libceph: clear r_req_lru_item in __unregister_linger_request()
[linux/fpc-iii.git] / kernel / trace / ring_buffer.c
blob2d75c94ae87d871bbf42db7b1ee949463bb7f65f
1 /*
2 * Generic ring buffer
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
28 #include <asm/local.h>
30 static void update_pages_handler(struct work_struct *work);
33 * The ring buffer header is special. We must manually up keep it.
35 int ring_buffer_print_entry_header(struct trace_seq *s)
37 int ret;
39 ret = trace_seq_puts(s, "# compressed entry header\n");
40 ret = trace_seq_puts(s, "\ttype_len : 5 bits\n");
41 ret = trace_seq_puts(s, "\ttime_delta : 27 bits\n");
42 ret = trace_seq_puts(s, "\tarray : 32 bits\n");
43 ret = trace_seq_putc(s, '\n');
44 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
45 RINGBUF_TYPE_PADDING);
46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 RINGBUF_TYPE_TIME_EXTEND);
48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
51 return ret;
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
68 * Here's some silly ASCII art.
70 * +------+
71 * |reader| RING BUFFER
72 * |page |
73 * +------+ +---+ +---+ +---+
74 * | |-->| |-->| |
75 * +---+ +---+ +---+
76 * ^ |
77 * | |
78 * +---------------+
81 * +------+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
85 * | |-->| |-->| |
86 * +---+ +---+ +---+
87 * ^ |
88 * | |
89 * +---------------+
92 * +------+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
96 * ^ | |-->| |-->| |
97 * | +---+ +---+ +---+
98 * | |
99 * | |
100 * +------------------------------+
103 * +------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
107 * ^ | | | |-->| |
108 * | New +---+ +---+ +---+
109 * | Reader------^ |
110 * | page |
111 * +------------------------------+
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
118 * We will be using cmpxchg soon to make all this lockless.
123 * A fast way to enable or disable all ring buffers is to
124 * call tracing_on or tracing_off. Turning off the ring buffers
125 * prevents all ring buffers from being recorded to.
126 * Turning this switch on, makes it OK to write to the
127 * ring buffer, if the ring buffer is enabled itself.
129 * There's three layers that must be on in order to write
130 * to the ring buffer.
132 * 1) This global flag must be set.
133 * 2) The ring buffer must be enabled for recording.
134 * 3) The per cpu buffer must be enabled for recording.
136 * In case of an anomaly, this global flag has a bit set that
137 * will permantly disable all ring buffers.
141 * Global flag to disable all recording to ring buffers
142 * This has two bits: ON, DISABLED
144 * ON DISABLED
145 * ---- ----------
146 * 0 0 : ring buffers are off
147 * 1 0 : ring buffers are on
148 * X 1 : ring buffers are permanently disabled
151 enum {
152 RB_BUFFERS_ON_BIT = 0,
153 RB_BUFFERS_DISABLED_BIT = 1,
156 enum {
157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF (1 << 20)
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
169 * tracing_off_permanent - permanently disable ring buffers
171 * This function, once called, will disable all ring buffers
172 * permanently.
174 void tracing_off_permanent(void)
176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT 4U
181 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT 0
186 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT 1
189 # define RB_ARCH_ALIGNMENT 8U
190 #endif
192 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
197 enum {
198 RB_LEN_TIME_EXTEND = 8,
199 RB_LEN_TIME_STAMP = 16,
202 #define skip_time_extend(event) \
203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
205 static inline int rb_null_event(struct ring_buffer_event *event)
207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
210 static void rb_event_set_padding(struct ring_buffer_event *event)
212 /* padding has a NULL time_delta */
213 event->type_len = RINGBUF_TYPE_PADDING;
214 event->time_delta = 0;
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
220 unsigned length;
222 if (event->type_len)
223 length = event->type_len * RB_ALIGNMENT;
224 else
225 length = event->array[0];
226 return length + RB_EVNT_HDR_SIZE;
230 * Return the length of the given event. Will return
231 * the length of the time extend if the event is a
232 * time extend.
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
237 switch (event->type_len) {
238 case RINGBUF_TYPE_PADDING:
239 if (rb_null_event(event))
240 /* undefined */
241 return -1;
242 return event->array[0] + RB_EVNT_HDR_SIZE;
244 case RINGBUF_TYPE_TIME_EXTEND:
245 return RB_LEN_TIME_EXTEND;
247 case RINGBUF_TYPE_TIME_STAMP:
248 return RB_LEN_TIME_STAMP;
250 case RINGBUF_TYPE_DATA:
251 return rb_event_data_length(event);
252 default:
253 BUG();
255 /* not hit */
256 return 0;
260 * Return total length of time extend and data,
261 * or just the event length for all other events.
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
266 unsigned len = 0;
268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 /* time extends include the data event after it */
270 len = RB_LEN_TIME_EXTEND;
271 event = skip_time_extend(event);
273 return len + rb_event_length(event);
277 * ring_buffer_event_length - return the length of the event
278 * @event: the event to get the length of
280 * Returns the size of the data load of a data event.
281 * If the event is something other than a data event, it
282 * returns the size of the event itself. With the exception
283 * of a TIME EXTEND, where it still returns the size of the
284 * data load of the data event after it.
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
288 unsigned length;
290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 event = skip_time_extend(event);
293 length = rb_event_length(event);
294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295 return length;
296 length -= RB_EVNT_HDR_SIZE;
297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298 length -= sizeof(event->array[0]);
299 return length;
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 event = skip_time_extend(event);
309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310 /* If length is in len field, then array[0] has the data */
311 if (event->type_len)
312 return (void *)&event->array[0];
313 /* Otherwise length is in array[0] and array[1] has the data */
314 return (void *)&event->array[1];
318 * ring_buffer_event_data - return the data of the event
319 * @event: the event to get the data from
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
323 return rb_event_data(event);
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
327 #define for_each_buffer_cpu(buffer, cpu) \
328 for_each_cpu(cpu, buffer->cpumask)
330 #define TS_SHIFT 27
331 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST (~TS_MASK)
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS (1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED (1 << 30)
339 struct buffer_data_page {
340 u64 time_stamp; /* page time stamp */
341 local_t commit; /* write committed index */
342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
346 * Note, the buffer_page list must be first. The buffer pages
347 * are allocated in cache lines, which means that each buffer
348 * page will be at the beginning of a cache line, and thus
349 * the least significant bits will be zero. We use this to
350 * add flags in the list struct pointers, to make the ring buffer
351 * lockless.
353 struct buffer_page {
354 struct list_head list; /* list of buffer pages */
355 local_t write; /* index for next write */
356 unsigned read; /* index for next read */
357 local_t entries; /* entries on this page */
358 unsigned long real_end; /* real end of data */
359 struct buffer_data_page *page; /* Actual data page */
363 * The buffer page counters, write and entries, must be reset
364 * atomically when crossing page boundaries. To synchronize this
365 * update, two counters are inserted into the number. One is
366 * the actual counter for the write position or count on the page.
368 * The other is a counter of updaters. Before an update happens
369 * the update partition of the counter is incremented. This will
370 * allow the updater to update the counter atomically.
372 * The counter is 20 bits, and the state data is 12.
374 #define RB_WRITE_MASK 0xfffff
375 #define RB_WRITE_INTCNT (1 << 20)
377 static void rb_init_page(struct buffer_data_page *bpage)
379 local_set(&bpage->commit, 0);
383 * ring_buffer_page_len - the size of data on the page.
384 * @page: The page to read
386 * Returns the amount of data on the page, including buffer page header.
388 size_t ring_buffer_page_len(void *page)
390 return local_read(&((struct buffer_data_page *)page)->commit)
391 + BUF_PAGE_HDR_SIZE;
395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396 * this issue out.
398 static void free_buffer_page(struct buffer_page *bpage)
400 free_page((unsigned long)bpage->page);
401 kfree(bpage);
405 * We need to fit the time_stamp delta into 27 bits.
407 static inline int test_time_stamp(u64 delta)
409 if (delta & TS_DELTA_TEST)
410 return 1;
411 return 0;
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
419 int ring_buffer_print_page_header(struct trace_seq *s)
421 struct buffer_data_page field;
422 int ret;
424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425 "offset:0;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)sizeof(field.time_stamp),
427 (unsigned int)is_signed_type(u64));
429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field), commit),
432 (unsigned int)sizeof(field.commit),
433 (unsigned int)is_signed_type(long));
435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field), commit),
439 (unsigned int)is_signed_type(long));
441 ret = trace_seq_printf(s, "\tfield: char data;\t"
442 "offset:%u;\tsize:%u;\tsigned:%u;\n",
443 (unsigned int)offsetof(typeof(field), data),
444 (unsigned int)BUF_PAGE_SIZE,
445 (unsigned int)is_signed_type(char));
447 return ret;
450 struct rb_irq_work {
451 struct irq_work work;
452 wait_queue_head_t waiters;
453 bool waiters_pending;
457 * head_page == tail_page && head == tail then buffer is empty.
459 struct ring_buffer_per_cpu {
460 int cpu;
461 atomic_t record_disabled;
462 struct ring_buffer *buffer;
463 raw_spinlock_t reader_lock; /* serialize readers */
464 arch_spinlock_t lock;
465 struct lock_class_key lock_key;
466 unsigned int nr_pages;
467 struct list_head *pages;
468 struct buffer_page *head_page; /* read from head */
469 struct buffer_page *tail_page; /* write to tail */
470 struct buffer_page *commit_page; /* committed pages */
471 struct buffer_page *reader_page;
472 unsigned long lost_events;
473 unsigned long last_overrun;
474 local_t entries_bytes;
475 local_t entries;
476 local_t overrun;
477 local_t commit_overrun;
478 local_t dropped_events;
479 local_t committing;
480 local_t commits;
481 unsigned long read;
482 unsigned long read_bytes;
483 u64 write_stamp;
484 u64 read_stamp;
485 /* ring buffer pages to update, > 0 to add, < 0 to remove */
486 int nr_pages_to_update;
487 struct list_head new_pages; /* new pages to add */
488 struct work_struct update_pages_work;
489 struct completion update_done;
491 struct rb_irq_work irq_work;
494 struct ring_buffer {
495 unsigned flags;
496 int cpus;
497 atomic_t record_disabled;
498 atomic_t resize_disabled;
499 cpumask_var_t cpumask;
501 struct lock_class_key *reader_lock_key;
503 struct mutex mutex;
505 struct ring_buffer_per_cpu **buffers;
507 #ifdef CONFIG_HOTPLUG_CPU
508 struct notifier_block cpu_notify;
509 #endif
510 u64 (*clock)(void);
512 struct rb_irq_work irq_work;
515 struct ring_buffer_iter {
516 struct ring_buffer_per_cpu *cpu_buffer;
517 unsigned long head;
518 struct buffer_page *head_page;
519 struct buffer_page *cache_reader_page;
520 unsigned long cache_read;
521 u64 read_stamp;
525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
527 * Schedules a delayed work to wake up any task that is blocked on the
528 * ring buffer waiters queue.
530 static void rb_wake_up_waiters(struct irq_work *work)
532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
534 wake_up_all(&rbwork->waiters);
538 * ring_buffer_wait - wait for input to the ring buffer
539 * @buffer: buffer to wait on
540 * @cpu: the cpu buffer to wait on
542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543 * as data is added to any of the @buffer's cpu buffers. Otherwise
544 * it will wait for data to be added to a specific cpu buffer.
546 int ring_buffer_wait(struct ring_buffer *buffer, int cpu)
548 struct ring_buffer_per_cpu *cpu_buffer;
549 DEFINE_WAIT(wait);
550 struct rb_irq_work *work;
553 * Depending on what the caller is waiting for, either any
554 * data in any cpu buffer, or a specific buffer, put the
555 * caller on the appropriate wait queue.
557 if (cpu == RING_BUFFER_ALL_CPUS)
558 work = &buffer->irq_work;
559 else {
560 if (!cpumask_test_cpu(cpu, buffer->cpumask))
561 return -ENODEV;
562 cpu_buffer = buffer->buffers[cpu];
563 work = &cpu_buffer->irq_work;
567 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
570 * The events can happen in critical sections where
571 * checking a work queue can cause deadlocks.
572 * After adding a task to the queue, this flag is set
573 * only to notify events to try to wake up the queue
574 * using irq_work.
576 * We don't clear it even if the buffer is no longer
577 * empty. The flag only causes the next event to run
578 * irq_work to do the work queue wake up. The worse
579 * that can happen if we race with !trace_empty() is that
580 * an event will cause an irq_work to try to wake up
581 * an empty queue.
583 * There's no reason to protect this flag either, as
584 * the work queue and irq_work logic will do the necessary
585 * synchronization for the wake ups. The only thing
586 * that is necessary is that the wake up happens after
587 * a task has been queued. It's OK for spurious wake ups.
589 work->waiters_pending = true;
591 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
592 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
593 schedule();
595 finish_wait(&work->waiters, &wait);
596 return 0;
600 * ring_buffer_poll_wait - poll on buffer input
601 * @buffer: buffer to wait on
602 * @cpu: the cpu buffer to wait on
603 * @filp: the file descriptor
604 * @poll_table: The poll descriptor
606 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
607 * as data is added to any of the @buffer's cpu buffers. Otherwise
608 * it will wait for data to be added to a specific cpu buffer.
610 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
611 * zero otherwise.
613 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
614 struct file *filp, poll_table *poll_table)
616 struct ring_buffer_per_cpu *cpu_buffer;
617 struct rb_irq_work *work;
619 if (cpu == RING_BUFFER_ALL_CPUS)
620 work = &buffer->irq_work;
621 else {
622 if (!cpumask_test_cpu(cpu, buffer->cpumask))
623 return -EINVAL;
625 cpu_buffer = buffer->buffers[cpu];
626 work = &cpu_buffer->irq_work;
629 poll_wait(filp, &work->waiters, poll_table);
630 work->waiters_pending = true;
632 * There's a tight race between setting the waiters_pending and
633 * checking if the ring buffer is empty. Once the waiters_pending bit
634 * is set, the next event will wake the task up, but we can get stuck
635 * if there's only a single event in.
637 * FIXME: Ideally, we need a memory barrier on the writer side as well,
638 * but adding a memory barrier to all events will cause too much of a
639 * performance hit in the fast path. We only need a memory barrier when
640 * the buffer goes from empty to having content. But as this race is
641 * extremely small, and it's not a problem if another event comes in, we
642 * will fix it later.
644 smp_mb();
646 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
647 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
648 return POLLIN | POLLRDNORM;
649 return 0;
652 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
653 #define RB_WARN_ON(b, cond) \
654 ({ \
655 int _____ret = unlikely(cond); \
656 if (_____ret) { \
657 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
658 struct ring_buffer_per_cpu *__b = \
659 (void *)b; \
660 atomic_inc(&__b->buffer->record_disabled); \
661 } else \
662 atomic_inc(&b->record_disabled); \
663 WARN_ON(1); \
665 _____ret; \
668 /* Up this if you want to test the TIME_EXTENTS and normalization */
669 #define DEBUG_SHIFT 0
671 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
673 /* shift to debug/test normalization and TIME_EXTENTS */
674 return buffer->clock() << DEBUG_SHIFT;
677 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
679 u64 time;
681 preempt_disable_notrace();
682 time = rb_time_stamp(buffer);
683 preempt_enable_no_resched_notrace();
685 return time;
687 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
689 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
690 int cpu, u64 *ts)
692 /* Just stupid testing the normalize function and deltas */
693 *ts >>= DEBUG_SHIFT;
695 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
698 * Making the ring buffer lockless makes things tricky.
699 * Although writes only happen on the CPU that they are on,
700 * and they only need to worry about interrupts. Reads can
701 * happen on any CPU.
703 * The reader page is always off the ring buffer, but when the
704 * reader finishes with a page, it needs to swap its page with
705 * a new one from the buffer. The reader needs to take from
706 * the head (writes go to the tail). But if a writer is in overwrite
707 * mode and wraps, it must push the head page forward.
709 * Here lies the problem.
711 * The reader must be careful to replace only the head page, and
712 * not another one. As described at the top of the file in the
713 * ASCII art, the reader sets its old page to point to the next
714 * page after head. It then sets the page after head to point to
715 * the old reader page. But if the writer moves the head page
716 * during this operation, the reader could end up with the tail.
718 * We use cmpxchg to help prevent this race. We also do something
719 * special with the page before head. We set the LSB to 1.
721 * When the writer must push the page forward, it will clear the
722 * bit that points to the head page, move the head, and then set
723 * the bit that points to the new head page.
725 * We also don't want an interrupt coming in and moving the head
726 * page on another writer. Thus we use the second LSB to catch
727 * that too. Thus:
729 * head->list->prev->next bit 1 bit 0
730 * ------- -------
731 * Normal page 0 0
732 * Points to head page 0 1
733 * New head page 1 0
735 * Note we can not trust the prev pointer of the head page, because:
737 * +----+ +-----+ +-----+
738 * | |------>| T |---X--->| N |
739 * | |<------| | | |
740 * +----+ +-----+ +-----+
741 * ^ ^ |
742 * | +-----+ | |
743 * +----------| R |----------+ |
744 * | |<-----------+
745 * +-----+
747 * Key: ---X--> HEAD flag set in pointer
748 * T Tail page
749 * R Reader page
750 * N Next page
752 * (see __rb_reserve_next() to see where this happens)
754 * What the above shows is that the reader just swapped out
755 * the reader page with a page in the buffer, but before it
756 * could make the new header point back to the new page added
757 * it was preempted by a writer. The writer moved forward onto
758 * the new page added by the reader and is about to move forward
759 * again.
761 * You can see, it is legitimate for the previous pointer of
762 * the head (or any page) not to point back to itself. But only
763 * temporarially.
766 #define RB_PAGE_NORMAL 0UL
767 #define RB_PAGE_HEAD 1UL
768 #define RB_PAGE_UPDATE 2UL
771 #define RB_FLAG_MASK 3UL
773 /* PAGE_MOVED is not part of the mask */
774 #define RB_PAGE_MOVED 4UL
777 * rb_list_head - remove any bit
779 static struct list_head *rb_list_head(struct list_head *list)
781 unsigned long val = (unsigned long)list;
783 return (struct list_head *)(val & ~RB_FLAG_MASK);
787 * rb_is_head_page - test if the given page is the head page
789 * Because the reader may move the head_page pointer, we can
790 * not trust what the head page is (it may be pointing to
791 * the reader page). But if the next page is a header page,
792 * its flags will be non zero.
794 static inline int
795 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
796 struct buffer_page *page, struct list_head *list)
798 unsigned long val;
800 val = (unsigned long)list->next;
802 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
803 return RB_PAGE_MOVED;
805 return val & RB_FLAG_MASK;
809 * rb_is_reader_page
811 * The unique thing about the reader page, is that, if the
812 * writer is ever on it, the previous pointer never points
813 * back to the reader page.
815 static int rb_is_reader_page(struct buffer_page *page)
817 struct list_head *list = page->list.prev;
819 return rb_list_head(list->next) != &page->list;
823 * rb_set_list_to_head - set a list_head to be pointing to head.
825 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
826 struct list_head *list)
828 unsigned long *ptr;
830 ptr = (unsigned long *)&list->next;
831 *ptr |= RB_PAGE_HEAD;
832 *ptr &= ~RB_PAGE_UPDATE;
836 * rb_head_page_activate - sets up head page
838 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
840 struct buffer_page *head;
842 head = cpu_buffer->head_page;
843 if (!head)
844 return;
847 * Set the previous list pointer to have the HEAD flag.
849 rb_set_list_to_head(cpu_buffer, head->list.prev);
852 static void rb_list_head_clear(struct list_head *list)
854 unsigned long *ptr = (unsigned long *)&list->next;
856 *ptr &= ~RB_FLAG_MASK;
860 * rb_head_page_dactivate - clears head page ptr (for free list)
862 static void
863 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
865 struct list_head *hd;
867 /* Go through the whole list and clear any pointers found. */
868 rb_list_head_clear(cpu_buffer->pages);
870 list_for_each(hd, cpu_buffer->pages)
871 rb_list_head_clear(hd);
874 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
875 struct buffer_page *head,
876 struct buffer_page *prev,
877 int old_flag, int new_flag)
879 struct list_head *list;
880 unsigned long val = (unsigned long)&head->list;
881 unsigned long ret;
883 list = &prev->list;
885 val &= ~RB_FLAG_MASK;
887 ret = cmpxchg((unsigned long *)&list->next,
888 val | old_flag, val | new_flag);
890 /* check if the reader took the page */
891 if ((ret & ~RB_FLAG_MASK) != val)
892 return RB_PAGE_MOVED;
894 return ret & RB_FLAG_MASK;
897 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
898 struct buffer_page *head,
899 struct buffer_page *prev,
900 int old_flag)
902 return rb_head_page_set(cpu_buffer, head, prev,
903 old_flag, RB_PAGE_UPDATE);
906 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
907 struct buffer_page *head,
908 struct buffer_page *prev,
909 int old_flag)
911 return rb_head_page_set(cpu_buffer, head, prev,
912 old_flag, RB_PAGE_HEAD);
915 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
916 struct buffer_page *head,
917 struct buffer_page *prev,
918 int old_flag)
920 return rb_head_page_set(cpu_buffer, head, prev,
921 old_flag, RB_PAGE_NORMAL);
924 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
925 struct buffer_page **bpage)
927 struct list_head *p = rb_list_head((*bpage)->list.next);
929 *bpage = list_entry(p, struct buffer_page, list);
932 static struct buffer_page *
933 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
935 struct buffer_page *head;
936 struct buffer_page *page;
937 struct list_head *list;
938 int i;
940 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
941 return NULL;
943 /* sanity check */
944 list = cpu_buffer->pages;
945 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
946 return NULL;
948 page = head = cpu_buffer->head_page;
950 * It is possible that the writer moves the header behind
951 * where we started, and we miss in one loop.
952 * A second loop should grab the header, but we'll do
953 * three loops just because I'm paranoid.
955 for (i = 0; i < 3; i++) {
956 do {
957 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
958 cpu_buffer->head_page = page;
959 return page;
961 rb_inc_page(cpu_buffer, &page);
962 } while (page != head);
965 RB_WARN_ON(cpu_buffer, 1);
967 return NULL;
970 static int rb_head_page_replace(struct buffer_page *old,
971 struct buffer_page *new)
973 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
974 unsigned long val;
975 unsigned long ret;
977 val = *ptr & ~RB_FLAG_MASK;
978 val |= RB_PAGE_HEAD;
980 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
982 return ret == val;
986 * rb_tail_page_update - move the tail page forward
988 * Returns 1 if moved tail page, 0 if someone else did.
990 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
991 struct buffer_page *tail_page,
992 struct buffer_page *next_page)
994 struct buffer_page *old_tail;
995 unsigned long old_entries;
996 unsigned long old_write;
997 int ret = 0;
1000 * The tail page now needs to be moved forward.
1002 * We need to reset the tail page, but without messing
1003 * with possible erasing of data brought in by interrupts
1004 * that have moved the tail page and are currently on it.
1006 * We add a counter to the write field to denote this.
1008 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1009 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1012 * Just make sure we have seen our old_write and synchronize
1013 * with any interrupts that come in.
1015 barrier();
1018 * If the tail page is still the same as what we think
1019 * it is, then it is up to us to update the tail
1020 * pointer.
1022 if (tail_page == cpu_buffer->tail_page) {
1023 /* Zero the write counter */
1024 unsigned long val = old_write & ~RB_WRITE_MASK;
1025 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1028 * This will only succeed if an interrupt did
1029 * not come in and change it. In which case, we
1030 * do not want to modify it.
1032 * We add (void) to let the compiler know that we do not care
1033 * about the return value of these functions. We use the
1034 * cmpxchg to only update if an interrupt did not already
1035 * do it for us. If the cmpxchg fails, we don't care.
1037 (void)local_cmpxchg(&next_page->write, old_write, val);
1038 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1041 * No need to worry about races with clearing out the commit.
1042 * it only can increment when a commit takes place. But that
1043 * only happens in the outer most nested commit.
1045 local_set(&next_page->page->commit, 0);
1047 old_tail = cmpxchg(&cpu_buffer->tail_page,
1048 tail_page, next_page);
1050 if (old_tail == tail_page)
1051 ret = 1;
1054 return ret;
1057 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1058 struct buffer_page *bpage)
1060 unsigned long val = (unsigned long)bpage;
1062 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1063 return 1;
1065 return 0;
1069 * rb_check_list - make sure a pointer to a list has the last bits zero
1071 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1072 struct list_head *list)
1074 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1075 return 1;
1076 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1077 return 1;
1078 return 0;
1082 * rb_check_pages - integrity check of buffer pages
1083 * @cpu_buffer: CPU buffer with pages to test
1085 * As a safety measure we check to make sure the data pages have not
1086 * been corrupted.
1088 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1090 struct list_head *head = cpu_buffer->pages;
1091 struct buffer_page *bpage, *tmp;
1093 /* Reset the head page if it exists */
1094 if (cpu_buffer->head_page)
1095 rb_set_head_page(cpu_buffer);
1097 rb_head_page_deactivate(cpu_buffer);
1099 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1100 return -1;
1101 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1102 return -1;
1104 if (rb_check_list(cpu_buffer, head))
1105 return -1;
1107 list_for_each_entry_safe(bpage, tmp, head, list) {
1108 if (RB_WARN_ON(cpu_buffer,
1109 bpage->list.next->prev != &bpage->list))
1110 return -1;
1111 if (RB_WARN_ON(cpu_buffer,
1112 bpage->list.prev->next != &bpage->list))
1113 return -1;
1114 if (rb_check_list(cpu_buffer, &bpage->list))
1115 return -1;
1118 rb_head_page_activate(cpu_buffer);
1120 return 0;
1123 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1125 int i;
1126 struct buffer_page *bpage, *tmp;
1128 for (i = 0; i < nr_pages; i++) {
1129 struct page *page;
1131 * __GFP_NORETRY flag makes sure that the allocation fails
1132 * gracefully without invoking oom-killer and the system is
1133 * not destabilized.
1135 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1136 GFP_KERNEL | __GFP_NORETRY,
1137 cpu_to_node(cpu));
1138 if (!bpage)
1139 goto free_pages;
1141 list_add(&bpage->list, pages);
1143 page = alloc_pages_node(cpu_to_node(cpu),
1144 GFP_KERNEL | __GFP_NORETRY, 0);
1145 if (!page)
1146 goto free_pages;
1147 bpage->page = page_address(page);
1148 rb_init_page(bpage->page);
1151 return 0;
1153 free_pages:
1154 list_for_each_entry_safe(bpage, tmp, pages, list) {
1155 list_del_init(&bpage->list);
1156 free_buffer_page(bpage);
1159 return -ENOMEM;
1162 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1163 unsigned nr_pages)
1165 LIST_HEAD(pages);
1167 WARN_ON(!nr_pages);
1169 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1170 return -ENOMEM;
1173 * The ring buffer page list is a circular list that does not
1174 * start and end with a list head. All page list items point to
1175 * other pages.
1177 cpu_buffer->pages = pages.next;
1178 list_del(&pages);
1180 cpu_buffer->nr_pages = nr_pages;
1182 rb_check_pages(cpu_buffer);
1184 return 0;
1187 static struct ring_buffer_per_cpu *
1188 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1190 struct ring_buffer_per_cpu *cpu_buffer;
1191 struct buffer_page *bpage;
1192 struct page *page;
1193 int ret;
1195 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1196 GFP_KERNEL, cpu_to_node(cpu));
1197 if (!cpu_buffer)
1198 return NULL;
1200 cpu_buffer->cpu = cpu;
1201 cpu_buffer->buffer = buffer;
1202 raw_spin_lock_init(&cpu_buffer->reader_lock);
1203 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1204 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1205 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1206 init_completion(&cpu_buffer->update_done);
1207 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1208 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1210 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1211 GFP_KERNEL, cpu_to_node(cpu));
1212 if (!bpage)
1213 goto fail_free_buffer;
1215 rb_check_bpage(cpu_buffer, bpage);
1217 cpu_buffer->reader_page = bpage;
1218 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1219 if (!page)
1220 goto fail_free_reader;
1221 bpage->page = page_address(page);
1222 rb_init_page(bpage->page);
1224 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1225 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1227 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1228 if (ret < 0)
1229 goto fail_free_reader;
1231 cpu_buffer->head_page
1232 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1233 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1235 rb_head_page_activate(cpu_buffer);
1237 return cpu_buffer;
1239 fail_free_reader:
1240 free_buffer_page(cpu_buffer->reader_page);
1242 fail_free_buffer:
1243 kfree(cpu_buffer);
1244 return NULL;
1247 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1249 struct list_head *head = cpu_buffer->pages;
1250 struct buffer_page *bpage, *tmp;
1252 free_buffer_page(cpu_buffer->reader_page);
1254 rb_head_page_deactivate(cpu_buffer);
1256 if (head) {
1257 list_for_each_entry_safe(bpage, tmp, head, list) {
1258 list_del_init(&bpage->list);
1259 free_buffer_page(bpage);
1261 bpage = list_entry(head, struct buffer_page, list);
1262 free_buffer_page(bpage);
1265 kfree(cpu_buffer);
1268 #ifdef CONFIG_HOTPLUG_CPU
1269 static int rb_cpu_notify(struct notifier_block *self,
1270 unsigned long action, void *hcpu);
1271 #endif
1274 * __ring_buffer_alloc - allocate a new ring_buffer
1275 * @size: the size in bytes per cpu that is needed.
1276 * @flags: attributes to set for the ring buffer.
1278 * Currently the only flag that is available is the RB_FL_OVERWRITE
1279 * flag. This flag means that the buffer will overwrite old data
1280 * when the buffer wraps. If this flag is not set, the buffer will
1281 * drop data when the tail hits the head.
1283 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1284 struct lock_class_key *key)
1286 struct ring_buffer *buffer;
1287 int bsize;
1288 int cpu, nr_pages;
1290 /* keep it in its own cache line */
1291 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1292 GFP_KERNEL);
1293 if (!buffer)
1294 return NULL;
1296 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1297 goto fail_free_buffer;
1299 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1300 buffer->flags = flags;
1301 buffer->clock = trace_clock_local;
1302 buffer->reader_lock_key = key;
1304 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1305 init_waitqueue_head(&buffer->irq_work.waiters);
1307 /* need at least two pages */
1308 if (nr_pages < 2)
1309 nr_pages = 2;
1312 * In case of non-hotplug cpu, if the ring-buffer is allocated
1313 * in early initcall, it will not be notified of secondary cpus.
1314 * In that off case, we need to allocate for all possible cpus.
1316 #ifdef CONFIG_HOTPLUG_CPU
1317 cpu_notifier_register_begin();
1318 cpumask_copy(buffer->cpumask, cpu_online_mask);
1319 #else
1320 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1321 #endif
1322 buffer->cpus = nr_cpu_ids;
1324 bsize = sizeof(void *) * nr_cpu_ids;
1325 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1326 GFP_KERNEL);
1327 if (!buffer->buffers)
1328 goto fail_free_cpumask;
1330 for_each_buffer_cpu(buffer, cpu) {
1331 buffer->buffers[cpu] =
1332 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1333 if (!buffer->buffers[cpu])
1334 goto fail_free_buffers;
1337 #ifdef CONFIG_HOTPLUG_CPU
1338 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1339 buffer->cpu_notify.priority = 0;
1340 __register_cpu_notifier(&buffer->cpu_notify);
1341 cpu_notifier_register_done();
1342 #endif
1344 mutex_init(&buffer->mutex);
1346 return buffer;
1348 fail_free_buffers:
1349 for_each_buffer_cpu(buffer, cpu) {
1350 if (buffer->buffers[cpu])
1351 rb_free_cpu_buffer(buffer->buffers[cpu]);
1353 kfree(buffer->buffers);
1355 fail_free_cpumask:
1356 free_cpumask_var(buffer->cpumask);
1357 #ifdef CONFIG_HOTPLUG_CPU
1358 cpu_notifier_register_done();
1359 #endif
1361 fail_free_buffer:
1362 kfree(buffer);
1363 return NULL;
1365 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1368 * ring_buffer_free - free a ring buffer.
1369 * @buffer: the buffer to free.
1371 void
1372 ring_buffer_free(struct ring_buffer *buffer)
1374 int cpu;
1376 #ifdef CONFIG_HOTPLUG_CPU
1377 cpu_notifier_register_begin();
1378 __unregister_cpu_notifier(&buffer->cpu_notify);
1379 #endif
1381 for_each_buffer_cpu(buffer, cpu)
1382 rb_free_cpu_buffer(buffer->buffers[cpu]);
1384 #ifdef CONFIG_HOTPLUG_CPU
1385 cpu_notifier_register_done();
1386 #endif
1388 kfree(buffer->buffers);
1389 free_cpumask_var(buffer->cpumask);
1391 kfree(buffer);
1393 EXPORT_SYMBOL_GPL(ring_buffer_free);
1395 void ring_buffer_set_clock(struct ring_buffer *buffer,
1396 u64 (*clock)(void))
1398 buffer->clock = clock;
1401 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1403 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1405 return local_read(&bpage->entries) & RB_WRITE_MASK;
1408 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1410 return local_read(&bpage->write) & RB_WRITE_MASK;
1413 static int
1414 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1416 struct list_head *tail_page, *to_remove, *next_page;
1417 struct buffer_page *to_remove_page, *tmp_iter_page;
1418 struct buffer_page *last_page, *first_page;
1419 unsigned int nr_removed;
1420 unsigned long head_bit;
1421 int page_entries;
1423 head_bit = 0;
1425 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1426 atomic_inc(&cpu_buffer->record_disabled);
1428 * We don't race with the readers since we have acquired the reader
1429 * lock. We also don't race with writers after disabling recording.
1430 * This makes it easy to figure out the first and the last page to be
1431 * removed from the list. We unlink all the pages in between including
1432 * the first and last pages. This is done in a busy loop so that we
1433 * lose the least number of traces.
1434 * The pages are freed after we restart recording and unlock readers.
1436 tail_page = &cpu_buffer->tail_page->list;
1439 * tail page might be on reader page, we remove the next page
1440 * from the ring buffer
1442 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1443 tail_page = rb_list_head(tail_page->next);
1444 to_remove = tail_page;
1446 /* start of pages to remove */
1447 first_page = list_entry(rb_list_head(to_remove->next),
1448 struct buffer_page, list);
1450 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1451 to_remove = rb_list_head(to_remove)->next;
1452 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1455 next_page = rb_list_head(to_remove)->next;
1458 * Now we remove all pages between tail_page and next_page.
1459 * Make sure that we have head_bit value preserved for the
1460 * next page
1462 tail_page->next = (struct list_head *)((unsigned long)next_page |
1463 head_bit);
1464 next_page = rb_list_head(next_page);
1465 next_page->prev = tail_page;
1467 /* make sure pages points to a valid page in the ring buffer */
1468 cpu_buffer->pages = next_page;
1470 /* update head page */
1471 if (head_bit)
1472 cpu_buffer->head_page = list_entry(next_page,
1473 struct buffer_page, list);
1476 * change read pointer to make sure any read iterators reset
1477 * themselves
1479 cpu_buffer->read = 0;
1481 /* pages are removed, resume tracing and then free the pages */
1482 atomic_dec(&cpu_buffer->record_disabled);
1483 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1485 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1487 /* last buffer page to remove */
1488 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1489 list);
1490 tmp_iter_page = first_page;
1492 do {
1493 to_remove_page = tmp_iter_page;
1494 rb_inc_page(cpu_buffer, &tmp_iter_page);
1496 /* update the counters */
1497 page_entries = rb_page_entries(to_remove_page);
1498 if (page_entries) {
1500 * If something was added to this page, it was full
1501 * since it is not the tail page. So we deduct the
1502 * bytes consumed in ring buffer from here.
1503 * Increment overrun to account for the lost events.
1505 local_add(page_entries, &cpu_buffer->overrun);
1506 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1510 * We have already removed references to this list item, just
1511 * free up the buffer_page and its page
1513 free_buffer_page(to_remove_page);
1514 nr_removed--;
1516 } while (to_remove_page != last_page);
1518 RB_WARN_ON(cpu_buffer, nr_removed);
1520 return nr_removed == 0;
1523 static int
1524 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1526 struct list_head *pages = &cpu_buffer->new_pages;
1527 int retries, success;
1529 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1531 * We are holding the reader lock, so the reader page won't be swapped
1532 * in the ring buffer. Now we are racing with the writer trying to
1533 * move head page and the tail page.
1534 * We are going to adapt the reader page update process where:
1535 * 1. We first splice the start and end of list of new pages between
1536 * the head page and its previous page.
1537 * 2. We cmpxchg the prev_page->next to point from head page to the
1538 * start of new pages list.
1539 * 3. Finally, we update the head->prev to the end of new list.
1541 * We will try this process 10 times, to make sure that we don't keep
1542 * spinning.
1544 retries = 10;
1545 success = 0;
1546 while (retries--) {
1547 struct list_head *head_page, *prev_page, *r;
1548 struct list_head *last_page, *first_page;
1549 struct list_head *head_page_with_bit;
1551 head_page = &rb_set_head_page(cpu_buffer)->list;
1552 if (!head_page)
1553 break;
1554 prev_page = head_page->prev;
1556 first_page = pages->next;
1557 last_page = pages->prev;
1559 head_page_with_bit = (struct list_head *)
1560 ((unsigned long)head_page | RB_PAGE_HEAD);
1562 last_page->next = head_page_with_bit;
1563 first_page->prev = prev_page;
1565 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1567 if (r == head_page_with_bit) {
1569 * yay, we replaced the page pointer to our new list,
1570 * now, we just have to update to head page's prev
1571 * pointer to point to end of list
1573 head_page->prev = last_page;
1574 success = 1;
1575 break;
1579 if (success)
1580 INIT_LIST_HEAD(pages);
1582 * If we weren't successful in adding in new pages, warn and stop
1583 * tracing
1585 RB_WARN_ON(cpu_buffer, !success);
1586 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1588 /* free pages if they weren't inserted */
1589 if (!success) {
1590 struct buffer_page *bpage, *tmp;
1591 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1592 list) {
1593 list_del_init(&bpage->list);
1594 free_buffer_page(bpage);
1597 return success;
1600 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1602 int success;
1604 if (cpu_buffer->nr_pages_to_update > 0)
1605 success = rb_insert_pages(cpu_buffer);
1606 else
1607 success = rb_remove_pages(cpu_buffer,
1608 -cpu_buffer->nr_pages_to_update);
1610 if (success)
1611 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1614 static void update_pages_handler(struct work_struct *work)
1616 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1617 struct ring_buffer_per_cpu, update_pages_work);
1618 rb_update_pages(cpu_buffer);
1619 complete(&cpu_buffer->update_done);
1623 * ring_buffer_resize - resize the ring buffer
1624 * @buffer: the buffer to resize.
1625 * @size: the new size.
1626 * @cpu_id: the cpu buffer to resize
1628 * Minimum size is 2 * BUF_PAGE_SIZE.
1630 * Returns 0 on success and < 0 on failure.
1632 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1633 int cpu_id)
1635 struct ring_buffer_per_cpu *cpu_buffer;
1636 unsigned nr_pages;
1637 int cpu, err = 0;
1640 * Always succeed at resizing a non-existent buffer:
1642 if (!buffer)
1643 return size;
1645 /* Make sure the requested buffer exists */
1646 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1647 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1648 return size;
1650 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1651 size *= BUF_PAGE_SIZE;
1653 /* we need a minimum of two pages */
1654 if (size < BUF_PAGE_SIZE * 2)
1655 size = BUF_PAGE_SIZE * 2;
1657 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1660 * Don't succeed if resizing is disabled, as a reader might be
1661 * manipulating the ring buffer and is expecting a sane state while
1662 * this is true.
1664 if (atomic_read(&buffer->resize_disabled))
1665 return -EBUSY;
1667 /* prevent another thread from changing buffer sizes */
1668 mutex_lock(&buffer->mutex);
1670 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1671 /* calculate the pages to update */
1672 for_each_buffer_cpu(buffer, cpu) {
1673 cpu_buffer = buffer->buffers[cpu];
1675 cpu_buffer->nr_pages_to_update = nr_pages -
1676 cpu_buffer->nr_pages;
1678 * nothing more to do for removing pages or no update
1680 if (cpu_buffer->nr_pages_to_update <= 0)
1681 continue;
1683 * to add pages, make sure all new pages can be
1684 * allocated without receiving ENOMEM
1686 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1687 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1688 &cpu_buffer->new_pages, cpu)) {
1689 /* not enough memory for new pages */
1690 err = -ENOMEM;
1691 goto out_err;
1695 get_online_cpus();
1697 * Fire off all the required work handlers
1698 * We can't schedule on offline CPUs, but it's not necessary
1699 * since we can change their buffer sizes without any race.
1701 for_each_buffer_cpu(buffer, cpu) {
1702 cpu_buffer = buffer->buffers[cpu];
1703 if (!cpu_buffer->nr_pages_to_update)
1704 continue;
1706 /* Can't run something on an offline CPU. */
1707 if (!cpu_online(cpu)) {
1708 rb_update_pages(cpu_buffer);
1709 cpu_buffer->nr_pages_to_update = 0;
1710 } else {
1711 schedule_work_on(cpu,
1712 &cpu_buffer->update_pages_work);
1716 /* wait for all the updates to complete */
1717 for_each_buffer_cpu(buffer, cpu) {
1718 cpu_buffer = buffer->buffers[cpu];
1719 if (!cpu_buffer->nr_pages_to_update)
1720 continue;
1722 if (cpu_online(cpu))
1723 wait_for_completion(&cpu_buffer->update_done);
1724 cpu_buffer->nr_pages_to_update = 0;
1727 put_online_cpus();
1728 } else {
1729 /* Make sure this CPU has been intitialized */
1730 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1731 goto out;
1733 cpu_buffer = buffer->buffers[cpu_id];
1735 if (nr_pages == cpu_buffer->nr_pages)
1736 goto out;
1738 cpu_buffer->nr_pages_to_update = nr_pages -
1739 cpu_buffer->nr_pages;
1741 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1742 if (cpu_buffer->nr_pages_to_update > 0 &&
1743 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1744 &cpu_buffer->new_pages, cpu_id)) {
1745 err = -ENOMEM;
1746 goto out_err;
1749 get_online_cpus();
1751 /* Can't run something on an offline CPU. */
1752 if (!cpu_online(cpu_id))
1753 rb_update_pages(cpu_buffer);
1754 else {
1755 schedule_work_on(cpu_id,
1756 &cpu_buffer->update_pages_work);
1757 wait_for_completion(&cpu_buffer->update_done);
1760 cpu_buffer->nr_pages_to_update = 0;
1761 put_online_cpus();
1764 out:
1766 * The ring buffer resize can happen with the ring buffer
1767 * enabled, so that the update disturbs the tracing as little
1768 * as possible. But if the buffer is disabled, we do not need
1769 * to worry about that, and we can take the time to verify
1770 * that the buffer is not corrupt.
1772 if (atomic_read(&buffer->record_disabled)) {
1773 atomic_inc(&buffer->record_disabled);
1775 * Even though the buffer was disabled, we must make sure
1776 * that it is truly disabled before calling rb_check_pages.
1777 * There could have been a race between checking
1778 * record_disable and incrementing it.
1780 synchronize_sched();
1781 for_each_buffer_cpu(buffer, cpu) {
1782 cpu_buffer = buffer->buffers[cpu];
1783 rb_check_pages(cpu_buffer);
1785 atomic_dec(&buffer->record_disabled);
1788 mutex_unlock(&buffer->mutex);
1789 return size;
1791 out_err:
1792 for_each_buffer_cpu(buffer, cpu) {
1793 struct buffer_page *bpage, *tmp;
1795 cpu_buffer = buffer->buffers[cpu];
1796 cpu_buffer->nr_pages_to_update = 0;
1798 if (list_empty(&cpu_buffer->new_pages))
1799 continue;
1801 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1802 list) {
1803 list_del_init(&bpage->list);
1804 free_buffer_page(bpage);
1807 mutex_unlock(&buffer->mutex);
1808 return err;
1810 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1812 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1814 mutex_lock(&buffer->mutex);
1815 if (val)
1816 buffer->flags |= RB_FL_OVERWRITE;
1817 else
1818 buffer->flags &= ~RB_FL_OVERWRITE;
1819 mutex_unlock(&buffer->mutex);
1821 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1823 static inline void *
1824 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1826 return bpage->data + index;
1829 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1831 return bpage->page->data + index;
1834 static inline struct ring_buffer_event *
1835 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1837 return __rb_page_index(cpu_buffer->reader_page,
1838 cpu_buffer->reader_page->read);
1841 static inline struct ring_buffer_event *
1842 rb_iter_head_event(struct ring_buffer_iter *iter)
1844 return __rb_page_index(iter->head_page, iter->head);
1847 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1849 return local_read(&bpage->page->commit);
1852 /* Size is determined by what has been committed */
1853 static inline unsigned rb_page_size(struct buffer_page *bpage)
1855 return rb_page_commit(bpage);
1858 static inline unsigned
1859 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1861 return rb_page_commit(cpu_buffer->commit_page);
1864 static inline unsigned
1865 rb_event_index(struct ring_buffer_event *event)
1867 unsigned long addr = (unsigned long)event;
1869 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1872 static inline int
1873 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1874 struct ring_buffer_event *event)
1876 unsigned long addr = (unsigned long)event;
1877 unsigned long index;
1879 index = rb_event_index(event);
1880 addr &= PAGE_MASK;
1882 return cpu_buffer->commit_page->page == (void *)addr &&
1883 rb_commit_index(cpu_buffer) == index;
1886 static void
1887 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1889 unsigned long max_count;
1892 * We only race with interrupts and NMIs on this CPU.
1893 * If we own the commit event, then we can commit
1894 * all others that interrupted us, since the interruptions
1895 * are in stack format (they finish before they come
1896 * back to us). This allows us to do a simple loop to
1897 * assign the commit to the tail.
1899 again:
1900 max_count = cpu_buffer->nr_pages * 100;
1902 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1903 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1904 return;
1905 if (RB_WARN_ON(cpu_buffer,
1906 rb_is_reader_page(cpu_buffer->tail_page)))
1907 return;
1908 local_set(&cpu_buffer->commit_page->page->commit,
1909 rb_page_write(cpu_buffer->commit_page));
1910 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1911 cpu_buffer->write_stamp =
1912 cpu_buffer->commit_page->page->time_stamp;
1913 /* add barrier to keep gcc from optimizing too much */
1914 barrier();
1916 while (rb_commit_index(cpu_buffer) !=
1917 rb_page_write(cpu_buffer->commit_page)) {
1919 local_set(&cpu_buffer->commit_page->page->commit,
1920 rb_page_write(cpu_buffer->commit_page));
1921 RB_WARN_ON(cpu_buffer,
1922 local_read(&cpu_buffer->commit_page->page->commit) &
1923 ~RB_WRITE_MASK);
1924 barrier();
1927 /* again, keep gcc from optimizing */
1928 barrier();
1931 * If an interrupt came in just after the first while loop
1932 * and pushed the tail page forward, we will be left with
1933 * a dangling commit that will never go forward.
1935 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1936 goto again;
1939 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1941 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1942 cpu_buffer->reader_page->read = 0;
1945 static void rb_inc_iter(struct ring_buffer_iter *iter)
1947 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1950 * The iterator could be on the reader page (it starts there).
1951 * But the head could have moved, since the reader was
1952 * found. Check for this case and assign the iterator
1953 * to the head page instead of next.
1955 if (iter->head_page == cpu_buffer->reader_page)
1956 iter->head_page = rb_set_head_page(cpu_buffer);
1957 else
1958 rb_inc_page(cpu_buffer, &iter->head_page);
1960 iter->read_stamp = iter->head_page->page->time_stamp;
1961 iter->head = 0;
1964 /* Slow path, do not inline */
1965 static noinline struct ring_buffer_event *
1966 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1968 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1970 /* Not the first event on the page? */
1971 if (rb_event_index(event)) {
1972 event->time_delta = delta & TS_MASK;
1973 event->array[0] = delta >> TS_SHIFT;
1974 } else {
1975 /* nope, just zero it */
1976 event->time_delta = 0;
1977 event->array[0] = 0;
1980 return skip_time_extend(event);
1984 * rb_update_event - update event type and data
1985 * @event: the event to update
1986 * @type: the type of event
1987 * @length: the size of the event field in the ring buffer
1989 * Update the type and data fields of the event. The length
1990 * is the actual size that is written to the ring buffer,
1991 * and with this, we can determine what to place into the
1992 * data field.
1994 static void
1995 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1996 struct ring_buffer_event *event, unsigned length,
1997 int add_timestamp, u64 delta)
1999 /* Only a commit updates the timestamp */
2000 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2001 delta = 0;
2004 * If we need to add a timestamp, then we
2005 * add it to the start of the resevered space.
2007 if (unlikely(add_timestamp)) {
2008 event = rb_add_time_stamp(event, delta);
2009 length -= RB_LEN_TIME_EXTEND;
2010 delta = 0;
2013 event->time_delta = delta;
2014 length -= RB_EVNT_HDR_SIZE;
2015 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2016 event->type_len = 0;
2017 event->array[0] = length;
2018 } else
2019 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2023 * rb_handle_head_page - writer hit the head page
2025 * Returns: +1 to retry page
2026 * 0 to continue
2027 * -1 on error
2029 static int
2030 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2031 struct buffer_page *tail_page,
2032 struct buffer_page *next_page)
2034 struct buffer_page *new_head;
2035 int entries;
2036 int type;
2037 int ret;
2039 entries = rb_page_entries(next_page);
2042 * The hard part is here. We need to move the head
2043 * forward, and protect against both readers on
2044 * other CPUs and writers coming in via interrupts.
2046 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2047 RB_PAGE_HEAD);
2050 * type can be one of four:
2051 * NORMAL - an interrupt already moved it for us
2052 * HEAD - we are the first to get here.
2053 * UPDATE - we are the interrupt interrupting
2054 * a current move.
2055 * MOVED - a reader on another CPU moved the next
2056 * pointer to its reader page. Give up
2057 * and try again.
2060 switch (type) {
2061 case RB_PAGE_HEAD:
2063 * We changed the head to UPDATE, thus
2064 * it is our responsibility to update
2065 * the counters.
2067 local_add(entries, &cpu_buffer->overrun);
2068 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2071 * The entries will be zeroed out when we move the
2072 * tail page.
2075 /* still more to do */
2076 break;
2078 case RB_PAGE_UPDATE:
2080 * This is an interrupt that interrupt the
2081 * previous update. Still more to do.
2083 break;
2084 case RB_PAGE_NORMAL:
2086 * An interrupt came in before the update
2087 * and processed this for us.
2088 * Nothing left to do.
2090 return 1;
2091 case RB_PAGE_MOVED:
2093 * The reader is on another CPU and just did
2094 * a swap with our next_page.
2095 * Try again.
2097 return 1;
2098 default:
2099 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2100 return -1;
2104 * Now that we are here, the old head pointer is
2105 * set to UPDATE. This will keep the reader from
2106 * swapping the head page with the reader page.
2107 * The reader (on another CPU) will spin till
2108 * we are finished.
2110 * We just need to protect against interrupts
2111 * doing the job. We will set the next pointer
2112 * to HEAD. After that, we set the old pointer
2113 * to NORMAL, but only if it was HEAD before.
2114 * otherwise we are an interrupt, and only
2115 * want the outer most commit to reset it.
2117 new_head = next_page;
2118 rb_inc_page(cpu_buffer, &new_head);
2120 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2121 RB_PAGE_NORMAL);
2124 * Valid returns are:
2125 * HEAD - an interrupt came in and already set it.
2126 * NORMAL - One of two things:
2127 * 1) We really set it.
2128 * 2) A bunch of interrupts came in and moved
2129 * the page forward again.
2131 switch (ret) {
2132 case RB_PAGE_HEAD:
2133 case RB_PAGE_NORMAL:
2134 /* OK */
2135 break;
2136 default:
2137 RB_WARN_ON(cpu_buffer, 1);
2138 return -1;
2142 * It is possible that an interrupt came in,
2143 * set the head up, then more interrupts came in
2144 * and moved it again. When we get back here,
2145 * the page would have been set to NORMAL but we
2146 * just set it back to HEAD.
2148 * How do you detect this? Well, if that happened
2149 * the tail page would have moved.
2151 if (ret == RB_PAGE_NORMAL) {
2153 * If the tail had moved passed next, then we need
2154 * to reset the pointer.
2156 if (cpu_buffer->tail_page != tail_page &&
2157 cpu_buffer->tail_page != next_page)
2158 rb_head_page_set_normal(cpu_buffer, new_head,
2159 next_page,
2160 RB_PAGE_HEAD);
2164 * If this was the outer most commit (the one that
2165 * changed the original pointer from HEAD to UPDATE),
2166 * then it is up to us to reset it to NORMAL.
2168 if (type == RB_PAGE_HEAD) {
2169 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2170 tail_page,
2171 RB_PAGE_UPDATE);
2172 if (RB_WARN_ON(cpu_buffer,
2173 ret != RB_PAGE_UPDATE))
2174 return -1;
2177 return 0;
2180 static unsigned rb_calculate_event_length(unsigned length)
2182 struct ring_buffer_event event; /* Used only for sizeof array */
2184 /* zero length can cause confusions */
2185 if (!length)
2186 length = 1;
2188 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2189 length += sizeof(event.array[0]);
2191 length += RB_EVNT_HDR_SIZE;
2192 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2194 return length;
2197 static inline void
2198 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2199 struct buffer_page *tail_page,
2200 unsigned long tail, unsigned long length)
2202 struct ring_buffer_event *event;
2205 * Only the event that crossed the page boundary
2206 * must fill the old tail_page with padding.
2208 if (tail >= BUF_PAGE_SIZE) {
2210 * If the page was filled, then we still need
2211 * to update the real_end. Reset it to zero
2212 * and the reader will ignore it.
2214 if (tail == BUF_PAGE_SIZE)
2215 tail_page->real_end = 0;
2217 local_sub(length, &tail_page->write);
2218 return;
2221 event = __rb_page_index(tail_page, tail);
2222 kmemcheck_annotate_bitfield(event, bitfield);
2224 /* account for padding bytes */
2225 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2228 * Save the original length to the meta data.
2229 * This will be used by the reader to add lost event
2230 * counter.
2232 tail_page->real_end = tail;
2235 * If this event is bigger than the minimum size, then
2236 * we need to be careful that we don't subtract the
2237 * write counter enough to allow another writer to slip
2238 * in on this page.
2239 * We put in a discarded commit instead, to make sure
2240 * that this space is not used again.
2242 * If we are less than the minimum size, we don't need to
2243 * worry about it.
2245 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2246 /* No room for any events */
2248 /* Mark the rest of the page with padding */
2249 rb_event_set_padding(event);
2251 /* Set the write back to the previous setting */
2252 local_sub(length, &tail_page->write);
2253 return;
2256 /* Put in a discarded event */
2257 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2258 event->type_len = RINGBUF_TYPE_PADDING;
2259 /* time delta must be non zero */
2260 event->time_delta = 1;
2262 /* Set write to end of buffer */
2263 length = (tail + length) - BUF_PAGE_SIZE;
2264 local_sub(length, &tail_page->write);
2268 * This is the slow path, force gcc not to inline it.
2270 static noinline struct ring_buffer_event *
2271 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2272 unsigned long length, unsigned long tail,
2273 struct buffer_page *tail_page, u64 ts)
2275 struct buffer_page *commit_page = cpu_buffer->commit_page;
2276 struct ring_buffer *buffer = cpu_buffer->buffer;
2277 struct buffer_page *next_page;
2278 int ret;
2280 next_page = tail_page;
2282 rb_inc_page(cpu_buffer, &next_page);
2285 * If for some reason, we had an interrupt storm that made
2286 * it all the way around the buffer, bail, and warn
2287 * about it.
2289 if (unlikely(next_page == commit_page)) {
2290 local_inc(&cpu_buffer->commit_overrun);
2291 goto out_reset;
2295 * This is where the fun begins!
2297 * We are fighting against races between a reader that
2298 * could be on another CPU trying to swap its reader
2299 * page with the buffer head.
2301 * We are also fighting against interrupts coming in and
2302 * moving the head or tail on us as well.
2304 * If the next page is the head page then we have filled
2305 * the buffer, unless the commit page is still on the
2306 * reader page.
2308 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2311 * If the commit is not on the reader page, then
2312 * move the header page.
2314 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2316 * If we are not in overwrite mode,
2317 * this is easy, just stop here.
2319 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2320 local_inc(&cpu_buffer->dropped_events);
2321 goto out_reset;
2324 ret = rb_handle_head_page(cpu_buffer,
2325 tail_page,
2326 next_page);
2327 if (ret < 0)
2328 goto out_reset;
2329 if (ret)
2330 goto out_again;
2331 } else {
2333 * We need to be careful here too. The
2334 * commit page could still be on the reader
2335 * page. We could have a small buffer, and
2336 * have filled up the buffer with events
2337 * from interrupts and such, and wrapped.
2339 * Note, if the tail page is also the on the
2340 * reader_page, we let it move out.
2342 if (unlikely((cpu_buffer->commit_page !=
2343 cpu_buffer->tail_page) &&
2344 (cpu_buffer->commit_page ==
2345 cpu_buffer->reader_page))) {
2346 local_inc(&cpu_buffer->commit_overrun);
2347 goto out_reset;
2352 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2353 if (ret) {
2355 * Nested commits always have zero deltas, so
2356 * just reread the time stamp
2358 ts = rb_time_stamp(buffer);
2359 next_page->page->time_stamp = ts;
2362 out_again:
2364 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2366 /* fail and let the caller try again */
2367 return ERR_PTR(-EAGAIN);
2369 out_reset:
2370 /* reset write */
2371 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2373 return NULL;
2376 static struct ring_buffer_event *
2377 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2378 unsigned long length, u64 ts,
2379 u64 delta, int add_timestamp)
2381 struct buffer_page *tail_page;
2382 struct ring_buffer_event *event;
2383 unsigned long tail, write;
2386 * If the time delta since the last event is too big to
2387 * hold in the time field of the event, then we append a
2388 * TIME EXTEND event ahead of the data event.
2390 if (unlikely(add_timestamp))
2391 length += RB_LEN_TIME_EXTEND;
2393 tail_page = cpu_buffer->tail_page;
2394 write = local_add_return(length, &tail_page->write);
2396 /* set write to only the index of the write */
2397 write &= RB_WRITE_MASK;
2398 tail = write - length;
2401 * If this is the first commit on the page, then it has the same
2402 * timestamp as the page itself.
2404 if (!tail)
2405 delta = 0;
2407 /* See if we shot pass the end of this buffer page */
2408 if (unlikely(write > BUF_PAGE_SIZE))
2409 return rb_move_tail(cpu_buffer, length, tail,
2410 tail_page, ts);
2412 /* We reserved something on the buffer */
2414 event = __rb_page_index(tail_page, tail);
2415 kmemcheck_annotate_bitfield(event, bitfield);
2416 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2418 local_inc(&tail_page->entries);
2421 * If this is the first commit on the page, then update
2422 * its timestamp.
2424 if (!tail)
2425 tail_page->page->time_stamp = ts;
2427 /* account for these added bytes */
2428 local_add(length, &cpu_buffer->entries_bytes);
2430 return event;
2433 static inline int
2434 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2435 struct ring_buffer_event *event)
2437 unsigned long new_index, old_index;
2438 struct buffer_page *bpage;
2439 unsigned long index;
2440 unsigned long addr;
2442 new_index = rb_event_index(event);
2443 old_index = new_index + rb_event_ts_length(event);
2444 addr = (unsigned long)event;
2445 addr &= PAGE_MASK;
2447 bpage = cpu_buffer->tail_page;
2449 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2450 unsigned long write_mask =
2451 local_read(&bpage->write) & ~RB_WRITE_MASK;
2452 unsigned long event_length = rb_event_length(event);
2454 * This is on the tail page. It is possible that
2455 * a write could come in and move the tail page
2456 * and write to the next page. That is fine
2457 * because we just shorten what is on this page.
2459 old_index += write_mask;
2460 new_index += write_mask;
2461 index = local_cmpxchg(&bpage->write, old_index, new_index);
2462 if (index == old_index) {
2463 /* update counters */
2464 local_sub(event_length, &cpu_buffer->entries_bytes);
2465 return 1;
2469 /* could not discard */
2470 return 0;
2473 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2475 local_inc(&cpu_buffer->committing);
2476 local_inc(&cpu_buffer->commits);
2479 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2481 unsigned long commits;
2483 if (RB_WARN_ON(cpu_buffer,
2484 !local_read(&cpu_buffer->committing)))
2485 return;
2487 again:
2488 commits = local_read(&cpu_buffer->commits);
2489 /* synchronize with interrupts */
2490 barrier();
2491 if (local_read(&cpu_buffer->committing) == 1)
2492 rb_set_commit_to_write(cpu_buffer);
2494 local_dec(&cpu_buffer->committing);
2496 /* synchronize with interrupts */
2497 barrier();
2500 * Need to account for interrupts coming in between the
2501 * updating of the commit page and the clearing of the
2502 * committing counter.
2504 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2505 !local_read(&cpu_buffer->committing)) {
2506 local_inc(&cpu_buffer->committing);
2507 goto again;
2511 static struct ring_buffer_event *
2512 rb_reserve_next_event(struct ring_buffer *buffer,
2513 struct ring_buffer_per_cpu *cpu_buffer,
2514 unsigned long length)
2516 struct ring_buffer_event *event;
2517 u64 ts, delta;
2518 int nr_loops = 0;
2519 int add_timestamp;
2520 u64 diff;
2522 rb_start_commit(cpu_buffer);
2524 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2526 * Due to the ability to swap a cpu buffer from a buffer
2527 * it is possible it was swapped before we committed.
2528 * (committing stops a swap). We check for it here and
2529 * if it happened, we have to fail the write.
2531 barrier();
2532 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2533 local_dec(&cpu_buffer->committing);
2534 local_dec(&cpu_buffer->commits);
2535 return NULL;
2537 #endif
2539 length = rb_calculate_event_length(length);
2540 again:
2541 add_timestamp = 0;
2542 delta = 0;
2545 * We allow for interrupts to reenter here and do a trace.
2546 * If one does, it will cause this original code to loop
2547 * back here. Even with heavy interrupts happening, this
2548 * should only happen a few times in a row. If this happens
2549 * 1000 times in a row, there must be either an interrupt
2550 * storm or we have something buggy.
2551 * Bail!
2553 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2554 goto out_fail;
2556 ts = rb_time_stamp(cpu_buffer->buffer);
2557 diff = ts - cpu_buffer->write_stamp;
2559 /* make sure this diff is calculated here */
2560 barrier();
2562 /* Did the write stamp get updated already? */
2563 if (likely(ts >= cpu_buffer->write_stamp)) {
2564 delta = diff;
2565 if (unlikely(test_time_stamp(delta))) {
2566 int local_clock_stable = 1;
2567 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2568 local_clock_stable = sched_clock_stable();
2569 #endif
2570 WARN_ONCE(delta > (1ULL << 59),
2571 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2572 (unsigned long long)delta,
2573 (unsigned long long)ts,
2574 (unsigned long long)cpu_buffer->write_stamp,
2575 local_clock_stable ? "" :
2576 "If you just came from a suspend/resume,\n"
2577 "please switch to the trace global clock:\n"
2578 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2579 add_timestamp = 1;
2583 event = __rb_reserve_next(cpu_buffer, length, ts,
2584 delta, add_timestamp);
2585 if (unlikely(PTR_ERR(event) == -EAGAIN))
2586 goto again;
2588 if (!event)
2589 goto out_fail;
2591 return event;
2593 out_fail:
2594 rb_end_commit(cpu_buffer);
2595 return NULL;
2598 #ifdef CONFIG_TRACING
2601 * The lock and unlock are done within a preempt disable section.
2602 * The current_context per_cpu variable can only be modified
2603 * by the current task between lock and unlock. But it can
2604 * be modified more than once via an interrupt. To pass this
2605 * information from the lock to the unlock without having to
2606 * access the 'in_interrupt()' functions again (which do show
2607 * a bit of overhead in something as critical as function tracing,
2608 * we use a bitmask trick.
2610 * bit 0 = NMI context
2611 * bit 1 = IRQ context
2612 * bit 2 = SoftIRQ context
2613 * bit 3 = normal context.
2615 * This works because this is the order of contexts that can
2616 * preempt other contexts. A SoftIRQ never preempts an IRQ
2617 * context.
2619 * When the context is determined, the corresponding bit is
2620 * checked and set (if it was set, then a recursion of that context
2621 * happened).
2623 * On unlock, we need to clear this bit. To do so, just subtract
2624 * 1 from the current_context and AND it to itself.
2626 * (binary)
2627 * 101 - 1 = 100
2628 * 101 & 100 = 100 (clearing bit zero)
2630 * 1010 - 1 = 1001
2631 * 1010 & 1001 = 1000 (clearing bit 1)
2633 * The least significant bit can be cleared this way, and it
2634 * just so happens that it is the same bit corresponding to
2635 * the current context.
2637 static DEFINE_PER_CPU(unsigned int, current_context);
2639 static __always_inline int trace_recursive_lock(void)
2641 unsigned int val = this_cpu_read(current_context);
2642 int bit;
2644 if (in_interrupt()) {
2645 if (in_nmi())
2646 bit = 0;
2647 else if (in_irq())
2648 bit = 1;
2649 else
2650 bit = 2;
2651 } else
2652 bit = 3;
2654 if (unlikely(val & (1 << bit)))
2655 return 1;
2657 val |= (1 << bit);
2658 this_cpu_write(current_context, val);
2660 return 0;
2663 static __always_inline void trace_recursive_unlock(void)
2665 unsigned int val = this_cpu_read(current_context);
2667 val--;
2668 val &= this_cpu_read(current_context);
2669 this_cpu_write(current_context, val);
2672 #else
2674 #define trace_recursive_lock() (0)
2675 #define trace_recursive_unlock() do { } while (0)
2677 #endif
2680 * ring_buffer_lock_reserve - reserve a part of the buffer
2681 * @buffer: the ring buffer to reserve from
2682 * @length: the length of the data to reserve (excluding event header)
2684 * Returns a reseverd event on the ring buffer to copy directly to.
2685 * The user of this interface will need to get the body to write into
2686 * and can use the ring_buffer_event_data() interface.
2688 * The length is the length of the data needed, not the event length
2689 * which also includes the event header.
2691 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2692 * If NULL is returned, then nothing has been allocated or locked.
2694 struct ring_buffer_event *
2695 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2697 struct ring_buffer_per_cpu *cpu_buffer;
2698 struct ring_buffer_event *event;
2699 int cpu;
2701 if (ring_buffer_flags != RB_BUFFERS_ON)
2702 return NULL;
2704 /* If we are tracing schedule, we don't want to recurse */
2705 preempt_disable_notrace();
2707 if (atomic_read(&buffer->record_disabled))
2708 goto out_nocheck;
2710 if (trace_recursive_lock())
2711 goto out_nocheck;
2713 cpu = raw_smp_processor_id();
2715 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2716 goto out;
2718 cpu_buffer = buffer->buffers[cpu];
2720 if (atomic_read(&cpu_buffer->record_disabled))
2721 goto out;
2723 if (length > BUF_MAX_DATA_SIZE)
2724 goto out;
2726 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2727 if (!event)
2728 goto out;
2730 return event;
2732 out:
2733 trace_recursive_unlock();
2735 out_nocheck:
2736 preempt_enable_notrace();
2737 return NULL;
2739 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2741 static void
2742 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2743 struct ring_buffer_event *event)
2745 u64 delta;
2748 * The event first in the commit queue updates the
2749 * time stamp.
2751 if (rb_event_is_commit(cpu_buffer, event)) {
2753 * A commit event that is first on a page
2754 * updates the write timestamp with the page stamp
2756 if (!rb_event_index(event))
2757 cpu_buffer->write_stamp =
2758 cpu_buffer->commit_page->page->time_stamp;
2759 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2760 delta = event->array[0];
2761 delta <<= TS_SHIFT;
2762 delta += event->time_delta;
2763 cpu_buffer->write_stamp += delta;
2764 } else
2765 cpu_buffer->write_stamp += event->time_delta;
2769 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2770 struct ring_buffer_event *event)
2772 local_inc(&cpu_buffer->entries);
2773 rb_update_write_stamp(cpu_buffer, event);
2774 rb_end_commit(cpu_buffer);
2777 static __always_inline void
2778 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2780 if (buffer->irq_work.waiters_pending) {
2781 buffer->irq_work.waiters_pending = false;
2782 /* irq_work_queue() supplies it's own memory barriers */
2783 irq_work_queue(&buffer->irq_work.work);
2786 if (cpu_buffer->irq_work.waiters_pending) {
2787 cpu_buffer->irq_work.waiters_pending = false;
2788 /* irq_work_queue() supplies it's own memory barriers */
2789 irq_work_queue(&cpu_buffer->irq_work.work);
2794 * ring_buffer_unlock_commit - commit a reserved
2795 * @buffer: The buffer to commit to
2796 * @event: The event pointer to commit.
2798 * This commits the data to the ring buffer, and releases any locks held.
2800 * Must be paired with ring_buffer_lock_reserve.
2802 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2803 struct ring_buffer_event *event)
2805 struct ring_buffer_per_cpu *cpu_buffer;
2806 int cpu = raw_smp_processor_id();
2808 cpu_buffer = buffer->buffers[cpu];
2810 rb_commit(cpu_buffer, event);
2812 rb_wakeups(buffer, cpu_buffer);
2814 trace_recursive_unlock();
2816 preempt_enable_notrace();
2818 return 0;
2820 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2822 static inline void rb_event_discard(struct ring_buffer_event *event)
2824 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2825 event = skip_time_extend(event);
2827 /* array[0] holds the actual length for the discarded event */
2828 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2829 event->type_len = RINGBUF_TYPE_PADDING;
2830 /* time delta must be non zero */
2831 if (!event->time_delta)
2832 event->time_delta = 1;
2836 * Decrement the entries to the page that an event is on.
2837 * The event does not even need to exist, only the pointer
2838 * to the page it is on. This may only be called before the commit
2839 * takes place.
2841 static inline void
2842 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2843 struct ring_buffer_event *event)
2845 unsigned long addr = (unsigned long)event;
2846 struct buffer_page *bpage = cpu_buffer->commit_page;
2847 struct buffer_page *start;
2849 addr &= PAGE_MASK;
2851 /* Do the likely case first */
2852 if (likely(bpage->page == (void *)addr)) {
2853 local_dec(&bpage->entries);
2854 return;
2858 * Because the commit page may be on the reader page we
2859 * start with the next page and check the end loop there.
2861 rb_inc_page(cpu_buffer, &bpage);
2862 start = bpage;
2863 do {
2864 if (bpage->page == (void *)addr) {
2865 local_dec(&bpage->entries);
2866 return;
2868 rb_inc_page(cpu_buffer, &bpage);
2869 } while (bpage != start);
2871 /* commit not part of this buffer?? */
2872 RB_WARN_ON(cpu_buffer, 1);
2876 * ring_buffer_commit_discard - discard an event that has not been committed
2877 * @buffer: the ring buffer
2878 * @event: non committed event to discard
2880 * Sometimes an event that is in the ring buffer needs to be ignored.
2881 * This function lets the user discard an event in the ring buffer
2882 * and then that event will not be read later.
2884 * This function only works if it is called before the the item has been
2885 * committed. It will try to free the event from the ring buffer
2886 * if another event has not been added behind it.
2888 * If another event has been added behind it, it will set the event
2889 * up as discarded, and perform the commit.
2891 * If this function is called, do not call ring_buffer_unlock_commit on
2892 * the event.
2894 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2895 struct ring_buffer_event *event)
2897 struct ring_buffer_per_cpu *cpu_buffer;
2898 int cpu;
2900 /* The event is discarded regardless */
2901 rb_event_discard(event);
2903 cpu = smp_processor_id();
2904 cpu_buffer = buffer->buffers[cpu];
2907 * This must only be called if the event has not been
2908 * committed yet. Thus we can assume that preemption
2909 * is still disabled.
2911 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2913 rb_decrement_entry(cpu_buffer, event);
2914 if (rb_try_to_discard(cpu_buffer, event))
2915 goto out;
2918 * The commit is still visible by the reader, so we
2919 * must still update the timestamp.
2921 rb_update_write_stamp(cpu_buffer, event);
2922 out:
2923 rb_end_commit(cpu_buffer);
2925 trace_recursive_unlock();
2927 preempt_enable_notrace();
2930 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2933 * ring_buffer_write - write data to the buffer without reserving
2934 * @buffer: The ring buffer to write to.
2935 * @length: The length of the data being written (excluding the event header)
2936 * @data: The data to write to the buffer.
2938 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2939 * one function. If you already have the data to write to the buffer, it
2940 * may be easier to simply call this function.
2942 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2943 * and not the length of the event which would hold the header.
2945 int ring_buffer_write(struct ring_buffer *buffer,
2946 unsigned long length,
2947 void *data)
2949 struct ring_buffer_per_cpu *cpu_buffer;
2950 struct ring_buffer_event *event;
2951 void *body;
2952 int ret = -EBUSY;
2953 int cpu;
2955 if (ring_buffer_flags != RB_BUFFERS_ON)
2956 return -EBUSY;
2958 preempt_disable_notrace();
2960 if (atomic_read(&buffer->record_disabled))
2961 goto out;
2963 cpu = raw_smp_processor_id();
2965 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2966 goto out;
2968 cpu_buffer = buffer->buffers[cpu];
2970 if (atomic_read(&cpu_buffer->record_disabled))
2971 goto out;
2973 if (length > BUF_MAX_DATA_SIZE)
2974 goto out;
2976 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2977 if (!event)
2978 goto out;
2980 body = rb_event_data(event);
2982 memcpy(body, data, length);
2984 rb_commit(cpu_buffer, event);
2986 rb_wakeups(buffer, cpu_buffer);
2988 ret = 0;
2989 out:
2990 preempt_enable_notrace();
2992 return ret;
2994 EXPORT_SYMBOL_GPL(ring_buffer_write);
2996 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2998 struct buffer_page *reader = cpu_buffer->reader_page;
2999 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3000 struct buffer_page *commit = cpu_buffer->commit_page;
3002 /* In case of error, head will be NULL */
3003 if (unlikely(!head))
3004 return 1;
3006 return reader->read == rb_page_commit(reader) &&
3007 (commit == reader ||
3008 (commit == head &&
3009 head->read == rb_page_commit(commit)));
3013 * ring_buffer_record_disable - stop all writes into the buffer
3014 * @buffer: The ring buffer to stop writes to.
3016 * This prevents all writes to the buffer. Any attempt to write
3017 * to the buffer after this will fail and return NULL.
3019 * The caller should call synchronize_sched() after this.
3021 void ring_buffer_record_disable(struct ring_buffer *buffer)
3023 atomic_inc(&buffer->record_disabled);
3025 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3028 * ring_buffer_record_enable - enable writes to the buffer
3029 * @buffer: The ring buffer to enable writes
3031 * Note, multiple disables will need the same number of enables
3032 * to truly enable the writing (much like preempt_disable).
3034 void ring_buffer_record_enable(struct ring_buffer *buffer)
3036 atomic_dec(&buffer->record_disabled);
3038 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3041 * ring_buffer_record_off - stop all writes into the buffer
3042 * @buffer: The ring buffer to stop writes to.
3044 * This prevents all writes to the buffer. Any attempt to write
3045 * to the buffer after this will fail and return NULL.
3047 * This is different than ring_buffer_record_disable() as
3048 * it works like an on/off switch, where as the disable() version
3049 * must be paired with a enable().
3051 void ring_buffer_record_off(struct ring_buffer *buffer)
3053 unsigned int rd;
3054 unsigned int new_rd;
3056 do {
3057 rd = atomic_read(&buffer->record_disabled);
3058 new_rd = rd | RB_BUFFER_OFF;
3059 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3061 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3064 * ring_buffer_record_on - restart writes into the buffer
3065 * @buffer: The ring buffer to start writes to.
3067 * This enables all writes to the buffer that was disabled by
3068 * ring_buffer_record_off().
3070 * This is different than ring_buffer_record_enable() as
3071 * it works like an on/off switch, where as the enable() version
3072 * must be paired with a disable().
3074 void ring_buffer_record_on(struct ring_buffer *buffer)
3076 unsigned int rd;
3077 unsigned int new_rd;
3079 do {
3080 rd = atomic_read(&buffer->record_disabled);
3081 new_rd = rd & ~RB_BUFFER_OFF;
3082 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3084 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3087 * ring_buffer_record_is_on - return true if the ring buffer can write
3088 * @buffer: The ring buffer to see if write is enabled
3090 * Returns true if the ring buffer is in a state that it accepts writes.
3092 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3094 return !atomic_read(&buffer->record_disabled);
3098 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3099 * @buffer: The ring buffer to stop writes to.
3100 * @cpu: The CPU buffer to stop
3102 * This prevents all writes to the buffer. Any attempt to write
3103 * to the buffer after this will fail and return NULL.
3105 * The caller should call synchronize_sched() after this.
3107 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3109 struct ring_buffer_per_cpu *cpu_buffer;
3111 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3112 return;
3114 cpu_buffer = buffer->buffers[cpu];
3115 atomic_inc(&cpu_buffer->record_disabled);
3117 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3120 * ring_buffer_record_enable_cpu - enable writes to the buffer
3121 * @buffer: The ring buffer to enable writes
3122 * @cpu: The CPU to enable.
3124 * Note, multiple disables will need the same number of enables
3125 * to truly enable the writing (much like preempt_disable).
3127 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3129 struct ring_buffer_per_cpu *cpu_buffer;
3131 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3132 return;
3134 cpu_buffer = buffer->buffers[cpu];
3135 atomic_dec(&cpu_buffer->record_disabled);
3137 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3140 * The total entries in the ring buffer is the running counter
3141 * of entries entered into the ring buffer, minus the sum of
3142 * the entries read from the ring buffer and the number of
3143 * entries that were overwritten.
3145 static inline unsigned long
3146 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3148 return local_read(&cpu_buffer->entries) -
3149 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3153 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3154 * @buffer: The ring buffer
3155 * @cpu: The per CPU buffer to read from.
3157 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3159 unsigned long flags;
3160 struct ring_buffer_per_cpu *cpu_buffer;
3161 struct buffer_page *bpage;
3162 u64 ret = 0;
3164 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3165 return 0;
3167 cpu_buffer = buffer->buffers[cpu];
3168 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3170 * if the tail is on reader_page, oldest time stamp is on the reader
3171 * page
3173 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3174 bpage = cpu_buffer->reader_page;
3175 else
3176 bpage = rb_set_head_page(cpu_buffer);
3177 if (bpage)
3178 ret = bpage->page->time_stamp;
3179 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3181 return ret;
3183 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3186 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3187 * @buffer: The ring buffer
3188 * @cpu: The per CPU buffer to read from.
3190 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3192 struct ring_buffer_per_cpu *cpu_buffer;
3193 unsigned long ret;
3195 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3196 return 0;
3198 cpu_buffer = buffer->buffers[cpu];
3199 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3201 return ret;
3203 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3206 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3207 * @buffer: The ring buffer
3208 * @cpu: The per CPU buffer to get the entries from.
3210 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3212 struct ring_buffer_per_cpu *cpu_buffer;
3214 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3215 return 0;
3217 cpu_buffer = buffer->buffers[cpu];
3219 return rb_num_of_entries(cpu_buffer);
3221 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3224 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3225 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3226 * @buffer: The ring buffer
3227 * @cpu: The per CPU buffer to get the number of overruns from
3229 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3231 struct ring_buffer_per_cpu *cpu_buffer;
3232 unsigned long ret;
3234 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3235 return 0;
3237 cpu_buffer = buffer->buffers[cpu];
3238 ret = local_read(&cpu_buffer->overrun);
3240 return ret;
3242 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3245 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3246 * commits failing due to the buffer wrapping around while there are uncommitted
3247 * events, such as during an interrupt storm.
3248 * @buffer: The ring buffer
3249 * @cpu: The per CPU buffer to get the number of overruns from
3251 unsigned long
3252 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3254 struct ring_buffer_per_cpu *cpu_buffer;
3255 unsigned long ret;
3257 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3258 return 0;
3260 cpu_buffer = buffer->buffers[cpu];
3261 ret = local_read(&cpu_buffer->commit_overrun);
3263 return ret;
3265 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3268 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3269 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3270 * @buffer: The ring buffer
3271 * @cpu: The per CPU buffer to get the number of overruns from
3273 unsigned long
3274 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3276 struct ring_buffer_per_cpu *cpu_buffer;
3277 unsigned long ret;
3279 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3280 return 0;
3282 cpu_buffer = buffer->buffers[cpu];
3283 ret = local_read(&cpu_buffer->dropped_events);
3285 return ret;
3287 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3290 * ring_buffer_read_events_cpu - get the number of events successfully read
3291 * @buffer: The ring buffer
3292 * @cpu: The per CPU buffer to get the number of events read
3294 unsigned long
3295 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3297 struct ring_buffer_per_cpu *cpu_buffer;
3299 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3300 return 0;
3302 cpu_buffer = buffer->buffers[cpu];
3303 return cpu_buffer->read;
3305 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3308 * ring_buffer_entries - get the number of entries in a buffer
3309 * @buffer: The ring buffer
3311 * Returns the total number of entries in the ring buffer
3312 * (all CPU entries)
3314 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3316 struct ring_buffer_per_cpu *cpu_buffer;
3317 unsigned long entries = 0;
3318 int cpu;
3320 /* if you care about this being correct, lock the buffer */
3321 for_each_buffer_cpu(buffer, cpu) {
3322 cpu_buffer = buffer->buffers[cpu];
3323 entries += rb_num_of_entries(cpu_buffer);
3326 return entries;
3328 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3331 * ring_buffer_overruns - get the number of overruns in buffer
3332 * @buffer: The ring buffer
3334 * Returns the total number of overruns in the ring buffer
3335 * (all CPU entries)
3337 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3339 struct ring_buffer_per_cpu *cpu_buffer;
3340 unsigned long overruns = 0;
3341 int cpu;
3343 /* if you care about this being correct, lock the buffer */
3344 for_each_buffer_cpu(buffer, cpu) {
3345 cpu_buffer = buffer->buffers[cpu];
3346 overruns += local_read(&cpu_buffer->overrun);
3349 return overruns;
3351 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3353 static void rb_iter_reset(struct ring_buffer_iter *iter)
3355 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3357 /* Iterator usage is expected to have record disabled */
3358 iter->head_page = cpu_buffer->reader_page;
3359 iter->head = cpu_buffer->reader_page->read;
3361 iter->cache_reader_page = iter->head_page;
3362 iter->cache_read = cpu_buffer->read;
3364 if (iter->head)
3365 iter->read_stamp = cpu_buffer->read_stamp;
3366 else
3367 iter->read_stamp = iter->head_page->page->time_stamp;
3371 * ring_buffer_iter_reset - reset an iterator
3372 * @iter: The iterator to reset
3374 * Resets the iterator, so that it will start from the beginning
3375 * again.
3377 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3379 struct ring_buffer_per_cpu *cpu_buffer;
3380 unsigned long flags;
3382 if (!iter)
3383 return;
3385 cpu_buffer = iter->cpu_buffer;
3387 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3388 rb_iter_reset(iter);
3389 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3391 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3394 * ring_buffer_iter_empty - check if an iterator has no more to read
3395 * @iter: The iterator to check
3397 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3399 struct ring_buffer_per_cpu *cpu_buffer;
3401 cpu_buffer = iter->cpu_buffer;
3403 return iter->head_page == cpu_buffer->commit_page &&
3404 iter->head == rb_commit_index(cpu_buffer);
3406 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3408 static void
3409 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3410 struct ring_buffer_event *event)
3412 u64 delta;
3414 switch (event->type_len) {
3415 case RINGBUF_TYPE_PADDING:
3416 return;
3418 case RINGBUF_TYPE_TIME_EXTEND:
3419 delta = event->array[0];
3420 delta <<= TS_SHIFT;
3421 delta += event->time_delta;
3422 cpu_buffer->read_stamp += delta;
3423 return;
3425 case RINGBUF_TYPE_TIME_STAMP:
3426 /* FIXME: not implemented */
3427 return;
3429 case RINGBUF_TYPE_DATA:
3430 cpu_buffer->read_stamp += event->time_delta;
3431 return;
3433 default:
3434 BUG();
3436 return;
3439 static void
3440 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3441 struct ring_buffer_event *event)
3443 u64 delta;
3445 switch (event->type_len) {
3446 case RINGBUF_TYPE_PADDING:
3447 return;
3449 case RINGBUF_TYPE_TIME_EXTEND:
3450 delta = event->array[0];
3451 delta <<= TS_SHIFT;
3452 delta += event->time_delta;
3453 iter->read_stamp += delta;
3454 return;
3456 case RINGBUF_TYPE_TIME_STAMP:
3457 /* FIXME: not implemented */
3458 return;
3460 case RINGBUF_TYPE_DATA:
3461 iter->read_stamp += event->time_delta;
3462 return;
3464 default:
3465 BUG();
3467 return;
3470 static struct buffer_page *
3471 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3473 struct buffer_page *reader = NULL;
3474 unsigned long overwrite;
3475 unsigned long flags;
3476 int nr_loops = 0;
3477 int ret;
3479 local_irq_save(flags);
3480 arch_spin_lock(&cpu_buffer->lock);
3482 again:
3484 * This should normally only loop twice. But because the
3485 * start of the reader inserts an empty page, it causes
3486 * a case where we will loop three times. There should be no
3487 * reason to loop four times (that I know of).
3489 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3490 reader = NULL;
3491 goto out;
3494 reader = cpu_buffer->reader_page;
3496 /* If there's more to read, return this page */
3497 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3498 goto out;
3500 /* Never should we have an index greater than the size */
3501 if (RB_WARN_ON(cpu_buffer,
3502 cpu_buffer->reader_page->read > rb_page_size(reader)))
3503 goto out;
3505 /* check if we caught up to the tail */
3506 reader = NULL;
3507 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3508 goto out;
3510 /* Don't bother swapping if the ring buffer is empty */
3511 if (rb_num_of_entries(cpu_buffer) == 0)
3512 goto out;
3515 * Reset the reader page to size zero.
3517 local_set(&cpu_buffer->reader_page->write, 0);
3518 local_set(&cpu_buffer->reader_page->entries, 0);
3519 local_set(&cpu_buffer->reader_page->page->commit, 0);
3520 cpu_buffer->reader_page->real_end = 0;
3522 spin:
3524 * Splice the empty reader page into the list around the head.
3526 reader = rb_set_head_page(cpu_buffer);
3527 if (!reader)
3528 goto out;
3529 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3530 cpu_buffer->reader_page->list.prev = reader->list.prev;
3533 * cpu_buffer->pages just needs to point to the buffer, it
3534 * has no specific buffer page to point to. Lets move it out
3535 * of our way so we don't accidentally swap it.
3537 cpu_buffer->pages = reader->list.prev;
3539 /* The reader page will be pointing to the new head */
3540 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3543 * We want to make sure we read the overruns after we set up our
3544 * pointers to the next object. The writer side does a
3545 * cmpxchg to cross pages which acts as the mb on the writer
3546 * side. Note, the reader will constantly fail the swap
3547 * while the writer is updating the pointers, so this
3548 * guarantees that the overwrite recorded here is the one we
3549 * want to compare with the last_overrun.
3551 smp_mb();
3552 overwrite = local_read(&(cpu_buffer->overrun));
3555 * Here's the tricky part.
3557 * We need to move the pointer past the header page.
3558 * But we can only do that if a writer is not currently
3559 * moving it. The page before the header page has the
3560 * flag bit '1' set if it is pointing to the page we want.
3561 * but if the writer is in the process of moving it
3562 * than it will be '2' or already moved '0'.
3565 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3568 * If we did not convert it, then we must try again.
3570 if (!ret)
3571 goto spin;
3574 * Yeah! We succeeded in replacing the page.
3576 * Now make the new head point back to the reader page.
3578 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3579 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3581 /* Finally update the reader page to the new head */
3582 cpu_buffer->reader_page = reader;
3583 rb_reset_reader_page(cpu_buffer);
3585 if (overwrite != cpu_buffer->last_overrun) {
3586 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3587 cpu_buffer->last_overrun = overwrite;
3590 goto again;
3592 out:
3593 arch_spin_unlock(&cpu_buffer->lock);
3594 local_irq_restore(flags);
3596 return reader;
3599 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3601 struct ring_buffer_event *event;
3602 struct buffer_page *reader;
3603 unsigned length;
3605 reader = rb_get_reader_page(cpu_buffer);
3607 /* This function should not be called when buffer is empty */
3608 if (RB_WARN_ON(cpu_buffer, !reader))
3609 return;
3611 event = rb_reader_event(cpu_buffer);
3613 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3614 cpu_buffer->read++;
3616 rb_update_read_stamp(cpu_buffer, event);
3618 length = rb_event_length(event);
3619 cpu_buffer->reader_page->read += length;
3622 static void rb_advance_iter(struct ring_buffer_iter *iter)
3624 struct ring_buffer_per_cpu *cpu_buffer;
3625 struct ring_buffer_event *event;
3626 unsigned length;
3628 cpu_buffer = iter->cpu_buffer;
3631 * Check if we are at the end of the buffer.
3633 if (iter->head >= rb_page_size(iter->head_page)) {
3634 /* discarded commits can make the page empty */
3635 if (iter->head_page == cpu_buffer->commit_page)
3636 return;
3637 rb_inc_iter(iter);
3638 return;
3641 event = rb_iter_head_event(iter);
3643 length = rb_event_length(event);
3646 * This should not be called to advance the header if we are
3647 * at the tail of the buffer.
3649 if (RB_WARN_ON(cpu_buffer,
3650 (iter->head_page == cpu_buffer->commit_page) &&
3651 (iter->head + length > rb_commit_index(cpu_buffer))))
3652 return;
3654 rb_update_iter_read_stamp(iter, event);
3656 iter->head += length;
3658 /* check for end of page padding */
3659 if ((iter->head >= rb_page_size(iter->head_page)) &&
3660 (iter->head_page != cpu_buffer->commit_page))
3661 rb_inc_iter(iter);
3664 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3666 return cpu_buffer->lost_events;
3669 static struct ring_buffer_event *
3670 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3671 unsigned long *lost_events)
3673 struct ring_buffer_event *event;
3674 struct buffer_page *reader;
3675 int nr_loops = 0;
3677 again:
3679 * We repeat when a time extend is encountered.
3680 * Since the time extend is always attached to a data event,
3681 * we should never loop more than once.
3682 * (We never hit the following condition more than twice).
3684 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3685 return NULL;
3687 reader = rb_get_reader_page(cpu_buffer);
3688 if (!reader)
3689 return NULL;
3691 event = rb_reader_event(cpu_buffer);
3693 switch (event->type_len) {
3694 case RINGBUF_TYPE_PADDING:
3695 if (rb_null_event(event))
3696 RB_WARN_ON(cpu_buffer, 1);
3698 * Because the writer could be discarding every
3699 * event it creates (which would probably be bad)
3700 * if we were to go back to "again" then we may never
3701 * catch up, and will trigger the warn on, or lock
3702 * the box. Return the padding, and we will release
3703 * the current locks, and try again.
3705 return event;
3707 case RINGBUF_TYPE_TIME_EXTEND:
3708 /* Internal data, OK to advance */
3709 rb_advance_reader(cpu_buffer);
3710 goto again;
3712 case RINGBUF_TYPE_TIME_STAMP:
3713 /* FIXME: not implemented */
3714 rb_advance_reader(cpu_buffer);
3715 goto again;
3717 case RINGBUF_TYPE_DATA:
3718 if (ts) {
3719 *ts = cpu_buffer->read_stamp + event->time_delta;
3720 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3721 cpu_buffer->cpu, ts);
3723 if (lost_events)
3724 *lost_events = rb_lost_events(cpu_buffer);
3725 return event;
3727 default:
3728 BUG();
3731 return NULL;
3733 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3735 static struct ring_buffer_event *
3736 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3738 struct ring_buffer *buffer;
3739 struct ring_buffer_per_cpu *cpu_buffer;
3740 struct ring_buffer_event *event;
3741 int nr_loops = 0;
3743 cpu_buffer = iter->cpu_buffer;
3744 buffer = cpu_buffer->buffer;
3747 * Check if someone performed a consuming read to
3748 * the buffer. A consuming read invalidates the iterator
3749 * and we need to reset the iterator in this case.
3751 if (unlikely(iter->cache_read != cpu_buffer->read ||
3752 iter->cache_reader_page != cpu_buffer->reader_page))
3753 rb_iter_reset(iter);
3755 again:
3756 if (ring_buffer_iter_empty(iter))
3757 return NULL;
3760 * We repeat when a time extend is encountered or we hit
3761 * the end of the page. Since the time extend is always attached
3762 * to a data event, we should never loop more than three times.
3763 * Once for going to next page, once on time extend, and
3764 * finally once to get the event.
3765 * (We never hit the following condition more than thrice).
3767 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3768 return NULL;
3770 if (rb_per_cpu_empty(cpu_buffer))
3771 return NULL;
3773 if (iter->head >= rb_page_size(iter->head_page)) {
3774 rb_inc_iter(iter);
3775 goto again;
3778 event = rb_iter_head_event(iter);
3780 switch (event->type_len) {
3781 case RINGBUF_TYPE_PADDING:
3782 if (rb_null_event(event)) {
3783 rb_inc_iter(iter);
3784 goto again;
3786 rb_advance_iter(iter);
3787 return event;
3789 case RINGBUF_TYPE_TIME_EXTEND:
3790 /* Internal data, OK to advance */
3791 rb_advance_iter(iter);
3792 goto again;
3794 case RINGBUF_TYPE_TIME_STAMP:
3795 /* FIXME: not implemented */
3796 rb_advance_iter(iter);
3797 goto again;
3799 case RINGBUF_TYPE_DATA:
3800 if (ts) {
3801 *ts = iter->read_stamp + event->time_delta;
3802 ring_buffer_normalize_time_stamp(buffer,
3803 cpu_buffer->cpu, ts);
3805 return event;
3807 default:
3808 BUG();
3811 return NULL;
3813 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3815 static inline int rb_ok_to_lock(void)
3818 * If an NMI die dumps out the content of the ring buffer
3819 * do not grab locks. We also permanently disable the ring
3820 * buffer too. A one time deal is all you get from reading
3821 * the ring buffer from an NMI.
3823 if (likely(!in_nmi()))
3824 return 1;
3826 tracing_off_permanent();
3827 return 0;
3831 * ring_buffer_peek - peek at the next event to be read
3832 * @buffer: The ring buffer to read
3833 * @cpu: The cpu to peak at
3834 * @ts: The timestamp counter of this event.
3835 * @lost_events: a variable to store if events were lost (may be NULL)
3837 * This will return the event that will be read next, but does
3838 * not consume the data.
3840 struct ring_buffer_event *
3841 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3842 unsigned long *lost_events)
3844 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3845 struct ring_buffer_event *event;
3846 unsigned long flags;
3847 int dolock;
3849 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3850 return NULL;
3852 dolock = rb_ok_to_lock();
3853 again:
3854 local_irq_save(flags);
3855 if (dolock)
3856 raw_spin_lock(&cpu_buffer->reader_lock);
3857 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3858 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3859 rb_advance_reader(cpu_buffer);
3860 if (dolock)
3861 raw_spin_unlock(&cpu_buffer->reader_lock);
3862 local_irq_restore(flags);
3864 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3865 goto again;
3867 return event;
3871 * ring_buffer_iter_peek - peek at the next event to be read
3872 * @iter: The ring buffer iterator
3873 * @ts: The timestamp counter of this event.
3875 * This will return the event that will be read next, but does
3876 * not increment the iterator.
3878 struct ring_buffer_event *
3879 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3881 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3882 struct ring_buffer_event *event;
3883 unsigned long flags;
3885 again:
3886 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3887 event = rb_iter_peek(iter, ts);
3888 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3890 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3891 goto again;
3893 return event;
3897 * ring_buffer_consume - return an event and consume it
3898 * @buffer: The ring buffer to get the next event from
3899 * @cpu: the cpu to read the buffer from
3900 * @ts: a variable to store the timestamp (may be NULL)
3901 * @lost_events: a variable to store if events were lost (may be NULL)
3903 * Returns the next event in the ring buffer, and that event is consumed.
3904 * Meaning, that sequential reads will keep returning a different event,
3905 * and eventually empty the ring buffer if the producer is slower.
3907 struct ring_buffer_event *
3908 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3909 unsigned long *lost_events)
3911 struct ring_buffer_per_cpu *cpu_buffer;
3912 struct ring_buffer_event *event = NULL;
3913 unsigned long flags;
3914 int dolock;
3916 dolock = rb_ok_to_lock();
3918 again:
3919 /* might be called in atomic */
3920 preempt_disable();
3922 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3923 goto out;
3925 cpu_buffer = buffer->buffers[cpu];
3926 local_irq_save(flags);
3927 if (dolock)
3928 raw_spin_lock(&cpu_buffer->reader_lock);
3930 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3931 if (event) {
3932 cpu_buffer->lost_events = 0;
3933 rb_advance_reader(cpu_buffer);
3936 if (dolock)
3937 raw_spin_unlock(&cpu_buffer->reader_lock);
3938 local_irq_restore(flags);
3940 out:
3941 preempt_enable();
3943 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3944 goto again;
3946 return event;
3948 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3951 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3952 * @buffer: The ring buffer to read from
3953 * @cpu: The cpu buffer to iterate over
3955 * This performs the initial preparations necessary to iterate
3956 * through the buffer. Memory is allocated, buffer recording
3957 * is disabled, and the iterator pointer is returned to the caller.
3959 * Disabling buffer recordng prevents the reading from being
3960 * corrupted. This is not a consuming read, so a producer is not
3961 * expected.
3963 * After a sequence of ring_buffer_read_prepare calls, the user is
3964 * expected to make at least one call to ring_buffer_read_prepare_sync.
3965 * Afterwards, ring_buffer_read_start is invoked to get things going
3966 * for real.
3968 * This overall must be paired with ring_buffer_read_finish.
3970 struct ring_buffer_iter *
3971 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3973 struct ring_buffer_per_cpu *cpu_buffer;
3974 struct ring_buffer_iter *iter;
3976 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3977 return NULL;
3979 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3980 if (!iter)
3981 return NULL;
3983 cpu_buffer = buffer->buffers[cpu];
3985 iter->cpu_buffer = cpu_buffer;
3987 atomic_inc(&buffer->resize_disabled);
3988 atomic_inc(&cpu_buffer->record_disabled);
3990 return iter;
3992 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3995 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3997 * All previously invoked ring_buffer_read_prepare calls to prepare
3998 * iterators will be synchronized. Afterwards, read_buffer_read_start
3999 * calls on those iterators are allowed.
4001 void
4002 ring_buffer_read_prepare_sync(void)
4004 synchronize_sched();
4006 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4009 * ring_buffer_read_start - start a non consuming read of the buffer
4010 * @iter: The iterator returned by ring_buffer_read_prepare
4012 * This finalizes the startup of an iteration through the buffer.
4013 * The iterator comes from a call to ring_buffer_read_prepare and
4014 * an intervening ring_buffer_read_prepare_sync must have been
4015 * performed.
4017 * Must be paired with ring_buffer_read_finish.
4019 void
4020 ring_buffer_read_start(struct ring_buffer_iter *iter)
4022 struct ring_buffer_per_cpu *cpu_buffer;
4023 unsigned long flags;
4025 if (!iter)
4026 return;
4028 cpu_buffer = iter->cpu_buffer;
4030 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4031 arch_spin_lock(&cpu_buffer->lock);
4032 rb_iter_reset(iter);
4033 arch_spin_unlock(&cpu_buffer->lock);
4034 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4036 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4039 * ring_buffer_read_finish - finish reading the iterator of the buffer
4040 * @iter: The iterator retrieved by ring_buffer_start
4042 * This re-enables the recording to the buffer, and frees the
4043 * iterator.
4045 void
4046 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4048 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4049 unsigned long flags;
4052 * Ring buffer is disabled from recording, here's a good place
4053 * to check the integrity of the ring buffer.
4054 * Must prevent readers from trying to read, as the check
4055 * clears the HEAD page and readers require it.
4057 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4058 rb_check_pages(cpu_buffer);
4059 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4061 atomic_dec(&cpu_buffer->record_disabled);
4062 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4063 kfree(iter);
4065 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4068 * ring_buffer_read - read the next item in the ring buffer by the iterator
4069 * @iter: The ring buffer iterator
4070 * @ts: The time stamp of the event read.
4072 * This reads the next event in the ring buffer and increments the iterator.
4074 struct ring_buffer_event *
4075 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4077 struct ring_buffer_event *event;
4078 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4079 unsigned long flags;
4081 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4082 again:
4083 event = rb_iter_peek(iter, ts);
4084 if (!event)
4085 goto out;
4087 if (event->type_len == RINGBUF_TYPE_PADDING)
4088 goto again;
4090 rb_advance_iter(iter);
4091 out:
4092 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4094 return event;
4096 EXPORT_SYMBOL_GPL(ring_buffer_read);
4099 * ring_buffer_size - return the size of the ring buffer (in bytes)
4100 * @buffer: The ring buffer.
4102 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4105 * Earlier, this method returned
4106 * BUF_PAGE_SIZE * buffer->nr_pages
4107 * Since the nr_pages field is now removed, we have converted this to
4108 * return the per cpu buffer value.
4110 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4111 return 0;
4113 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4115 EXPORT_SYMBOL_GPL(ring_buffer_size);
4117 static void
4118 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4120 rb_head_page_deactivate(cpu_buffer);
4122 cpu_buffer->head_page
4123 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4124 local_set(&cpu_buffer->head_page->write, 0);
4125 local_set(&cpu_buffer->head_page->entries, 0);
4126 local_set(&cpu_buffer->head_page->page->commit, 0);
4128 cpu_buffer->head_page->read = 0;
4130 cpu_buffer->tail_page = cpu_buffer->head_page;
4131 cpu_buffer->commit_page = cpu_buffer->head_page;
4133 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4134 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4135 local_set(&cpu_buffer->reader_page->write, 0);
4136 local_set(&cpu_buffer->reader_page->entries, 0);
4137 local_set(&cpu_buffer->reader_page->page->commit, 0);
4138 cpu_buffer->reader_page->read = 0;
4140 local_set(&cpu_buffer->entries_bytes, 0);
4141 local_set(&cpu_buffer->overrun, 0);
4142 local_set(&cpu_buffer->commit_overrun, 0);
4143 local_set(&cpu_buffer->dropped_events, 0);
4144 local_set(&cpu_buffer->entries, 0);
4145 local_set(&cpu_buffer->committing, 0);
4146 local_set(&cpu_buffer->commits, 0);
4147 cpu_buffer->read = 0;
4148 cpu_buffer->read_bytes = 0;
4150 cpu_buffer->write_stamp = 0;
4151 cpu_buffer->read_stamp = 0;
4153 cpu_buffer->lost_events = 0;
4154 cpu_buffer->last_overrun = 0;
4156 rb_head_page_activate(cpu_buffer);
4160 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4161 * @buffer: The ring buffer to reset a per cpu buffer of
4162 * @cpu: The CPU buffer to be reset
4164 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4166 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4167 unsigned long flags;
4169 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4170 return;
4172 atomic_inc(&buffer->resize_disabled);
4173 atomic_inc(&cpu_buffer->record_disabled);
4175 /* Make sure all commits have finished */
4176 synchronize_sched();
4178 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4180 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4181 goto out;
4183 arch_spin_lock(&cpu_buffer->lock);
4185 rb_reset_cpu(cpu_buffer);
4187 arch_spin_unlock(&cpu_buffer->lock);
4189 out:
4190 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4192 atomic_dec(&cpu_buffer->record_disabled);
4193 atomic_dec(&buffer->resize_disabled);
4195 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4198 * ring_buffer_reset - reset a ring buffer
4199 * @buffer: The ring buffer to reset all cpu buffers
4201 void ring_buffer_reset(struct ring_buffer *buffer)
4203 int cpu;
4205 for_each_buffer_cpu(buffer, cpu)
4206 ring_buffer_reset_cpu(buffer, cpu);
4208 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4211 * rind_buffer_empty - is the ring buffer empty?
4212 * @buffer: The ring buffer to test
4214 int ring_buffer_empty(struct ring_buffer *buffer)
4216 struct ring_buffer_per_cpu *cpu_buffer;
4217 unsigned long flags;
4218 int dolock;
4219 int cpu;
4220 int ret;
4222 dolock = rb_ok_to_lock();
4224 /* yes this is racy, but if you don't like the race, lock the buffer */
4225 for_each_buffer_cpu(buffer, cpu) {
4226 cpu_buffer = buffer->buffers[cpu];
4227 local_irq_save(flags);
4228 if (dolock)
4229 raw_spin_lock(&cpu_buffer->reader_lock);
4230 ret = rb_per_cpu_empty(cpu_buffer);
4231 if (dolock)
4232 raw_spin_unlock(&cpu_buffer->reader_lock);
4233 local_irq_restore(flags);
4235 if (!ret)
4236 return 0;
4239 return 1;
4241 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4244 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4245 * @buffer: The ring buffer
4246 * @cpu: The CPU buffer to test
4248 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4250 struct ring_buffer_per_cpu *cpu_buffer;
4251 unsigned long flags;
4252 int dolock;
4253 int ret;
4255 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4256 return 1;
4258 dolock = rb_ok_to_lock();
4260 cpu_buffer = buffer->buffers[cpu];
4261 local_irq_save(flags);
4262 if (dolock)
4263 raw_spin_lock(&cpu_buffer->reader_lock);
4264 ret = rb_per_cpu_empty(cpu_buffer);
4265 if (dolock)
4266 raw_spin_unlock(&cpu_buffer->reader_lock);
4267 local_irq_restore(flags);
4269 return ret;
4271 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4273 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4275 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4276 * @buffer_a: One buffer to swap with
4277 * @buffer_b: The other buffer to swap with
4279 * This function is useful for tracers that want to take a "snapshot"
4280 * of a CPU buffer and has another back up buffer lying around.
4281 * it is expected that the tracer handles the cpu buffer not being
4282 * used at the moment.
4284 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4285 struct ring_buffer *buffer_b, int cpu)
4287 struct ring_buffer_per_cpu *cpu_buffer_a;
4288 struct ring_buffer_per_cpu *cpu_buffer_b;
4289 int ret = -EINVAL;
4291 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4292 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4293 goto out;
4295 cpu_buffer_a = buffer_a->buffers[cpu];
4296 cpu_buffer_b = buffer_b->buffers[cpu];
4298 /* At least make sure the two buffers are somewhat the same */
4299 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4300 goto out;
4302 ret = -EAGAIN;
4304 if (ring_buffer_flags != RB_BUFFERS_ON)
4305 goto out;
4307 if (atomic_read(&buffer_a->record_disabled))
4308 goto out;
4310 if (atomic_read(&buffer_b->record_disabled))
4311 goto out;
4313 if (atomic_read(&cpu_buffer_a->record_disabled))
4314 goto out;
4316 if (atomic_read(&cpu_buffer_b->record_disabled))
4317 goto out;
4320 * We can't do a synchronize_sched here because this
4321 * function can be called in atomic context.
4322 * Normally this will be called from the same CPU as cpu.
4323 * If not it's up to the caller to protect this.
4325 atomic_inc(&cpu_buffer_a->record_disabled);
4326 atomic_inc(&cpu_buffer_b->record_disabled);
4328 ret = -EBUSY;
4329 if (local_read(&cpu_buffer_a->committing))
4330 goto out_dec;
4331 if (local_read(&cpu_buffer_b->committing))
4332 goto out_dec;
4334 buffer_a->buffers[cpu] = cpu_buffer_b;
4335 buffer_b->buffers[cpu] = cpu_buffer_a;
4337 cpu_buffer_b->buffer = buffer_a;
4338 cpu_buffer_a->buffer = buffer_b;
4340 ret = 0;
4342 out_dec:
4343 atomic_dec(&cpu_buffer_a->record_disabled);
4344 atomic_dec(&cpu_buffer_b->record_disabled);
4345 out:
4346 return ret;
4348 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4349 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4352 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4353 * @buffer: the buffer to allocate for.
4354 * @cpu: the cpu buffer to allocate.
4356 * This function is used in conjunction with ring_buffer_read_page.
4357 * When reading a full page from the ring buffer, these functions
4358 * can be used to speed up the process. The calling function should
4359 * allocate a few pages first with this function. Then when it
4360 * needs to get pages from the ring buffer, it passes the result
4361 * of this function into ring_buffer_read_page, which will swap
4362 * the page that was allocated, with the read page of the buffer.
4364 * Returns:
4365 * The page allocated, or NULL on error.
4367 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4369 struct buffer_data_page *bpage;
4370 struct page *page;
4372 page = alloc_pages_node(cpu_to_node(cpu),
4373 GFP_KERNEL | __GFP_NORETRY, 0);
4374 if (!page)
4375 return NULL;
4377 bpage = page_address(page);
4379 rb_init_page(bpage);
4381 return bpage;
4383 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4386 * ring_buffer_free_read_page - free an allocated read page
4387 * @buffer: the buffer the page was allocate for
4388 * @data: the page to free
4390 * Free a page allocated from ring_buffer_alloc_read_page.
4392 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4394 free_page((unsigned long)data);
4396 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4399 * ring_buffer_read_page - extract a page from the ring buffer
4400 * @buffer: buffer to extract from
4401 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4402 * @len: amount to extract
4403 * @cpu: the cpu of the buffer to extract
4404 * @full: should the extraction only happen when the page is full.
4406 * This function will pull out a page from the ring buffer and consume it.
4407 * @data_page must be the address of the variable that was returned
4408 * from ring_buffer_alloc_read_page. This is because the page might be used
4409 * to swap with a page in the ring buffer.
4411 * for example:
4412 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4413 * if (!rpage)
4414 * return error;
4415 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4416 * if (ret >= 0)
4417 * process_page(rpage, ret);
4419 * When @full is set, the function will not return true unless
4420 * the writer is off the reader page.
4422 * Note: it is up to the calling functions to handle sleeps and wakeups.
4423 * The ring buffer can be used anywhere in the kernel and can not
4424 * blindly call wake_up. The layer that uses the ring buffer must be
4425 * responsible for that.
4427 * Returns:
4428 * >=0 if data has been transferred, returns the offset of consumed data.
4429 * <0 if no data has been transferred.
4431 int ring_buffer_read_page(struct ring_buffer *buffer,
4432 void **data_page, size_t len, int cpu, int full)
4434 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4435 struct ring_buffer_event *event;
4436 struct buffer_data_page *bpage;
4437 struct buffer_page *reader;
4438 unsigned long missed_events;
4439 unsigned long flags;
4440 unsigned int commit;
4441 unsigned int read;
4442 u64 save_timestamp;
4443 int ret = -1;
4445 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4446 goto out;
4449 * If len is not big enough to hold the page header, then
4450 * we can not copy anything.
4452 if (len <= BUF_PAGE_HDR_SIZE)
4453 goto out;
4455 len -= BUF_PAGE_HDR_SIZE;
4457 if (!data_page)
4458 goto out;
4460 bpage = *data_page;
4461 if (!bpage)
4462 goto out;
4464 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4466 reader = rb_get_reader_page(cpu_buffer);
4467 if (!reader)
4468 goto out_unlock;
4470 event = rb_reader_event(cpu_buffer);
4472 read = reader->read;
4473 commit = rb_page_commit(reader);
4475 /* Check if any events were dropped */
4476 missed_events = cpu_buffer->lost_events;
4479 * If this page has been partially read or
4480 * if len is not big enough to read the rest of the page or
4481 * a writer is still on the page, then
4482 * we must copy the data from the page to the buffer.
4483 * Otherwise, we can simply swap the page with the one passed in.
4485 if (read || (len < (commit - read)) ||
4486 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4487 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4488 unsigned int rpos = read;
4489 unsigned int pos = 0;
4490 unsigned int size;
4492 if (full)
4493 goto out_unlock;
4495 if (len > (commit - read))
4496 len = (commit - read);
4498 /* Always keep the time extend and data together */
4499 size = rb_event_ts_length(event);
4501 if (len < size)
4502 goto out_unlock;
4504 /* save the current timestamp, since the user will need it */
4505 save_timestamp = cpu_buffer->read_stamp;
4507 /* Need to copy one event at a time */
4508 do {
4509 /* We need the size of one event, because
4510 * rb_advance_reader only advances by one event,
4511 * whereas rb_event_ts_length may include the size of
4512 * one or two events.
4513 * We have already ensured there's enough space if this
4514 * is a time extend. */
4515 size = rb_event_length(event);
4516 memcpy(bpage->data + pos, rpage->data + rpos, size);
4518 len -= size;
4520 rb_advance_reader(cpu_buffer);
4521 rpos = reader->read;
4522 pos += size;
4524 if (rpos >= commit)
4525 break;
4527 event = rb_reader_event(cpu_buffer);
4528 /* Always keep the time extend and data together */
4529 size = rb_event_ts_length(event);
4530 } while (len >= size);
4532 /* update bpage */
4533 local_set(&bpage->commit, pos);
4534 bpage->time_stamp = save_timestamp;
4536 /* we copied everything to the beginning */
4537 read = 0;
4538 } else {
4539 /* update the entry counter */
4540 cpu_buffer->read += rb_page_entries(reader);
4541 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4543 /* swap the pages */
4544 rb_init_page(bpage);
4545 bpage = reader->page;
4546 reader->page = *data_page;
4547 local_set(&reader->write, 0);
4548 local_set(&reader->entries, 0);
4549 reader->read = 0;
4550 *data_page = bpage;
4553 * Use the real_end for the data size,
4554 * This gives us a chance to store the lost events
4555 * on the page.
4557 if (reader->real_end)
4558 local_set(&bpage->commit, reader->real_end);
4560 ret = read;
4562 cpu_buffer->lost_events = 0;
4564 commit = local_read(&bpage->commit);
4566 * Set a flag in the commit field if we lost events
4568 if (missed_events) {
4569 /* If there is room at the end of the page to save the
4570 * missed events, then record it there.
4572 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4573 memcpy(&bpage->data[commit], &missed_events,
4574 sizeof(missed_events));
4575 local_add(RB_MISSED_STORED, &bpage->commit);
4576 commit += sizeof(missed_events);
4578 local_add(RB_MISSED_EVENTS, &bpage->commit);
4582 * This page may be off to user land. Zero it out here.
4584 if (commit < BUF_PAGE_SIZE)
4585 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4587 out_unlock:
4588 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4590 out:
4591 return ret;
4593 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4595 #ifdef CONFIG_HOTPLUG_CPU
4596 static int rb_cpu_notify(struct notifier_block *self,
4597 unsigned long action, void *hcpu)
4599 struct ring_buffer *buffer =
4600 container_of(self, struct ring_buffer, cpu_notify);
4601 long cpu = (long)hcpu;
4602 int cpu_i, nr_pages_same;
4603 unsigned int nr_pages;
4605 switch (action) {
4606 case CPU_UP_PREPARE:
4607 case CPU_UP_PREPARE_FROZEN:
4608 if (cpumask_test_cpu(cpu, buffer->cpumask))
4609 return NOTIFY_OK;
4611 nr_pages = 0;
4612 nr_pages_same = 1;
4613 /* check if all cpu sizes are same */
4614 for_each_buffer_cpu(buffer, cpu_i) {
4615 /* fill in the size from first enabled cpu */
4616 if (nr_pages == 0)
4617 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4618 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4619 nr_pages_same = 0;
4620 break;
4623 /* allocate minimum pages, user can later expand it */
4624 if (!nr_pages_same)
4625 nr_pages = 2;
4626 buffer->buffers[cpu] =
4627 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4628 if (!buffer->buffers[cpu]) {
4629 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4630 cpu);
4631 return NOTIFY_OK;
4633 smp_wmb();
4634 cpumask_set_cpu(cpu, buffer->cpumask);
4635 break;
4636 case CPU_DOWN_PREPARE:
4637 case CPU_DOWN_PREPARE_FROZEN:
4639 * Do nothing.
4640 * If we were to free the buffer, then the user would
4641 * lose any trace that was in the buffer.
4643 break;
4644 default:
4645 break;
4647 return NOTIFY_OK;
4649 #endif
4651 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4653 * This is a basic integrity check of the ring buffer.
4654 * Late in the boot cycle this test will run when configured in.
4655 * It will kick off a thread per CPU that will go into a loop
4656 * writing to the per cpu ring buffer various sizes of data.
4657 * Some of the data will be large items, some small.
4659 * Another thread is created that goes into a spin, sending out
4660 * IPIs to the other CPUs to also write into the ring buffer.
4661 * this is to test the nesting ability of the buffer.
4663 * Basic stats are recorded and reported. If something in the
4664 * ring buffer should happen that's not expected, a big warning
4665 * is displayed and all ring buffers are disabled.
4667 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4669 struct rb_test_data {
4670 struct ring_buffer *buffer;
4671 unsigned long events;
4672 unsigned long bytes_written;
4673 unsigned long bytes_alloc;
4674 unsigned long bytes_dropped;
4675 unsigned long events_nested;
4676 unsigned long bytes_written_nested;
4677 unsigned long bytes_alloc_nested;
4678 unsigned long bytes_dropped_nested;
4679 int min_size_nested;
4680 int max_size_nested;
4681 int max_size;
4682 int min_size;
4683 int cpu;
4684 int cnt;
4687 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4689 /* 1 meg per cpu */
4690 #define RB_TEST_BUFFER_SIZE 1048576
4692 static char rb_string[] __initdata =
4693 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4694 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4695 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4697 static bool rb_test_started __initdata;
4699 struct rb_item {
4700 int size;
4701 char str[];
4704 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4706 struct ring_buffer_event *event;
4707 struct rb_item *item;
4708 bool started;
4709 int event_len;
4710 int size;
4711 int len;
4712 int cnt;
4714 /* Have nested writes different that what is written */
4715 cnt = data->cnt + (nested ? 27 : 0);
4717 /* Multiply cnt by ~e, to make some unique increment */
4718 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4720 len = size + sizeof(struct rb_item);
4722 started = rb_test_started;
4723 /* read rb_test_started before checking buffer enabled */
4724 smp_rmb();
4726 event = ring_buffer_lock_reserve(data->buffer, len);
4727 if (!event) {
4728 /* Ignore dropped events before test starts. */
4729 if (started) {
4730 if (nested)
4731 data->bytes_dropped += len;
4732 else
4733 data->bytes_dropped_nested += len;
4735 return len;
4738 event_len = ring_buffer_event_length(event);
4740 if (RB_WARN_ON(data->buffer, event_len < len))
4741 goto out;
4743 item = ring_buffer_event_data(event);
4744 item->size = size;
4745 memcpy(item->str, rb_string, size);
4747 if (nested) {
4748 data->bytes_alloc_nested += event_len;
4749 data->bytes_written_nested += len;
4750 data->events_nested++;
4751 if (!data->min_size_nested || len < data->min_size_nested)
4752 data->min_size_nested = len;
4753 if (len > data->max_size_nested)
4754 data->max_size_nested = len;
4755 } else {
4756 data->bytes_alloc += event_len;
4757 data->bytes_written += len;
4758 data->events++;
4759 if (!data->min_size || len < data->min_size)
4760 data->max_size = len;
4761 if (len > data->max_size)
4762 data->max_size = len;
4765 out:
4766 ring_buffer_unlock_commit(data->buffer, event);
4768 return 0;
4771 static __init int rb_test(void *arg)
4773 struct rb_test_data *data = arg;
4775 while (!kthread_should_stop()) {
4776 rb_write_something(data, false);
4777 data->cnt++;
4779 set_current_state(TASK_INTERRUPTIBLE);
4780 /* Now sleep between a min of 100-300us and a max of 1ms */
4781 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4784 return 0;
4787 static __init void rb_ipi(void *ignore)
4789 struct rb_test_data *data;
4790 int cpu = smp_processor_id();
4792 data = &rb_data[cpu];
4793 rb_write_something(data, true);
4796 static __init int rb_hammer_test(void *arg)
4798 while (!kthread_should_stop()) {
4800 /* Send an IPI to all cpus to write data! */
4801 smp_call_function(rb_ipi, NULL, 1);
4802 /* No sleep, but for non preempt, let others run */
4803 schedule();
4806 return 0;
4809 static __init int test_ringbuffer(void)
4811 struct task_struct *rb_hammer;
4812 struct ring_buffer *buffer;
4813 int cpu;
4814 int ret = 0;
4816 pr_info("Running ring buffer tests...\n");
4818 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4819 if (WARN_ON(!buffer))
4820 return 0;
4822 /* Disable buffer so that threads can't write to it yet */
4823 ring_buffer_record_off(buffer);
4825 for_each_online_cpu(cpu) {
4826 rb_data[cpu].buffer = buffer;
4827 rb_data[cpu].cpu = cpu;
4828 rb_data[cpu].cnt = cpu;
4829 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4830 "rbtester/%d", cpu);
4831 if (WARN_ON(!rb_threads[cpu])) {
4832 pr_cont("FAILED\n");
4833 ret = -1;
4834 goto out_free;
4837 kthread_bind(rb_threads[cpu], cpu);
4838 wake_up_process(rb_threads[cpu]);
4841 /* Now create the rb hammer! */
4842 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4843 if (WARN_ON(!rb_hammer)) {
4844 pr_cont("FAILED\n");
4845 ret = -1;
4846 goto out_free;
4849 ring_buffer_record_on(buffer);
4851 * Show buffer is enabled before setting rb_test_started.
4852 * Yes there's a small race window where events could be
4853 * dropped and the thread wont catch it. But when a ring
4854 * buffer gets enabled, there will always be some kind of
4855 * delay before other CPUs see it. Thus, we don't care about
4856 * those dropped events. We care about events dropped after
4857 * the threads see that the buffer is active.
4859 smp_wmb();
4860 rb_test_started = true;
4862 set_current_state(TASK_INTERRUPTIBLE);
4863 /* Just run for 10 seconds */;
4864 schedule_timeout(10 * HZ);
4866 kthread_stop(rb_hammer);
4868 out_free:
4869 for_each_online_cpu(cpu) {
4870 if (!rb_threads[cpu])
4871 break;
4872 kthread_stop(rb_threads[cpu]);
4874 if (ret) {
4875 ring_buffer_free(buffer);
4876 return ret;
4879 /* Report! */
4880 pr_info("finished\n");
4881 for_each_online_cpu(cpu) {
4882 struct ring_buffer_event *event;
4883 struct rb_test_data *data = &rb_data[cpu];
4884 struct rb_item *item;
4885 unsigned long total_events;
4886 unsigned long total_dropped;
4887 unsigned long total_written;
4888 unsigned long total_alloc;
4889 unsigned long total_read = 0;
4890 unsigned long total_size = 0;
4891 unsigned long total_len = 0;
4892 unsigned long total_lost = 0;
4893 unsigned long lost;
4894 int big_event_size;
4895 int small_event_size;
4897 ret = -1;
4899 total_events = data->events + data->events_nested;
4900 total_written = data->bytes_written + data->bytes_written_nested;
4901 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4902 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4904 big_event_size = data->max_size + data->max_size_nested;
4905 small_event_size = data->min_size + data->min_size_nested;
4907 pr_info("CPU %d:\n", cpu);
4908 pr_info(" events: %ld\n", total_events);
4909 pr_info(" dropped bytes: %ld\n", total_dropped);
4910 pr_info(" alloced bytes: %ld\n", total_alloc);
4911 pr_info(" written bytes: %ld\n", total_written);
4912 pr_info(" biggest event: %d\n", big_event_size);
4913 pr_info(" smallest event: %d\n", small_event_size);
4915 if (RB_WARN_ON(buffer, total_dropped))
4916 break;
4918 ret = 0;
4920 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4921 total_lost += lost;
4922 item = ring_buffer_event_data(event);
4923 total_len += ring_buffer_event_length(event);
4924 total_size += item->size + sizeof(struct rb_item);
4925 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4926 pr_info("FAILED!\n");
4927 pr_info("buffer had: %.*s\n", item->size, item->str);
4928 pr_info("expected: %.*s\n", item->size, rb_string);
4929 RB_WARN_ON(buffer, 1);
4930 ret = -1;
4931 break;
4933 total_read++;
4935 if (ret)
4936 break;
4938 ret = -1;
4940 pr_info(" read events: %ld\n", total_read);
4941 pr_info(" lost events: %ld\n", total_lost);
4942 pr_info(" total events: %ld\n", total_lost + total_read);
4943 pr_info(" recorded len bytes: %ld\n", total_len);
4944 pr_info(" recorded size bytes: %ld\n", total_size);
4945 if (total_lost)
4946 pr_info(" With dropped events, record len and size may not match\n"
4947 " alloced and written from above\n");
4948 if (!total_lost) {
4949 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4950 total_size != total_written))
4951 break;
4953 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4954 break;
4956 ret = 0;
4958 if (!ret)
4959 pr_info("Ring buffer PASSED!\n");
4961 ring_buffer_free(buffer);
4962 return 0;
4965 late_initcall(test_ringbuffer);
4966 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */