2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 #include <linux/completion.h>
15 #include <linux/buffer_head.h>
17 #include <linux/gfs2_ondisk.h>
18 #include <linux/prefetch.h>
19 #include <linux/blkdev.h>
20 #include <linux/rbtree.h>
21 #include <linux/random.h>
36 #include "trace_gfs2.h"
38 #define BFITNOENT ((u32)~0)
39 #define NO_BLOCK ((u64)~0)
41 #if BITS_PER_LONG == 32
42 #define LBITMASK (0x55555555UL)
43 #define LBITSKIP55 (0x55555555UL)
44 #define LBITSKIP00 (0x00000000UL)
46 #define LBITMASK (0x5555555555555555UL)
47 #define LBITSKIP55 (0x5555555555555555UL)
48 #define LBITSKIP00 (0x0000000000000000UL)
52 * These routines are used by the resource group routines (rgrp.c)
53 * to keep track of block allocation. Each block is represented by two
54 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
57 * 1 = Used (not metadata)
58 * 2 = Unlinked (still in use) inode
67 static const char valid_change
[16] = {
75 static int gfs2_rbm_find(struct gfs2_rbm
*rbm
, u8 state
, u32
*minext
,
76 const struct gfs2_inode
*ip
, bool nowrap
,
77 const struct gfs2_alloc_parms
*ap
);
81 * gfs2_setbit - Set a bit in the bitmaps
82 * @rbm: The position of the bit to set
83 * @do_clone: Also set the clone bitmap, if it exists
84 * @new_state: the new state of the block
88 static inline void gfs2_setbit(const struct gfs2_rbm
*rbm
, bool do_clone
,
89 unsigned char new_state
)
91 unsigned char *byte1
, *byte2
, *end
, cur_state
;
92 struct gfs2_bitmap
*bi
= rbm_bi(rbm
);
93 unsigned int buflen
= bi
->bi_len
;
94 const unsigned int bit
= (rbm
->offset
% GFS2_NBBY
) * GFS2_BIT_SIZE
;
96 byte1
= bi
->bi_bh
->b_data
+ bi
->bi_offset
+ (rbm
->offset
/ GFS2_NBBY
);
97 end
= bi
->bi_bh
->b_data
+ bi
->bi_offset
+ buflen
;
101 cur_state
= (*byte1
>> bit
) & GFS2_BIT_MASK
;
103 if (unlikely(!valid_change
[new_state
* 4 + cur_state
])) {
104 pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n",
105 rbm
->offset
, cur_state
, new_state
);
106 pr_warn("rgrp=0x%llx bi_start=0x%x\n",
107 (unsigned long long)rbm
->rgd
->rd_addr
, bi
->bi_start
);
108 pr_warn("bi_offset=0x%x bi_len=0x%x\n",
109 bi
->bi_offset
, bi
->bi_len
);
111 gfs2_consist_rgrpd(rbm
->rgd
);
114 *byte1
^= (cur_state
^ new_state
) << bit
;
116 if (do_clone
&& bi
->bi_clone
) {
117 byte2
= bi
->bi_clone
+ bi
->bi_offset
+ (rbm
->offset
/ GFS2_NBBY
);
118 cur_state
= (*byte2
>> bit
) & GFS2_BIT_MASK
;
119 *byte2
^= (cur_state
^ new_state
) << bit
;
124 * gfs2_testbit - test a bit in the bitmaps
125 * @rbm: The bit to test
127 * Returns: The two bit block state of the requested bit
130 static inline u8
gfs2_testbit(const struct gfs2_rbm
*rbm
)
132 struct gfs2_bitmap
*bi
= rbm_bi(rbm
);
133 const u8
*buffer
= bi
->bi_bh
->b_data
+ bi
->bi_offset
;
137 byte
= buffer
+ (rbm
->offset
/ GFS2_NBBY
);
138 bit
= (rbm
->offset
% GFS2_NBBY
) * GFS2_BIT_SIZE
;
140 return (*byte
>> bit
) & GFS2_BIT_MASK
;
145 * @ptr: Pointer to bitmap data
146 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
147 * @state: The state we are searching for
149 * We xor the bitmap data with a patter which is the bitwise opposite
150 * of what we are looking for, this gives rise to a pattern of ones
151 * wherever there is a match. Since we have two bits per entry, we
152 * take this pattern, shift it down by one place and then and it with
153 * the original. All the even bit positions (0,2,4, etc) then represent
154 * successful matches, so we mask with 0x55555..... to remove the unwanted
157 * This allows searching of a whole u64 at once (32 blocks) with a
158 * single test (on 64 bit arches).
161 static inline u64
gfs2_bit_search(const __le64
*ptr
, u64 mask
, u8 state
)
164 static const u64 search
[] = {
165 [0] = 0xffffffffffffffffULL
,
166 [1] = 0xaaaaaaaaaaaaaaaaULL
,
167 [2] = 0x5555555555555555ULL
,
168 [3] = 0x0000000000000000ULL
,
170 tmp
= le64_to_cpu(*ptr
) ^ search
[state
];
177 * rs_cmp - multi-block reservation range compare
178 * @blk: absolute file system block number of the new reservation
179 * @len: number of blocks in the new reservation
180 * @rs: existing reservation to compare against
182 * returns: 1 if the block range is beyond the reach of the reservation
183 * -1 if the block range is before the start of the reservation
184 * 0 if the block range overlaps with the reservation
186 static inline int rs_cmp(u64 blk
, u32 len
, struct gfs2_blkreserv
*rs
)
188 u64 startblk
= gfs2_rbm_to_block(&rs
->rs_rbm
);
190 if (blk
>= startblk
+ rs
->rs_free
)
192 if (blk
+ len
- 1 < startblk
)
198 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
199 * a block in a given allocation state.
200 * @buf: the buffer that holds the bitmaps
201 * @len: the length (in bytes) of the buffer
202 * @goal: start search at this block's bit-pair (within @buffer)
203 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
205 * Scope of @goal and returned block number is only within this bitmap buffer,
206 * not entire rgrp or filesystem. @buffer will be offset from the actual
207 * beginning of a bitmap block buffer, skipping any header structures, but
208 * headers are always a multiple of 64 bits long so that the buffer is
209 * always aligned to a 64 bit boundary.
211 * The size of the buffer is in bytes, but is it assumed that it is
212 * always ok to read a complete multiple of 64 bits at the end
213 * of the block in case the end is no aligned to a natural boundary.
215 * Return: the block number (bitmap buffer scope) that was found
218 static u32
gfs2_bitfit(const u8
*buf
, const unsigned int len
,
221 u32 spoint
= (goal
<< 1) & ((8*sizeof(u64
)) - 1);
222 const __le64
*ptr
= ((__le64
*)buf
) + (goal
>> 5);
223 const __le64
*end
= (__le64
*)(buf
+ ALIGN(len
, sizeof(u64
)));
225 u64 mask
= 0x5555555555555555ULL
;
228 /* Mask off bits we don't care about at the start of the search */
230 tmp
= gfs2_bit_search(ptr
, mask
, state
);
232 while(tmp
== 0 && ptr
< end
) {
233 tmp
= gfs2_bit_search(ptr
, 0x5555555555555555ULL
, state
);
236 /* Mask off any bits which are more than len bytes from the start */
237 if (ptr
== end
&& (len
& (sizeof(u64
) - 1)))
238 tmp
&= (((u64
)~0) >> (64 - 8*(len
& (sizeof(u64
) - 1))));
239 /* Didn't find anything, so return */
244 bit
/= 2; /* two bits per entry in the bitmap */
245 return (((const unsigned char *)ptr
- buf
) * GFS2_NBBY
) + bit
;
249 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
250 * @rbm: The rbm with rgd already set correctly
251 * @block: The block number (filesystem relative)
253 * This sets the bi and offset members of an rbm based on a
254 * resource group and a filesystem relative block number. The
255 * resource group must be set in the rbm on entry, the bi and
256 * offset members will be set by this function.
258 * Returns: 0 on success, or an error code
261 static int gfs2_rbm_from_block(struct gfs2_rbm
*rbm
, u64 block
)
263 u64 rblock
= block
- rbm
->rgd
->rd_data0
;
265 if (WARN_ON_ONCE(rblock
> UINT_MAX
))
267 if (block
>= rbm
->rgd
->rd_data0
+ rbm
->rgd
->rd_data
)
271 rbm
->offset
= (u32
)(rblock
);
272 /* Check if the block is within the first block */
273 if (rbm
->offset
< rbm_bi(rbm
)->bi_blocks
)
276 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
277 rbm
->offset
+= (sizeof(struct gfs2_rgrp
) -
278 sizeof(struct gfs2_meta_header
)) * GFS2_NBBY
;
279 rbm
->bii
= rbm
->offset
/ rbm
->rgd
->rd_sbd
->sd_blocks_per_bitmap
;
280 rbm
->offset
-= rbm
->bii
* rbm
->rgd
->rd_sbd
->sd_blocks_per_bitmap
;
285 * gfs2_rbm_incr - increment an rbm structure
286 * @rbm: The rbm with rgd already set correctly
288 * This function takes an existing rbm structure and increments it to the next
289 * viable block offset.
291 * Returns: If incrementing the offset would cause the rbm to go past the
292 * end of the rgrp, true is returned, otherwise false.
296 static bool gfs2_rbm_incr(struct gfs2_rbm
*rbm
)
298 if (rbm
->offset
+ 1 < rbm_bi(rbm
)->bi_blocks
) { /* in the same bitmap */
302 if (rbm
->bii
== rbm
->rgd
->rd_length
- 1) /* at the last bitmap */
311 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
312 * @rbm: Position to search (value/result)
313 * @n_unaligned: Number of unaligned blocks to check
314 * @len: Decremented for each block found (terminate on zero)
316 * Returns: true if a non-free block is encountered
319 static bool gfs2_unaligned_extlen(struct gfs2_rbm
*rbm
, u32 n_unaligned
, u32
*len
)
324 for (n
= 0; n
< n_unaligned
; n
++) {
325 res
= gfs2_testbit(rbm
);
326 if (res
!= GFS2_BLKST_FREE
)
331 if (gfs2_rbm_incr(rbm
))
339 * gfs2_free_extlen - Return extent length of free blocks
340 * @rrbm: Starting position
341 * @len: Max length to check
343 * Starting at the block specified by the rbm, see how many free blocks
344 * there are, not reading more than len blocks ahead. This can be done
345 * using memchr_inv when the blocks are byte aligned, but has to be done
346 * on a block by block basis in case of unaligned blocks. Also this
347 * function can cope with bitmap boundaries (although it must stop on
348 * a resource group boundary)
350 * Returns: Number of free blocks in the extent
353 static u32
gfs2_free_extlen(const struct gfs2_rbm
*rrbm
, u32 len
)
355 struct gfs2_rbm rbm
= *rrbm
;
356 u32 n_unaligned
= rbm
.offset
& 3;
360 u8
*ptr
, *start
, *end
;
362 struct gfs2_bitmap
*bi
;
365 gfs2_unaligned_extlen(&rbm
, 4 - n_unaligned
, &len
))
368 n_unaligned
= len
& 3;
369 /* Start is now byte aligned */
372 start
= bi
->bi_bh
->b_data
;
374 start
= bi
->bi_clone
;
375 end
= start
+ bi
->bi_bh
->b_size
;
376 start
+= bi
->bi_offset
;
377 BUG_ON(rbm
.offset
& 3);
378 start
+= (rbm
.offset
/ GFS2_NBBY
);
379 bytes
= min_t(u32
, len
/ GFS2_NBBY
, (end
- start
));
380 ptr
= memchr_inv(start
, 0, bytes
);
381 chunk_size
= ((ptr
== NULL
) ? bytes
: (ptr
- start
));
382 chunk_size
*= GFS2_NBBY
;
383 BUG_ON(len
< chunk_size
);
385 block
= gfs2_rbm_to_block(&rbm
);
386 if (gfs2_rbm_from_block(&rbm
, block
+ chunk_size
)) {
394 n_unaligned
= len
& 3;
397 /* Deal with any bits left over at the end */
399 gfs2_unaligned_extlen(&rbm
, n_unaligned
, &len
);
405 * gfs2_bitcount - count the number of bits in a certain state
406 * @rgd: the resource group descriptor
407 * @buffer: the buffer that holds the bitmaps
408 * @buflen: the length (in bytes) of the buffer
409 * @state: the state of the block we're looking for
411 * Returns: The number of bits
414 static u32
gfs2_bitcount(struct gfs2_rgrpd
*rgd
, const u8
*buffer
,
415 unsigned int buflen
, u8 state
)
417 const u8
*byte
= buffer
;
418 const u8
*end
= buffer
+ buflen
;
419 const u8 state1
= state
<< 2;
420 const u8 state2
= state
<< 4;
421 const u8 state3
= state
<< 6;
424 for (; byte
< end
; byte
++) {
425 if (((*byte
) & 0x03) == state
)
427 if (((*byte
) & 0x0C) == state1
)
429 if (((*byte
) & 0x30) == state2
)
431 if (((*byte
) & 0xC0) == state3
)
439 * gfs2_rgrp_verify - Verify that a resource group is consistent
444 void gfs2_rgrp_verify(struct gfs2_rgrpd
*rgd
)
446 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
447 struct gfs2_bitmap
*bi
= NULL
;
448 u32 length
= rgd
->rd_length
;
452 memset(count
, 0, 4 * sizeof(u32
));
454 /* Count # blocks in each of 4 possible allocation states */
455 for (buf
= 0; buf
< length
; buf
++) {
456 bi
= rgd
->rd_bits
+ buf
;
457 for (x
= 0; x
< 4; x
++)
458 count
[x
] += gfs2_bitcount(rgd
,
464 if (count
[0] != rgd
->rd_free
) {
465 if (gfs2_consist_rgrpd(rgd
))
466 fs_err(sdp
, "free data mismatch: %u != %u\n",
467 count
[0], rgd
->rd_free
);
471 tmp
= rgd
->rd_data
- rgd
->rd_free
- rgd
->rd_dinodes
;
472 if (count
[1] != tmp
) {
473 if (gfs2_consist_rgrpd(rgd
))
474 fs_err(sdp
, "used data mismatch: %u != %u\n",
479 if (count
[2] + count
[3] != rgd
->rd_dinodes
) {
480 if (gfs2_consist_rgrpd(rgd
))
481 fs_err(sdp
, "used metadata mismatch: %u != %u\n",
482 count
[2] + count
[3], rgd
->rd_dinodes
);
487 static inline int rgrp_contains_block(struct gfs2_rgrpd
*rgd
, u64 block
)
489 u64 first
= rgd
->rd_data0
;
490 u64 last
= first
+ rgd
->rd_data
;
491 return first
<= block
&& block
< last
;
495 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
496 * @sdp: The GFS2 superblock
497 * @blk: The data block number
498 * @exact: True if this needs to be an exact match
500 * Returns: The resource group, or NULL if not found
503 struct gfs2_rgrpd
*gfs2_blk2rgrpd(struct gfs2_sbd
*sdp
, u64 blk
, bool exact
)
505 struct rb_node
*n
, *next
;
506 struct gfs2_rgrpd
*cur
;
508 spin_lock(&sdp
->sd_rindex_spin
);
509 n
= sdp
->sd_rindex_tree
.rb_node
;
511 cur
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
513 if (blk
< cur
->rd_addr
)
515 else if (blk
>= cur
->rd_data0
+ cur
->rd_data
)
518 spin_unlock(&sdp
->sd_rindex_spin
);
520 if (blk
< cur
->rd_addr
)
522 if (blk
>= cur
->rd_data0
+ cur
->rd_data
)
529 spin_unlock(&sdp
->sd_rindex_spin
);
535 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
536 * @sdp: The GFS2 superblock
538 * Returns: The first rgrp in the filesystem
541 struct gfs2_rgrpd
*gfs2_rgrpd_get_first(struct gfs2_sbd
*sdp
)
543 const struct rb_node
*n
;
544 struct gfs2_rgrpd
*rgd
;
546 spin_lock(&sdp
->sd_rindex_spin
);
547 n
= rb_first(&sdp
->sd_rindex_tree
);
548 rgd
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
549 spin_unlock(&sdp
->sd_rindex_spin
);
555 * gfs2_rgrpd_get_next - get the next RG
556 * @rgd: the resource group descriptor
558 * Returns: The next rgrp
561 struct gfs2_rgrpd
*gfs2_rgrpd_get_next(struct gfs2_rgrpd
*rgd
)
563 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
564 const struct rb_node
*n
;
566 spin_lock(&sdp
->sd_rindex_spin
);
567 n
= rb_next(&rgd
->rd_node
);
569 n
= rb_first(&sdp
->sd_rindex_tree
);
571 if (unlikely(&rgd
->rd_node
== n
)) {
572 spin_unlock(&sdp
->sd_rindex_spin
);
575 rgd
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
576 spin_unlock(&sdp
->sd_rindex_spin
);
580 void check_and_update_goal(struct gfs2_inode
*ip
)
582 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
583 if (!ip
->i_goal
|| gfs2_blk2rgrpd(sdp
, ip
->i_goal
, 1) == NULL
)
584 ip
->i_goal
= ip
->i_no_addr
;
587 void gfs2_free_clones(struct gfs2_rgrpd
*rgd
)
591 for (x
= 0; x
< rgd
->rd_length
; x
++) {
592 struct gfs2_bitmap
*bi
= rgd
->rd_bits
+ x
;
599 * gfs2_rs_alloc - make sure we have a reservation assigned to the inode
600 * @ip: the inode for this reservation
602 int gfs2_rs_alloc(struct gfs2_inode
*ip
)
606 down_write(&ip
->i_rw_mutex
);
610 ip
->i_res
= kmem_cache_zalloc(gfs2_rsrv_cachep
, GFP_NOFS
);
616 RB_CLEAR_NODE(&ip
->i_res
->rs_node
);
618 up_write(&ip
->i_rw_mutex
);
622 static void dump_rs(struct seq_file
*seq
, const struct gfs2_blkreserv
*rs
)
624 gfs2_print_dbg(seq
, " B: n:%llu s:%llu b:%u f:%u\n",
625 (unsigned long long)rs
->rs_inum
,
626 (unsigned long long)gfs2_rbm_to_block(&rs
->rs_rbm
),
627 rs
->rs_rbm
.offset
, rs
->rs_free
);
631 * __rs_deltree - remove a multi-block reservation from the rgd tree
632 * @rs: The reservation to remove
635 static void __rs_deltree(struct gfs2_blkreserv
*rs
)
637 struct gfs2_rgrpd
*rgd
;
639 if (!gfs2_rs_active(rs
))
642 rgd
= rs
->rs_rbm
.rgd
;
643 trace_gfs2_rs(rs
, TRACE_RS_TREEDEL
);
644 rb_erase(&rs
->rs_node
, &rgd
->rd_rstree
);
645 RB_CLEAR_NODE(&rs
->rs_node
);
648 struct gfs2_bitmap
*bi
= rbm_bi(&rs
->rs_rbm
);
650 /* return reserved blocks to the rgrp */
651 BUG_ON(rs
->rs_rbm
.rgd
->rd_reserved
< rs
->rs_free
);
652 rs
->rs_rbm
.rgd
->rd_reserved
-= rs
->rs_free
;
653 /* The rgrp extent failure point is likely not to increase;
654 it will only do so if the freed blocks are somehow
655 contiguous with a span of free blocks that follows. Still,
656 it will force the number to be recalculated later. */
657 rgd
->rd_extfail_pt
+= rs
->rs_free
;
659 clear_bit(GBF_FULL
, &bi
->bi_flags
);
664 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
665 * @rs: The reservation to remove
668 void gfs2_rs_deltree(struct gfs2_blkreserv
*rs
)
670 struct gfs2_rgrpd
*rgd
;
672 rgd
= rs
->rs_rbm
.rgd
;
674 spin_lock(&rgd
->rd_rsspin
);
676 spin_unlock(&rgd
->rd_rsspin
);
681 * gfs2_rs_delete - delete a multi-block reservation
682 * @ip: The inode for this reservation
683 * @wcount: The inode's write count, or NULL
686 void gfs2_rs_delete(struct gfs2_inode
*ip
, atomic_t
*wcount
)
688 down_write(&ip
->i_rw_mutex
);
689 if (ip
->i_res
&& ((wcount
== NULL
) || (atomic_read(wcount
) <= 1))) {
690 gfs2_rs_deltree(ip
->i_res
);
691 BUG_ON(ip
->i_res
->rs_free
);
692 kmem_cache_free(gfs2_rsrv_cachep
, ip
->i_res
);
695 up_write(&ip
->i_rw_mutex
);
699 * return_all_reservations - return all reserved blocks back to the rgrp.
700 * @rgd: the rgrp that needs its space back
702 * We previously reserved a bunch of blocks for allocation. Now we need to
703 * give them back. This leave the reservation structures in tact, but removes
704 * all of their corresponding "no-fly zones".
706 static void return_all_reservations(struct gfs2_rgrpd
*rgd
)
709 struct gfs2_blkreserv
*rs
;
711 spin_lock(&rgd
->rd_rsspin
);
712 while ((n
= rb_first(&rgd
->rd_rstree
))) {
713 rs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
716 spin_unlock(&rgd
->rd_rsspin
);
719 void gfs2_clear_rgrpd(struct gfs2_sbd
*sdp
)
722 struct gfs2_rgrpd
*rgd
;
723 struct gfs2_glock
*gl
;
725 while ((n
= rb_first(&sdp
->sd_rindex_tree
))) {
726 rgd
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
729 rb_erase(n
, &sdp
->sd_rindex_tree
);
732 spin_lock(&gl
->gl_spin
);
733 gl
->gl_object
= NULL
;
734 spin_unlock(&gl
->gl_spin
);
735 gfs2_glock_add_to_lru(gl
);
739 gfs2_free_clones(rgd
);
741 return_all_reservations(rgd
);
742 kmem_cache_free(gfs2_rgrpd_cachep
, rgd
);
746 static void gfs2_rindex_print(const struct gfs2_rgrpd
*rgd
)
748 pr_info("ri_addr = %llu\n", (unsigned long long)rgd
->rd_addr
);
749 pr_info("ri_length = %u\n", rgd
->rd_length
);
750 pr_info("ri_data0 = %llu\n", (unsigned long long)rgd
->rd_data0
);
751 pr_info("ri_data = %u\n", rgd
->rd_data
);
752 pr_info("ri_bitbytes = %u\n", rgd
->rd_bitbytes
);
756 * gfs2_compute_bitstructs - Compute the bitmap sizes
757 * @rgd: The resource group descriptor
759 * Calculates bitmap descriptors, one for each block that contains bitmap data
764 static int compute_bitstructs(struct gfs2_rgrpd
*rgd
)
766 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
767 struct gfs2_bitmap
*bi
;
768 u32 length
= rgd
->rd_length
; /* # blocks in hdr & bitmap */
769 u32 bytes_left
, bytes
;
775 rgd
->rd_bits
= kcalloc(length
, sizeof(struct gfs2_bitmap
), GFP_NOFS
);
779 bytes_left
= rgd
->rd_bitbytes
;
781 for (x
= 0; x
< length
; x
++) {
782 bi
= rgd
->rd_bits
+ x
;
785 /* small rgrp; bitmap stored completely in header block */
788 bi
->bi_offset
= sizeof(struct gfs2_rgrp
);
791 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
794 bytes
= sdp
->sd_sb
.sb_bsize
- sizeof(struct gfs2_rgrp
);
795 bi
->bi_offset
= sizeof(struct gfs2_rgrp
);
798 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
800 } else if (x
+ 1 == length
) {
802 bi
->bi_offset
= sizeof(struct gfs2_meta_header
);
803 bi
->bi_start
= rgd
->rd_bitbytes
- bytes_left
;
805 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
808 bytes
= sdp
->sd_sb
.sb_bsize
-
809 sizeof(struct gfs2_meta_header
);
810 bi
->bi_offset
= sizeof(struct gfs2_meta_header
);
811 bi
->bi_start
= rgd
->rd_bitbytes
- bytes_left
;
813 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
820 gfs2_consist_rgrpd(rgd
);
823 bi
= rgd
->rd_bits
+ (length
- 1);
824 if ((bi
->bi_start
+ bi
->bi_len
) * GFS2_NBBY
!= rgd
->rd_data
) {
825 if (gfs2_consist_rgrpd(rgd
)) {
826 gfs2_rindex_print(rgd
);
827 fs_err(sdp
, "start=%u len=%u offset=%u\n",
828 bi
->bi_start
, bi
->bi_len
, bi
->bi_offset
);
837 * gfs2_ri_total - Total up the file system space, according to the rindex.
838 * @sdp: the filesystem
841 u64
gfs2_ri_total(struct gfs2_sbd
*sdp
)
844 struct inode
*inode
= sdp
->sd_rindex
;
845 struct gfs2_inode
*ip
= GFS2_I(inode
);
846 char buf
[sizeof(struct gfs2_rindex
)];
849 for (rgrps
= 0;; rgrps
++) {
850 loff_t pos
= rgrps
* sizeof(struct gfs2_rindex
);
852 if (pos
+ sizeof(struct gfs2_rindex
) > i_size_read(inode
))
854 error
= gfs2_internal_read(ip
, buf
, &pos
,
855 sizeof(struct gfs2_rindex
));
856 if (error
!= sizeof(struct gfs2_rindex
))
858 total_data
+= be32_to_cpu(((struct gfs2_rindex
*)buf
)->ri_data
);
863 static int rgd_insert(struct gfs2_rgrpd
*rgd
)
865 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
866 struct rb_node
**newn
= &sdp
->sd_rindex_tree
.rb_node
, *parent
= NULL
;
868 /* Figure out where to put new node */
870 struct gfs2_rgrpd
*cur
= rb_entry(*newn
, struct gfs2_rgrpd
,
874 if (rgd
->rd_addr
< cur
->rd_addr
)
875 newn
= &((*newn
)->rb_left
);
876 else if (rgd
->rd_addr
> cur
->rd_addr
)
877 newn
= &((*newn
)->rb_right
);
882 rb_link_node(&rgd
->rd_node
, parent
, newn
);
883 rb_insert_color(&rgd
->rd_node
, &sdp
->sd_rindex_tree
);
889 * read_rindex_entry - Pull in a new resource index entry from the disk
890 * @ip: Pointer to the rindex inode
892 * Returns: 0 on success, > 0 on EOF, error code otherwise
895 static int read_rindex_entry(struct gfs2_inode
*ip
)
897 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
898 const unsigned bsize
= sdp
->sd_sb
.sb_bsize
;
899 loff_t pos
= sdp
->sd_rgrps
* sizeof(struct gfs2_rindex
);
900 struct gfs2_rindex buf
;
902 struct gfs2_rgrpd
*rgd
;
904 if (pos
>= i_size_read(&ip
->i_inode
))
907 error
= gfs2_internal_read(ip
, (char *)&buf
, &pos
,
908 sizeof(struct gfs2_rindex
));
910 if (error
!= sizeof(struct gfs2_rindex
))
911 return (error
== 0) ? 1 : error
;
913 rgd
= kmem_cache_zalloc(gfs2_rgrpd_cachep
, GFP_NOFS
);
919 rgd
->rd_addr
= be64_to_cpu(buf
.ri_addr
);
920 rgd
->rd_length
= be32_to_cpu(buf
.ri_length
);
921 rgd
->rd_data0
= be64_to_cpu(buf
.ri_data0
);
922 rgd
->rd_data
= be32_to_cpu(buf
.ri_data
);
923 rgd
->rd_bitbytes
= be32_to_cpu(buf
.ri_bitbytes
);
924 spin_lock_init(&rgd
->rd_rsspin
);
926 error
= compute_bitstructs(rgd
);
930 error
= gfs2_glock_get(sdp
, rgd
->rd_addr
,
931 &gfs2_rgrp_glops
, CREATE
, &rgd
->rd_gl
);
935 rgd
->rd_gl
->gl_object
= rgd
;
936 rgd
->rd_gl
->gl_vm
.start
= rgd
->rd_addr
* bsize
;
937 rgd
->rd_gl
->gl_vm
.end
= rgd
->rd_gl
->gl_vm
.start
+ (rgd
->rd_length
* bsize
) - 1;
938 rgd
->rd_rgl
= (struct gfs2_rgrp_lvb
*)rgd
->rd_gl
->gl_lksb
.sb_lvbptr
;
939 rgd
->rd_flags
&= ~GFS2_RDF_UPTODATE
;
940 if (rgd
->rd_data
> sdp
->sd_max_rg_data
)
941 sdp
->sd_max_rg_data
= rgd
->rd_data
;
942 spin_lock(&sdp
->sd_rindex_spin
);
943 error
= rgd_insert(rgd
);
944 spin_unlock(&sdp
->sd_rindex_spin
);
948 error
= 0; /* someone else read in the rgrp; free it and ignore it */
949 gfs2_glock_put(rgd
->rd_gl
);
953 kmem_cache_free(gfs2_rgrpd_cachep
, rgd
);
958 * gfs2_ri_update - Pull in a new resource index from the disk
959 * @ip: pointer to the rindex inode
961 * Returns: 0 on successful update, error code otherwise
964 static int gfs2_ri_update(struct gfs2_inode
*ip
)
966 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
970 error
= read_rindex_entry(ip
);
971 } while (error
== 0);
976 sdp
->sd_rindex_uptodate
= 1;
981 * gfs2_rindex_update - Update the rindex if required
982 * @sdp: The GFS2 superblock
984 * We grab a lock on the rindex inode to make sure that it doesn't
985 * change whilst we are performing an operation. We keep this lock
986 * for quite long periods of time compared to other locks. This
987 * doesn't matter, since it is shared and it is very, very rarely
988 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
990 * This makes sure that we're using the latest copy of the resource index
991 * special file, which might have been updated if someone expanded the
992 * filesystem (via gfs2_grow utility), which adds new resource groups.
994 * Returns: 0 on succeess, error code otherwise
997 int gfs2_rindex_update(struct gfs2_sbd
*sdp
)
999 struct gfs2_inode
*ip
= GFS2_I(sdp
->sd_rindex
);
1000 struct gfs2_glock
*gl
= ip
->i_gl
;
1001 struct gfs2_holder ri_gh
;
1003 int unlock_required
= 0;
1005 /* Read new copy from disk if we don't have the latest */
1006 if (!sdp
->sd_rindex_uptodate
) {
1007 if (!gfs2_glock_is_locked_by_me(gl
)) {
1008 error
= gfs2_glock_nq_init(gl
, LM_ST_SHARED
, 0, &ri_gh
);
1011 unlock_required
= 1;
1013 if (!sdp
->sd_rindex_uptodate
)
1014 error
= gfs2_ri_update(ip
);
1015 if (unlock_required
)
1016 gfs2_glock_dq_uninit(&ri_gh
);
1022 static void gfs2_rgrp_in(struct gfs2_rgrpd
*rgd
, const void *buf
)
1024 const struct gfs2_rgrp
*str
= buf
;
1027 rg_flags
= be32_to_cpu(str
->rg_flags
);
1028 rg_flags
&= ~GFS2_RDF_MASK
;
1029 rgd
->rd_flags
&= GFS2_RDF_MASK
;
1030 rgd
->rd_flags
|= rg_flags
;
1031 rgd
->rd_free
= be32_to_cpu(str
->rg_free
);
1032 rgd
->rd_dinodes
= be32_to_cpu(str
->rg_dinodes
);
1033 rgd
->rd_igeneration
= be64_to_cpu(str
->rg_igeneration
);
1036 static void gfs2_rgrp_out(struct gfs2_rgrpd
*rgd
, void *buf
)
1038 struct gfs2_rgrp
*str
= buf
;
1040 str
->rg_flags
= cpu_to_be32(rgd
->rd_flags
& ~GFS2_RDF_MASK
);
1041 str
->rg_free
= cpu_to_be32(rgd
->rd_free
);
1042 str
->rg_dinodes
= cpu_to_be32(rgd
->rd_dinodes
);
1043 str
->__pad
= cpu_to_be32(0);
1044 str
->rg_igeneration
= cpu_to_be64(rgd
->rd_igeneration
);
1045 memset(&str
->rg_reserved
, 0, sizeof(str
->rg_reserved
));
1048 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd
*rgd
)
1050 struct gfs2_rgrp_lvb
*rgl
= rgd
->rd_rgl
;
1051 struct gfs2_rgrp
*str
= (struct gfs2_rgrp
*)rgd
->rd_bits
[0].bi_bh
->b_data
;
1053 if (rgl
->rl_flags
!= str
->rg_flags
|| rgl
->rl_free
!= str
->rg_free
||
1054 rgl
->rl_dinodes
!= str
->rg_dinodes
||
1055 rgl
->rl_igeneration
!= str
->rg_igeneration
)
1060 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb
*rgl
, const void *buf
)
1062 const struct gfs2_rgrp
*str
= buf
;
1064 rgl
->rl_magic
= cpu_to_be32(GFS2_MAGIC
);
1065 rgl
->rl_flags
= str
->rg_flags
;
1066 rgl
->rl_free
= str
->rg_free
;
1067 rgl
->rl_dinodes
= str
->rg_dinodes
;
1068 rgl
->rl_igeneration
= str
->rg_igeneration
;
1072 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd
*rgd
, u32 change
)
1074 struct gfs2_rgrp_lvb
*rgl
= rgd
->rd_rgl
;
1075 u32 unlinked
= be32_to_cpu(rgl
->rl_unlinked
) + change
;
1076 rgl
->rl_unlinked
= cpu_to_be32(unlinked
);
1079 static u32
count_unlinked(struct gfs2_rgrpd
*rgd
)
1081 struct gfs2_bitmap
*bi
;
1082 const u32 length
= rgd
->rd_length
;
1083 const u8
*buffer
= NULL
;
1084 u32 i
, goal
, count
= 0;
1086 for (i
= 0, bi
= rgd
->rd_bits
; i
< length
; i
++, bi
++) {
1088 buffer
= bi
->bi_bh
->b_data
+ bi
->bi_offset
;
1089 WARN_ON(!buffer_uptodate(bi
->bi_bh
));
1090 while (goal
< bi
->bi_len
* GFS2_NBBY
) {
1091 goal
= gfs2_bitfit(buffer
, bi
->bi_len
, goal
,
1092 GFS2_BLKST_UNLINKED
);
1093 if (goal
== BFITNOENT
)
1105 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1106 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1108 * Read in all of a Resource Group's header and bitmap blocks.
1109 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1114 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd
*rgd
)
1116 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1117 struct gfs2_glock
*gl
= rgd
->rd_gl
;
1118 unsigned int length
= rgd
->rd_length
;
1119 struct gfs2_bitmap
*bi
;
1123 if (rgd
->rd_bits
[0].bi_bh
!= NULL
)
1126 for (x
= 0; x
< length
; x
++) {
1127 bi
= rgd
->rd_bits
+ x
;
1128 error
= gfs2_meta_read(gl
, rgd
->rd_addr
+ x
, 0, &bi
->bi_bh
);
1133 for (y
= length
; y
--;) {
1134 bi
= rgd
->rd_bits
+ y
;
1135 error
= gfs2_meta_wait(sdp
, bi
->bi_bh
);
1138 if (gfs2_metatype_check(sdp
, bi
->bi_bh
, y
? GFS2_METATYPE_RB
:
1139 GFS2_METATYPE_RG
)) {
1145 if (!(rgd
->rd_flags
& GFS2_RDF_UPTODATE
)) {
1146 for (x
= 0; x
< length
; x
++)
1147 clear_bit(GBF_FULL
, &rgd
->rd_bits
[x
].bi_flags
);
1148 gfs2_rgrp_in(rgd
, (rgd
->rd_bits
[0].bi_bh
)->b_data
);
1149 rgd
->rd_flags
|= (GFS2_RDF_UPTODATE
| GFS2_RDF_CHECK
);
1150 rgd
->rd_free_clone
= rgd
->rd_free
;
1151 /* max out the rgrp allocation failure point */
1152 rgd
->rd_extfail_pt
= rgd
->rd_free
;
1154 if (cpu_to_be32(GFS2_MAGIC
) != rgd
->rd_rgl
->rl_magic
) {
1155 rgd
->rd_rgl
->rl_unlinked
= cpu_to_be32(count_unlinked(rgd
));
1156 gfs2_rgrp_ondisk2lvb(rgd
->rd_rgl
,
1157 rgd
->rd_bits
[0].bi_bh
->b_data
);
1159 else if (sdp
->sd_args
.ar_rgrplvb
) {
1160 if (!gfs2_rgrp_lvb_valid(rgd
)){
1161 gfs2_consist_rgrpd(rgd
);
1165 if (rgd
->rd_rgl
->rl_unlinked
== 0)
1166 rgd
->rd_flags
&= ~GFS2_RDF_CHECK
;
1172 bi
= rgd
->rd_bits
+ x
;
1175 gfs2_assert_warn(sdp
, !bi
->bi_clone
);
1181 static int update_rgrp_lvb(struct gfs2_rgrpd
*rgd
)
1185 if (rgd
->rd_flags
& GFS2_RDF_UPTODATE
)
1188 if (cpu_to_be32(GFS2_MAGIC
) != rgd
->rd_rgl
->rl_magic
)
1189 return gfs2_rgrp_bh_get(rgd
);
1191 rl_flags
= be32_to_cpu(rgd
->rd_rgl
->rl_flags
);
1192 rl_flags
&= ~GFS2_RDF_MASK
;
1193 rgd
->rd_flags
&= GFS2_RDF_MASK
;
1194 rgd
->rd_flags
|= (rl_flags
| GFS2_RDF_UPTODATE
| GFS2_RDF_CHECK
);
1195 if (rgd
->rd_rgl
->rl_unlinked
== 0)
1196 rgd
->rd_flags
&= ~GFS2_RDF_CHECK
;
1197 rgd
->rd_free
= be32_to_cpu(rgd
->rd_rgl
->rl_free
);
1198 rgd
->rd_free_clone
= rgd
->rd_free
;
1199 rgd
->rd_dinodes
= be32_to_cpu(rgd
->rd_rgl
->rl_dinodes
);
1200 rgd
->rd_igeneration
= be64_to_cpu(rgd
->rd_rgl
->rl_igeneration
);
1204 int gfs2_rgrp_go_lock(struct gfs2_holder
*gh
)
1206 struct gfs2_rgrpd
*rgd
= gh
->gh_gl
->gl_object
;
1207 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1209 if (gh
->gh_flags
& GL_SKIP
&& sdp
->sd_args
.ar_rgrplvb
)
1211 return gfs2_rgrp_bh_get(rgd
);
1215 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1216 * @gh: The glock holder for the resource group
1220 void gfs2_rgrp_go_unlock(struct gfs2_holder
*gh
)
1222 struct gfs2_rgrpd
*rgd
= gh
->gh_gl
->gl_object
;
1223 int x
, length
= rgd
->rd_length
;
1225 for (x
= 0; x
< length
; x
++) {
1226 struct gfs2_bitmap
*bi
= rgd
->rd_bits
+ x
;
1235 int gfs2_rgrp_send_discards(struct gfs2_sbd
*sdp
, u64 offset
,
1236 struct buffer_head
*bh
,
1237 const struct gfs2_bitmap
*bi
, unsigned minlen
, u64
*ptrimmed
)
1239 struct super_block
*sb
= sdp
->sd_vfs
;
1242 sector_t nr_blks
= 0;
1248 for (x
= 0; x
< bi
->bi_len
; x
++) {
1249 const u8
*clone
= bi
->bi_clone
? bi
->bi_clone
: bi
->bi_bh
->b_data
;
1250 clone
+= bi
->bi_offset
;
1253 const u8
*orig
= bh
->b_data
+ bi
->bi_offset
+ x
;
1254 diff
= ~(*orig
| (*orig
>> 1)) & (*clone
| (*clone
>> 1));
1256 diff
= ~(*clone
| (*clone
>> 1));
1261 blk
= offset
+ ((bi
->bi_start
+ x
) * GFS2_NBBY
);
1265 goto start_new_extent
;
1266 if ((start
+ nr_blks
) != blk
) {
1267 if (nr_blks
>= minlen
) {
1268 rv
= sb_issue_discard(sb
,
1285 if (nr_blks
>= minlen
) {
1286 rv
= sb_issue_discard(sb
, start
, nr_blks
, GFP_NOFS
, 0);
1292 *ptrimmed
= trimmed
;
1296 if (sdp
->sd_args
.ar_discard
)
1297 fs_warn(sdp
, "error %d on discard request, turning discards off for this filesystem", rv
);
1298 sdp
->sd_args
.ar_discard
= 0;
1303 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1304 * @filp: Any file on the filesystem
1305 * @argp: Pointer to the arguments (also used to pass result)
1307 * Returns: 0 on success, otherwise error code
1310 int gfs2_fitrim(struct file
*filp
, void __user
*argp
)
1312 struct inode
*inode
= file_inode(filp
);
1313 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
1314 struct request_queue
*q
= bdev_get_queue(sdp
->sd_vfs
->s_bdev
);
1315 struct buffer_head
*bh
;
1316 struct gfs2_rgrpd
*rgd
;
1317 struct gfs2_rgrpd
*rgd_end
;
1318 struct gfs2_holder gh
;
1319 struct fstrim_range r
;
1323 u64 start
, end
, minlen
;
1325 unsigned bs_shift
= sdp
->sd_sb
.sb_bsize_shift
;
1327 if (!capable(CAP_SYS_ADMIN
))
1330 if (!blk_queue_discard(q
))
1333 if (copy_from_user(&r
, argp
, sizeof(r
)))
1336 ret
= gfs2_rindex_update(sdp
);
1340 start
= r
.start
>> bs_shift
;
1341 end
= start
+ (r
.len
>> bs_shift
);
1342 minlen
= max_t(u64
, r
.minlen
,
1343 q
->limits
.discard_granularity
) >> bs_shift
;
1345 if (end
<= start
|| minlen
> sdp
->sd_max_rg_data
)
1348 rgd
= gfs2_blk2rgrpd(sdp
, start
, 0);
1349 rgd_end
= gfs2_blk2rgrpd(sdp
, end
, 0);
1351 if ((gfs2_rgrpd_get_first(sdp
) == gfs2_rgrpd_get_next(rgd_end
))
1352 && (start
> rgd_end
->rd_data0
+ rgd_end
->rd_data
))
1353 return -EINVAL
; /* start is beyond the end of the fs */
1357 ret
= gfs2_glock_nq_init(rgd
->rd_gl
, LM_ST_EXCLUSIVE
, 0, &gh
);
1361 if (!(rgd
->rd_flags
& GFS2_RGF_TRIMMED
)) {
1362 /* Trim each bitmap in the rgrp */
1363 for (x
= 0; x
< rgd
->rd_length
; x
++) {
1364 struct gfs2_bitmap
*bi
= rgd
->rd_bits
+ x
;
1365 ret
= gfs2_rgrp_send_discards(sdp
,
1366 rgd
->rd_data0
, NULL
, bi
, minlen
,
1369 gfs2_glock_dq_uninit(&gh
);
1375 /* Mark rgrp as having been trimmed */
1376 ret
= gfs2_trans_begin(sdp
, RES_RG_HDR
, 0);
1378 bh
= rgd
->rd_bits
[0].bi_bh
;
1379 rgd
->rd_flags
|= GFS2_RGF_TRIMMED
;
1380 gfs2_trans_add_meta(rgd
->rd_gl
, bh
);
1381 gfs2_rgrp_out(rgd
, bh
->b_data
);
1382 gfs2_rgrp_ondisk2lvb(rgd
->rd_rgl
, bh
->b_data
);
1383 gfs2_trans_end(sdp
);
1386 gfs2_glock_dq_uninit(&gh
);
1391 rgd
= gfs2_rgrpd_get_next(rgd
);
1395 r
.len
= trimmed
<< bs_shift
;
1396 if (copy_to_user(argp
, &r
, sizeof(r
)))
1403 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1404 * @ip: the inode structure
1407 static void rs_insert(struct gfs2_inode
*ip
)
1409 struct rb_node
**newn
, *parent
= NULL
;
1411 struct gfs2_blkreserv
*rs
= ip
->i_res
;
1412 struct gfs2_rgrpd
*rgd
= rs
->rs_rbm
.rgd
;
1413 u64 fsblock
= gfs2_rbm_to_block(&rs
->rs_rbm
);
1415 BUG_ON(gfs2_rs_active(rs
));
1417 spin_lock(&rgd
->rd_rsspin
);
1418 newn
= &rgd
->rd_rstree
.rb_node
;
1420 struct gfs2_blkreserv
*cur
=
1421 rb_entry(*newn
, struct gfs2_blkreserv
, rs_node
);
1424 rc
= rs_cmp(fsblock
, rs
->rs_free
, cur
);
1426 newn
= &((*newn
)->rb_right
);
1428 newn
= &((*newn
)->rb_left
);
1430 spin_unlock(&rgd
->rd_rsspin
);
1436 rb_link_node(&rs
->rs_node
, parent
, newn
);
1437 rb_insert_color(&rs
->rs_node
, &rgd
->rd_rstree
);
1439 /* Do our rgrp accounting for the reservation */
1440 rgd
->rd_reserved
+= rs
->rs_free
; /* blocks reserved */
1441 spin_unlock(&rgd
->rd_rsspin
);
1442 trace_gfs2_rs(rs
, TRACE_RS_INSERT
);
1446 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1447 * @rgd: the resource group descriptor
1448 * @ip: pointer to the inode for which we're reserving blocks
1449 * @ap: the allocation parameters
1453 static void rg_mblk_search(struct gfs2_rgrpd
*rgd
, struct gfs2_inode
*ip
,
1454 const struct gfs2_alloc_parms
*ap
)
1456 struct gfs2_rbm rbm
= { .rgd
= rgd
, };
1458 struct gfs2_blkreserv
*rs
= ip
->i_res
;
1460 u32 free_blocks
= rgd
->rd_free_clone
- rgd
->rd_reserved
;
1462 struct inode
*inode
= &ip
->i_inode
;
1464 if (S_ISDIR(inode
->i_mode
))
1467 extlen
= max_t(u32
, atomic_read(&rs
->rs_sizehint
), ap
->target
);
1468 extlen
= clamp(extlen
, RGRP_RSRV_MINBLKS
, free_blocks
);
1470 if ((rgd
->rd_free_clone
< rgd
->rd_reserved
) || (free_blocks
< extlen
))
1473 /* Find bitmap block that contains bits for goal block */
1474 if (rgrp_contains_block(rgd
, ip
->i_goal
))
1477 goal
= rgd
->rd_last_alloc
+ rgd
->rd_data0
;
1479 if (WARN_ON(gfs2_rbm_from_block(&rbm
, goal
)))
1482 ret
= gfs2_rbm_find(&rbm
, GFS2_BLKST_FREE
, &extlen
, ip
, true, ap
);
1485 rs
->rs_free
= extlen
;
1486 rs
->rs_inum
= ip
->i_no_addr
;
1489 if (goal
== rgd
->rd_last_alloc
+ rgd
->rd_data0
)
1490 rgd
->rd_last_alloc
= 0;
1495 * gfs2_next_unreserved_block - Return next block that is not reserved
1496 * @rgd: The resource group
1497 * @block: The starting block
1498 * @length: The required length
1499 * @ip: Ignore any reservations for this inode
1501 * If the block does not appear in any reservation, then return the
1502 * block number unchanged. If it does appear in the reservation, then
1503 * keep looking through the tree of reservations in order to find the
1504 * first block number which is not reserved.
1507 static u64
gfs2_next_unreserved_block(struct gfs2_rgrpd
*rgd
, u64 block
,
1509 const struct gfs2_inode
*ip
)
1511 struct gfs2_blkreserv
*rs
;
1515 spin_lock(&rgd
->rd_rsspin
);
1516 n
= rgd
->rd_rstree
.rb_node
;
1518 rs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
1519 rc
= rs_cmp(block
, length
, rs
);
1529 while ((rs_cmp(block
, length
, rs
) == 0) && (ip
->i_res
!= rs
)) {
1530 block
= gfs2_rbm_to_block(&rs
->rs_rbm
) + rs
->rs_free
;
1534 rs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
1538 spin_unlock(&rgd
->rd_rsspin
);
1543 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1544 * @rbm: The current position in the resource group
1545 * @ip: The inode for which we are searching for blocks
1546 * @minext: The minimum extent length
1547 * @maxext: A pointer to the maximum extent structure
1549 * This checks the current position in the rgrp to see whether there is
1550 * a reservation covering this block. If not then this function is a
1551 * no-op. If there is, then the position is moved to the end of the
1552 * contiguous reservation(s) so that we are pointing at the first
1553 * non-reserved block.
1555 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1558 static int gfs2_reservation_check_and_update(struct gfs2_rbm
*rbm
,
1559 const struct gfs2_inode
*ip
,
1561 struct gfs2_extent
*maxext
)
1563 u64 block
= gfs2_rbm_to_block(rbm
);
1569 * If we have a minimum extent length, then skip over any extent
1570 * which is less than the min extent length in size.
1573 extlen
= gfs2_free_extlen(rbm
, minext
);
1574 if (extlen
<= maxext
->len
)
1579 * Check the extent which has been found against the reservations
1580 * and skip if parts of it are already reserved
1582 nblock
= gfs2_next_unreserved_block(rbm
->rgd
, block
, extlen
, ip
);
1583 if (nblock
== block
) {
1584 if (!minext
|| extlen
>= minext
)
1587 if (extlen
> maxext
->len
) {
1588 maxext
->len
= extlen
;
1592 nblock
= block
+ extlen
;
1594 ret
= gfs2_rbm_from_block(rbm
, nblock
);
1601 * gfs2_rbm_find - Look for blocks of a particular state
1602 * @rbm: Value/result starting position and final position
1603 * @state: The state which we want to find
1604 * @minext: Pointer to the requested extent length (NULL for a single block)
1605 * This is updated to be the actual reservation size.
1606 * @ip: If set, check for reservations
1607 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1608 * around until we've reached the starting point.
1609 * @ap: the allocation parameters
1612 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1613 * has no free blocks in it.
1614 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1615 * has come up short on a free block search.
1617 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1620 static int gfs2_rbm_find(struct gfs2_rbm
*rbm
, u8 state
, u32
*minext
,
1621 const struct gfs2_inode
*ip
, bool nowrap
,
1622 const struct gfs2_alloc_parms
*ap
)
1624 struct buffer_head
*bh
;
1627 int first_bii
= rbm
->bii
;
1628 u32 first_offset
= rbm
->offset
;
1632 int iters
= rbm
->rgd
->rd_length
;
1634 struct gfs2_bitmap
*bi
;
1635 struct gfs2_extent maxext
= { .rbm
.rgd
= rbm
->rgd
, };
1637 /* If we are not starting at the beginning of a bitmap, then we
1638 * need to add one to the bitmap count to ensure that we search
1639 * the starting bitmap twice.
1641 if (rbm
->offset
!= 0)
1646 if (test_bit(GBF_FULL
, &bi
->bi_flags
) &&
1647 (state
== GFS2_BLKST_FREE
))
1651 buffer
= bh
->b_data
+ bi
->bi_offset
;
1652 WARN_ON(!buffer_uptodate(bh
));
1653 if (state
!= GFS2_BLKST_UNLINKED
&& bi
->bi_clone
)
1654 buffer
= bi
->bi_clone
+ bi
->bi_offset
;
1655 initial_offset
= rbm
->offset
;
1656 offset
= gfs2_bitfit(buffer
, bi
->bi_len
, rbm
->offset
, state
);
1657 if (offset
== BFITNOENT
)
1659 rbm
->offset
= offset
;
1663 initial_bii
= rbm
->bii
;
1664 ret
= gfs2_reservation_check_and_update(rbm
, ip
,
1665 minext
? *minext
: 0,
1670 n
+= (rbm
->bii
- initial_bii
);
1673 if (ret
== -E2BIG
) {
1676 n
+= (rbm
->bii
- initial_bii
);
1677 goto res_covered_end_of_rgrp
;
1681 bitmap_full
: /* Mark bitmap as full and fall through */
1682 if ((state
== GFS2_BLKST_FREE
) && initial_offset
== 0) {
1683 struct gfs2_bitmap
*bi
= rbm_bi(rbm
);
1684 set_bit(GBF_FULL
, &bi
->bi_flags
);
1687 next_bitmap
: /* Find next bitmap in the rgrp */
1690 if (rbm
->bii
== rbm
->rgd
->rd_length
)
1692 res_covered_end_of_rgrp
:
1693 if ((rbm
->bii
== 0) && nowrap
)
1701 if (minext
== NULL
|| state
!= GFS2_BLKST_FREE
)
1704 /* If the extent was too small, and it's smaller than the smallest
1705 to have failed before, remember for future reference that it's
1706 useless to search this rgrp again for this amount or more. */
1707 if ((first_offset
== 0) && (first_bii
== 0) &&
1708 (*minext
< rbm
->rgd
->rd_extfail_pt
))
1709 rbm
->rgd
->rd_extfail_pt
= *minext
;
1711 /* If the maximum extent we found is big enough to fulfill the
1712 minimum requirements, use it anyway. */
1715 *minext
= maxext
.len
;
1723 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1725 * @last_unlinked: block address of the last dinode we unlinked
1726 * @skip: block address we should explicitly not unlink
1728 * Returns: 0 if no error
1729 * The inode, if one has been found, in inode.
1732 static void try_rgrp_unlink(struct gfs2_rgrpd
*rgd
, u64
*last_unlinked
, u64 skip
)
1735 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1736 struct gfs2_glock
*gl
;
1737 struct gfs2_inode
*ip
;
1740 struct gfs2_rbm rbm
= { .rgd
= rgd
, .bii
= 0, .offset
= 0 };
1743 down_write(&sdp
->sd_log_flush_lock
);
1744 error
= gfs2_rbm_find(&rbm
, GFS2_BLKST_UNLINKED
, NULL
, NULL
,
1746 up_write(&sdp
->sd_log_flush_lock
);
1747 if (error
== -ENOSPC
)
1749 if (WARN_ON_ONCE(error
))
1752 block
= gfs2_rbm_to_block(&rbm
);
1753 if (gfs2_rbm_from_block(&rbm
, block
+ 1))
1755 if (*last_unlinked
!= NO_BLOCK
&& block
<= *last_unlinked
)
1759 *last_unlinked
= block
;
1761 error
= gfs2_glock_get(sdp
, block
, &gfs2_inode_glops
, CREATE
, &gl
);
1765 /* If the inode is already in cache, we can ignore it here
1766 * because the existing inode disposal code will deal with
1767 * it when all refs have gone away. Accessing gl_object like
1768 * this is not safe in general. Here it is ok because we do
1769 * not dereference the pointer, and we only need an approx
1770 * answer to whether it is NULL or not.
1774 if (ip
|| queue_work(gfs2_delete_workqueue
, &gl
->gl_delete
) == 0)
1779 /* Limit reclaim to sensible number of tasks */
1780 if (found
> NR_CPUS
)
1784 rgd
->rd_flags
&= ~GFS2_RDF_CHECK
;
1789 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1790 * @rgd: The rgrp in question
1791 * @loops: An indication of how picky we can be (0=very, 1=less so)
1793 * This function uses the recently added glock statistics in order to
1794 * figure out whether a parciular resource group is suffering from
1795 * contention from multiple nodes. This is done purely on the basis
1796 * of timings, since this is the only data we have to work with and
1797 * our aim here is to reject a resource group which is highly contended
1798 * but (very important) not to do this too often in order to ensure that
1799 * we do not land up introducing fragmentation by changing resource
1800 * groups when not actually required.
1802 * The calculation is fairly simple, we want to know whether the SRTTB
1803 * (i.e. smoothed round trip time for blocking operations) to acquire
1804 * the lock for this rgrp's glock is significantly greater than the
1805 * time taken for resource groups on average. We introduce a margin in
1806 * the form of the variable @var which is computed as the sum of the two
1807 * respective variences, and multiplied by a factor depending on @loops
1808 * and whether we have a lot of data to base the decision on. This is
1809 * then tested against the square difference of the means in order to
1810 * decide whether the result is statistically significant or not.
1812 * Returns: A boolean verdict on the congestion status
1815 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd
*rgd
, int loops
)
1817 const struct gfs2_glock
*gl
= rgd
->rd_gl
;
1818 const struct gfs2_sbd
*sdp
= gl
->gl_sbd
;
1819 struct gfs2_lkstats
*st
;
1820 s64 r_dcount
, l_dcount
;
1821 s64 r_srttb
, l_srttb
;
1827 st
= &this_cpu_ptr(sdp
->sd_lkstats
)->lkstats
[LM_TYPE_RGRP
];
1828 r_srttb
= st
->stats
[GFS2_LKS_SRTTB
];
1829 r_dcount
= st
->stats
[GFS2_LKS_DCOUNT
];
1830 var
= st
->stats
[GFS2_LKS_SRTTVARB
] +
1831 gl
->gl_stats
.stats
[GFS2_LKS_SRTTVARB
];
1834 l_srttb
= gl
->gl_stats
.stats
[GFS2_LKS_SRTTB
];
1835 l_dcount
= gl
->gl_stats
.stats
[GFS2_LKS_DCOUNT
];
1837 if ((l_dcount
< 1) || (r_dcount
< 1) || (r_srttb
== 0))
1840 srttb_diff
= r_srttb
- l_srttb
;
1841 sqr_diff
= srttb_diff
* srttb_diff
;
1844 if (l_dcount
< 8 || r_dcount
< 8)
1849 return ((srttb_diff
< 0) && (sqr_diff
> var
));
1853 * gfs2_rgrp_used_recently
1854 * @rs: The block reservation with the rgrp to test
1855 * @msecs: The time limit in milliseconds
1857 * Returns: True if the rgrp glock has been used within the time limit
1859 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv
*rs
,
1864 tdiff
= ktime_to_ns(ktime_sub(ktime_get_real(),
1865 rs
->rs_rbm
.rgd
->rd_gl
->gl_dstamp
));
1867 return tdiff
> (msecs
* 1000 * 1000);
1870 static u32
gfs2_orlov_skip(const struct gfs2_inode
*ip
)
1872 const struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
1875 get_random_bytes(&skip
, sizeof(skip
));
1876 return skip
% sdp
->sd_rgrps
;
1879 static bool gfs2_select_rgrp(struct gfs2_rgrpd
**pos
, const struct gfs2_rgrpd
*begin
)
1881 struct gfs2_rgrpd
*rgd
= *pos
;
1882 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1884 rgd
= gfs2_rgrpd_get_next(rgd
);
1886 rgd
= gfs2_rgrpd_get_first(sdp
);
1888 if (rgd
!= begin
) /* If we didn't wrap */
1894 * gfs2_inplace_reserve - Reserve space in the filesystem
1895 * @ip: the inode to reserve space for
1896 * @ap: the allocation parameters
1901 int gfs2_inplace_reserve(struct gfs2_inode
*ip
, const struct gfs2_alloc_parms
*ap
)
1903 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
1904 struct gfs2_rgrpd
*begin
= NULL
;
1905 struct gfs2_blkreserv
*rs
= ip
->i_res
;
1906 int error
= 0, rg_locked
, flags
= 0;
1907 u64 last_unlinked
= NO_BLOCK
;
1911 if (sdp
->sd_args
.ar_rgrplvb
)
1913 if (gfs2_assert_warn(sdp
, ap
->target
))
1915 if (gfs2_rs_active(rs
)) {
1916 begin
= rs
->rs_rbm
.rgd
;
1917 } else if (ip
->i_rgd
&& rgrp_contains_block(ip
->i_rgd
, ip
->i_goal
)) {
1918 rs
->rs_rbm
.rgd
= begin
= ip
->i_rgd
;
1920 check_and_update_goal(ip
);
1921 rs
->rs_rbm
.rgd
= begin
= gfs2_blk2rgrpd(sdp
, ip
->i_goal
, 1);
1923 if (S_ISDIR(ip
->i_inode
.i_mode
) && (ap
->aflags
& GFS2_AF_ORLOV
))
1924 skip
= gfs2_orlov_skip(ip
);
1925 if (rs
->rs_rbm
.rgd
== NULL
)
1931 if (!gfs2_glock_is_locked_by_me(rs
->rs_rbm
.rgd
->rd_gl
)) {
1935 if (!gfs2_rs_active(rs
) && (loops
< 2) &&
1936 gfs2_rgrp_used_recently(rs
, 1000) &&
1937 gfs2_rgrp_congested(rs
->rs_rbm
.rgd
, loops
))
1939 error
= gfs2_glock_nq_init(rs
->rs_rbm
.rgd
->rd_gl
,
1940 LM_ST_EXCLUSIVE
, flags
,
1942 if (unlikely(error
))
1944 if (!gfs2_rs_active(rs
) && (loops
< 2) &&
1945 gfs2_rgrp_congested(rs
->rs_rbm
.rgd
, loops
))
1947 if (sdp
->sd_args
.ar_rgrplvb
) {
1948 error
= update_rgrp_lvb(rs
->rs_rbm
.rgd
);
1949 if (unlikely(error
)) {
1950 gfs2_glock_dq_uninit(&rs
->rs_rgd_gh
);
1956 /* Skip unuseable resource groups */
1957 if ((rs
->rs_rbm
.rgd
->rd_flags
& (GFS2_RGF_NOALLOC
|
1959 (ap
->target
> rs
->rs_rbm
.rgd
->rd_extfail_pt
))
1962 if (sdp
->sd_args
.ar_rgrplvb
)
1963 gfs2_rgrp_bh_get(rs
->rs_rbm
.rgd
);
1965 /* Get a reservation if we don't already have one */
1966 if (!gfs2_rs_active(rs
))
1967 rg_mblk_search(rs
->rs_rbm
.rgd
, ip
, ap
);
1969 /* Skip rgrps when we can't get a reservation on first pass */
1970 if (!gfs2_rs_active(rs
) && (loops
< 1))
1973 /* If rgrp has enough free space, use it */
1974 if (rs
->rs_rbm
.rgd
->rd_free_clone
>= ap
->target
) {
1975 ip
->i_rgd
= rs
->rs_rbm
.rgd
;
1980 /* Check for unlinked inodes which can be reclaimed */
1981 if (rs
->rs_rbm
.rgd
->rd_flags
& GFS2_RDF_CHECK
)
1982 try_rgrp_unlink(rs
->rs_rbm
.rgd
, &last_unlinked
,
1985 /* Drop reservation, if we couldn't use reserved rgrp */
1986 if (gfs2_rs_active(rs
))
1987 gfs2_rs_deltree(rs
);
1989 /* Unlock rgrp if required */
1991 gfs2_glock_dq_uninit(&rs
->rs_rgd_gh
);
1993 /* Find the next rgrp, and continue looking */
1994 if (gfs2_select_rgrp(&rs
->rs_rbm
.rgd
, begin
))
1999 /* If we've scanned all the rgrps, but found no free blocks
2000 * then this checks for some less likely conditions before
2004 /* Check that fs hasn't grown if writing to rindex */
2005 if (ip
== GFS2_I(sdp
->sd_rindex
) && !sdp
->sd_rindex_uptodate
) {
2006 error
= gfs2_ri_update(ip
);
2010 /* Flushing the log may release space */
2012 gfs2_log_flush(sdp
, NULL
, NORMAL_FLUSH
);
2019 * gfs2_inplace_release - release an inplace reservation
2020 * @ip: the inode the reservation was taken out on
2022 * Release a reservation made by gfs2_inplace_reserve().
2025 void gfs2_inplace_release(struct gfs2_inode
*ip
)
2027 struct gfs2_blkreserv
*rs
= ip
->i_res
;
2029 if (rs
->rs_rgd_gh
.gh_gl
)
2030 gfs2_glock_dq_uninit(&rs
->rs_rgd_gh
);
2034 * gfs2_get_block_type - Check a block in a RG is of given type
2035 * @rgd: the resource group holding the block
2036 * @block: the block number
2038 * Returns: The block type (GFS2_BLKST_*)
2041 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd
*rgd
, u64 block
)
2043 struct gfs2_rbm rbm
= { .rgd
= rgd
, };
2046 ret
= gfs2_rbm_from_block(&rbm
, block
);
2047 WARN_ON_ONCE(ret
!= 0);
2049 return gfs2_testbit(&rbm
);
2054 * gfs2_alloc_extent - allocate an extent from a given bitmap
2055 * @rbm: the resource group information
2056 * @dinode: TRUE if the first block we allocate is for a dinode
2057 * @n: The extent length (value/result)
2059 * Add the bitmap buffer to the transaction.
2060 * Set the found bits to @new_state to change block's allocation state.
2062 static void gfs2_alloc_extent(const struct gfs2_rbm
*rbm
, bool dinode
,
2065 struct gfs2_rbm pos
= { .rgd
= rbm
->rgd
, };
2066 const unsigned int elen
= *n
;
2071 block
= gfs2_rbm_to_block(rbm
);
2072 gfs2_trans_add_meta(rbm
->rgd
->rd_gl
, rbm_bi(rbm
)->bi_bh
);
2073 gfs2_setbit(rbm
, true, dinode
? GFS2_BLKST_DINODE
: GFS2_BLKST_USED
);
2076 ret
= gfs2_rbm_from_block(&pos
, block
);
2077 if (ret
|| gfs2_testbit(&pos
) != GFS2_BLKST_FREE
)
2079 gfs2_trans_add_meta(pos
.rgd
->rd_gl
, rbm_bi(&pos
)->bi_bh
);
2080 gfs2_setbit(&pos
, true, GFS2_BLKST_USED
);
2087 * rgblk_free - Change alloc state of given block(s)
2088 * @sdp: the filesystem
2089 * @bstart: the start of a run of blocks to free
2090 * @blen: the length of the block run (all must lie within ONE RG!)
2091 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2093 * Returns: Resource group containing the block(s)
2096 static struct gfs2_rgrpd
*rgblk_free(struct gfs2_sbd
*sdp
, u64 bstart
,
2097 u32 blen
, unsigned char new_state
)
2099 struct gfs2_rbm rbm
;
2100 struct gfs2_bitmap
*bi
, *bi_prev
= NULL
;
2102 rbm
.rgd
= gfs2_blk2rgrpd(sdp
, bstart
, 1);
2104 if (gfs2_consist(sdp
))
2105 fs_err(sdp
, "block = %llu\n", (unsigned long long)bstart
);
2109 gfs2_rbm_from_block(&rbm
, bstart
);
2112 if (bi
!= bi_prev
) {
2113 if (!bi
->bi_clone
) {
2114 bi
->bi_clone
= kmalloc(bi
->bi_bh
->b_size
,
2115 GFP_NOFS
| __GFP_NOFAIL
);
2116 memcpy(bi
->bi_clone
+ bi
->bi_offset
,
2117 bi
->bi_bh
->b_data
+ bi
->bi_offset
,
2120 gfs2_trans_add_meta(rbm
.rgd
->rd_gl
, bi
->bi_bh
);
2123 gfs2_setbit(&rbm
, false, new_state
);
2124 gfs2_rbm_incr(&rbm
);
2131 * gfs2_rgrp_dump - print out an rgrp
2132 * @seq: The iterator
2133 * @gl: The glock in question
2137 void gfs2_rgrp_dump(struct seq_file
*seq
, const struct gfs2_glock
*gl
)
2139 struct gfs2_rgrpd
*rgd
= gl
->gl_object
;
2140 struct gfs2_blkreserv
*trs
;
2141 const struct rb_node
*n
;
2145 gfs2_print_dbg(seq
, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2146 (unsigned long long)rgd
->rd_addr
, rgd
->rd_flags
,
2147 rgd
->rd_free
, rgd
->rd_free_clone
, rgd
->rd_dinodes
,
2148 rgd
->rd_reserved
, rgd
->rd_extfail_pt
);
2149 spin_lock(&rgd
->rd_rsspin
);
2150 for (n
= rb_first(&rgd
->rd_rstree
); n
; n
= rb_next(&trs
->rs_node
)) {
2151 trs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
2154 spin_unlock(&rgd
->rd_rsspin
);
2157 static void gfs2_rgrp_error(struct gfs2_rgrpd
*rgd
)
2159 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
2160 fs_warn(sdp
, "rgrp %llu has an error, marking it readonly until umount\n",
2161 (unsigned long long)rgd
->rd_addr
);
2162 fs_warn(sdp
, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2163 gfs2_rgrp_dump(NULL
, rgd
->rd_gl
);
2164 rgd
->rd_flags
|= GFS2_RDF_ERROR
;
2168 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2169 * @ip: The inode we have just allocated blocks for
2170 * @rbm: The start of the allocated blocks
2171 * @len: The extent length
2173 * Adjusts a reservation after an allocation has taken place. If the
2174 * reservation does not match the allocation, or if it is now empty
2175 * then it is removed.
2178 static void gfs2_adjust_reservation(struct gfs2_inode
*ip
,
2179 const struct gfs2_rbm
*rbm
, unsigned len
)
2181 struct gfs2_blkreserv
*rs
= ip
->i_res
;
2182 struct gfs2_rgrpd
*rgd
= rbm
->rgd
;
2187 spin_lock(&rgd
->rd_rsspin
);
2188 if (gfs2_rs_active(rs
)) {
2189 if (gfs2_rbm_eq(&rs
->rs_rbm
, rbm
)) {
2190 block
= gfs2_rbm_to_block(rbm
);
2191 ret
= gfs2_rbm_from_block(&rs
->rs_rbm
, block
+ len
);
2192 rlen
= min(rs
->rs_free
, len
);
2193 rs
->rs_free
-= rlen
;
2194 rgd
->rd_reserved
-= rlen
;
2195 trace_gfs2_rs(rs
, TRACE_RS_CLAIM
);
2196 if (rs
->rs_free
&& !ret
)
2202 spin_unlock(&rgd
->rd_rsspin
);
2206 * gfs2_set_alloc_start - Set starting point for block allocation
2207 * @rbm: The rbm which will be set to the required location
2208 * @ip: The gfs2 inode
2209 * @dinode: Flag to say if allocation includes a new inode
2211 * This sets the starting point from the reservation if one is active
2212 * otherwise it falls back to guessing a start point based on the
2213 * inode's goal block or the last allocation point in the rgrp.
2216 static void gfs2_set_alloc_start(struct gfs2_rbm
*rbm
,
2217 const struct gfs2_inode
*ip
, bool dinode
)
2221 if (gfs2_rs_active(ip
->i_res
)) {
2222 *rbm
= ip
->i_res
->rs_rbm
;
2226 if (!dinode
&& rgrp_contains_block(rbm
->rgd
, ip
->i_goal
))
2229 goal
= rbm
->rgd
->rd_last_alloc
+ rbm
->rgd
->rd_data0
;
2231 gfs2_rbm_from_block(rbm
, goal
);
2235 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2236 * @ip: the inode to allocate the block for
2237 * @bn: Used to return the starting block number
2238 * @nblocks: requested number of blocks/extent length (value/result)
2239 * @dinode: 1 if we're allocating a dinode block, else 0
2240 * @generation: the generation number of the inode
2242 * Returns: 0 or error
2245 int gfs2_alloc_blocks(struct gfs2_inode
*ip
, u64
*bn
, unsigned int *nblocks
,
2246 bool dinode
, u64
*generation
)
2248 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2249 struct buffer_head
*dibh
;
2250 struct gfs2_rbm rbm
= { .rgd
= ip
->i_rgd
, };
2252 u64 block
; /* block, within the file system scope */
2255 gfs2_set_alloc_start(&rbm
, ip
, dinode
);
2256 error
= gfs2_rbm_find(&rbm
, GFS2_BLKST_FREE
, NULL
, ip
, false, NULL
);
2258 if (error
== -ENOSPC
) {
2259 gfs2_set_alloc_start(&rbm
, ip
, dinode
);
2260 error
= gfs2_rbm_find(&rbm
, GFS2_BLKST_FREE
, NULL
, NULL
, false,
2264 /* Since all blocks are reserved in advance, this shouldn't happen */
2266 fs_warn(sdp
, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2267 (unsigned long long)ip
->i_no_addr
, error
, *nblocks
,
2268 test_bit(GBF_FULL
, &rbm
.rgd
->rd_bits
->bi_flags
),
2269 rbm
.rgd
->rd_extfail_pt
);
2273 gfs2_alloc_extent(&rbm
, dinode
, nblocks
);
2274 block
= gfs2_rbm_to_block(&rbm
);
2275 rbm
.rgd
->rd_last_alloc
= block
- rbm
.rgd
->rd_data0
;
2276 if (gfs2_rs_active(ip
->i_res
))
2277 gfs2_adjust_reservation(ip
, &rbm
, *nblocks
);
2283 ip
->i_goal
= block
+ ndata
- 1;
2284 error
= gfs2_meta_inode_buffer(ip
, &dibh
);
2286 struct gfs2_dinode
*di
=
2287 (struct gfs2_dinode
*)dibh
->b_data
;
2288 gfs2_trans_add_meta(ip
->i_gl
, dibh
);
2289 di
->di_goal_meta
= di
->di_goal_data
=
2290 cpu_to_be64(ip
->i_goal
);
2294 if (rbm
.rgd
->rd_free
< *nblocks
) {
2295 pr_warn("nblocks=%u\n", *nblocks
);
2299 rbm
.rgd
->rd_free
-= *nblocks
;
2301 rbm
.rgd
->rd_dinodes
++;
2302 *generation
= rbm
.rgd
->rd_igeneration
++;
2303 if (*generation
== 0)
2304 *generation
= rbm
.rgd
->rd_igeneration
++;
2307 gfs2_trans_add_meta(rbm
.rgd
->rd_gl
, rbm
.rgd
->rd_bits
[0].bi_bh
);
2308 gfs2_rgrp_out(rbm
.rgd
, rbm
.rgd
->rd_bits
[0].bi_bh
->b_data
);
2309 gfs2_rgrp_ondisk2lvb(rbm
.rgd
->rd_rgl
, rbm
.rgd
->rd_bits
[0].bi_bh
->b_data
);
2311 gfs2_statfs_change(sdp
, 0, -(s64
)*nblocks
, dinode
? 1 : 0);
2313 gfs2_trans_add_unrevoke(sdp
, block
, *nblocks
);
2315 gfs2_quota_change(ip
, *nblocks
, ip
->i_inode
.i_uid
, ip
->i_inode
.i_gid
);
2317 rbm
.rgd
->rd_free_clone
-= *nblocks
;
2318 trace_gfs2_block_alloc(ip
, rbm
.rgd
, block
, *nblocks
,
2319 dinode
? GFS2_BLKST_DINODE
: GFS2_BLKST_USED
);
2324 gfs2_rgrp_error(rbm
.rgd
);
2329 * __gfs2_free_blocks - free a contiguous run of block(s)
2330 * @ip: the inode these blocks are being freed from
2331 * @bstart: first block of a run of contiguous blocks
2332 * @blen: the length of the block run
2333 * @meta: 1 if the blocks represent metadata
2337 void __gfs2_free_blocks(struct gfs2_inode
*ip
, u64 bstart
, u32 blen
, int meta
)
2339 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2340 struct gfs2_rgrpd
*rgd
;
2342 rgd
= rgblk_free(sdp
, bstart
, blen
, GFS2_BLKST_FREE
);
2345 trace_gfs2_block_alloc(ip
, rgd
, bstart
, blen
, GFS2_BLKST_FREE
);
2346 rgd
->rd_free
+= blen
;
2347 rgd
->rd_flags
&= ~GFS2_RGF_TRIMMED
;
2348 gfs2_trans_add_meta(rgd
->rd_gl
, rgd
->rd_bits
[0].bi_bh
);
2349 gfs2_rgrp_out(rgd
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2350 gfs2_rgrp_ondisk2lvb(rgd
->rd_rgl
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2352 /* Directories keep their data in the metadata address space */
2353 if (meta
|| ip
->i_depth
)
2354 gfs2_meta_wipe(ip
, bstart
, blen
);
2358 * gfs2_free_meta - free a contiguous run of data block(s)
2359 * @ip: the inode these blocks are being freed from
2360 * @bstart: first block of a run of contiguous blocks
2361 * @blen: the length of the block run
2365 void gfs2_free_meta(struct gfs2_inode
*ip
, u64 bstart
, u32 blen
)
2367 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2369 __gfs2_free_blocks(ip
, bstart
, blen
, 1);
2370 gfs2_statfs_change(sdp
, 0, +blen
, 0);
2371 gfs2_quota_change(ip
, -(s64
)blen
, ip
->i_inode
.i_uid
, ip
->i_inode
.i_gid
);
2374 void gfs2_unlink_di(struct inode
*inode
)
2376 struct gfs2_inode
*ip
= GFS2_I(inode
);
2377 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
2378 struct gfs2_rgrpd
*rgd
;
2379 u64 blkno
= ip
->i_no_addr
;
2381 rgd
= rgblk_free(sdp
, blkno
, 1, GFS2_BLKST_UNLINKED
);
2384 trace_gfs2_block_alloc(ip
, rgd
, blkno
, 1, GFS2_BLKST_UNLINKED
);
2385 gfs2_trans_add_meta(rgd
->rd_gl
, rgd
->rd_bits
[0].bi_bh
);
2386 gfs2_rgrp_out(rgd
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2387 gfs2_rgrp_ondisk2lvb(rgd
->rd_rgl
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2388 update_rgrp_lvb_unlinked(rgd
, 1);
2391 static void gfs2_free_uninit_di(struct gfs2_rgrpd
*rgd
, u64 blkno
)
2393 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
2394 struct gfs2_rgrpd
*tmp_rgd
;
2396 tmp_rgd
= rgblk_free(sdp
, blkno
, 1, GFS2_BLKST_FREE
);
2399 gfs2_assert_withdraw(sdp
, rgd
== tmp_rgd
);
2401 if (!rgd
->rd_dinodes
)
2402 gfs2_consist_rgrpd(rgd
);
2406 gfs2_trans_add_meta(rgd
->rd_gl
, rgd
->rd_bits
[0].bi_bh
);
2407 gfs2_rgrp_out(rgd
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2408 gfs2_rgrp_ondisk2lvb(rgd
->rd_rgl
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2409 update_rgrp_lvb_unlinked(rgd
, -1);
2411 gfs2_statfs_change(sdp
, 0, +1, -1);
2415 void gfs2_free_di(struct gfs2_rgrpd
*rgd
, struct gfs2_inode
*ip
)
2417 gfs2_free_uninit_di(rgd
, ip
->i_no_addr
);
2418 trace_gfs2_block_alloc(ip
, rgd
, ip
->i_no_addr
, 1, GFS2_BLKST_FREE
);
2419 gfs2_quota_change(ip
, -1, ip
->i_inode
.i_uid
, ip
->i_inode
.i_gid
);
2420 gfs2_meta_wipe(ip
, ip
->i_no_addr
, 1);
2424 * gfs2_check_blk_type - Check the type of a block
2425 * @sdp: The superblock
2426 * @no_addr: The block number to check
2427 * @type: The block type we are looking for
2429 * Returns: 0 if the block type matches the expected type
2430 * -ESTALE if it doesn't match
2431 * or -ve errno if something went wrong while checking
2434 int gfs2_check_blk_type(struct gfs2_sbd
*sdp
, u64 no_addr
, unsigned int type
)
2436 struct gfs2_rgrpd
*rgd
;
2437 struct gfs2_holder rgd_gh
;
2438 int error
= -EINVAL
;
2440 rgd
= gfs2_blk2rgrpd(sdp
, no_addr
, 1);
2444 error
= gfs2_glock_nq_init(rgd
->rd_gl
, LM_ST_SHARED
, 0, &rgd_gh
);
2448 if (gfs2_get_block_type(rgd
, no_addr
) != type
)
2451 gfs2_glock_dq_uninit(&rgd_gh
);
2457 * gfs2_rlist_add - add a RG to a list of RGs
2459 * @rlist: the list of resource groups
2462 * Figure out what RG a block belongs to and add that RG to the list
2464 * FIXME: Don't use NOFAIL
2468 void gfs2_rlist_add(struct gfs2_inode
*ip
, struct gfs2_rgrp_list
*rlist
,
2471 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2472 struct gfs2_rgrpd
*rgd
;
2473 struct gfs2_rgrpd
**tmp
;
2474 unsigned int new_space
;
2477 if (gfs2_assert_warn(sdp
, !rlist
->rl_ghs
))
2480 if (ip
->i_rgd
&& rgrp_contains_block(ip
->i_rgd
, block
))
2483 rgd
= gfs2_blk2rgrpd(sdp
, block
, 1);
2485 fs_err(sdp
, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block
);
2490 for (x
= 0; x
< rlist
->rl_rgrps
; x
++)
2491 if (rlist
->rl_rgd
[x
] == rgd
)
2494 if (rlist
->rl_rgrps
== rlist
->rl_space
) {
2495 new_space
= rlist
->rl_space
+ 10;
2497 tmp
= kcalloc(new_space
, sizeof(struct gfs2_rgrpd
*),
2498 GFP_NOFS
| __GFP_NOFAIL
);
2500 if (rlist
->rl_rgd
) {
2501 memcpy(tmp
, rlist
->rl_rgd
,
2502 rlist
->rl_space
* sizeof(struct gfs2_rgrpd
*));
2503 kfree(rlist
->rl_rgd
);
2506 rlist
->rl_space
= new_space
;
2507 rlist
->rl_rgd
= tmp
;
2510 rlist
->rl_rgd
[rlist
->rl_rgrps
++] = rgd
;
2514 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2515 * and initialize an array of glock holders for them
2516 * @rlist: the list of resource groups
2517 * @state: the lock state to acquire the RG lock in
2519 * FIXME: Don't use NOFAIL
2523 void gfs2_rlist_alloc(struct gfs2_rgrp_list
*rlist
, unsigned int state
)
2527 rlist
->rl_ghs
= kcalloc(rlist
->rl_rgrps
, sizeof(struct gfs2_holder
),
2528 GFP_NOFS
| __GFP_NOFAIL
);
2529 for (x
= 0; x
< rlist
->rl_rgrps
; x
++)
2530 gfs2_holder_init(rlist
->rl_rgd
[x
]->rd_gl
,
2536 * gfs2_rlist_free - free a resource group list
2537 * @rlist: the list of resource groups
2541 void gfs2_rlist_free(struct gfs2_rgrp_list
*rlist
)
2545 kfree(rlist
->rl_rgd
);
2547 if (rlist
->rl_ghs
) {
2548 for (x
= 0; x
< rlist
->rl_rgrps
; x
++)
2549 gfs2_holder_uninit(&rlist
->rl_ghs
[x
]);
2550 kfree(rlist
->rl_ghs
);
2551 rlist
->rl_ghs
= NULL
;