
2674 list_del(&pa
->pa_group_list
);
2676 kmem_cache_free(ext4_pspace_cachep
, pa
);
2679 mb_debug(1, "mballoc: %u PAs left\n", count
);
2683 int ext4_mb_release(struct super_block
*sb
)
2685 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2687 int num_meta_group_infos
;
2688 struct ext4_group_info
*grinfo
;
2689 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2690 struct kmem_cache
*cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2693 remove_proc_entry("mb_groups", sbi
->s_proc
);
2695 if (sbi
->s_group_info
) {
2696 for (i
= 0; i
< ngroups
; i
++) {
2697 grinfo
= ext4_get_group_info(sb
, i
);
2699 kfree(grinfo
->bb_bitmap
);
2701 ext4_lock_group(sb
, i
);
2702 ext4_mb_cleanup_pa(grinfo
);
2703 ext4_unlock_group(sb
, i
);
2704 kmem_cache_free(cachep
, grinfo
);
2706 num_meta_group_infos
= (ngroups
+
2707 EXT4_DESC_PER_BLOCK(sb
) - 1) >>
2708 EXT4_DESC_PER_BLOCK_BITS(sb
);
2709 for (i
= 0; i
< num_meta_group_infos
; i
++)
2710 kfree(sbi
->s_group_info
[i
]);
2711 ext4_kvfree(sbi
->s_group_info
);
2713 kfree(sbi
->s_mb_offsets
);
2714 kfree(sbi
->s_mb_maxs
);
2715 if (sbi
->s_buddy_cache
)
2716 iput(sbi
->s_buddy_cache
);
2717 if (sbi
->s_mb_stats
) {
2718 ext4_msg(sb
, KERN_INFO
,
2719 "mballoc: %u blocks %u reqs (%u success)",
2720 atomic_read(&sbi
->s_bal_allocated
),
2721 atomic_read(&sbi
->s_bal_reqs
),
2722 atomic_read(&sbi
->s_bal_success
));
2723 ext4_msg(sb
, KERN_INFO
,
2724 "mballoc: %u extents scanned, %u goal hits, "
2725 "%u 2^N hits, %u breaks, %u lost",
2726 atomic_read(&sbi
->s_bal_ex_scanned
),
2727 atomic_read(&sbi
->s_bal_goals
),
2728 atomic_read(&sbi
->s_bal_2orders
),
2729 atomic_read(&sbi
->s_bal_breaks
),
2730 atomic_read(&sbi
->s_mb_lost_chunks
));
2731 ext4_msg(sb
, KERN_INFO
,
2732 "mballoc: %lu generated and it took %Lu",
2733 sbi
->s_mb_buddies_generated
,
2734 sbi
->s_mb_generation_time
);
2735 ext4_msg(sb
, KERN_INFO
,
2736 "mballoc: %u preallocated, %u discarded",
2737 atomic_read(&sbi
->s_mb_preallocated
),
2738 atomic_read(&sbi
->s_mb_discarded
));
2741 free_percpu(sbi
->s_locality_groups
);
2746 static inline int ext4_issue_discard(struct super_block
*sb
,
2747 ext4_group_t block_group
, ext4_grpblk_t cluster
, int count
)
2749 ext4_fsblk_t discard_block
;
2751 discard_block
= (EXT4_C2B(EXT4_SB(sb
), cluster
) +
2752 ext4_group_first_block_no(sb
, block_group
));
2753 count
= EXT4_C2B(EXT4_SB(sb
), count
);
2754 trace_ext4_discard_blocks(sb
,
2755 (unsigned long long) discard_block
, count
);
2756 return sb_issue_discard(sb
, discard_block
, count
, GFP_NOFS
, 0);
2760 * This function is called by the jbd2 layer once the commit has finished,
2761 * so we know we can free the blocks that were released with that commit.
2763 static void ext4_free_data_callback(struct super_block
*sb
,
2764 struct ext4_journal_cb_entry
*jce
,
2767 struct ext4_free_data
*entry
= (struct ext4_free_data
*)jce
;
2768 struct ext4_buddy e4b
;
2769 struct ext4_group_info
*db
;
2770 int err
, count
= 0, count2
= 0;
2772 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2773 entry
->efd_count
, entry
->efd_group
, entry
);
2775 if (test_opt(sb
, DISCARD
)) {
2776 err
= ext4_issue_discard(sb
, entry
->efd_group
,
2777 entry
->efd_start_cluster
,
2779 if (err
&& err
!= -EOPNOTSUPP
)
2780 ext4_msg(sb
, KERN_WARNING
, "discard request in"
2781 " group:%d block:%d count:%d failed"
2782 " with %d", entry
->efd_group
,
2783 entry
->efd_start_cluster
,
2784 entry
->efd_count
, err
);
2787 err
= ext4_mb_load_buddy(sb
, entry
->efd_group
, &e4b
);
2788 /* we expect to find existing buddy because it's pinned */
2793 /* there are blocks to put in buddy to make them really free */
2794 count
+= entry
->efd_count
;
2796 ext4_lock_group(sb
, entry
->efd_group
);
2797 /* Take it out of per group rb tree */
2798 rb_erase(&entry
->efd_node
, &(db
->bb_free_root
));
2799 mb_free_blocks(NULL
, &e4b
, entry
->efd_start_cluster
, entry
->efd_count
);
2802 * Clear the trimmed flag for the group so that the next
2803 * ext4_trim_fs can trim it.
2804 * If the volume is mounted with -o discard, online discard
2805 * is supported and the free blocks will be trimmed online.
2807 if (!test_opt(sb
, DISCARD
))
2808 EXT4_MB_GRP_CLEAR_TRIMMED(db
);
2810 if (!db
->bb_free_root
.rb_node
) {
2811 /* No more items in the per group rb tree
2812 * balance refcounts from ext4_mb_free_metadata()
2814 page_cache_release(e4b
.bd_buddy_page
);
2815 page_cache_release(e4b
.bd_bitmap_page
);
2817 ext4_unlock_group(sb
, entry
->efd_group
);
2818 kmem_cache_free(ext4_free_data_cachep
, entry
);
2819 ext4_mb_unload_buddy(&e4b
);
2821 mb_debug(1, "freed %u blocks in %u structures\n", count
, count2
);
2824 int __init
ext4_init_mballoc(void)
2826 ext4_pspace_cachep
= KMEM_CACHE(ext4_prealloc_space
,
2827 SLAB_RECLAIM_ACCOUNT
);
2828 if (ext4_pspace_cachep
== NULL
)
2831 ext4_ac_cachep
= KMEM_CACHE(ext4_allocation_context
,
2832 SLAB_RECLAIM_ACCOUNT
);
2833 if (ext4_ac_cachep
== NULL
) {
2834 kmem_cache_destroy(ext4_pspace_cachep
);
2838 ext4_free_data_cachep
= KMEM_CACHE(ext4_free_data
,
2839 SLAB_RECLAIM_ACCOUNT
);
2840 if (ext4_free_data_cachep
== NULL
) {
2841 kmem_cache_destroy(ext4_pspace_cachep
);
2842 kmem_cache_destroy(ext4_ac_cachep
);
2848 void ext4_exit_mballoc(void)
2851 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2852 * before destroying the slab cache.
2855 kmem_cache_destroy(ext4_pspace_cachep
);
2856 kmem_cache_destroy(ext4_ac_cachep
);
2857 kmem_cache_destroy(ext4_free_data_cachep
);
2858 ext4_groupinfo_destroy_slabs();
2863 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2864 * Returns 0 if success or error code
2866 static noinline_for_stack
int
2867 ext4_mb_mark_diskspace_used(struct ext4_allocation_context
*ac
,
2868 handle_t
*handle
, unsigned int reserv_clstrs
)
2870 struct buffer_head
*bitmap_bh
= NULL
;
2871 struct ext4_group_desc
*gdp
;
2872 struct buffer_head
*gdp_bh
;
2873 struct ext4_sb_info
*sbi
;
2874 struct super_block
*sb
;
2878 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
2879 BUG_ON(ac
->ac_b_ex
.fe_len
<= 0);
2885 bitmap_bh
= ext4_read_block_bitmap(sb
, ac
->ac_b_ex
.fe_group
);
2889 BUFFER_TRACE(bitmap_bh
, "getting write access");
2890 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
2895 gdp
= ext4_get_group_desc(sb
, ac
->ac_b_ex
.fe_group
, &gdp_bh
);
2899 ext4_debug("using block group %u(%d)\n", ac
->ac_b_ex
.fe_group
,
2900 ext4_free_group_clusters(sb
, gdp
));
2902 BUFFER_TRACE(gdp_bh
, "get_write_access");
2903 err
= ext4_journal_get_write_access(handle
, gdp_bh
);
2907 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
2909 len
= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
2910 if (!ext4_data_block_valid(sbi
, block
, len
)) {
2911 ext4_error(sb
, "Allocating blocks %llu-%llu which overlap "
2912 "fs metadata", block
, block
+len
);
2913 /* File system mounted not to panic on error
2914 * Fix the bitmap and repeat the block allocation
2915 * We leak some of the blocks here.
2917 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2918 ext4_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
2919 ac
->ac_b_ex
.fe_len
);
2920 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
2921 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
2927 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2928 #ifdef AGGRESSIVE_CHECK
2931 for (i
= 0; i
< ac
->ac_b_ex
.fe_len
; i
++) {
2932 BUG_ON(mb_test_bit(ac
->ac_b_ex
.fe_start
+ i
,
2933 bitmap_bh
->b_data
));
2937 ext4_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
2938 ac
->ac_b_ex
.fe_len
);
2939 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
2940 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT
);
2941 ext4_free_group_clusters_set(sb
, gdp
,
2942 ext4_free_clusters_after_init(sb
,
2943 ac
->ac_b_ex
.fe_group
, gdp
));
2945 len
= ext4_free_group_clusters(sb
, gdp
) - ac
->ac_b_ex
.fe_len
;
2946 ext4_free_group_clusters_set(sb
, gdp
, len
);
2947 ext4_block_bitmap_csum_set(sb
, ac
->ac_b_ex
.fe_group
, gdp
, bitmap_bh
);
2948 ext4_group_desc_csum_set(sb
, ac
->ac_b_ex
.fe_group
, gdp
);
2950 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
2951 percpu_counter_sub(&sbi
->s_freeclusters_counter
, ac
->ac_b_ex
.fe_len
);
2953 * Now reduce the dirty block count also. Should not go negative
2955 if (!(ac
->ac_flags
& EXT4_MB_DELALLOC_RESERVED
))
2956 /* release all the reserved blocks if non delalloc */
2957 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
2960 if (sbi
->s_log_groups_per_flex
) {
2961 ext4_group_t flex_group
= ext4_flex_group(sbi
,
2962 ac
->ac_b_ex
.fe_group
);
2963 atomic64_sub(ac
->ac_b_ex
.fe_len
,
2964 &sbi
->s_flex_groups
[flex_group
].free_clusters
);
2967 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
2970 err
= ext4_handle_dirty_metadata(handle
, NULL
, gdp_bh
);
2978 * here we normalize request for locality group
2979 * Group request are normalized to s_mb_group_prealloc, which goes to
2980 * s_strip if we set the same via mount option.
2981 * s_mb_group_prealloc can be configured via
2982 * /sys/fs/ext4/<partition>/mb_group_prealloc
2984 * XXX: should we try to preallocate more than the group has now?
2986 static void ext4_mb_normalize_group_request(struct ext4_allocation_context
*ac
)
2988 struct super_block
*sb
= ac
->ac_sb
;
2989 struct ext4_locality_group
*lg
= ac
->ac_lg
;
2992 ac
->ac_g_ex
.fe_len
= EXT4_SB(sb
)->s_mb_group_prealloc
;
2993 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2994 current
->pid
, ac
->ac_g_ex
.fe_len
);
2998 * Normalization means making request better in terms of
2999 * size and alignment
3001 static noinline_for_stack
void
3002 ext4_mb_normalize_request(struct ext4_allocation_context
*ac
,
3003 struct ext4_allocation_request
*ar
)
3005 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3008 loff_t size
, start_off
;
3009 loff_t orig_size __maybe_unused
;
3011 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
3012 struct ext4_prealloc_space
*pa
;
3014 /* do normalize only data requests, metadata requests
3015 do not need preallocation */
3016 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3019 /* sometime caller may want exact blocks */
3020 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
3023 /* caller may indicate that preallocation isn't
3024 * required (it's a tail, for example) */
3025 if (ac
->ac_flags
& EXT4_MB_HINT_NOPREALLOC
)
3028 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
) {
3029 ext4_mb_normalize_group_request(ac
);
3033 bsbits
= ac
->ac_sb
->s_blocksize_bits
;
3035 /* first, let's learn actual file size
3036 * given current request is allocated */
3037 size
= ac
->ac_o_ex
.fe_logical
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
);
3038 size
= size
<< bsbits
;
3039 if (size
< i_size_read(ac
->ac_inode
))
3040 size
= i_size_read(ac
->ac_inode
);
3043 /* max size of free chunks */
3046 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3047 (req <= (size) || max <= (chunk_size))
3049 /* first, try to predict filesize */
3050 /* XXX: should this table be tunable? */
3052 if (size
<= 16 * 1024) {
3054 } else if (size
<= 32 * 1024) {
3056 } else if (size
<= 64 * 1024) {
3058 } else if (size
<= 128 * 1024) {
3060 } else if (size
<= 256 * 1024) {
3062 } else if (size
<= 512 * 1024) {
3064 } else if (size
<= 1024 * 1024) {
3066 } else if (NRL_CHECK_SIZE(size
, 4 * 1024 * 1024, max
, 2 * 1024)) {
3067 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3068 (21 - bsbits
)) << 21;
3069 size
= 2 * 1024 * 1024;
3070 } else if (NRL_CHECK_SIZE(size
, 8 * 1024 * 1024, max
, 4 * 1024)) {
3071 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3072 (22 - bsbits
)) << 22;
3073 size
= 4 * 1024 * 1024;
3074 } else if (NRL_CHECK_SIZE(ac
->ac_o_ex
.fe_len
,
3075 (8<<20)>>bsbits
, max
, 8 * 1024)) {
3076 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3077 (23 - bsbits
)) << 23;
3078 size
= 8 * 1024 * 1024;
3080 start_off
= (loff_t
) ac
->ac_o_ex
.fe_logical
<< bsbits
;
3081 size
= (loff_t
) EXT4_C2B(EXT4_SB(ac
->ac_sb
),
3082 ac
->ac_o_ex
.fe_len
) << bsbits
;
3084 size
= size
>> bsbits
;
3085 start
= start_off
>> bsbits
;
3087 /* don't cover already allocated blocks in selected range */
3088 if (ar
->pleft
&& start
<= ar
->lleft
) {
3089 size
-= ar
->lleft
+ 1 - start
;
3090 start
= ar
->lleft
+ 1;
3092 if (ar
->pright
&& start
+ size
- 1 >= ar
->lright
)
3093 size
-= start
+ size
- ar
->lright
;
3097 /* check we don't cross already preallocated blocks */
3099 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3104 spin_lock(&pa
->pa_lock
);
3105 if (pa
->pa_deleted
) {
3106 spin_unlock(&pa
->pa_lock
);
3110 pa_end
= pa
->pa_lstart
+ EXT4_C2B(EXT4_SB(ac
->ac_sb
),
3113 /* PA must not overlap original request */
3114 BUG_ON(!(ac
->ac_o_ex
.fe_logical
>= pa_end
||
3115 ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
));
3117 /* skip PAs this normalized request doesn't overlap with */
3118 if (pa
->pa_lstart
>= end
|| pa_end
<= start
) {
3119 spin_unlock(&pa
->pa_lock
);
3122 BUG_ON(pa
->pa_lstart
<= start
&& pa_end
>= end
);
3124 /* adjust start or end to be adjacent to this pa */
3125 if (pa_end
<= ac
->ac_o_ex
.fe_logical
) {
3126 BUG_ON(pa_end
< start
);
3128 } else if (pa
->pa_lstart
> ac
->ac_o_ex
.fe_logical
) {
3129 BUG_ON(pa
->pa_lstart
> end
);
3130 end
= pa
->pa_lstart
;
3132 spin_unlock(&pa
->pa_lock
);
3137 /* XXX: extra loop to check we really don't overlap preallocations */
3139 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3142 spin_lock(&pa
->pa_lock
);
3143 if (pa
->pa_deleted
== 0) {
3144 pa_end
= pa
->pa_lstart
+ EXT4_C2B(EXT4_SB(ac
->ac_sb
),
3146 BUG_ON(!(start
>= pa_end
|| end
<= pa
->pa_lstart
));
3148 spin_unlock(&pa
->pa_lock
);
3152 if (start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
3153 start
> ac
->ac_o_ex
.fe_logical
) {
3154 ext4_msg(ac
->ac_sb
, KERN_ERR
,
3155 "start %lu, size %lu, fe_logical %lu",
3156 (unsigned long) start
, (unsigned long) size
,
3157 (unsigned long) ac
->ac_o_ex
.fe_logical
);
3160 BUG_ON(size
<= 0 || size
> EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
3162 /* now prepare goal request */
3164 /* XXX: is it better to align blocks WRT to logical
3165 * placement or satisfy big request as is */
3166 ac
->ac_g_ex
.fe_logical
= start
;
3167 ac
->ac_g_ex
.fe_len
= EXT4_NUM_B2C(sbi
, size
);
3169 /* define goal start in order to merge */
3170 if (ar
->pright
&& (ar
->lright
== (start
+ size
))) {
3171 /* merge to the right */
3172 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pright
- size
,
3173 &ac
->ac_f_ex
.fe_group
,
3174 &ac
->ac_f_ex
.fe_start
);
3175 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3177 if (ar
->pleft
&& (ar
->lleft
+ 1 == start
)) {
3178 /* merge to the left */
3179 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pleft
+ 1,
3180 &ac
->ac_f_ex
.fe_group
,
3181 &ac
->ac_f_ex
.fe_start
);
3182 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3185 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size
,
3186 (unsigned) orig_size
, (unsigned) start
);
3189 static void ext4_mb_collect_stats(struct ext4_allocation_context
*ac
)
3191 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3193 if (sbi
->s_mb_stats
&& ac
->ac_g_ex
.fe_len
> 1) {
3194 atomic_inc(&sbi
->s_bal_reqs
);
3195 atomic_add(ac
->ac_b_ex
.fe_len
, &sbi
->s_bal_allocated
);
3196 if (ac
->ac_b_ex
.fe_len
>= ac
->ac_o_ex
.fe_len
)
3197 atomic_inc(&sbi
->s_bal_success
);
3198 atomic_add(ac
->ac_found
, &sbi
->s_bal_ex_scanned
);
3199 if (ac
->ac_g_ex
.fe_start
== ac
->ac_b_ex
.fe_start
&&
3200 ac
->ac_g_ex
.fe_group
== ac
->ac_b_ex
.fe_group
)
3201 atomic_inc(&sbi
->s_bal_goals
);
3202 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
)
3203 atomic_inc(&sbi
->s_bal_breaks
);
3206 if (ac
->ac_op
== EXT4_MB_HISTORY_ALLOC
)
3207 trace_ext4_mballoc_alloc(ac
);
3209 trace_ext4_mballoc_prealloc(ac
);
3213 * Called on failure; free up any blocks from the inode PA for this
3214 * context. We don't need this for MB_GROUP_PA because we only change
3215 * pa_free in ext4_mb_release_context(), but on failure, we've already
3216 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3218 static void ext4_discard_allocated_blocks(struct ext4_allocation_context
*ac
)
3220 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
3221 struct ext4_buddy e4b
;
3225 if (ac
->ac_f_ex
.fe_len
== 0)
3227 err
= ext4_mb_load_buddy(ac
->ac_sb
, ac
->ac_f_ex
.fe_group
, &e4b
);
3230 * This should never happen since we pin the
3231 * pages in the ext4_allocation_context so
3232 * ext4_mb_load_buddy() should never fail.
3234 WARN(1, "mb_load_buddy failed (%d)", err
);
3237 ext4_lock_group(ac
->ac_sb
, ac
->ac_f_ex
.fe_group
);
3238 mb_free_blocks(ac
->ac_inode
, &e4b
, ac
->ac_f_ex
.fe_start
,
3239 ac
->ac_f_ex
.fe_len
);
3240 ext4_unlock_group(ac
->ac_sb
, ac
->ac_f_ex
.fe_group
);
3241 ext4_mb_unload_buddy(&e4b
);
3244 if (pa
->pa_type
== MB_INODE_PA
)
3245 pa
->pa_free
+= ac
->ac_b_ex
.fe_len
;
3249 * use blocks preallocated to inode
3251 static void ext4_mb_use_inode_pa(struct ext4_allocation_context
*ac
,
3252 struct ext4_prealloc_space
*pa
)
3254 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3259 /* found preallocated blocks, use them */
3260 start
= pa
->pa_pstart
+ (ac
->ac_o_ex
.fe_logical
- pa
->pa_lstart
);
3261 end
= min(pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
),
3262 start
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
));
3263 len
= EXT4_NUM_B2C(sbi
, end
- start
);
3264 ext4_get_group_no_and_offset(ac
->ac_sb
, start
, &ac
->ac_b_ex
.fe_group
,
3265 &ac
->ac_b_ex
.fe_start
);
3266 ac
->ac_b_ex
.fe_len
= len
;
3267 ac
->ac_status
= AC_STATUS_FOUND
;
3270 BUG_ON(start
< pa
->pa_pstart
);
3271 BUG_ON(end
> pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
));
3272 BUG_ON(pa
->pa_free
< len
);
3275 mb_debug(1, "use %llu/%u from inode pa %p\n", start
, len
, pa
);
3279 * use blocks preallocated to locality group
3281 static void ext4_mb_use_group_pa(struct ext4_allocation_context
*ac
,
3282 struct ext4_prealloc_space
*pa
)
3284 unsigned int len
= ac
->ac_o_ex
.fe_len
;
3286 ext4_get_group_no_and_offset(ac
->ac_sb
, pa
->pa_pstart
,
3287 &ac
->ac_b_ex
.fe_group
,
3288 &ac
->ac_b_ex
.fe_start
);
3289 ac
->ac_b_ex
.fe_len
= len
;
3290 ac
->ac_status
= AC_STATUS_FOUND
;
3293 /* we don't correct pa_pstart or pa_plen here to avoid
3294 * possible race when the group is being loaded concurrently
3295 * instead we correct pa later, after blocks are marked
3296 * in on-disk bitmap -- see ext4_mb_release_context()
3297 * Other CPUs are prevented from allocating from this pa by lg_mutex
3299 mb_debug(1, "use %u/%u from group pa %p\n", pa
->pa_lstart
-len
, len
, pa
);
3303 * Return the prealloc space that have minimal distance
3304 * from the goal block. @cpa is the prealloc
3305 * space that is having currently known minimal distance
3306 * from the goal block.
3308 static struct ext4_prealloc_space
*
3309 ext4_mb_check_group_pa(ext4_fsblk_t goal_block
,
3310 struct ext4_prealloc_space
*pa
,
3311 struct ext4_prealloc_space
*cpa
)
3313 ext4_fsblk_t cur_distance
, new_distance
;
3316 atomic_inc(&pa
->pa_count
);
3319 cur_distance
= abs(goal_block
- cpa
->pa_pstart
);
3320 new_distance
= abs(goal_block
- pa
->pa_pstart
);
3322 if (cur_distance
<= new_distance
)
3325 /* drop the previous reference */
3326 atomic_dec(&cpa
->pa_count
);
3327 atomic_inc(&pa
->pa_count
);
3332 * search goal blocks in preallocated space
3334 static noinline_for_stack
int
3335 ext4_mb_use_preallocated(struct ext4_allocation_context
*ac
)
3337 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3339 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
3340 struct ext4_locality_group
*lg
;
3341 struct ext4_prealloc_space
*pa
, *cpa
= NULL
;
3342 ext4_fsblk_t goal_block
;
3344 /* only data can be preallocated */
3345 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3348 /* first, try per-file preallocation */
3350 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3352 /* all fields in this condition don't change,
3353 * so we can skip locking for them */
3354 if (ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
||
3355 ac
->ac_o_ex
.fe_logical
>= (pa
->pa_lstart
+
3356 EXT4_C2B(sbi
, pa
->pa_len
)))
3359 /* non-extent files can't have physical blocks past 2^32 */
3360 if (!(ext4_test_inode_flag(ac
->ac_inode
, EXT4_INODE_EXTENTS
)) &&
3361 (pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
) >
3362 EXT4_MAX_BLOCK_FILE_PHYS
))
3365 /* found preallocated blocks, use them */
3366 spin_lock(&pa
->pa_lock
);
3367 if (pa
->pa_deleted
== 0 && pa
->pa_free
) {
3368 atomic_inc(&pa
->pa_count
);
3369 ext4_mb_use_inode_pa(ac
, pa
);
3370 spin_unlock(&pa
->pa_lock
);
3371 ac
->ac_criteria
= 10;
3375 spin_unlock(&pa
->pa_lock
);
3379 /* can we use group allocation? */
3380 if (!(ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
))
3383 /* inode may have no locality group for some reason */
3387 order
= fls(ac
->ac_o_ex
.fe_len
) - 1;
3388 if (order
> PREALLOC_TB_SIZE
- 1)
3389 /* The max size of hash table is PREALLOC_TB_SIZE */
3390 order
= PREALLOC_TB_SIZE
- 1;
3392 goal_block
= ext4_grp_offs_to_block(ac
->ac_sb
, &ac
->ac_g_ex
);
3394 * search for the prealloc space that is having
3395 * minimal distance from the goal block.
3397 for (i
= order
; i
< PREALLOC_TB_SIZE
; i
++) {
3399 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[i
],
3401 spin_lock(&pa
->pa_lock
);
3402 if (pa
->pa_deleted
== 0 &&
3403 pa
->pa_free
>= ac
->ac_o_ex
.fe_len
) {
3405 cpa
= ext4_mb_check_group_pa(goal_block
,
3408 spin_unlock(&pa
->pa_lock
);
3413 ext4_mb_use_group_pa(ac
, cpa
);
3414 ac
->ac_criteria
= 20;
3421 * the function goes through all block freed in the group
3422 * but not yet committed and marks them used in in-core bitmap.
3423 * buddy must be generated from this bitmap
3424 * Need to be called with the ext4 group lock held
3426 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
3430 struct ext4_group_info
*grp
;
3431 struct ext4_free_data
*entry
;
3433 grp
= ext4_get_group_info(sb
, group
);
3434 n
= rb_first(&(grp
->bb_free_root
));
3437 entry
= rb_entry(n
, struct ext4_free_data
, efd_node
);
3438 ext4_set_bits(bitmap
, entry
->efd_start_cluster
, entry
->efd_count
);
3445 * the function goes through all preallocation in this group and marks them
3446 * used in in-core bitmap. buddy must be generated from this bitmap
3447 * Need to be called with ext4 group lock held
3449 static noinline_for_stack
3450 void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
3453 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3454 struct ext4_prealloc_space
*pa
;
3455 struct list_head
*cur
;
3456 ext4_group_t groupnr
;
3457 ext4_grpblk_t start
;
3458 int preallocated
= 0;
3461 /* all form of preallocation discards first load group,
3462 * so the only competing code is preallocation use.
3463 * we don't need any locking here
3464 * notice we do NOT ignore preallocations with pa_deleted
3465 * otherwise we could leave used blocks available for
3466 * allocation in buddy when concurrent ext4_mb_put_pa()
3467 * is dropping preallocation
3469 list_for_each(cur
, &grp
->bb_prealloc_list
) {
3470 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
3471 spin_lock(&pa
->pa_lock
);
3472 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
3475 spin_unlock(&pa
->pa_lock
);
3476 if (unlikely(len
== 0))
3478 BUG_ON(groupnr
!= group
);
3479 ext4_set_bits(bitmap
, start
, len
);
3480 preallocated
+= len
;
3482 mb_debug(1, "prellocated %u for group %u\n", preallocated
, group
);
3485 static void ext4_mb_pa_callback(struct rcu_head
*head
)
3487 struct ext4_prealloc_space
*pa
;
3488 pa
= container_of(head
, struct ext4_prealloc_space
, u
.pa_rcu
);
3490 BUG_ON(atomic_read(&pa
->pa_count
));
3491 BUG_ON(pa
->pa_deleted
== 0);
3492 kmem_cache_free(ext4_pspace_cachep
, pa
);
3496 * drops a reference to preallocated space descriptor
3497 * if this was the last reference and the space is consumed
3499 static void ext4_mb_put_pa(struct ext4_allocation_context
*ac
,
3500 struct super_block
*sb
, struct ext4_prealloc_space
*pa
)
3503 ext4_fsblk_t grp_blk
;
3505 /* in this short window concurrent discard can set pa_deleted */
3506 spin_lock(&pa
->pa_lock
);
3507 if (!atomic_dec_and_test(&pa
->pa_count
) || pa
->pa_free
!= 0) {
3508 spin_unlock(&pa
->pa_lock
);
3512 if (pa
->pa_deleted
== 1) {
3513 spin_unlock(&pa
->pa_lock
);
3518 spin_unlock(&pa
->pa_lock
);
3520 grp_blk
= pa
->pa_pstart
;
3522 * If doing group-based preallocation, pa_pstart may be in the
3523 * next group when pa is used up
3525 if (pa
->pa_type
== MB_GROUP_PA
)
3528 grp
= ext4_get_group_number(sb
, grp_blk
);
3533 * P1 (buddy init) P2 (regular allocation)
3534 * find block B in PA
3535 * copy on-disk bitmap to buddy
3536 * mark B in on-disk bitmap
3537 * drop PA from group
3538 * mark all PAs in buddy
3540 * thus, P1 initializes buddy with B available. to prevent this
3541 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3544 ext4_lock_group(sb
, grp
);
3545 list_del(&pa
->pa_group_list
);
3546 ext4_unlock_group(sb
, grp
);
3548 spin_lock(pa
->pa_obj_lock
);
3549 list_del_rcu(&pa
->pa_inode_list
);
3550 spin_unlock(pa
->pa_obj_lock
);
3552 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3556 * creates new preallocated space for given inode
3558 static noinline_for_stack
int
3559 ext4_mb_new_inode_pa(struct ext4_allocation_context
*ac
)
3561 struct super_block
*sb
= ac
->ac_sb
;
3562 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3563 struct ext4_prealloc_space
*pa
;
3564 struct ext4_group_info
*grp
;
3565 struct ext4_inode_info
*ei
;
3567 /* preallocate only when found space is larger then requested */
3568 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3569 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3570 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3572 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3576 if (ac
->ac_b_ex
.fe_len
< ac
->ac_g_ex
.fe_len
) {
3582 /* we can't allocate as much as normalizer wants.
3583 * so, found space must get proper lstart
3584 * to cover original request */
3585 BUG_ON(ac
->ac_g_ex
.fe_logical
> ac
->ac_o_ex
.fe_logical
);
3586 BUG_ON(ac
->ac_g_ex
.fe_len
< ac
->ac_o_ex
.fe_len
);
3588 /* we're limited by original request in that
3589 * logical block must be covered any way
3590 * winl is window we can move our chunk within */
3591 winl
= ac
->ac_o_ex
.fe_logical
- ac
->ac_g_ex
.fe_logical
;
3593 /* also, we should cover whole original request */
3594 wins
= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
- ac
->ac_o_ex
.fe_len
);
3596 /* the smallest one defines real window */
3597 win
= min(winl
, wins
);
3599 offs
= ac
->ac_o_ex
.fe_logical
%
3600 EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
3601 if (offs
&& offs
< win
)
3604 ac
->ac_b_ex
.fe_logical
= ac
->ac_o_ex
.fe_logical
-
3605 EXT4_NUM_B2C(sbi
, win
);
3606 BUG_ON(ac
->ac_o_ex
.fe_logical
< ac
->ac_b_ex
.fe_logical
);
3607 BUG_ON(ac
->ac_o_ex
.fe_len
> ac
->ac_b_ex
.fe_len
);
3610 /* preallocation can change ac_b_ex, thus we store actually
3611 * allocated blocks for history */
3612 ac
->ac_f_ex
= ac
->ac_b_ex
;
3614 pa
->pa_lstart
= ac
->ac_b_ex
.fe_logical
;
3615 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3616 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3617 pa
->pa_free
= pa
->pa_len
;
3618 atomic_set(&pa
->pa_count
, 1);
3619 spin_lock_init(&pa
->pa_lock
);
3620 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3621 INIT_LIST_HEAD(&pa
->pa_group_list
);
3623 pa
->pa_type
= MB_INODE_PA
;
3625 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa
,
3626 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3627 trace_ext4_mb_new_inode_pa(ac
, pa
);
3629 ext4_mb_use_inode_pa(ac
, pa
);
3630 atomic_add(pa
->pa_free
, &sbi
->s_mb_preallocated
);
3632 ei
= EXT4_I(ac
->ac_inode
);
3633 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3635 pa
->pa_obj_lock
= &ei
->i_prealloc_lock
;
3636 pa
->pa_inode
= ac
->ac_inode
;
3638 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3639 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3640 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3642 spin_lock(pa
->pa_obj_lock
);
3643 list_add_rcu(&pa
->pa_inode_list
, &ei
->i_prealloc_list
);
3644 spin_unlock(pa
->pa_obj_lock
);
3650 * creates new preallocated space for locality group inodes belongs to
3652 static noinline_for_stack
int
3653 ext4_mb_new_group_pa(struct ext4_allocation_context
*ac
)
3655 struct super_block
*sb
= ac
->ac_sb
;
3656 struct ext4_locality_group
*lg
;
3657 struct ext4_prealloc_space
*pa
;
3658 struct ext4_group_info
*grp
;
3660 /* preallocate only when found space is larger then requested */
3661 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3662 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3663 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3665 BUG_ON(ext4_pspace_cachep
== NULL
);
3666 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3670 /* preallocation can change ac_b_ex, thus we store actually
3671 * allocated blocks for history */
3672 ac
->ac_f_ex
= ac
->ac_b_ex
;
3674 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3675 pa
->pa_lstart
= pa
->pa_pstart
;
3676 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3677 pa
->pa_free
= pa
->pa_len
;
3678 atomic_set(&pa
->pa_count
, 1);
3679 spin_lock_init(&pa
->pa_lock
);
3680 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3681 INIT_LIST_HEAD(&pa
->pa_group_list
);
3683 pa
->pa_type
= MB_GROUP_PA
;
3685 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa
,
3686 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3687 trace_ext4_mb_new_group_pa(ac
, pa
);
3689 ext4_mb_use_group_pa(ac
, pa
);
3690 atomic_add(pa
->pa_free
, &EXT4_SB(sb
)->s_mb_preallocated
);
3692 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3696 pa
->pa_obj_lock
= &lg
->lg_prealloc_lock
;
3697 pa
->pa_inode
= NULL
;
3699 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3700 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3701 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3704 * We will later add the new pa to the right bucket
3705 * after updating the pa_free in ext4_mb_release_context
3710 static int ext4_mb_new_preallocation(struct ext4_allocation_context
*ac
)
3714 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
3715 err
= ext4_mb_new_group_pa(ac
);
3717 err
= ext4_mb_new_inode_pa(ac
);
3722 * finds all unused blocks in on-disk bitmap, frees them in
3723 * in-core bitmap and buddy.
3724 * @pa must be unlinked from inode and group lists, so that
3725 * nobody else can find/use it.
3726 * the caller MUST hold group/inode locks.
3727 * TODO: optimize the case when there are no in-core structures yet
3729 static noinline_for_stack
int
3730 ext4_mb_release_inode_pa(struct ext4_buddy
*e4b
, struct buffer_head
*bitmap_bh
,
3731 struct ext4_prealloc_space
*pa
)
3733 struct super_block
*sb
= e4b
->bd_sb
;
3734 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3739 unsigned long long grp_blk_start
;
3743 BUG_ON(pa
->pa_deleted
== 0);
3744 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3745 grp_blk_start
= pa
->pa_pstart
- EXT4_C2B(sbi
, bit
);
3746 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3747 end
= bit
+ pa
->pa_len
;
3750 bit
= mb_find_next_zero_bit(bitmap_bh
->b_data
, end
, bit
);
3753 next
= mb_find_next_bit(bitmap_bh
->b_data
, end
, bit
);
3754 mb_debug(1, " free preallocated %u/%u in group %u\n",
3755 (unsigned) ext4_group_first_block_no(sb
, group
) + bit
,
3756 (unsigned) next
- bit
, (unsigned) group
);
3759 trace_ext4_mballoc_discard(sb
, NULL
, group
, bit
, next
- bit
);
3760 trace_ext4_mb_release_inode_pa(pa
, (grp_blk_start
+
3761 EXT4_C2B(sbi
, bit
)),
3763 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, next
- bit
);
3766 if (free
!= pa
->pa_free
) {
3767 ext4_msg(e4b
->bd_sb
, KERN_CRIT
,
3768 "pa %p: logic %lu, phys. %lu, len %lu",
3769 pa
, (unsigned long) pa
->pa_lstart
,
3770 (unsigned long) pa
->pa_pstart
,
3771 (unsigned long) pa
->pa_len
);
3772 ext4_grp_locked_error(sb
, group
, 0, 0, "free %u, pa_free %u",
3775 * pa is already deleted so we use the value obtained
3776 * from the bitmap and continue.
3779 atomic_add(free
, &sbi
->s_mb_discarded
);
3784 static noinline_for_stack
int
3785 ext4_mb_release_group_pa(struct ext4_buddy
*e4b
,
3786 struct ext4_prealloc_space
*pa
)
3788 struct super_block
*sb
= e4b
->bd_sb
;
3792 trace_ext4_mb_release_group_pa(sb
, pa
);
3793 BUG_ON(pa
->pa_deleted
== 0);
3794 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3795 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3796 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, pa
->pa_len
);
3797 atomic_add(pa
->pa_len
, &EXT4_SB(sb
)->s_mb_discarded
);
3798 trace_ext4_mballoc_discard(sb
, NULL
, group
, bit
, pa
->pa_len
);
3804 * releases all preallocations in given group
3806 * first, we need to decide discard policy:
3807 * - when do we discard
3809 * - how many do we discard
3810 * 1) how many requested
3812 static noinline_for_stack
int
3813 ext4_mb_discard_group_preallocations(struct super_block
*sb
,
3814 ext4_group_t group
, int needed
)
3816 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3817 struct buffer_head
*bitmap_bh
= NULL
;
3818 struct ext4_prealloc_space
*pa
, *tmp
;
3819 struct list_head list
;
3820 struct ext4_buddy e4b
;
3825 mb_debug(1, "discard preallocation for group %u\n", group
);
3827 if (list_empty(&grp
->bb_prealloc_list
))
3830 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
3831 if (bitmap_bh
== NULL
) {
3832 ext4_error(sb
, "Error reading block bitmap for %u", group
);
3836 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
3838 ext4_error(sb
, "Error loading buddy information for %u", group
);
3844 needed
= EXT4_CLUSTERS_PER_GROUP(sb
) + 1;
3846 INIT_LIST_HEAD(&list
);
3848 ext4_lock_group(sb
, group
);
3849 list_for_each_entry_safe(pa
, tmp
,
3850 &grp
->bb_prealloc_list
, pa_group_list
) {
3851 spin_lock(&pa
->pa_lock
);
3852 if (atomic_read(&pa
->pa_count
)) {
3853 spin_unlock(&pa
->pa_lock
);
3857 if (pa
->pa_deleted
) {
3858 spin_unlock(&pa
->pa_lock
);
3862 /* seems this one can be freed ... */
3865 /* we can trust pa_free ... */
3866 free
+= pa
->pa_free
;
3868 spin_unlock(&pa
->pa_lock
);
3870 list_del(&pa
->pa_group_list
);
3871 list_add(&pa
->u
.pa_tmp_list
, &list
);
3874 /* if we still need more blocks and some PAs were used, try again */
3875 if (free
< needed
&& busy
) {
3877 ext4_unlock_group(sb
, group
);
3882 /* found anything to free? */
3883 if (list_empty(&list
)) {
3888 /* now free all selected PAs */
3889 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
3891 /* remove from object (inode or locality group) */
3892 spin_lock(pa
->pa_obj_lock
);
3893 list_del_rcu(&pa
->pa_inode_list
);
3894 spin_unlock(pa
->pa_obj_lock
);
3896 if (pa
->pa_type
== MB_GROUP_PA
)
3897 ext4_mb_release_group_pa(&e4b
, pa
);
3899 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
);
3901 list_del(&pa
->u
.pa_tmp_list
);
3902 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3906 ext4_unlock_group(sb
, group
);
3907 ext4_mb_unload_buddy(&e4b
);
3913 * releases all non-used preallocated blocks for given inode
3915 * It's important to discard preallocations under i_data_sem
3916 * We don't want another block to be served from the prealloc
3917 * space when we are discarding the inode prealloc space.
3919 * FIXME!! Make sure it is valid at all the call sites
3921 void ext4_discard_preallocations(struct inode
*inode
)
3923 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3924 struct super_block
*sb
= inode
->i_sb
;
3925 struct buffer_head
*bitmap_bh
= NULL
;
3926 struct ext4_prealloc_space
*pa
, *tmp
;
3927 ext4_group_t group
= 0;
3928 struct list_head list
;
3929 struct ext4_buddy e4b
;
3932 if (!S_ISREG(inode
->i_mode
)) {
3933 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3937 mb_debug(1, "discard preallocation for inode %lu\n", inode
->i_ino
);
3938 trace_ext4_discard_preallocations(inode
);
3940 INIT_LIST_HEAD(&list
);
3943 /* first, collect all pa's in the inode */
3944 spin_lock(&ei
->i_prealloc_lock
);
3945 while (!list_empty(&ei
->i_prealloc_list
)) {
3946 pa
= list_entry(ei
->i_prealloc_list
.next
,
3947 struct ext4_prealloc_space
, pa_inode_list
);
3948 BUG_ON(pa
->pa_obj_lock
!= &ei
->i_prealloc_lock
);
3949 spin_lock(&pa
->pa_lock
);
3950 if (atomic_read(&pa
->pa_count
)) {
3951 /* this shouldn't happen often - nobody should
3952 * use preallocation while we're discarding it */
3953 spin_unlock(&pa
->pa_lock
);
3954 spin_unlock(&ei
->i_prealloc_lock
);
3955 ext4_msg(sb
, KERN_ERR
,
3956 "uh-oh! used pa while discarding");
3958 schedule_timeout_uninterruptible(HZ
);
3962 if (pa
->pa_deleted
== 0) {
3964 spin_unlock(&pa
->pa_lock
);
3965 list_del_rcu(&pa
->pa_inode_list
);
3966 list_add(&pa
->u
.pa_tmp_list
, &list
);
3970 /* someone is deleting pa right now */
3971 spin_unlock(&pa
->pa_lock
);
3972 spin_unlock(&ei
->i_prealloc_lock
);
3974 /* we have to wait here because pa_deleted
3975 * doesn't mean pa is already unlinked from
3976 * the list. as we might be called from
3977 * ->clear_inode() the inode will get freed
3978 * and concurrent thread which is unlinking
3979 * pa from inode's list may access already
3980 * freed memory, bad-bad-bad */
3982 /* XXX: if this happens too often, we can
3983 * add a flag to force wait only in case
3984 * of ->clear_inode(), but not in case of
3985 * regular truncate */
3986 schedule_timeout_uninterruptible(HZ
);
3989 spin_unlock(&ei
->i_prealloc_lock
);
3991 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
3992 BUG_ON(pa
->pa_type
!= MB_INODE_PA
);
3993 group
= ext4_get_group_number(sb
, pa
->pa_pstart
);
3995 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
3997 ext4_error(sb
, "Error loading buddy information for %u",
4002 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
4003 if (bitmap_bh
== NULL
) {
4004 ext4_error(sb
, "Error reading block bitmap for %u",
4006 ext4_mb_unload_buddy(&e4b
);
4010 ext4_lock_group(sb
, group
);
4011 list_del(&pa
->pa_group_list
);
4012 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
);
4013 ext4_unlock_group(sb
, group
);
4015 ext4_mb_unload_buddy(&e4b
);
4018 list_del(&pa
->u
.pa_tmp_list
);
4019 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4023 #ifdef CONFIG_EXT4_DEBUG
4024 static void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
4026 struct super_block
*sb
= ac
->ac_sb
;
4027 ext4_group_t ngroups
, i
;
4029 if (!ext4_mballoc_debug
||
4030 (EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
))
4033 ext4_msg(ac
->ac_sb
, KERN_ERR
, "Can't allocate:"
4034 " Allocation context details:");
4035 ext4_msg(ac
->ac_sb
, KERN_ERR
, "status %d flags %d",
4036 ac
->ac_status
, ac
->ac_flags
);
4037 ext4_msg(ac
->ac_sb
, KERN_ERR
, "orig %lu/%lu/%lu@%lu, "
4038 "goal %lu/%lu/%lu@%lu, "
4039 "best %lu/%lu/%lu@%lu cr %d",
4040 (unsigned long)ac
->ac_o_ex
.fe_group
,
4041 (unsigned long)ac
->ac_o_ex
.fe_start
,
4042 (unsigned long)ac
->ac_o_ex
.fe_len
,
4043 (unsigned long)ac
->ac_o_ex
.fe_logical
,
4044 (unsigned long)ac
->ac_g_ex
.fe_group
,
4045 (unsigned long)ac
->ac_g_ex
.fe_start
,
4046 (unsigned long)ac
->ac_g_ex
.fe_len
,
4047 (unsigned long)ac
->ac_g_ex
.fe_logical
,
4048 (unsigned long)ac
->ac_b_ex
.fe_group
,
4049 (unsigned long)ac
->ac_b_ex
.fe_start
,
4050 (unsigned long)ac
->ac_b_ex
.fe_len
,
4051 (unsigned long)ac
->ac_b_ex
.fe_logical
,
4052 (int)ac
->ac_criteria
);
4053 ext4_msg(ac
->ac_sb
, KERN_ERR
, "%d found", ac
->ac_found
);
4054 ext4_msg(ac
->ac_sb
, KERN_ERR
, "groups: ");
4055 ngroups
= ext4_get_groups_count(sb
);
4056 for (i
= 0; i
< ngroups
; i
++) {
4057 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, i
);
4058 struct ext4_prealloc_space
*pa
;
4059 ext4_grpblk_t start
;
4060 struct list_head
*cur
;
4061 ext4_lock_group(sb
, i
);
4062 list_for_each(cur
, &grp
->bb_prealloc_list
) {
4063 pa
= list_entry(cur
, struct ext4_prealloc_space
,
4065 spin_lock(&pa
->pa_lock
);
4066 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
4068 spin_unlock(&pa
->pa_lock
);
4069 printk(KERN_ERR
"PA:%u:%d:%u \n", i
,
4072 ext4_unlock_group(sb
, i
);
4074 if (grp
->bb_free
== 0)
4076 printk(KERN_ERR
"%u: %d/%d \n",
4077 i
, grp
->bb_free
, grp
->bb_fragments
);
4079 printk(KERN_ERR
"\n");
4082 static inline void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
4089 * We use locality group preallocation for small size file. The size of the
4090 * file is determined by the current size or the resulting size after
4091 * allocation which ever is larger
4093 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4095 static void ext4_mb_group_or_file(struct ext4_allocation_context
*ac
)
4097 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
4098 int bsbits
= ac
->ac_sb
->s_blocksize_bits
;
4101 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
4104 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
4107 size
= ac
->ac_o_ex
.fe_logical
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
);
4108 isize
= (i_size_read(ac
->ac_inode
) + ac
->ac_sb
->s_blocksize
- 1)
4111 if ((size
== isize
) &&
4112 !ext4_fs_is_busy(sbi
) &&
4113 (atomic_read(&ac
->ac_inode
->i_writecount
) == 0)) {
4114 ac
->ac_flags
|= EXT4_MB_HINT_NOPREALLOC
;
4118 if (sbi
->s_mb_group_prealloc
<= 0) {
4119 ac
->ac_flags
|= EXT4_MB_STREAM_ALLOC
;
4123 /* don't use group allocation for large files */
4124 size
= max(size
, isize
);
4125 if (size
> sbi
->s_mb_stream_request
) {
4126 ac
->ac_flags
|= EXT4_MB_STREAM_ALLOC
;
4130 BUG_ON(ac
->ac_lg
!= NULL
);
4132 * locality group prealloc space are per cpu. The reason for having
4133 * per cpu locality group is to reduce the contention between block
4134 * request from multiple CPUs.
4136 ac
->ac_lg
= raw_cpu_ptr(sbi
->s_locality_groups
);
4138 /* we're going to use group allocation */
4139 ac
->ac_flags
|= EXT4_MB_HINT_GROUP_ALLOC
;
4141 /* serialize all allocations in the group */
4142 mutex_lock(&ac
->ac_lg
->lg_mutex
);
4145 static noinline_for_stack
int
4146 ext4_mb_initialize_context(struct ext4_allocation_context
*ac
,
4147 struct ext4_allocation_request
*ar
)
4149 struct super_block
*sb
= ar
->inode
->i_sb
;
4150 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4151 struct ext4_super_block
*es
= sbi
->s_es
;
4155 ext4_grpblk_t block
;
4157 /* we can't allocate > group size */
4160 /* just a dirty hack to filter too big requests */
4161 if (len
>= EXT4_CLUSTERS_PER_GROUP(sb
))
4162 len
= EXT4_CLUSTERS_PER_GROUP(sb
);
4164 /* start searching from the goal */
4166 if (goal
< le32_to_cpu(es
->s_first_data_block
) ||
4167 goal
>= ext4_blocks_count(es
))
4168 goal
= le32_to_cpu(es
->s_first_data_block
);
4169 ext4_get_group_no_and_offset(sb
, goal
, &group
, &block
);
4171 /* set up allocation goals */
4172 ac
->ac_b_ex
.fe_logical
= EXT4_LBLK_CMASK(sbi
, ar
->logical
);
4173 ac
->ac_status
= AC_STATUS_CONTINUE
;
4175 ac
->ac_inode
= ar
->inode
;
4176 ac
->ac_o_ex
.fe_logical
= ac
->ac_b_ex
.fe_logical
;
4177 ac
->ac_o_ex
.fe_group
= group
;
4178 ac
->ac_o_ex
.fe_start
= block
;
4179 ac
->ac_o_ex
.fe_len
= len
;
4180 ac
->ac_g_ex
= ac
->ac_o_ex
;
4181 ac
->ac_flags
= ar
->flags
;
4183 /* we have to define context: we'll we work with a file or
4184 * locality group. this is a policy, actually */
4185 ext4_mb_group_or_file(ac
);
4187 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4188 "left: %u/%u, right %u/%u to %swritable\n",
4189 (unsigned) ar
->len
, (unsigned) ar
->logical
,
4190 (unsigned) ar
->goal
, ac
->ac_flags
, ac
->ac_2order
,
4191 (unsigned) ar
->lleft
, (unsigned) ar
->pleft
,
4192 (unsigned) ar
->lright
, (unsigned) ar
->pright
,
4193 atomic_read(&ar
->inode
->i_writecount
) ? "" : "non-");
4198 static noinline_for_stack
void
4199 ext4_mb_discard_lg_preallocations(struct super_block
*sb
,
4200 struct ext4_locality_group
*lg
,
4201 int order
, int total_entries
)
4203 ext4_group_t group
= 0;
4204 struct ext4_buddy e4b
;
4205 struct list_head discard_list
;
4206 struct ext4_prealloc_space
*pa
, *tmp
;
4208 mb_debug(1, "discard locality group preallocation\n");
4210 INIT_LIST_HEAD(&discard_list
);
4212 spin_lock(&lg
->lg_prealloc_lock
);
4213 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[order
],
4215 spin_lock(&pa
->pa_lock
);
4216 if (atomic_read(&pa
->pa_count
)) {
4218 * This is the pa that we just used
4219 * for block allocation. So don't
4222 spin_unlock(&pa
->pa_lock
);
4225 if (pa
->pa_deleted
) {
4226 spin_unlock(&pa
->pa_lock
);
4229 /* only lg prealloc space */
4230 BUG_ON(pa
->pa_type
!= MB_GROUP_PA
);
4232 /* seems this one can be freed ... */
4234 spin_unlock(&pa
->pa_lock
);
4236 list_del_rcu(&pa
->pa_inode_list
);
4237 list_add(&pa
->u
.pa_tmp_list
, &discard_list
);
4240 if (total_entries
<= 5) {
4242 * we want to keep only 5 entries
4243 * allowing it to grow to 8. This
4244 * mak sure we don't call discard
4245 * soon for this list.
4250 spin_unlock(&lg
->lg_prealloc_lock
);
4252 list_for_each_entry_safe(pa
, tmp
, &discard_list
, u
.pa_tmp_list
) {
4254 group
= ext4_get_group_number(sb
, pa
->pa_pstart
);
4255 if (ext4_mb_load_buddy(sb
, group
, &e4b
)) {
4256 ext4_error(sb
, "Error loading buddy information for %u",
4260 ext4_lock_group(sb
, group
);
4261 list_del(&pa
->pa_group_list
);
4262 ext4_mb_release_group_pa(&e4b
, pa
);
4263 ext4_unlock_group(sb
, group
);
4265 ext4_mb_unload_buddy(&e4b
);
4266 list_del(&pa
->u
.pa_tmp_list
);
4267 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4272 * We have incremented pa_count. So it cannot be freed at this
4273 * point. Also we hold lg_mutex. So no parallel allocation is
4274 * possible from this lg. That means pa_free cannot be updated.
4276 * A parallel ext4_mb_discard_group_preallocations is possible.
4277 * which can cause the lg_prealloc_list to be updated.
4280 static void ext4_mb_add_n_trim(struct ext4_allocation_context
*ac
)
4282 int order
, added
= 0, lg_prealloc_count
= 1;
4283 struct super_block
*sb
= ac
->ac_sb
;
4284 struct ext4_locality_group
*lg
= ac
->ac_lg
;
4285 struct ext4_prealloc_space
*tmp_pa
, *pa
= ac
->ac_pa
;
4287 order
= fls(pa
->pa_free
) - 1;
4288 if (order
> PREALLOC_TB_SIZE
- 1)
4289 /* The max size of hash table is PREALLOC_TB_SIZE */
4290 order
= PREALLOC_TB_SIZE
- 1;
4291 /* Add the prealloc space to lg */
4292 spin_lock(&lg
->lg_prealloc_lock
);
4293 list_for_each_entry_rcu(tmp_pa
, &lg
->lg_prealloc_list
[order
],
4295 spin_lock(&tmp_pa
->pa_lock
);
4296 if (tmp_pa
->pa_deleted
) {
4297 spin_unlock(&tmp_pa
->pa_lock
);
4300 if (!added
&& pa
->pa_free
< tmp_pa
->pa_free
) {
4301 /* Add to the tail of the previous entry */
4302 list_add_tail_rcu(&pa
->pa_inode_list
,
4303 &tmp_pa
->pa_inode_list
);
4306 * we want to count the total
4307 * number of entries in the list
4310 spin_unlock(&tmp_pa
->pa_lock
);
4311 lg_prealloc_count
++;
4314 list_add_tail_rcu(&pa
->pa_inode_list
,
4315 &lg
->lg_prealloc_list
[order
]);
4316 spin_unlock(&lg
->lg_prealloc_lock
);
4318 /* Now trim the list to be not more than 8 elements */
4319 if (lg_prealloc_count
> 8) {
4320 ext4_mb_discard_lg_preallocations(sb
, lg
,
4321 order
, lg_prealloc_count
);
4328 * release all resource we used in allocation
4330 static int ext4_mb_release_context(struct ext4_allocation_context
*ac
)
4332 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
4333 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
4335 if (pa
->pa_type
== MB_GROUP_PA
) {
4336 /* see comment in ext4_mb_use_group_pa() */
4337 spin_lock(&pa
->pa_lock
);
4338 pa
->pa_pstart
+= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
4339 pa
->pa_lstart
+= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
4340 pa
->pa_free
-= ac
->ac_b_ex
.fe_len
;
4341 pa
->pa_len
-= ac
->ac_b_ex
.fe_len
;
4342 spin_unlock(&pa
->pa_lock
);
4347 * We want to add the pa to the right bucket.
4348 * Remove it from the list and while adding
4349 * make sure the list to which we are adding
4352 if ((pa
->pa_type
== MB_GROUP_PA
) && likely(pa
->pa_free
)) {
4353 spin_lock(pa
->pa_obj_lock
);
4354 list_del_rcu(&pa
->pa_inode_list
);
4355 spin_unlock(pa
->pa_obj_lock
);
4356 ext4_mb_add_n_trim(ac
);
4358 ext4_mb_put_pa(ac
, ac
->ac_sb
, pa
);
4360 if (ac
->ac_bitmap_page
)
4361 page_cache_release(ac
->ac_bitmap_page
);
4362 if (ac
->ac_buddy_page
)
4363 page_cache_release(ac
->ac_buddy_page
);
4364 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
4365 mutex_unlock(&ac
->ac_lg
->lg_mutex
);
4366 ext4_mb_collect_stats(ac
);
4370 static int ext4_mb_discard_preallocations(struct super_block
*sb
, int needed
)
4372 ext4_group_t i
, ngroups
= ext4_get_groups_count(sb
);
4376 trace_ext4_mb_discard_preallocations(sb
, needed
);
4377 for (i
= 0; i
< ngroups
&& needed
> 0; i
++) {
4378 ret
= ext4_mb_discard_group_preallocations(sb
, i
, needed
);
4387 * Main entry point into mballoc to allocate blocks
4388 * it tries to use preallocation first, then falls back
4389 * to usual allocation
4391 ext4_fsblk_t
ext4_mb_new_blocks(handle_t
*handle
,
4392 struct ext4_allocation_request
*ar
, int *errp
)
4395 struct ext4_allocation_context
*ac
= NULL
;
4396 struct ext4_sb_info
*sbi
;
4397 struct super_block
*sb
;
4398 ext4_fsblk_t block
= 0;
4399 unsigned int inquota
= 0;
4400 unsigned int reserv_clstrs
= 0;
4403 sb
= ar
->inode
->i_sb
;
4406 trace_ext4_request_blocks(ar
);
4408 /* Allow to use superuser reservation for quota file */
4409 if (IS_NOQUOTA(ar
->inode
))
4410 ar
->flags
|= EXT4_MB_USE_ROOT_BLOCKS
;
4412 if ((ar
->flags
& EXT4_MB_DELALLOC_RESERVED
) == 0) {
4413 /* Without delayed allocation we need to verify
4414 * there is enough free blocks to do block allocation
4415 * and verify allocation doesn't exceed the quota limits.
4418 ext4_claim_free_clusters(sbi
, ar
->len
, ar
->flags
)) {
4420 /* let others to free the space */
4422 ar
->len
= ar
->len
>> 1;
4428 reserv_clstrs
= ar
->len
;
4429 if (ar
->flags
& EXT4_MB_USE_ROOT_BLOCKS
) {
4430 dquot_alloc_block_nofail(ar
->inode
,
4431 EXT4_C2B(sbi
, ar
->len
));
4434 dquot_alloc_block(ar
->inode
,
4435 EXT4_C2B(sbi
, ar
->len
))) {
4437 ar
->flags
|= EXT4_MB_HINT_NOPREALLOC
;
4448 ac
= kmem_cache_zalloc(ext4_ac_cachep
, GFP_NOFS
);
4455 *errp
= ext4_mb_initialize_context(ac
, ar
);
4461 ac
->ac_op
= EXT4_MB_HISTORY_PREALLOC
;
4462 if (!ext4_mb_use_preallocated(ac
)) {
4463 ac
->ac_op
= EXT4_MB_HISTORY_ALLOC
;
4464 ext4_mb_normalize_request(ac
, ar
);
4466 /* allocate space in core */
4467 *errp
= ext4_mb_regular_allocator(ac
);
4469 goto discard_and_exit
;
4471 /* as we've just preallocated more space than
4472 * user requested originally, we store allocated
4473 * space in a special descriptor */
4474 if (ac
->ac_status
== AC_STATUS_FOUND
&&
4475 ac
->ac_o_ex
.fe_len
< ac
->ac_b_ex
.fe_len
)
4476 *errp
= ext4_mb_new_preallocation(ac
);
4479 ext4_discard_allocated_blocks(ac
);
4483 if (likely(ac
->ac_status
== AC_STATUS_FOUND
)) {
4484 *errp
= ext4_mb_mark_diskspace_used(ac
, handle
, reserv_clstrs
);
4485 if (*errp
== -EAGAIN
) {
4487 * drop the reference that we took
4488 * in ext4_mb_use_best_found
4490 ext4_mb_release_context(ac
);
4491 ac
->ac_b_ex
.fe_group
= 0;
4492 ac
->ac_b_ex
.fe_start
= 0;
4493 ac
->ac_b_ex
.fe_len
= 0;
4494 ac
->ac_status
= AC_STATUS_CONTINUE
;
4497 ext4_discard_allocated_blocks(ac
);
4500 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
4501 ar
->len
= ac
->ac_b_ex
.fe_len
;
4504 freed
= ext4_mb_discard_preallocations(sb
, ac
->ac_o_ex
.fe_len
);
4512 ac
->ac_b_ex
.fe_len
= 0;
4514 ext4_mb_show_ac(ac
);
4516 ext4_mb_release_context(ac
);
4519 kmem_cache_free(ext4_ac_cachep
, ac
);
4520 if (inquota
&& ar
->len
< inquota
)
4521 dquot_free_block(ar
->inode
, EXT4_C2B(sbi
, inquota
- ar
->len
));
4523 if ((ar
->flags
& EXT4_MB_DELALLOC_RESERVED
) == 0)
4524 /* release all the reserved blocks if non delalloc */
4525 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
4529 trace_ext4_allocate_blocks(ar
, (unsigned long long)block
);
4535 * We can merge two free data extents only if the physical blocks
4536 * are contiguous, AND the extents were freed by the same transaction,
4537 * AND the blocks are associated with the same group.
4539 static int can_merge(struct ext4_free_data
*entry1
,
4540 struct ext4_free_data
*entry2
)
4542 if ((entry1
->efd_tid
== entry2
->efd_tid
) &&
4543 (entry1
->efd_group
== entry2
->efd_group
) &&
4544 ((entry1
->efd_start_cluster
+ entry1
->efd_count
) == entry2
->efd_start_cluster
))
4549 static noinline_for_stack
int
4550 ext4_mb_free_metadata(handle_t
*handle
, struct ext4_buddy
*e4b
,
4551 struct ext4_free_data
*new_entry
)
4553 ext4_group_t group
= e4b
->bd_group
;
4554 ext4_grpblk_t cluster
;
4555 struct ext4_free_data
*entry
;
4556 struct ext4_group_info
*db
= e4b
->bd_info
;
4557 struct super_block
*sb
= e4b
->bd_sb
;
4558 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4559 struct rb_node
**n
= &db
->bb_free_root
.rb_node
, *node
;
4560 struct rb_node
*parent
= NULL
, *new_node
;
4562 BUG_ON(!ext4_handle_valid(handle
));
4563 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
4564 BUG_ON(e4b
->bd_buddy_page
== NULL
);
4566 new_node
= &new_entry
->efd_node
;
4567 cluster
= new_entry
->efd_start_cluster
;
4570 /* first free block exent. We need to
4571 protect buddy cache from being freed,
4572 * otherwise we'll refresh it from
4573 * on-disk bitmap and lose not-yet-available
4575 page_cache_get(e4b
->bd_buddy_page
);
4576 page_cache_get(e4b
->bd_bitmap_page
);
4580 entry
= rb_entry(parent
, struct ext4_free_data
, efd_node
);
4581 if (cluster
< entry
->efd_start_cluster
)
4583 else if (cluster
>= (entry
->efd_start_cluster
+ entry
->efd_count
))
4584 n
= &(*n
)->rb_right
;
4586 ext4_grp_locked_error(sb
, group
, 0,
4587 ext4_group_first_block_no(sb
, group
) +
4588 EXT4_C2B(sbi
, cluster
),
4589 "Block already on to-be-freed list");
4594 rb_link_node(new_node
, parent
, n
);
4595 rb_insert_color(new_node
, &db
->bb_free_root
);
4597 /* Now try to see the extent can be merged to left and right */
4598 node
= rb_prev(new_node
);
4600 entry
= rb_entry(node
, struct ext4_free_data
, efd_node
);
4601 if (can_merge(entry
, new_entry
) &&
4602 ext4_journal_callback_try_del(handle
, &entry
->efd_jce
)) {
4603 new_entry
->efd_start_cluster
= entry
->efd_start_cluster
;
4604 new_entry
->efd_count
+= entry
->efd_count
;
4605 rb_erase(node
, &(db
->bb_free_root
));
4606 kmem_cache_free(ext4_free_data_cachep
, entry
);
4610 node
= rb_next(new_node
);
4612 entry
= rb_entry(node
, struct ext4_free_data
, efd_node
);
4613 if (can_merge(new_entry
, entry
) &&
4614 ext4_journal_callback_try_del(handle
, &entry
->efd_jce
)) {
4615 new_entry
->efd_count
+= entry
->efd_count
;
4616 rb_erase(node
, &(db
->bb_free_root
));
4617 kmem_cache_free(ext4_free_data_cachep
, entry
);
4620 /* Add the extent to transaction's private list */
4621 ext4_journal_callback_add(handle
, ext4_free_data_callback
,
4622 &new_entry
->efd_jce
);
4627 * ext4_free_blocks() -- Free given blocks and update quota
4628 * @handle: handle for this transaction
4630 * @block: start physical block to free
4631 * @count: number of blocks to count
4632 * @flags: flags used by ext4_free_blocks
4634 void ext4_free_blocks(handle_t
*handle
, struct inode
*inode
,
4635 struct buffer_head
*bh
, ext4_fsblk_t block
,
4636 unsigned long count
, int flags
)
4638 struct buffer_head
*bitmap_bh
= NULL
;
4639 struct super_block
*sb
= inode
->i_sb
;
4640 struct ext4_group_desc
*gdp
;
4641 unsigned int overflow
;
4643 struct buffer_head
*gd_bh
;
4644 ext4_group_t block_group
;
4645 struct ext4_sb_info
*sbi
;
4646 struct ext4_buddy e4b
;
4647 unsigned int count_clusters
;
4654 BUG_ON(block
!= bh
->b_blocknr
);
4656 block
= bh
->b_blocknr
;
4660 if (!(flags
& EXT4_FREE_BLOCKS_VALIDATED
) &&
4661 !ext4_data_block_valid(sbi
, block
, count
)) {
4662 ext4_error(sb
, "Freeing blocks not in datazone - "
4663 "block = %llu, count = %lu", block
, count
);
4667 ext4_debug("freeing block %llu\n", block
);
4668 trace_ext4_free_blocks(inode
, block
, count
, flags
);
4670 if (flags
& EXT4_FREE_BLOCKS_FORGET
) {
4671 struct buffer_head
*tbh
= bh
;
4674 BUG_ON(bh
&& (count
> 1));
4676 for (i
= 0; i
< count
; i
++) {
4679 tbh
= sb_find_get_block(inode
->i_sb
,
4683 ext4_forget(handle
, flags
& EXT4_FREE_BLOCKS_METADATA
,
4684 inode
, tbh
, block
+ i
);
4689 * We need to make sure we don't reuse the freed block until
4690 * after the transaction is committed, which we can do by
4691 * treating the block as metadata, below. We make an
4692 * exception if the inode is to be written in writeback mode
4693 * since writeback mode has weak data consistency guarantees.
4695 if (!ext4_should_writeback_data(inode
))
4696 flags
|= EXT4_FREE_BLOCKS_METADATA
;
4699 * If the extent to be freed does not begin on a cluster
4700 * boundary, we need to deal with partial clusters at the
4701 * beginning and end of the extent. Normally we will free
4702 * blocks at the beginning or the end unless we are explicitly
4703 * requested to avoid doing so.
4705 overflow
= EXT4_PBLK_COFF(sbi
, block
);
4707 if (flags
& EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER
) {
4708 overflow
= sbi
->s_cluster_ratio
- overflow
;
4710 if (count
> overflow
)
4719 overflow
= EXT4_LBLK_COFF(sbi
, count
);
4721 if (flags
& EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER
) {
4722 if (count
> overflow
)
4727 count
+= sbi
->s_cluster_ratio
- overflow
;
4732 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
4734 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4735 ext4_get_group_info(sb
, block_group
))))
4739 * Check to see if we are freeing blocks across a group
4742 if (EXT4_C2B(sbi
, bit
) + count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
4743 overflow
= EXT4_C2B(sbi
, bit
) + count
-
4744 EXT4_BLOCKS_PER_GROUP(sb
);
4747 count_clusters
= EXT4_NUM_B2C(sbi
, count
);
4748 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
4753 gdp
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
4759 if (in_range(ext4_block_bitmap(sb
, gdp
), block
, count
) ||
4760 in_range(ext4_inode_bitmap(sb
, gdp
), block
, count
) ||
4761 in_range(block
, ext4_inode_table(sb
, gdp
),
4762 EXT4_SB(sb
)->s_itb_per_group
) ||
4763 in_range(block
+ count
- 1, ext4_inode_table(sb
, gdp
),
4764 EXT4_SB(sb
)->s_itb_per_group
)) {
4766 ext4_error(sb
, "Freeing blocks in system zone - "
4767 "Block = %llu, count = %lu", block
, count
);
4768 /* err = 0. ext4_std_error should be a no op */
4772 BUFFER_TRACE(bitmap_bh
, "getting write access");
4773 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
4778 * We are about to modify some metadata. Call the journal APIs
4779 * to unshare ->b_data if a currently-committing transaction is
4782 BUFFER_TRACE(gd_bh
, "get_write_access");
4783 err
= ext4_journal_get_write_access(handle
, gd_bh
);
4786 #ifdef AGGRESSIVE_CHECK
4789 for (i
= 0; i
< count_clusters
; i
++)
4790 BUG_ON(!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
));
4793 trace_ext4_mballoc_free(sb
, inode
, block_group
, bit
, count_clusters
);
4795 err
= ext4_mb_load_buddy(sb
, block_group
, &e4b
);
4799 if ((flags
& EXT4_FREE_BLOCKS_METADATA
) && ext4_handle_valid(handle
)) {
4800 struct ext4_free_data
*new_entry
;
4802 * blocks being freed are metadata. these blocks shouldn't
4803 * be used until this transaction is committed
4806 new_entry
= kmem_cache_alloc(ext4_free_data_cachep
, GFP_NOFS
);
4809 * We use a retry loop because
4810 * ext4_free_blocks() is not allowed to fail.
4813 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
4816 new_entry
->efd_start_cluster
= bit
;
4817 new_entry
->efd_group
= block_group
;
4818 new_entry
->efd_count
= count_clusters
;
4819 new_entry
->efd_tid
= handle
->h_transaction
->t_tid
;
4821 ext4_lock_group(sb
, block_group
);
4822 mb_clear_bits(bitmap_bh
->b_data
, bit
, count_clusters
);
4823 ext4_mb_free_metadata(handle
, &e4b
, new_entry
);
4825 /* need to update group_info->bb_free and bitmap
4826 * with group lock held. generate_buddy look at
4827 * them with group lock_held
4829 if (test_opt(sb
, DISCARD
)) {
4830 err
= ext4_issue_discard(sb
, block_group
, bit
, count
);
4831 if (err
&& err
!= -EOPNOTSUPP
)
4832 ext4_msg(sb
, KERN_WARNING
, "discard request in"
4833 " group:%d block:%d count:%lu failed"
4834 " with %d", block_group
, bit
, count
,
4837 EXT4_MB_GRP_CLEAR_TRIMMED(e4b
.bd_info
);
4839 ext4_lock_group(sb
, block_group
);
4840 mb_clear_bits(bitmap_bh
->b_data
, bit
, count_clusters
);
4841 mb_free_blocks(inode
, &e4b
, bit
, count_clusters
);
4844 ret
= ext4_free_group_clusters(sb
, gdp
) + count_clusters
;
4845 ext4_free_group_clusters_set(sb
, gdp
, ret
);
4846 ext4_block_bitmap_csum_set(sb
, block_group
, gdp
, bitmap_bh
);
4847 ext4_group_desc_csum_set(sb
, block_group
, gdp
);
4848 ext4_unlock_group(sb
, block_group
);
4850 if (sbi
->s_log_groups_per_flex
) {
4851 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
4852 atomic64_add(count_clusters
,
4853 &sbi
->s_flex_groups
[flex_group
].free_clusters
);
4856 if (!(flags
& EXT4_FREE_BLOCKS_NO_QUOT_UPDATE
))
4857 dquot_free_block(inode
, EXT4_C2B(sbi
, count_clusters
));
4858 percpu_counter_add(&sbi
->s_freeclusters_counter
, count_clusters
);
4860 ext4_mb_unload_buddy(&e4b
);
4862 /* We dirtied the bitmap block */
4863 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
4864 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
4866 /* And the group descriptor block */
4867 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
4868 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
4872 if (overflow
&& !err
) {
4880 ext4_std_error(sb
, err
);
4885 * ext4_group_add_blocks() -- Add given blocks to an existing group
4886 * @handle: handle to this transaction
4888 * @block: start physical block to add to the block group
4889 * @count: number of blocks to free
4891 * This marks the blocks as free in the bitmap and buddy.
4893 int ext4_group_add_blocks(handle_t
*handle
, struct super_block
*sb
,
4894 ext4_fsblk_t block
, unsigned long count
)
4896 struct buffer_head
*bitmap_bh
= NULL
;
4897 struct buffer_head
*gd_bh
;
4898 ext4_group_t block_group
;
4901 struct ext4_group_desc
*desc
;
4902 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4903 struct ext4_buddy e4b
;
4904 int err
= 0, ret
, blk_free_count
;
4905 ext4_grpblk_t blocks_freed
;
4907 ext4_debug("Adding block(s) %llu-%llu\n", block
, block
+ count
- 1);
4912 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
4914 * Check to see if we are freeing blocks across a group
4917 if (bit
+ count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
4918 ext4_warning(sb
, "too much blocks added to group %u\n",
4924 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
4930 desc
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
4936 if (in_range(ext4_block_bitmap(sb
, desc
), block
, count
) ||
4937 in_range(ext4_inode_bitmap(sb
, desc
), block
, count
) ||
4938 in_range(block
, ext4_inode_table(sb
, desc
), sbi
->s_itb_per_group
) ||
4939 in_range(block
+ count
- 1, ext4_inode_table(sb
, desc
),
4940 sbi
->s_itb_per_group
)) {
4941 ext4_error(sb
, "Adding blocks in system zones - "
4942 "Block = %llu, count = %lu",
4948 BUFFER_TRACE(bitmap_bh
, "getting write access");
4949 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
4954 * We are about to modify some metadata. Call the journal APIs
4955 * to unshare ->b_data if a currently-committing transaction is
4958 BUFFER_TRACE(gd_bh
, "get_write_access");
4959 err
= ext4_journal_get_write_access(handle
, gd_bh
);
4963 for (i
= 0, blocks_freed
= 0; i
< count
; i
++) {
4964 BUFFER_TRACE(bitmap_bh
, "clear bit");
4965 if (!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
)) {
4966 ext4_error(sb
, "bit already cleared for block %llu",
4967 (ext4_fsblk_t
)(block
+ i
));
4968 BUFFER_TRACE(bitmap_bh
, "bit already cleared");
4974 err
= ext4_mb_load_buddy(sb
, block_group
, &e4b
);
4979 * need to update group_info->bb_free and bitmap
4980 * with group lock held. generate_buddy look at
4981 * them with group lock_held
4983 ext4_lock_group(sb
, block_group
);
4984 mb_clear_bits(bitmap_bh
->b_data
, bit
, count
);
4985 mb_free_blocks(NULL
, &e4b
, bit
, count
);
4986 blk_free_count
= blocks_freed
+ ext4_free_group_clusters(sb
, desc
);
4987 ext4_free_group_clusters_set(sb
, desc
, blk_free_count
);
4988 ext4_block_bitmap_csum_set(sb
, block_group
, desc
, bitmap_bh
);
4989 ext4_group_desc_csum_set(sb
, block_group
, desc
);
4990 ext4_unlock_group(sb
, block_group
);
4991 percpu_counter_add(&sbi
->s_freeclusters_counter
,
4992 EXT4_NUM_B2C(sbi
, blocks_freed
));
4994 if (sbi
->s_log_groups_per_flex
) {
4995 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
4996 atomic64_add(EXT4_NUM_B2C(sbi
, blocks_freed
),
4997 &sbi
->s_flex_groups
[flex_group
].free_clusters
);
5000 ext4_mb_unload_buddy(&e4b
);
5002 /* We dirtied the bitmap block */
5003 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
5004 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
5006 /* And the group descriptor block */
5007 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
5008 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
5014 ext4_std_error(sb
, err
);
5019 * ext4_trim_extent -- function to TRIM one single free extent in the group
5020 * @sb: super block for the file system
5021 * @start: starting block of the free extent in the alloc. group
5022 * @count: number of blocks to TRIM
5023 * @group: alloc. group we are working with
5024 * @e4b: ext4 buddy for the group
5026 * Trim "count" blocks starting at "start" in the "group". To assure that no
5027 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5028 * be called with under the group lock.
5030 static int ext4_trim_extent(struct super_block
*sb
, int start
, int count
,
5031 ext4_group_t group
, struct ext4_buddy
*e4b
)
5035 struct ext4_free_extent ex
;
5038 trace_ext4_trim_extent(sb
, group
, start
, count
);
5040 assert_spin_locked(ext4_group_lock_ptr(sb
, group
));
5042 ex
.fe_start
= start
;
5043 ex
.fe_group
= group
;
5047 * Mark blocks used, so no one can reuse them while
5050 mb_mark_used(e4b
, &ex
);
5051 ext4_unlock_group(sb
, group
);
5052 ret
= ext4_issue_discard(sb
, group
, start
, count
);
5053 ext4_lock_group(sb
, group
);
5054 mb_free_blocks(NULL
, e4b
, start
, ex
.fe_len
);
5059 * ext4_trim_all_free -- function to trim all free space in alloc. group
5060 * @sb: super block for file system
5061 * @group: group to be trimmed
5062 * @start: first group block to examine
5063 * @max: last group block to examine
5064 * @minblocks: minimum extent block count
5066 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5067 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5071 * ext4_trim_all_free walks through group's block bitmap searching for free
5072 * extents. When the free extent is found, mark it as used in group buddy
5073 * bitmap. Then issue a TRIM command on this extent and free the extent in
5074 * the group buddy bitmap. This is done until whole group is scanned.
5076 static ext4_grpblk_t
5077 ext4_trim_all_free(struct super_block
*sb
, ext4_group_t group
,
5078 ext4_grpblk_t start
, ext4_grpblk_t max
,
5079 ext4_grpblk_t minblocks
)
5082 ext4_grpblk_t next
, count
= 0, free_count
= 0;
5083 struct ext4_buddy e4b
;
5086 trace_ext4_trim_all_free(sb
, group
, start
, max
);
5088 ret
= ext4_mb_load_buddy(sb
, group
, &e4b
);
5090 ext4_error(sb
, "Error in loading buddy "
5091 "information for %u", group
);
5094 bitmap
= e4b
.bd_bitmap
;
5096 ext4_lock_group(sb
, group
);
5097 if (EXT4_MB_GRP_WAS_TRIMMED(e4b
.bd_info
) &&
5098 minblocks
>= atomic_read(&EXT4_SB(sb
)->s_last_trim_minblks
))
5101 start
= (e4b
.bd_info
->bb_first_free
> start
) ?
5102 e4b
.bd_info
->bb_first_free
: start
;
5104 while (start
<= max
) {
5105 start
= mb_find_next_zero_bit(bitmap
, max
+ 1, start
);
5108 next
= mb_find_next_bit(bitmap
, max
+ 1, start
);
5110 if ((next
- start
) >= minblocks
) {
5111 ret
= ext4_trim_extent(sb
, start
,
5112 next
- start
, group
, &e4b
);
5113 if (ret
&& ret
!= -EOPNOTSUPP
)
5116 count
+= next
- start
;
5118 free_count
+= next
- start
;
5121 if (fatal_signal_pending(current
)) {
5122 count
= -ERESTARTSYS
;
5126 if (need_resched()) {
5127 ext4_unlock_group(sb
, group
);
5129 ext4_lock_group(sb
, group
);
5132 if ((e4b
.bd_info
->bb_free
- free_count
) < minblocks
)
5138 EXT4_MB_GRP_SET_TRIMMED(e4b
.bd_info
);
5141 ext4_unlock_group(sb
, group
);
5142 ext4_mb_unload_buddy(&e4b
);
5144 ext4_debug("trimmed %d blocks in the group %d\n",
5151 * ext4_trim_fs() -- trim ioctl handle function
5152 * @sb: superblock for filesystem
5153 * @range: fstrim_range structure
5155 * start: First Byte to trim
5156 * len: number of Bytes to trim from start
5157 * minlen: minimum extent length in Bytes
5158 * ext4_trim_fs goes through all allocation groups containing Bytes from
5159 * start to start+len. For each such a group ext4_trim_all_free function
5160 * is invoked to trim all free space.
5162 int ext4_trim_fs(struct super_block
*sb
, struct fstrim_range
*range
)
5164 struct ext4_group_info
*grp
;
5165 ext4_group_t group
, first_group
, last_group
;
5166 ext4_grpblk_t cnt
= 0, first_cluster
, last_cluster
;
5167 uint64_t start
, end
, minlen
, trimmed
= 0;
5168 ext4_fsblk_t first_data_blk
=
5169 le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_data_block
);
5170 ext4_fsblk_t max_blks
= ext4_blocks_count(EXT4_SB(sb
)->s_es
);
5173 start
= range
->start
>> sb
->s_blocksize_bits
;
5174 end
= start
+ (range
->len
>> sb
->s_blocksize_bits
) - 1;
5175 minlen
= EXT4_NUM_B2C(EXT4_SB(sb
),
5176 range
->minlen
>> sb
->s_blocksize_bits
);
5178 if (minlen
> EXT4_CLUSTERS_PER_GROUP(sb
) ||
5179 start
>= max_blks
||
5180 range
->len
< sb
->s_blocksize
)
5182 if (end
>= max_blks
)
5184 if (end
<= first_data_blk
)
5186 if (start
< first_data_blk
)
5187 start
= first_data_blk
;
5189 /* Determine first and last group to examine based on start and end */
5190 ext4_get_group_no_and_offset(sb
, (ext4_fsblk_t
) start
,
5191 &first_group
, &first_cluster
);
5192 ext4_get_group_no_and_offset(sb
, (ext4_fsblk_t
) end
,
5193 &last_group
, &last_cluster
);
5195 /* end now represents the last cluster to discard in this group */
5196 end
= EXT4_CLUSTERS_PER_GROUP(sb
) - 1;
5198 for (group
= first_group
; group
<= last_group
; group
++) {
5199 grp
= ext4_get_group_info(sb
, group
);
5200 /* We only do this if the grp has never been initialized */
5201 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
5202 ret
= ext4_mb_init_group(sb
, group
);
5208 * For all the groups except the last one, last cluster will
5209 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5210 * change it for the last group, note that last_cluster is
5211 * already computed earlier by ext4_get_group_no_and_offset()
5213 if (group
== last_group
)
5216 if (grp
->bb_free
>= minlen
) {
5217 cnt
= ext4_trim_all_free(sb
, group
, first_cluster
,
5227 * For every group except the first one, we are sure
5228 * that the first cluster to discard will be cluster #0.
5234 atomic_set(&EXT4_SB(sb
)->s_last_trim_minblks
, minlen
);
5237 range
->len
= EXT4_C2B(EXT4_SB(sb
), trimmed
) << sb
->s_blocksize_bits
;