2 * libata-core.c - helper library for ATA
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/driver-api/libata.rst
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/time.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/scatterlist.h>
60 #include <linux/async.h>
61 #include <linux/log2.h>
62 #include <linux/slab.h>
63 #include <linux/glob.h>
64 #include <scsi/scsi.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_host.h>
67 #include <linux/libata.h>
68 #include <asm/byteorder.h>
69 #include <asm/unaligned.h>
70 #include <linux/cdrom.h>
71 #include <linux/ratelimit.h>
72 #include <linux/leds.h>
73 #include <linux/pm_runtime.h>
74 #include <linux/platform_device.h>
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/libata.h>
80 #include "libata-transport.h"
82 /* debounce timing parameters in msecs { interval, duration, timeout } */
83 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
84 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
85 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
87 const struct ata_port_operations ata_base_port_ops
= {
88 .prereset
= ata_std_prereset
,
89 .postreset
= ata_std_postreset
,
90 .error_handler
= ata_std_error_handler
,
91 .sched_eh
= ata_std_sched_eh
,
92 .end_eh
= ata_std_end_eh
,
95 const struct ata_port_operations sata_port_ops
= {
96 .inherits
= &ata_base_port_ops
,
98 .qc_defer
= ata_std_qc_defer
,
99 .hardreset
= sata_std_hardreset
,
102 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
103 u16 heads
, u16 sectors
);
104 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
105 static void ata_dev_xfermask(struct ata_device
*dev
);
106 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
);
108 atomic_t ata_print_id
= ATOMIC_INIT(0);
110 struct ata_force_param
{
114 unsigned long xfer_mask
;
115 unsigned int horkage_on
;
116 unsigned int horkage_off
;
120 struct ata_force_ent
{
123 struct ata_force_param param
;
126 static struct ata_force_ent
*ata_force_tbl
;
127 static int ata_force_tbl_size
;
129 static char ata_force_param_buf
[PAGE_SIZE
] __initdata
;
130 /* param_buf is thrown away after initialization, disallow read */
131 module_param_string(force
, ata_force_param_buf
, sizeof(ata_force_param_buf
), 0);
132 MODULE_PARM_DESC(force
, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
134 static int atapi_enabled
= 1;
135 module_param(atapi_enabled
, int, 0444);
136 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
138 static int atapi_dmadir
= 0;
139 module_param(atapi_dmadir
, int, 0444);
140 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
142 int atapi_passthru16
= 1;
143 module_param(atapi_passthru16
, int, 0444);
144 MODULE_PARM_DESC(atapi_passthru16
, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
147 module_param_named(fua
, libata_fua
, int, 0444);
148 MODULE_PARM_DESC(fua
, "FUA support (0=off [default], 1=on)");
150 static int ata_ignore_hpa
;
151 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
152 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
154 static int libata_dma_mask
= ATA_DMA_MASK_ATA
|ATA_DMA_MASK_ATAPI
|ATA_DMA_MASK_CFA
;
155 module_param_named(dma
, libata_dma_mask
, int, 0444);
156 MODULE_PARM_DESC(dma
, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
158 static int ata_probe_timeout
;
159 module_param(ata_probe_timeout
, int, 0444);
160 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
162 int libata_noacpi
= 0;
163 module_param_named(noacpi
, libata_noacpi
, int, 0444);
164 MODULE_PARM_DESC(noacpi
, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
166 int libata_allow_tpm
= 0;
167 module_param_named(allow_tpm
, libata_allow_tpm
, int, 0444);
168 MODULE_PARM_DESC(allow_tpm
, "Permit the use of TPM commands (0=off [default], 1=on)");
171 module_param(atapi_an
, int, 0444);
172 MODULE_PARM_DESC(atapi_an
, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
174 MODULE_AUTHOR("Jeff Garzik");
175 MODULE_DESCRIPTION("Library module for ATA devices");
176 MODULE_LICENSE("GPL");
177 MODULE_VERSION(DRV_VERSION
);
180 static bool ata_sstatus_online(u32 sstatus
)
182 return (sstatus
& 0xf) == 0x3;
186 * ata_link_next - link iteration helper
187 * @link: the previous link, NULL to start
188 * @ap: ATA port containing links to iterate
189 * @mode: iteration mode, one of ATA_LITER_*
192 * Host lock or EH context.
195 * Pointer to the next link.
197 struct ata_link
*ata_link_next(struct ata_link
*link
, struct ata_port
*ap
,
198 enum ata_link_iter_mode mode
)
200 BUG_ON(mode
!= ATA_LITER_EDGE
&&
201 mode
!= ATA_LITER_PMP_FIRST
&& mode
!= ATA_LITER_HOST_FIRST
);
203 /* NULL link indicates start of iteration */
207 case ATA_LITER_PMP_FIRST
:
208 if (sata_pmp_attached(ap
))
211 case ATA_LITER_HOST_FIRST
:
215 /* we just iterated over the host link, what's next? */
216 if (link
== &ap
->link
)
218 case ATA_LITER_HOST_FIRST
:
219 if (sata_pmp_attached(ap
))
222 case ATA_LITER_PMP_FIRST
:
223 if (unlikely(ap
->slave_link
))
224 return ap
->slave_link
;
230 /* slave_link excludes PMP */
231 if (unlikely(link
== ap
->slave_link
))
234 /* we were over a PMP link */
235 if (++link
< ap
->pmp_link
+ ap
->nr_pmp_links
)
238 if (mode
== ATA_LITER_PMP_FIRST
)
245 * ata_dev_next - device iteration helper
246 * @dev: the previous device, NULL to start
247 * @link: ATA link containing devices to iterate
248 * @mode: iteration mode, one of ATA_DITER_*
251 * Host lock or EH context.
254 * Pointer to the next device.
256 struct ata_device
*ata_dev_next(struct ata_device
*dev
, struct ata_link
*link
,
257 enum ata_dev_iter_mode mode
)
259 BUG_ON(mode
!= ATA_DITER_ENABLED
&& mode
!= ATA_DITER_ENABLED_REVERSE
&&
260 mode
!= ATA_DITER_ALL
&& mode
!= ATA_DITER_ALL_REVERSE
);
262 /* NULL dev indicates start of iteration */
265 case ATA_DITER_ENABLED
:
269 case ATA_DITER_ENABLED_REVERSE
:
270 case ATA_DITER_ALL_REVERSE
:
271 dev
= link
->device
+ ata_link_max_devices(link
) - 1;
276 /* move to the next one */
278 case ATA_DITER_ENABLED
:
280 if (++dev
< link
->device
+ ata_link_max_devices(link
))
283 case ATA_DITER_ENABLED_REVERSE
:
284 case ATA_DITER_ALL_REVERSE
:
285 if (--dev
>= link
->device
)
291 if ((mode
== ATA_DITER_ENABLED
|| mode
== ATA_DITER_ENABLED_REVERSE
) &&
292 !ata_dev_enabled(dev
))
298 * ata_dev_phys_link - find physical link for a device
299 * @dev: ATA device to look up physical link for
301 * Look up physical link which @dev is attached to. Note that
302 * this is different from @dev->link only when @dev is on slave
303 * link. For all other cases, it's the same as @dev->link.
309 * Pointer to the found physical link.
311 struct ata_link
*ata_dev_phys_link(struct ata_device
*dev
)
313 struct ata_port
*ap
= dev
->link
->ap
;
319 return ap
->slave_link
;
323 * ata_force_cbl - force cable type according to libata.force
324 * @ap: ATA port of interest
326 * Force cable type according to libata.force and whine about it.
327 * The last entry which has matching port number is used, so it
328 * can be specified as part of device force parameters. For
329 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
335 void ata_force_cbl(struct ata_port
*ap
)
339 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
340 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
342 if (fe
->port
!= -1 && fe
->port
!= ap
->print_id
)
345 if (fe
->param
.cbl
== ATA_CBL_NONE
)
348 ap
->cbl
= fe
->param
.cbl
;
349 ata_port_notice(ap
, "FORCE: cable set to %s\n", fe
->param
.name
);
355 * ata_force_link_limits - force link limits according to libata.force
356 * @link: ATA link of interest
358 * Force link flags and SATA spd limit according to libata.force
359 * and whine about it. When only the port part is specified
360 * (e.g. 1:), the limit applies to all links connected to both
361 * the host link and all fan-out ports connected via PMP. If the
362 * device part is specified as 0 (e.g. 1.00:), it specifies the
363 * first fan-out link not the host link. Device number 15 always
364 * points to the host link whether PMP is attached or not. If the
365 * controller has slave link, device number 16 points to it.
370 static void ata_force_link_limits(struct ata_link
*link
)
372 bool did_spd
= false;
373 int linkno
= link
->pmp
;
376 if (ata_is_host_link(link
))
379 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
380 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
382 if (fe
->port
!= -1 && fe
->port
!= link
->ap
->print_id
)
385 if (fe
->device
!= -1 && fe
->device
!= linkno
)
388 /* only honor the first spd limit */
389 if (!did_spd
&& fe
->param
.spd_limit
) {
390 link
->hw_sata_spd_limit
= (1 << fe
->param
.spd_limit
) - 1;
391 ata_link_notice(link
, "FORCE: PHY spd limit set to %s\n",
396 /* let lflags stack */
397 if (fe
->param
.lflags
) {
398 link
->flags
|= fe
->param
.lflags
;
399 ata_link_notice(link
,
400 "FORCE: link flag 0x%x forced -> 0x%x\n",
401 fe
->param
.lflags
, link
->flags
);
407 * ata_force_xfermask - force xfermask according to libata.force
408 * @dev: ATA device of interest
410 * Force xfer_mask according to libata.force and whine about it.
411 * For consistency with link selection, device number 15 selects
412 * the first device connected to the host link.
417 static void ata_force_xfermask(struct ata_device
*dev
)
419 int devno
= dev
->link
->pmp
+ dev
->devno
;
420 int alt_devno
= devno
;
423 /* allow n.15/16 for devices attached to host port */
424 if (ata_is_host_link(dev
->link
))
427 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
428 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
429 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
431 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
434 if (fe
->device
!= -1 && fe
->device
!= devno
&&
435 fe
->device
!= alt_devno
)
438 if (!fe
->param
.xfer_mask
)
441 ata_unpack_xfermask(fe
->param
.xfer_mask
,
442 &pio_mask
, &mwdma_mask
, &udma_mask
);
444 dev
->udma_mask
= udma_mask
;
445 else if (mwdma_mask
) {
447 dev
->mwdma_mask
= mwdma_mask
;
451 dev
->pio_mask
= pio_mask
;
454 ata_dev_notice(dev
, "FORCE: xfer_mask set to %s\n",
461 * ata_force_horkage - force horkage according to libata.force
462 * @dev: ATA device of interest
464 * Force horkage according to libata.force and whine about it.
465 * For consistency with link selection, device number 15 selects
466 * the first device connected to the host link.
471 static void ata_force_horkage(struct ata_device
*dev
)
473 int devno
= dev
->link
->pmp
+ dev
->devno
;
474 int alt_devno
= devno
;
477 /* allow n.15/16 for devices attached to host port */
478 if (ata_is_host_link(dev
->link
))
481 for (i
= 0; i
< ata_force_tbl_size
; i
++) {
482 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
484 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
487 if (fe
->device
!= -1 && fe
->device
!= devno
&&
488 fe
->device
!= alt_devno
)
491 if (!(~dev
->horkage
& fe
->param
.horkage_on
) &&
492 !(dev
->horkage
& fe
->param
.horkage_off
))
495 dev
->horkage
|= fe
->param
.horkage_on
;
496 dev
->horkage
&= ~fe
->param
.horkage_off
;
498 ata_dev_notice(dev
, "FORCE: horkage modified (%s)\n",
504 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505 * @opcode: SCSI opcode
507 * Determine ATAPI command type from @opcode.
513 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
515 int atapi_cmd_type(u8 opcode
)
524 case GPCMD_WRITE_AND_VERIFY_10
:
528 case GPCMD_READ_CD_MSF
:
529 return ATAPI_READ_CD
;
533 if (atapi_passthru16
)
534 return ATAPI_PASS_THRU
;
542 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543 * @tf: Taskfile to convert
544 * @pmp: Port multiplier port
545 * @is_cmd: This FIS is for command
546 * @fis: Buffer into which data will output
548 * Converts a standard ATA taskfile to a Serial ATA
549 * FIS structure (Register - Host to Device).
552 * Inherited from caller.
554 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8 pmp
, int is_cmd
, u8
*fis
)
556 fis
[0] = 0x27; /* Register - Host to Device FIS */
557 fis
[1] = pmp
& 0xf; /* Port multiplier number*/
559 fis
[1] |= (1 << 7); /* bit 7 indicates Command FIS */
561 fis
[2] = tf
->command
;
562 fis
[3] = tf
->feature
;
569 fis
[8] = tf
->hob_lbal
;
570 fis
[9] = tf
->hob_lbam
;
571 fis
[10] = tf
->hob_lbah
;
572 fis
[11] = tf
->hob_feature
;
575 fis
[13] = tf
->hob_nsect
;
579 fis
[16] = tf
->auxiliary
& 0xff;
580 fis
[17] = (tf
->auxiliary
>> 8) & 0xff;
581 fis
[18] = (tf
->auxiliary
>> 16) & 0xff;
582 fis
[19] = (tf
->auxiliary
>> 24) & 0xff;
586 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587 * @fis: Buffer from which data will be input
588 * @tf: Taskfile to output
590 * Converts a serial ATA FIS structure to a standard ATA taskfile.
593 * Inherited from caller.
596 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
598 tf
->command
= fis
[2]; /* status */
599 tf
->feature
= fis
[3]; /* error */
606 tf
->hob_lbal
= fis
[8];
607 tf
->hob_lbam
= fis
[9];
608 tf
->hob_lbah
= fis
[10];
611 tf
->hob_nsect
= fis
[13];
614 static const u8 ata_rw_cmds
[] = {
618 ATA_CMD_READ_MULTI_EXT
,
619 ATA_CMD_WRITE_MULTI_EXT
,
623 ATA_CMD_WRITE_MULTI_FUA_EXT
,
627 ATA_CMD_PIO_READ_EXT
,
628 ATA_CMD_PIO_WRITE_EXT
,
641 ATA_CMD_WRITE_FUA_EXT
645 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
646 * @tf: command to examine and configure
647 * @dev: device tf belongs to
649 * Examine the device configuration and tf->flags to calculate
650 * the proper read/write commands and protocol to use.
655 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
659 int index
, fua
, lba48
, write
;
661 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
662 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
663 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
665 if (dev
->flags
& ATA_DFLAG_PIO
) {
666 tf
->protocol
= ATA_PROT_PIO
;
667 index
= dev
->multi_count
? 0 : 8;
668 } else if (lba48
&& (dev
->link
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
669 /* Unable to use DMA due to host limitation */
670 tf
->protocol
= ATA_PROT_PIO
;
671 index
= dev
->multi_count
? 0 : 8;
673 tf
->protocol
= ATA_PROT_DMA
;
677 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
686 * ata_tf_read_block - Read block address from ATA taskfile
687 * @tf: ATA taskfile of interest
688 * @dev: ATA device @tf belongs to
693 * Read block address from @tf. This function can handle all
694 * three address formats - LBA, LBA48 and CHS. tf->protocol and
695 * flags select the address format to use.
698 * Block address read from @tf.
700 u64
ata_tf_read_block(const struct ata_taskfile
*tf
, struct ata_device
*dev
)
704 if (tf
->flags
& ATA_TFLAG_LBA
) {
705 if (tf
->flags
& ATA_TFLAG_LBA48
) {
706 block
|= (u64
)tf
->hob_lbah
<< 40;
707 block
|= (u64
)tf
->hob_lbam
<< 32;
708 block
|= (u64
)tf
->hob_lbal
<< 24;
710 block
|= (tf
->device
& 0xf) << 24;
712 block
|= tf
->lbah
<< 16;
713 block
|= tf
->lbam
<< 8;
718 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
719 head
= tf
->device
& 0xf;
724 "device reported invalid CHS sector 0\n");
728 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
- 1;
735 * ata_build_rw_tf - Build ATA taskfile for given read/write request
736 * @tf: Target ATA taskfile
737 * @dev: ATA device @tf belongs to
738 * @block: Block address
739 * @n_block: Number of blocks
740 * @tf_flags: RW/FUA etc...
742 * @class: IO priority class
747 * Build ATA taskfile @tf for read/write request described by
748 * @block, @n_block, @tf_flags and @tag on @dev.
752 * 0 on success, -ERANGE if the request is too large for @dev,
753 * -EINVAL if the request is invalid.
755 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
756 u64 block
, u32 n_block
, unsigned int tf_flags
,
757 unsigned int tag
, int class)
759 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
760 tf
->flags
|= tf_flags
;
762 if (ata_ncq_enabled(dev
) && !ata_tag_internal(tag
)) {
764 if (!lba_48_ok(block
, n_block
))
767 tf
->protocol
= ATA_PROT_NCQ
;
768 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
770 if (tf
->flags
& ATA_TFLAG_WRITE
)
771 tf
->command
= ATA_CMD_FPDMA_WRITE
;
773 tf
->command
= ATA_CMD_FPDMA_READ
;
775 tf
->nsect
= tag
<< 3;
776 tf
->hob_feature
= (n_block
>> 8) & 0xff;
777 tf
->feature
= n_block
& 0xff;
779 tf
->hob_lbah
= (block
>> 40) & 0xff;
780 tf
->hob_lbam
= (block
>> 32) & 0xff;
781 tf
->hob_lbal
= (block
>> 24) & 0xff;
782 tf
->lbah
= (block
>> 16) & 0xff;
783 tf
->lbam
= (block
>> 8) & 0xff;
784 tf
->lbal
= block
& 0xff;
786 tf
->device
= ATA_LBA
;
787 if (tf
->flags
& ATA_TFLAG_FUA
)
788 tf
->device
|= 1 << 7;
790 if (dev
->flags
& ATA_DFLAG_NCQ_PRIO
) {
791 if (class == IOPRIO_CLASS_RT
)
792 tf
->hob_nsect
|= ATA_PRIO_HIGH
<<
795 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
796 tf
->flags
|= ATA_TFLAG_LBA
;
798 if (lba_28_ok(block
, n_block
)) {
800 tf
->device
|= (block
>> 24) & 0xf;
801 } else if (lba_48_ok(block
, n_block
)) {
802 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
806 tf
->flags
|= ATA_TFLAG_LBA48
;
808 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
810 tf
->hob_lbah
= (block
>> 40) & 0xff;
811 tf
->hob_lbam
= (block
>> 32) & 0xff;
812 tf
->hob_lbal
= (block
>> 24) & 0xff;
814 /* request too large even for LBA48 */
817 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
820 tf
->nsect
= n_block
& 0xff;
822 tf
->lbah
= (block
>> 16) & 0xff;
823 tf
->lbam
= (block
>> 8) & 0xff;
824 tf
->lbal
= block
& 0xff;
826 tf
->device
|= ATA_LBA
;
829 u32 sect
, head
, cyl
, track
;
831 /* The request -may- be too large for CHS addressing. */
832 if (!lba_28_ok(block
, n_block
))
835 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
838 /* Convert LBA to CHS */
839 track
= (u32
)block
/ dev
->sectors
;
840 cyl
= track
/ dev
->heads
;
841 head
= track
% dev
->heads
;
842 sect
= (u32
)block
% dev
->sectors
+ 1;
844 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
845 (u32
)block
, track
, cyl
, head
, sect
);
847 /* Check whether the converted CHS can fit.
851 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
854 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
865 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
866 * @pio_mask: pio_mask
867 * @mwdma_mask: mwdma_mask
868 * @udma_mask: udma_mask
870 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
871 * unsigned int xfer_mask.
879 unsigned long ata_pack_xfermask(unsigned long pio_mask
,
880 unsigned long mwdma_mask
,
881 unsigned long udma_mask
)
883 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
884 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
885 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
889 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
890 * @xfer_mask: xfer_mask to unpack
891 * @pio_mask: resulting pio_mask
892 * @mwdma_mask: resulting mwdma_mask
893 * @udma_mask: resulting udma_mask
895 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
896 * Any NULL destination masks will be ignored.
898 void ata_unpack_xfermask(unsigned long xfer_mask
, unsigned long *pio_mask
,
899 unsigned long *mwdma_mask
, unsigned long *udma_mask
)
902 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
904 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
906 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
909 static const struct ata_xfer_ent
{
913 { ATA_SHIFT_PIO
, ATA_NR_PIO_MODES
, XFER_PIO_0
},
914 { ATA_SHIFT_MWDMA
, ATA_NR_MWDMA_MODES
, XFER_MW_DMA_0
},
915 { ATA_SHIFT_UDMA
, ATA_NR_UDMA_MODES
, XFER_UDMA_0
},
920 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
921 * @xfer_mask: xfer_mask of interest
923 * Return matching XFER_* value for @xfer_mask. Only the highest
924 * bit of @xfer_mask is considered.
930 * Matching XFER_* value, 0xff if no match found.
932 u8
ata_xfer_mask2mode(unsigned long xfer_mask
)
934 int highbit
= fls(xfer_mask
) - 1;
935 const struct ata_xfer_ent
*ent
;
937 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
938 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
939 return ent
->base
+ highbit
- ent
->shift
;
944 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
945 * @xfer_mode: XFER_* of interest
947 * Return matching xfer_mask for @xfer_mode.
953 * Matching xfer_mask, 0 if no match found.
955 unsigned long ata_xfer_mode2mask(u8 xfer_mode
)
957 const struct ata_xfer_ent
*ent
;
959 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
960 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
961 return ((2 << (ent
->shift
+ xfer_mode
- ent
->base
)) - 1)
962 & ~((1 << ent
->shift
) - 1);
967 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
968 * @xfer_mode: XFER_* of interest
970 * Return matching xfer_shift for @xfer_mode.
976 * Matching xfer_shift, -1 if no match found.
978 int ata_xfer_mode2shift(unsigned long xfer_mode
)
980 const struct ata_xfer_ent
*ent
;
982 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
983 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
989 * ata_mode_string - convert xfer_mask to string
990 * @xfer_mask: mask of bits supported; only highest bit counts.
992 * Determine string which represents the highest speed
993 * (highest bit in @modemask).
999 * Constant C string representing highest speed listed in
1000 * @mode_mask, or the constant C string "<n/a>".
1002 const char *ata_mode_string(unsigned long xfer_mask
)
1004 static const char * const xfer_mode_str
[] = {
1028 highbit
= fls(xfer_mask
) - 1;
1029 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
1030 return xfer_mode_str
[highbit
];
1034 const char *sata_spd_string(unsigned int spd
)
1036 static const char * const spd_str
[] = {
1042 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
1044 return spd_str
[spd
- 1];
1048 * ata_dev_classify - determine device type based on ATA-spec signature
1049 * @tf: ATA taskfile register set for device to be identified
1051 * Determine from taskfile register contents whether a device is
1052 * ATA or ATAPI, as per "Signature and persistence" section
1053 * of ATA/PI spec (volume 1, sect 5.14).
1059 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1060 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1062 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
1064 /* Apple's open source Darwin code hints that some devices only
1065 * put a proper signature into the LBA mid/high registers,
1066 * So, we only check those. It's sufficient for uniqueness.
1068 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1069 * signatures for ATA and ATAPI devices attached on SerialATA,
1070 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1071 * spec has never mentioned about using different signatures
1072 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1073 * Multiplier specification began to use 0x69/0x96 to identify
1074 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1075 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1076 * 0x69/0x96 shortly and described them as reserved for
1079 * We follow the current spec and consider that 0x69/0x96
1080 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1081 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1082 * SEMB signature. This is worked around in
1083 * ata_dev_read_id().
1085 if ((tf
->lbam
== 0) && (tf
->lbah
== 0)) {
1086 DPRINTK("found ATA device by sig\n");
1090 if ((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) {
1091 DPRINTK("found ATAPI device by sig\n");
1092 return ATA_DEV_ATAPI
;
1095 if ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96)) {
1096 DPRINTK("found PMP device by sig\n");
1100 if ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3)) {
1101 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1102 return ATA_DEV_SEMB
;
1105 if ((tf
->lbam
== 0xcd) && (tf
->lbah
== 0xab)) {
1106 DPRINTK("found ZAC device by sig\n");
1110 DPRINTK("unknown device\n");
1111 return ATA_DEV_UNKNOWN
;
1115 * ata_id_string - Convert IDENTIFY DEVICE page into string
1116 * @id: IDENTIFY DEVICE results we will examine
1117 * @s: string into which data is output
1118 * @ofs: offset into identify device page
1119 * @len: length of string to return. must be an even number.
1121 * The strings in the IDENTIFY DEVICE page are broken up into
1122 * 16-bit chunks. Run through the string, and output each
1123 * 8-bit chunk linearly, regardless of platform.
1129 void ata_id_string(const u16
*id
, unsigned char *s
,
1130 unsigned int ofs
, unsigned int len
)
1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1152 * @id: IDENTIFY DEVICE results we will examine
1153 * @s: string into which data is output
1154 * @ofs: offset into identify device page
1155 * @len: length of string to return. must be an odd number.
1157 * This function is identical to ata_id_string except that it
1158 * trims trailing spaces and terminates the resulting string with
1159 * null. @len must be actual maximum length (even number) + 1.
1164 void ata_id_c_string(const u16
*id
, unsigned char *s
,
1165 unsigned int ofs
, unsigned int len
)
1169 ata_id_string(id
, s
, ofs
, len
- 1);
1171 p
= s
+ strnlen(s
, len
- 1);
1172 while (p
> s
&& p
[-1] == ' ')
1177 static u64
ata_id_n_sectors(const u16
*id
)
1179 if (ata_id_has_lba(id
)) {
1180 if (ata_id_has_lba48(id
))
1181 return ata_id_u64(id
, ATA_ID_LBA_CAPACITY_2
);
1183 return ata_id_u32(id
, ATA_ID_LBA_CAPACITY
);
1185 if (ata_id_current_chs_valid(id
))
1186 return id
[ATA_ID_CUR_CYLS
] * id
[ATA_ID_CUR_HEADS
] *
1187 id
[ATA_ID_CUR_SECTORS
];
1189 return id
[ATA_ID_CYLS
] * id
[ATA_ID_HEADS
] *
1194 u64
ata_tf_to_lba48(const struct ata_taskfile
*tf
)
1198 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
1199 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
1200 sectors
|= ((u64
)(tf
->hob_lbal
& 0xff)) << 24;
1201 sectors
|= (tf
->lbah
& 0xff) << 16;
1202 sectors
|= (tf
->lbam
& 0xff) << 8;
1203 sectors
|= (tf
->lbal
& 0xff);
1208 u64
ata_tf_to_lba(const struct ata_taskfile
*tf
)
1212 sectors
|= (tf
->device
& 0x0f) << 24;
1213 sectors
|= (tf
->lbah
& 0xff) << 16;
1214 sectors
|= (tf
->lbam
& 0xff) << 8;
1215 sectors
|= (tf
->lbal
& 0xff);
1221 * ata_read_native_max_address - Read native max address
1222 * @dev: target device
1223 * @max_sectors: out parameter for the result native max address
1225 * Perform an LBA48 or LBA28 native size query upon the device in
1229 * 0 on success, -EACCES if command is aborted by the drive.
1230 * -EIO on other errors.
1232 static int ata_read_native_max_address(struct ata_device
*dev
, u64
*max_sectors
)
1234 unsigned int err_mask
;
1235 struct ata_taskfile tf
;
1236 int lba48
= ata_id_has_lba48(dev
->id
);
1238 ata_tf_init(dev
, &tf
);
1240 /* always clear all address registers */
1241 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1244 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
1245 tf
.flags
|= ATA_TFLAG_LBA48
;
1247 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
1249 tf
.protocol
= ATA_PROT_NODATA
;
1250 tf
.device
|= ATA_LBA
;
1252 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1255 "failed to read native max address (err_mask=0x%x)\n",
1257 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
1263 *max_sectors
= ata_tf_to_lba48(&tf
) + 1;
1265 *max_sectors
= ata_tf_to_lba(&tf
) + 1;
1266 if (dev
->horkage
& ATA_HORKAGE_HPA_SIZE
)
1272 * ata_set_max_sectors - Set max sectors
1273 * @dev: target device
1274 * @new_sectors: new max sectors value to set for the device
1276 * Set max sectors of @dev to @new_sectors.
1279 * 0 on success, -EACCES if command is aborted or denied (due to
1280 * previous non-volatile SET_MAX) by the drive. -EIO on other
1283 static int ata_set_max_sectors(struct ata_device
*dev
, u64 new_sectors
)
1285 unsigned int err_mask
;
1286 struct ata_taskfile tf
;
1287 int lba48
= ata_id_has_lba48(dev
->id
);
1291 ata_tf_init(dev
, &tf
);
1293 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1296 tf
.command
= ATA_CMD_SET_MAX_EXT
;
1297 tf
.flags
|= ATA_TFLAG_LBA48
;
1299 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
1300 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
1301 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
1303 tf
.command
= ATA_CMD_SET_MAX
;
1305 tf
.device
|= (new_sectors
>> 24) & 0xf;
1308 tf
.protocol
= ATA_PROT_NODATA
;
1309 tf
.device
|= ATA_LBA
;
1311 tf
.lbal
= (new_sectors
>> 0) & 0xff;
1312 tf
.lbam
= (new_sectors
>> 8) & 0xff;
1313 tf
.lbah
= (new_sectors
>> 16) & 0xff;
1315 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1318 "failed to set max address (err_mask=0x%x)\n",
1320 if (err_mask
== AC_ERR_DEV
&&
1321 (tf
.feature
& (ATA_ABORTED
| ATA_IDNF
)))
1330 * ata_hpa_resize - Resize a device with an HPA set
1331 * @dev: Device to resize
1333 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1334 * it if required to the full size of the media. The caller must check
1335 * the drive has the HPA feature set enabled.
1338 * 0 on success, -errno on failure.
1340 static int ata_hpa_resize(struct ata_device
*dev
)
1342 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
1343 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
1344 bool unlock_hpa
= ata_ignore_hpa
|| dev
->flags
& ATA_DFLAG_UNLOCK_HPA
;
1345 u64 sectors
= ata_id_n_sectors(dev
->id
);
1349 /* do we need to do it? */
1350 if ((dev
->class != ATA_DEV_ATA
&& dev
->class != ATA_DEV_ZAC
) ||
1351 !ata_id_has_lba(dev
->id
) || !ata_id_hpa_enabled(dev
->id
) ||
1352 (dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
))
1355 /* read native max address */
1356 rc
= ata_read_native_max_address(dev
, &native_sectors
);
1358 /* If device aborted the command or HPA isn't going to
1359 * be unlocked, skip HPA resizing.
1361 if (rc
== -EACCES
|| !unlock_hpa
) {
1363 "HPA support seems broken, skipping HPA handling\n");
1364 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1366 /* we can continue if device aborted the command */
1373 dev
->n_native_sectors
= native_sectors
;
1375 /* nothing to do? */
1376 if (native_sectors
<= sectors
|| !unlock_hpa
) {
1377 if (!print_info
|| native_sectors
== sectors
)
1380 if (native_sectors
> sectors
)
1382 "HPA detected: current %llu, native %llu\n",
1383 (unsigned long long)sectors
,
1384 (unsigned long long)native_sectors
);
1385 else if (native_sectors
< sectors
)
1387 "native sectors (%llu) is smaller than sectors (%llu)\n",
1388 (unsigned long long)native_sectors
,
1389 (unsigned long long)sectors
);
1393 /* let's unlock HPA */
1394 rc
= ata_set_max_sectors(dev
, native_sectors
);
1395 if (rc
== -EACCES
) {
1396 /* if device aborted the command, skip HPA resizing */
1398 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1399 (unsigned long long)sectors
,
1400 (unsigned long long)native_sectors
);
1401 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1406 /* re-read IDENTIFY data */
1407 rc
= ata_dev_reread_id(dev
, 0);
1410 "failed to re-read IDENTIFY data after HPA resizing\n");
1415 u64 new_sectors
= ata_id_n_sectors(dev
->id
);
1417 "HPA unlocked: %llu -> %llu, native %llu\n",
1418 (unsigned long long)sectors
,
1419 (unsigned long long)new_sectors
,
1420 (unsigned long long)native_sectors
);
1427 * ata_dump_id - IDENTIFY DEVICE info debugging output
1428 * @id: IDENTIFY DEVICE page to dump
1430 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1437 static inline void ata_dump_id(const u16
*id
)
1439 DPRINTK("49==0x%04x "
1449 DPRINTK("80==0x%04x "
1459 DPRINTK("88==0x%04x "
1466 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1467 * @id: IDENTIFY data to compute xfer mask from
1469 * Compute the xfermask for this device. This is not as trivial
1470 * as it seems if we must consider early devices correctly.
1472 * FIXME: pre IDE drive timing (do we care ?).
1480 unsigned long ata_id_xfermask(const u16
*id
)
1482 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
1484 /* Usual case. Word 53 indicates word 64 is valid */
1485 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1486 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1490 /* If word 64 isn't valid then Word 51 high byte holds
1491 * the PIO timing number for the maximum. Turn it into
1494 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1495 if (mode
< 5) /* Valid PIO range */
1496 pio_mask
= (2 << mode
) - 1;
1500 /* But wait.. there's more. Design your standards by
1501 * committee and you too can get a free iordy field to
1502 * process. However its the speeds not the modes that
1503 * are supported... Note drivers using the timing API
1504 * will get this right anyway
1508 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1510 if (ata_id_is_cfa(id
)) {
1512 * Process compact flash extended modes
1514 int pio
= (id
[ATA_ID_CFA_MODES
] >> 0) & 0x7;
1515 int dma
= (id
[ATA_ID_CFA_MODES
] >> 3) & 0x7;
1518 pio_mask
|= (1 << 5);
1520 pio_mask
|= (1 << 6);
1522 mwdma_mask
|= (1 << 3);
1524 mwdma_mask
|= (1 << 4);
1528 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1529 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1531 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1534 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1536 struct completion
*waiting
= qc
->private_data
;
1542 * ata_exec_internal_sg - execute libata internal command
1543 * @dev: Device to which the command is sent
1544 * @tf: Taskfile registers for the command and the result
1545 * @cdb: CDB for packet command
1546 * @dma_dir: Data transfer direction of the command
1547 * @sgl: sg list for the data buffer of the command
1548 * @n_elem: Number of sg entries
1549 * @timeout: Timeout in msecs (0 for default)
1551 * Executes libata internal command with timeout. @tf contains
1552 * command on entry and result on return. Timeout and error
1553 * conditions are reported via return value. No recovery action
1554 * is taken after a command times out. It's caller's duty to
1555 * clean up after timeout.
1558 * None. Should be called with kernel context, might sleep.
1561 * Zero on success, AC_ERR_* mask on failure
1563 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1564 struct ata_taskfile
*tf
, const u8
*cdb
,
1565 int dma_dir
, struct scatterlist
*sgl
,
1566 unsigned int n_elem
, unsigned long timeout
)
1568 struct ata_link
*link
= dev
->link
;
1569 struct ata_port
*ap
= link
->ap
;
1570 u8 command
= tf
->command
;
1571 int auto_timeout
= 0;
1572 struct ata_queued_cmd
*qc
;
1573 unsigned int preempted_tag
;
1574 u32 preempted_sactive
;
1575 u64 preempted_qc_active
;
1576 int preempted_nr_active_links
;
1577 DECLARE_COMPLETION_ONSTACK(wait
);
1578 unsigned long flags
;
1579 unsigned int err_mask
;
1582 spin_lock_irqsave(ap
->lock
, flags
);
1584 /* no internal command while frozen */
1585 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1586 spin_unlock_irqrestore(ap
->lock
, flags
);
1587 return AC_ERR_SYSTEM
;
1590 /* initialize internal qc */
1591 qc
= __ata_qc_from_tag(ap
, ATA_TAG_INTERNAL
);
1593 qc
->tag
= ATA_TAG_INTERNAL
;
1600 preempted_tag
= link
->active_tag
;
1601 preempted_sactive
= link
->sactive
;
1602 preempted_qc_active
= ap
->qc_active
;
1603 preempted_nr_active_links
= ap
->nr_active_links
;
1604 link
->active_tag
= ATA_TAG_POISON
;
1607 ap
->nr_active_links
= 0;
1609 /* prepare & issue qc */
1612 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1614 /* some SATA bridges need us to indicate data xfer direction */
1615 if (tf
->protocol
== ATAPI_PROT_DMA
&& (dev
->flags
& ATA_DFLAG_DMADIR
) &&
1616 dma_dir
== DMA_FROM_DEVICE
)
1617 qc
->tf
.feature
|= ATAPI_DMADIR
;
1619 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1620 qc
->dma_dir
= dma_dir
;
1621 if (dma_dir
!= DMA_NONE
) {
1622 unsigned int i
, buflen
= 0;
1623 struct scatterlist
*sg
;
1625 for_each_sg(sgl
, sg
, n_elem
, i
)
1626 buflen
+= sg
->length
;
1628 ata_sg_init(qc
, sgl
, n_elem
);
1629 qc
->nbytes
= buflen
;
1632 qc
->private_data
= &wait
;
1633 qc
->complete_fn
= ata_qc_complete_internal
;
1637 spin_unlock_irqrestore(ap
->lock
, flags
);
1640 if (ata_probe_timeout
)
1641 timeout
= ata_probe_timeout
* 1000;
1643 timeout
= ata_internal_cmd_timeout(dev
, command
);
1648 if (ap
->ops
->error_handler
)
1651 rc
= wait_for_completion_timeout(&wait
, msecs_to_jiffies(timeout
));
1653 if (ap
->ops
->error_handler
)
1656 ata_sff_flush_pio_task(ap
);
1659 spin_lock_irqsave(ap
->lock
, flags
);
1661 /* We're racing with irq here. If we lose, the
1662 * following test prevents us from completing the qc
1663 * twice. If we win, the port is frozen and will be
1664 * cleaned up by ->post_internal_cmd().
1666 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1667 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1669 if (ap
->ops
->error_handler
)
1670 ata_port_freeze(ap
);
1672 ata_qc_complete(qc
);
1674 if (ata_msg_warn(ap
))
1675 ata_dev_warn(dev
, "qc timeout (cmd 0x%x)\n",
1679 spin_unlock_irqrestore(ap
->lock
, flags
);
1682 /* do post_internal_cmd */
1683 if (ap
->ops
->post_internal_cmd
)
1684 ap
->ops
->post_internal_cmd(qc
);
1686 /* perform minimal error analysis */
1687 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1688 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1689 qc
->err_mask
|= AC_ERR_DEV
;
1692 qc
->err_mask
|= AC_ERR_OTHER
;
1694 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1695 qc
->err_mask
&= ~AC_ERR_OTHER
;
1696 } else if (qc
->tf
.command
== ATA_CMD_REQ_SENSE_DATA
) {
1697 qc
->result_tf
.command
|= ATA_SENSE
;
1701 spin_lock_irqsave(ap
->lock
, flags
);
1703 *tf
= qc
->result_tf
;
1704 err_mask
= qc
->err_mask
;
1707 link
->active_tag
= preempted_tag
;
1708 link
->sactive
= preempted_sactive
;
1709 ap
->qc_active
= preempted_qc_active
;
1710 ap
->nr_active_links
= preempted_nr_active_links
;
1712 spin_unlock_irqrestore(ap
->lock
, flags
);
1714 if ((err_mask
& AC_ERR_TIMEOUT
) && auto_timeout
)
1715 ata_internal_cmd_timed_out(dev
, command
);
1721 * ata_exec_internal - execute libata internal command
1722 * @dev: Device to which the command is sent
1723 * @tf: Taskfile registers for the command and the result
1724 * @cdb: CDB for packet command
1725 * @dma_dir: Data transfer direction of the command
1726 * @buf: Data buffer of the command
1727 * @buflen: Length of data buffer
1728 * @timeout: Timeout in msecs (0 for default)
1730 * Wrapper around ata_exec_internal_sg() which takes simple
1731 * buffer instead of sg list.
1734 * None. Should be called with kernel context, might sleep.
1737 * Zero on success, AC_ERR_* mask on failure
1739 unsigned ata_exec_internal(struct ata_device
*dev
,
1740 struct ata_taskfile
*tf
, const u8
*cdb
,
1741 int dma_dir
, void *buf
, unsigned int buflen
,
1742 unsigned long timeout
)
1744 struct scatterlist
*psg
= NULL
, sg
;
1745 unsigned int n_elem
= 0;
1747 if (dma_dir
!= DMA_NONE
) {
1749 sg_init_one(&sg
, buf
, buflen
);
1754 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
,
1759 * ata_pio_need_iordy - check if iordy needed
1762 * Check if the current speed of the device requires IORDY. Used
1763 * by various controllers for chip configuration.
1765 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1767 /* Don't set IORDY if we're preparing for reset. IORDY may
1768 * lead to controller lock up on certain controllers if the
1769 * port is not occupied. See bko#11703 for details.
1771 if (adev
->link
->ap
->pflags
& ATA_PFLAG_RESETTING
)
1773 /* Controller doesn't support IORDY. Probably a pointless
1774 * check as the caller should know this.
1776 if (adev
->link
->ap
->flags
& ATA_FLAG_NO_IORDY
)
1778 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1779 if (ata_id_is_cfa(adev
->id
)
1780 && (adev
->pio_mode
== XFER_PIO_5
|| adev
->pio_mode
== XFER_PIO_6
))
1782 /* PIO3 and higher it is mandatory */
1783 if (adev
->pio_mode
> XFER_PIO_2
)
1785 /* We turn it on when possible */
1786 if (ata_id_has_iordy(adev
->id
))
1792 * ata_pio_mask_no_iordy - Return the non IORDY mask
1795 * Compute the highest mode possible if we are not using iordy. Return
1796 * -1 if no iordy mode is available.
1798 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
1800 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1801 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
1802 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
1803 /* Is the speed faster than the drive allows non IORDY ? */
1805 /* This is cycle times not frequency - watch the logic! */
1806 if (pio
> 240) /* PIO2 is 240nS per cycle */
1807 return 3 << ATA_SHIFT_PIO
;
1808 return 7 << ATA_SHIFT_PIO
;
1811 return 3 << ATA_SHIFT_PIO
;
1815 * ata_do_dev_read_id - default ID read method
1817 * @tf: proposed taskfile
1820 * Issue the identify taskfile and hand back the buffer containing
1821 * identify data. For some RAID controllers and for pre ATA devices
1822 * this function is wrapped or replaced by the driver
1824 unsigned int ata_do_dev_read_id(struct ata_device
*dev
,
1825 struct ata_taskfile
*tf
, u16
*id
)
1827 return ata_exec_internal(dev
, tf
, NULL
, DMA_FROM_DEVICE
,
1828 id
, sizeof(id
[0]) * ATA_ID_WORDS
, 0);
1832 * ata_dev_read_id - Read ID data from the specified device
1833 * @dev: target device
1834 * @p_class: pointer to class of the target device (may be changed)
1835 * @flags: ATA_READID_* flags
1836 * @id: buffer to read IDENTIFY data into
1838 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1839 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1840 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1841 * for pre-ATA4 drives.
1843 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1844 * now we abort if we hit that case.
1847 * Kernel thread context (may sleep)
1850 * 0 on success, -errno otherwise.
1852 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
1853 unsigned int flags
, u16
*id
)
1855 struct ata_port
*ap
= dev
->link
->ap
;
1856 unsigned int class = *p_class
;
1857 struct ata_taskfile tf
;
1858 unsigned int err_mask
= 0;
1860 bool is_semb
= class == ATA_DEV_SEMB
;
1861 int may_fallback
= 1, tried_spinup
= 0;
1864 if (ata_msg_ctl(ap
))
1865 ata_dev_dbg(dev
, "%s: ENTER\n", __func__
);
1868 ata_tf_init(dev
, &tf
);
1872 class = ATA_DEV_ATA
; /* some hard drives report SEMB sig */
1876 tf
.command
= ATA_CMD_ID_ATA
;
1879 tf
.command
= ATA_CMD_ID_ATAPI
;
1883 reason
= "unsupported class";
1887 tf
.protocol
= ATA_PROT_PIO
;
1889 /* Some devices choke if TF registers contain garbage. Make
1890 * sure those are properly initialized.
1892 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
1894 /* Device presence detection is unreliable on some
1895 * controllers. Always poll IDENTIFY if available.
1897 tf
.flags
|= ATA_TFLAG_POLLING
;
1899 if (ap
->ops
->read_id
)
1900 err_mask
= ap
->ops
->read_id(dev
, &tf
, id
);
1902 err_mask
= ata_do_dev_read_id(dev
, &tf
, id
);
1905 if (err_mask
& AC_ERR_NODEV_HINT
) {
1906 ata_dev_dbg(dev
, "NODEV after polling detection\n");
1912 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1913 /* SEMB is not supported yet */
1914 *p_class
= ATA_DEV_SEMB_UNSUP
;
1918 if ((err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
1919 /* Device or controller might have reported
1920 * the wrong device class. Give a shot at the
1921 * other IDENTIFY if the current one is
1922 * aborted by the device.
1927 if (class == ATA_DEV_ATA
)
1928 class = ATA_DEV_ATAPI
;
1930 class = ATA_DEV_ATA
;
1934 /* Control reaches here iff the device aborted
1935 * both flavors of IDENTIFYs which happens
1936 * sometimes with phantom devices.
1939 "both IDENTIFYs aborted, assuming NODEV\n");
1944 reason
= "I/O error";
1948 if (dev
->horkage
& ATA_HORKAGE_DUMP_ID
) {
1949 ata_dev_dbg(dev
, "dumping IDENTIFY data, "
1950 "class=%d may_fallback=%d tried_spinup=%d\n",
1951 class, may_fallback
, tried_spinup
);
1952 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
,
1953 16, 2, id
, ATA_ID_WORDS
* sizeof(*id
), true);
1956 /* Falling back doesn't make sense if ID data was read
1957 * successfully at least once.
1961 swap_buf_le16(id
, ATA_ID_WORDS
);
1965 reason
= "device reports invalid type";
1967 if (class == ATA_DEV_ATA
|| class == ATA_DEV_ZAC
) {
1968 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
1970 if (ap
->host
->flags
& ATA_HOST_IGNORE_ATA
&&
1971 ata_id_is_ata(id
)) {
1973 "host indicates ignore ATA devices, ignored\n");
1977 if (ata_id_is_ata(id
))
1981 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
1984 * Drive powered-up in standby mode, and requires a specific
1985 * SET_FEATURES spin-up subcommand before it will accept
1986 * anything other than the original IDENTIFY command.
1988 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SPINUP
, 0);
1989 if (err_mask
&& id
[2] != 0x738c) {
1991 reason
= "SPINUP failed";
1995 * If the drive initially returned incomplete IDENTIFY info,
1996 * we now must reissue the IDENTIFY command.
1998 if (id
[2] == 0x37c8)
2002 if ((flags
& ATA_READID_POSTRESET
) &&
2003 (class == ATA_DEV_ATA
|| class == ATA_DEV_ZAC
)) {
2005 * The exact sequence expected by certain pre-ATA4 drives is:
2007 * IDENTIFY (optional in early ATA)
2008 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2010 * Some drives were very specific about that exact sequence.
2012 * Note that ATA4 says lba is mandatory so the second check
2013 * should never trigger.
2015 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
2016 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
2019 reason
= "INIT_DEV_PARAMS failed";
2023 /* current CHS translation info (id[53-58]) might be
2024 * changed. reread the identify device info.
2026 flags
&= ~ATA_READID_POSTRESET
;
2036 if (ata_msg_warn(ap
))
2037 ata_dev_warn(dev
, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2043 * ata_read_log_page - read a specific log page
2044 * @dev: target device
2046 * @page: page to read
2047 * @buf: buffer to store read page
2048 * @sectors: number of sectors to read
2050 * Read log page using READ_LOG_EXT command.
2053 * Kernel thread context (may sleep).
2056 * 0 on success, AC_ERR_* mask otherwise.
2058 unsigned int ata_read_log_page(struct ata_device
*dev
, u8 log
,
2059 u8 page
, void *buf
, unsigned int sectors
)
2061 unsigned long ap_flags
= dev
->link
->ap
->flags
;
2062 struct ata_taskfile tf
;
2063 unsigned int err_mask
;
2066 DPRINTK("read log page - log 0x%x, page 0x%x\n", log
, page
);
2069 * Return error without actually issuing the command on controllers
2070 * which e.g. lockup on a read log page.
2072 if (ap_flags
& ATA_FLAG_NO_LOG_PAGE
)
2076 ata_tf_init(dev
, &tf
);
2077 if (dev
->dma_mode
&& ata_id_has_read_log_dma_ext(dev
->id
) &&
2078 !(dev
->horkage
& ATA_HORKAGE_NO_DMA_LOG
)) {
2079 tf
.command
= ATA_CMD_READ_LOG_DMA_EXT
;
2080 tf
.protocol
= ATA_PROT_DMA
;
2083 tf
.command
= ATA_CMD_READ_LOG_EXT
;
2084 tf
.protocol
= ATA_PROT_PIO
;
2090 tf
.hob_nsect
= sectors
>> 8;
2091 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_LBA48
| ATA_TFLAG_DEVICE
;
2093 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_FROM_DEVICE
,
2094 buf
, sectors
* ATA_SECT_SIZE
, 0);
2096 if (err_mask
&& dma
) {
2097 dev
->horkage
|= ATA_HORKAGE_NO_DMA_LOG
;
2098 ata_dev_warn(dev
, "READ LOG DMA EXT failed, trying PIO\n");
2102 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
2106 static bool ata_log_supported(struct ata_device
*dev
, u8 log
)
2108 struct ata_port
*ap
= dev
->link
->ap
;
2110 if (ata_read_log_page(dev
, ATA_LOG_DIRECTORY
, 0, ap
->sector_buf
, 1))
2112 return get_unaligned_le16(&ap
->sector_buf
[log
* 2]) ? true : false;
2115 static bool ata_identify_page_supported(struct ata_device
*dev
, u8 page
)
2117 struct ata_port
*ap
= dev
->link
->ap
;
2118 unsigned int err
, i
;
2120 if (!ata_log_supported(dev
, ATA_LOG_IDENTIFY_DEVICE
)) {
2121 ata_dev_warn(dev
, "ATA Identify Device Log not supported\n");
2126 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2129 err
= ata_read_log_page(dev
, ATA_LOG_IDENTIFY_DEVICE
, 0, ap
->sector_buf
,
2133 "failed to get Device Identify Log Emask 0x%x\n",
2138 for (i
= 0; i
< ap
->sector_buf
[8]; i
++) {
2139 if (ap
->sector_buf
[9 + i
] == page
)
2146 static int ata_do_link_spd_horkage(struct ata_device
*dev
)
2148 struct ata_link
*plink
= ata_dev_phys_link(dev
);
2149 u32 target
, target_limit
;
2151 if (!sata_scr_valid(plink
))
2154 if (dev
->horkage
& ATA_HORKAGE_1_5_GBPS
)
2159 target_limit
= (1 << target
) - 1;
2161 /* if already on stricter limit, no need to push further */
2162 if (plink
->sata_spd_limit
<= target_limit
)
2165 plink
->sata_spd_limit
= target_limit
;
2167 /* Request another EH round by returning -EAGAIN if link is
2168 * going faster than the target speed. Forward progress is
2169 * guaranteed by setting sata_spd_limit to target_limit above.
2171 if (plink
->sata_spd
> target
) {
2172 ata_dev_info(dev
, "applying link speed limit horkage to %s\n",
2173 sata_spd_string(target
));
2179 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
2181 struct ata_port
*ap
= dev
->link
->ap
;
2183 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_BRIDGE_OK
)
2186 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
2189 static void ata_dev_config_ncq_send_recv(struct ata_device
*dev
)
2191 struct ata_port
*ap
= dev
->link
->ap
;
2192 unsigned int err_mask
;
2194 if (!ata_log_supported(dev
, ATA_LOG_NCQ_SEND_RECV
)) {
2195 ata_dev_warn(dev
, "NCQ Send/Recv Log not supported\n");
2198 err_mask
= ata_read_log_page(dev
, ATA_LOG_NCQ_SEND_RECV
,
2199 0, ap
->sector_buf
, 1);
2202 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2205 u8
*cmds
= dev
->ncq_send_recv_cmds
;
2207 dev
->flags
|= ATA_DFLAG_NCQ_SEND_RECV
;
2208 memcpy(cmds
, ap
->sector_buf
, ATA_LOG_NCQ_SEND_RECV_SIZE
);
2210 if (dev
->horkage
& ATA_HORKAGE_NO_NCQ_TRIM
) {
2211 ata_dev_dbg(dev
, "disabling queued TRIM support\n");
2212 cmds
[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET
] &=
2213 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM
;
2218 static void ata_dev_config_ncq_non_data(struct ata_device
*dev
)
2220 struct ata_port
*ap
= dev
->link
->ap
;
2221 unsigned int err_mask
;
2223 if (!ata_log_supported(dev
, ATA_LOG_NCQ_NON_DATA
)) {
2225 "NCQ Send/Recv Log not supported\n");
2228 err_mask
= ata_read_log_page(dev
, ATA_LOG_NCQ_NON_DATA
,
2229 0, ap
->sector_buf
, 1);
2232 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2235 u8
*cmds
= dev
->ncq_non_data_cmds
;
2237 memcpy(cmds
, ap
->sector_buf
, ATA_LOG_NCQ_NON_DATA_SIZE
);
2241 static void ata_dev_config_ncq_prio(struct ata_device
*dev
)
2243 struct ata_port
*ap
= dev
->link
->ap
;
2244 unsigned int err_mask
;
2246 if (!(dev
->flags
& ATA_DFLAG_NCQ_PRIO_ENABLE
)) {
2247 dev
->flags
&= ~ATA_DFLAG_NCQ_PRIO
;
2251 err_mask
= ata_read_log_page(dev
,
2252 ATA_LOG_IDENTIFY_DEVICE
,
2253 ATA_LOG_SATA_SETTINGS
,
2258 "failed to get Identify Device data, Emask 0x%x\n",
2263 if (ap
->sector_buf
[ATA_LOG_NCQ_PRIO_OFFSET
] & BIT(3)) {
2264 dev
->flags
|= ATA_DFLAG_NCQ_PRIO
;
2266 dev
->flags
&= ~ATA_DFLAG_NCQ_PRIO
;
2267 ata_dev_dbg(dev
, "SATA page does not support priority\n");
2272 static int ata_dev_config_ncq(struct ata_device
*dev
,
2273 char *desc
, size_t desc_sz
)
2275 struct ata_port
*ap
= dev
->link
->ap
;
2276 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
2277 unsigned int err_mask
;
2280 if (!ata_id_has_ncq(dev
->id
)) {
2284 if (dev
->horkage
& ATA_HORKAGE_NONCQ
) {
2285 snprintf(desc
, desc_sz
, "NCQ (not used)");
2288 if (ap
->flags
& ATA_FLAG_NCQ
) {
2289 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
);
2290 dev
->flags
|= ATA_DFLAG_NCQ
;
2293 if (!(dev
->horkage
& ATA_HORKAGE_BROKEN_FPDMA_AA
) &&
2294 (ap
->flags
& ATA_FLAG_FPDMA_AA
) &&
2295 ata_id_has_fpdma_aa(dev
->id
)) {
2296 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SATA_ENABLE
,
2300 "failed to enable AA (error_mask=0x%x)\n",
2302 if (err_mask
!= AC_ERR_DEV
) {
2303 dev
->horkage
|= ATA_HORKAGE_BROKEN_FPDMA_AA
;
2310 if (hdepth
>= ddepth
)
2311 snprintf(desc
, desc_sz
, "NCQ (depth %d)%s", ddepth
, aa_desc
);
2313 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)%s", hdepth
,
2316 if ((ap
->flags
& ATA_FLAG_FPDMA_AUX
)) {
2317 if (ata_id_has_ncq_send_and_recv(dev
->id
))
2318 ata_dev_config_ncq_send_recv(dev
);
2319 if (ata_id_has_ncq_non_data(dev
->id
))
2320 ata_dev_config_ncq_non_data(dev
);
2321 if (ata_id_has_ncq_prio(dev
->id
))
2322 ata_dev_config_ncq_prio(dev
);
2328 static void ata_dev_config_sense_reporting(struct ata_device
*dev
)
2330 unsigned int err_mask
;
2332 if (!ata_id_has_sense_reporting(dev
->id
))
2335 if (ata_id_sense_reporting_enabled(dev
->id
))
2338 err_mask
= ata_dev_set_feature(dev
, SETFEATURE_SENSE_DATA
, 0x1);
2341 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2346 static void ata_dev_config_zac(struct ata_device
*dev
)
2348 struct ata_port
*ap
= dev
->link
->ap
;
2349 unsigned int err_mask
;
2350 u8
*identify_buf
= ap
->sector_buf
;
2352 dev
->zac_zones_optimal_open
= U32_MAX
;
2353 dev
->zac_zones_optimal_nonseq
= U32_MAX
;
2354 dev
->zac_zones_max_open
= U32_MAX
;
2357 * Always set the 'ZAC' flag for Host-managed devices.
2359 if (dev
->class == ATA_DEV_ZAC
)
2360 dev
->flags
|= ATA_DFLAG_ZAC
;
2361 else if (ata_id_zoned_cap(dev
->id
) == 0x01)
2363 * Check for host-aware devices.
2365 dev
->flags
|= ATA_DFLAG_ZAC
;
2367 if (!(dev
->flags
& ATA_DFLAG_ZAC
))
2370 if (!ata_identify_page_supported(dev
, ATA_LOG_ZONED_INFORMATION
)) {
2372 "ATA Zoned Information Log not supported\n");
2377 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2379 err_mask
= ata_read_log_page(dev
, ATA_LOG_IDENTIFY_DEVICE
,
2380 ATA_LOG_ZONED_INFORMATION
,
2383 u64 zoned_cap
, opt_open
, opt_nonseq
, max_open
;
2385 zoned_cap
= get_unaligned_le64(&identify_buf
[8]);
2386 if ((zoned_cap
>> 63))
2387 dev
->zac_zoned_cap
= (zoned_cap
& 1);
2388 opt_open
= get_unaligned_le64(&identify_buf
[24]);
2389 if ((opt_open
>> 63))
2390 dev
->zac_zones_optimal_open
= (u32
)opt_open
;
2391 opt_nonseq
= get_unaligned_le64(&identify_buf
[32]);
2392 if ((opt_nonseq
>> 63))
2393 dev
->zac_zones_optimal_nonseq
= (u32
)opt_nonseq
;
2394 max_open
= get_unaligned_le64(&identify_buf
[40]);
2395 if ((max_open
>> 63))
2396 dev
->zac_zones_max_open
= (u32
)max_open
;
2400 static void ata_dev_config_trusted(struct ata_device
*dev
)
2402 struct ata_port
*ap
= dev
->link
->ap
;
2406 if (!ata_id_has_trusted(dev
->id
))
2409 if (!ata_identify_page_supported(dev
, ATA_LOG_SECURITY
)) {
2411 "Security Log not supported\n");
2415 err
= ata_read_log_page(dev
, ATA_LOG_IDENTIFY_DEVICE
, ATA_LOG_SECURITY
,
2419 "failed to read Security Log, Emask 0x%x\n", err
);
2423 trusted_cap
= get_unaligned_le64(&ap
->sector_buf
[40]);
2424 if (!(trusted_cap
& (1ULL << 63))) {
2426 "Trusted Computing capability qword not valid!\n");
2430 if (trusted_cap
& (1 << 0))
2431 dev
->flags
|= ATA_DFLAG_TRUSTED
;
2435 * ata_dev_configure - Configure the specified ATA/ATAPI device
2436 * @dev: Target device to configure
2438 * Configure @dev according to @dev->id. Generic and low-level
2439 * driver specific fixups are also applied.
2442 * Kernel thread context (may sleep)
2445 * 0 on success, -errno otherwise
2447 int ata_dev_configure(struct ata_device
*dev
)
2449 struct ata_port
*ap
= dev
->link
->ap
;
2450 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
2451 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
2452 const u16
*id
= dev
->id
;
2453 unsigned long xfer_mask
;
2454 unsigned int err_mask
;
2455 char revbuf
[7]; /* XYZ-99\0 */
2456 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
2457 char modelbuf
[ATA_ID_PROD_LEN
+1];
2460 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
2461 ata_dev_info(dev
, "%s: ENTER/EXIT -- nodev\n", __func__
);
2465 if (ata_msg_probe(ap
))
2466 ata_dev_dbg(dev
, "%s: ENTER\n", __func__
);
2469 dev
->horkage
|= ata_dev_blacklisted(dev
);
2470 ata_force_horkage(dev
);
2472 if (dev
->horkage
& ATA_HORKAGE_DISABLE
) {
2473 ata_dev_info(dev
, "unsupported device, disabling\n");
2474 ata_dev_disable(dev
);
2478 if ((!atapi_enabled
|| (ap
->flags
& ATA_FLAG_NO_ATAPI
)) &&
2479 dev
->class == ATA_DEV_ATAPI
) {
2480 ata_dev_warn(dev
, "WARNING: ATAPI is %s, device ignored\n",
2481 atapi_enabled
? "not supported with this driver"
2483 ata_dev_disable(dev
);
2487 rc
= ata_do_link_spd_horkage(dev
);
2491 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2492 if ((dev
->horkage
& ATA_HORKAGE_WD_BROKEN_LPM
) &&
2493 (id
[ATA_ID_SATA_CAPABILITY
] & 0xe) == 0x2)
2494 dev
->horkage
|= ATA_HORKAGE_NOLPM
;
2496 if (ap
->flags
& ATA_FLAG_NO_LPM
)
2497 dev
->horkage
|= ATA_HORKAGE_NOLPM
;
2499 if (dev
->horkage
& ATA_HORKAGE_NOLPM
) {
2500 ata_dev_warn(dev
, "LPM support broken, forcing max_power\n");
2501 dev
->link
->ap
->target_lpm_policy
= ATA_LPM_MAX_POWER
;
2504 /* let ACPI work its magic */
2505 rc
= ata_acpi_on_devcfg(dev
);
2509 /* massage HPA, do it early as it might change IDENTIFY data */
2510 rc
= ata_hpa_resize(dev
);
2514 /* print device capabilities */
2515 if (ata_msg_probe(ap
))
2517 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2518 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2520 id
[49], id
[82], id
[83], id
[84],
2521 id
[85], id
[86], id
[87], id
[88]);
2523 /* initialize to-be-configured parameters */
2524 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
2525 dev
->max_sectors
= 0;
2531 dev
->multi_count
= 0;
2534 * common ATA, ATAPI feature tests
2537 /* find max transfer mode; for printk only */
2538 xfer_mask
= ata_id_xfermask(id
);
2540 if (ata_msg_probe(ap
))
2543 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2544 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
2547 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
2550 /* ATA-specific feature tests */
2551 if (dev
->class == ATA_DEV_ATA
|| dev
->class == ATA_DEV_ZAC
) {
2552 if (ata_id_is_cfa(id
)) {
2553 /* CPRM may make this media unusable */
2554 if (id
[ATA_ID_CFA_KEY_MGMT
] & 1)
2556 "supports DRM functions and may not be fully accessible\n");
2557 snprintf(revbuf
, 7, "CFA");
2559 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
2560 /* Warn the user if the device has TPM extensions */
2561 if (ata_id_has_tpm(id
))
2563 "supports DRM functions and may not be fully accessible\n");
2566 dev
->n_sectors
= ata_id_n_sectors(id
);
2568 /* get current R/W Multiple count setting */
2569 if ((dev
->id
[47] >> 8) == 0x80 && (dev
->id
[59] & 0x100)) {
2570 unsigned int max
= dev
->id
[47] & 0xff;
2571 unsigned int cnt
= dev
->id
[59] & 0xff;
2572 /* only recognize/allow powers of two here */
2573 if (is_power_of_2(max
) && is_power_of_2(cnt
))
2575 dev
->multi_count
= cnt
;
2578 if (ata_id_has_lba(id
)) {
2579 const char *lba_desc
;
2583 dev
->flags
|= ATA_DFLAG_LBA
;
2584 if (ata_id_has_lba48(id
)) {
2585 dev
->flags
|= ATA_DFLAG_LBA48
;
2588 if (dev
->n_sectors
>= (1UL << 28) &&
2589 ata_id_has_flush_ext(id
))
2590 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
2594 rc
= ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
2598 /* print device info to dmesg */
2599 if (ata_msg_drv(ap
) && print_info
) {
2600 ata_dev_info(dev
, "%s: %s, %s, max %s\n",
2601 revbuf
, modelbuf
, fwrevbuf
,
2602 ata_mode_string(xfer_mask
));
2604 "%llu sectors, multi %u: %s %s\n",
2605 (unsigned long long)dev
->n_sectors
,
2606 dev
->multi_count
, lba_desc
, ncq_desc
);
2611 /* Default translation */
2612 dev
->cylinders
= id
[1];
2614 dev
->sectors
= id
[6];
2616 if (ata_id_current_chs_valid(id
)) {
2617 /* Current CHS translation is valid. */
2618 dev
->cylinders
= id
[54];
2619 dev
->heads
= id
[55];
2620 dev
->sectors
= id
[56];
2623 /* print device info to dmesg */
2624 if (ata_msg_drv(ap
) && print_info
) {
2625 ata_dev_info(dev
, "%s: %s, %s, max %s\n",
2626 revbuf
, modelbuf
, fwrevbuf
,
2627 ata_mode_string(xfer_mask
));
2629 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2630 (unsigned long long)dev
->n_sectors
,
2631 dev
->multi_count
, dev
->cylinders
,
2632 dev
->heads
, dev
->sectors
);
2636 /* Check and mark DevSlp capability. Get DevSlp timing variables
2637 * from SATA Settings page of Identify Device Data Log.
2639 if (ata_id_has_devslp(dev
->id
)) {
2640 u8
*sata_setting
= ap
->sector_buf
;
2643 dev
->flags
|= ATA_DFLAG_DEVSLP
;
2644 err_mask
= ata_read_log_page(dev
,
2645 ATA_LOG_IDENTIFY_DEVICE
,
2646 ATA_LOG_SATA_SETTINGS
,
2651 "failed to get Identify Device Data, Emask 0x%x\n",
2654 for (i
= 0; i
< ATA_LOG_DEVSLP_SIZE
; i
++) {
2655 j
= ATA_LOG_DEVSLP_OFFSET
+ i
;
2656 dev
->devslp_timing
[i
] = sata_setting
[j
];
2659 ata_dev_config_sense_reporting(dev
);
2660 ata_dev_config_zac(dev
);
2661 ata_dev_config_trusted(dev
);
2665 /* ATAPI-specific feature tests */
2666 else if (dev
->class == ATA_DEV_ATAPI
) {
2667 const char *cdb_intr_string
= "";
2668 const char *atapi_an_string
= "";
2669 const char *dma_dir_string
= "";
2672 rc
= atapi_cdb_len(id
);
2673 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
2674 if (ata_msg_warn(ap
))
2675 ata_dev_warn(dev
, "unsupported CDB len\n");
2679 dev
->cdb_len
= (unsigned int) rc
;
2681 /* Enable ATAPI AN if both the host and device have
2682 * the support. If PMP is attached, SNTF is required
2683 * to enable ATAPI AN to discern between PHY status
2684 * changed notifications and ATAPI ANs.
2687 (ap
->flags
& ATA_FLAG_AN
) && ata_id_has_atapi_AN(id
) &&
2688 (!sata_pmp_attached(ap
) ||
2689 sata_scr_read(&ap
->link
, SCR_NOTIFICATION
, &sntf
) == 0)) {
2690 /* issue SET feature command to turn this on */
2691 err_mask
= ata_dev_set_feature(dev
,
2692 SETFEATURES_SATA_ENABLE
, SATA_AN
);
2695 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2698 dev
->flags
|= ATA_DFLAG_AN
;
2699 atapi_an_string
= ", ATAPI AN";
2703 if (ata_id_cdb_intr(dev
->id
)) {
2704 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2705 cdb_intr_string
= ", CDB intr";
2708 if (atapi_dmadir
|| (dev
->horkage
& ATA_HORKAGE_ATAPI_DMADIR
) || atapi_id_dmadir(dev
->id
)) {
2709 dev
->flags
|= ATA_DFLAG_DMADIR
;
2710 dma_dir_string
= ", DMADIR";
2713 if (ata_id_has_da(dev
->id
)) {
2714 dev
->flags
|= ATA_DFLAG_DA
;
2718 /* print device info to dmesg */
2719 if (ata_msg_drv(ap
) && print_info
)
2721 "ATAPI: %s, %s, max %s%s%s%s\n",
2723 ata_mode_string(xfer_mask
),
2724 cdb_intr_string
, atapi_an_string
,
2728 /* determine max_sectors */
2729 dev
->max_sectors
= ATA_MAX_SECTORS
;
2730 if (dev
->flags
& ATA_DFLAG_LBA48
)
2731 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2733 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2735 if (ata_dev_knobble(dev
)) {
2736 if (ata_msg_drv(ap
) && print_info
)
2737 ata_dev_info(dev
, "applying bridge limits\n");
2738 dev
->udma_mask
&= ATA_UDMA5
;
2739 dev
->max_sectors
= ATA_MAX_SECTORS
;
2742 if ((dev
->class == ATA_DEV_ATAPI
) &&
2743 (atapi_command_packet_set(id
) == TYPE_TAPE
)) {
2744 dev
->max_sectors
= ATA_MAX_SECTORS_TAPE
;
2745 dev
->horkage
|= ATA_HORKAGE_STUCK_ERR
;
2748 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_128
)
2749 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2752 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_1024
)
2753 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_1024
,
2756 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_LBA48
)
2757 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2759 if (ap
->ops
->dev_config
)
2760 ap
->ops
->dev_config(dev
);
2762 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2763 /* Let the user know. We don't want to disallow opens for
2764 rescue purposes, or in case the vendor is just a blithering
2765 idiot. Do this after the dev_config call as some controllers
2766 with buggy firmware may want to avoid reporting false device
2771 "Drive reports diagnostics failure. This may indicate a drive\n");
2773 "fault or invalid emulation. Contact drive vendor for information.\n");
2777 if ((dev
->horkage
& ATA_HORKAGE_FIRMWARE_WARN
) && print_info
) {
2778 ata_dev_warn(dev
, "WARNING: device requires firmware update to be fully functional\n");
2779 ata_dev_warn(dev
, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2785 if (ata_msg_probe(ap
))
2786 ata_dev_dbg(dev
, "%s: EXIT, err\n", __func__
);
2791 * ata_cable_40wire - return 40 wire cable type
2794 * Helper method for drivers which want to hardwire 40 wire cable
2798 int ata_cable_40wire(struct ata_port
*ap
)
2800 return ATA_CBL_PATA40
;
2804 * ata_cable_80wire - return 80 wire cable type
2807 * Helper method for drivers which want to hardwire 80 wire cable
2811 int ata_cable_80wire(struct ata_port
*ap
)
2813 return ATA_CBL_PATA80
;
2817 * ata_cable_unknown - return unknown PATA cable.
2820 * Helper method for drivers which have no PATA cable detection.
2823 int ata_cable_unknown(struct ata_port
*ap
)
2825 return ATA_CBL_PATA_UNK
;
2829 * ata_cable_ignore - return ignored PATA cable.
2832 * Helper method for drivers which don't use cable type to limit
2835 int ata_cable_ignore(struct ata_port
*ap
)
2837 return ATA_CBL_PATA_IGN
;
2841 * ata_cable_sata - return SATA cable type
2844 * Helper method for drivers which have SATA cables
2847 int ata_cable_sata(struct ata_port
*ap
)
2849 return ATA_CBL_SATA
;
2853 * ata_bus_probe - Reset and probe ATA bus
2856 * Master ATA bus probing function. Initiates a hardware-dependent
2857 * bus reset, then attempts to identify any devices found on
2861 * PCI/etc. bus probe sem.
2864 * Zero on success, negative errno otherwise.
2867 int ata_bus_probe(struct ata_port
*ap
)
2869 unsigned int classes
[ATA_MAX_DEVICES
];
2870 int tries
[ATA_MAX_DEVICES
];
2872 struct ata_device
*dev
;
2874 ata_for_each_dev(dev
, &ap
->link
, ALL
)
2875 tries
[dev
->devno
] = ATA_PROBE_MAX_TRIES
;
2878 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2879 /* If we issue an SRST then an ATA drive (not ATAPI)
2880 * may change configuration and be in PIO0 timing. If
2881 * we do a hard reset (or are coming from power on)
2882 * this is true for ATA or ATAPI. Until we've set a
2883 * suitable controller mode we should not touch the
2884 * bus as we may be talking too fast.
2886 dev
->pio_mode
= XFER_PIO_0
;
2887 dev
->dma_mode
= 0xff;
2889 /* If the controller has a pio mode setup function
2890 * then use it to set the chipset to rights. Don't
2891 * touch the DMA setup as that will be dealt with when
2892 * configuring devices.
2894 if (ap
->ops
->set_piomode
)
2895 ap
->ops
->set_piomode(ap
, dev
);
2898 /* reset and determine device classes */
2899 ap
->ops
->phy_reset(ap
);
2901 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2902 if (dev
->class != ATA_DEV_UNKNOWN
)
2903 classes
[dev
->devno
] = dev
->class;
2905 classes
[dev
->devno
] = ATA_DEV_NONE
;
2907 dev
->class = ATA_DEV_UNKNOWN
;
2910 /* read IDENTIFY page and configure devices. We have to do the identify
2911 specific sequence bass-ackwards so that PDIAG- is released by
2914 ata_for_each_dev(dev
, &ap
->link
, ALL_REVERSE
) {
2915 if (tries
[dev
->devno
])
2916 dev
->class = classes
[dev
->devno
];
2918 if (!ata_dev_enabled(dev
))
2921 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2927 /* Now ask for the cable type as PDIAG- should have been released */
2928 if (ap
->ops
->cable_detect
)
2929 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2931 /* We may have SATA bridge glue hiding here irrespective of
2932 * the reported cable types and sensed types. When SATA
2933 * drives indicate we have a bridge, we don't know which end
2934 * of the link the bridge is which is a problem.
2936 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2937 if (ata_id_is_sata(dev
->id
))
2938 ap
->cbl
= ATA_CBL_SATA
;
2940 /* After the identify sequence we can now set up the devices. We do
2941 this in the normal order so that the user doesn't get confused */
2943 ata_for_each_dev(dev
, &ap
->link
, ENABLED
) {
2944 ap
->link
.eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2945 rc
= ata_dev_configure(dev
);
2946 ap
->link
.eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2951 /* configure transfer mode */
2952 rc
= ata_set_mode(&ap
->link
, &dev
);
2956 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2962 tries
[dev
->devno
]--;
2966 /* eeek, something went very wrong, give up */
2967 tries
[dev
->devno
] = 0;
2971 /* give it just one more chance */
2972 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2975 if (tries
[dev
->devno
] == 1) {
2976 /* This is the last chance, better to slow
2977 * down than lose it.
2979 sata_down_spd_limit(&ap
->link
, 0);
2980 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2984 if (!tries
[dev
->devno
])
2985 ata_dev_disable(dev
);
2991 * sata_print_link_status - Print SATA link status
2992 * @link: SATA link to printk link status about
2994 * This function prints link speed and status of a SATA link.
2999 static void sata_print_link_status(struct ata_link
*link
)
3001 u32 sstatus
, scontrol
, tmp
;
3003 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
))
3005 sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
3007 if (ata_phys_link_online(link
)) {
3008 tmp
= (sstatus
>> 4) & 0xf;
3009 ata_link_info(link
, "SATA link up %s (SStatus %X SControl %X)\n",
3010 sata_spd_string(tmp
), sstatus
, scontrol
);
3012 ata_link_info(link
, "SATA link down (SStatus %X SControl %X)\n",
3018 * ata_dev_pair - return other device on cable
3021 * Obtain the other device on the same cable, or if none is
3022 * present NULL is returned
3025 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
3027 struct ata_link
*link
= adev
->link
;
3028 struct ata_device
*pair
= &link
->device
[1 - adev
->devno
];
3029 if (!ata_dev_enabled(pair
))
3035 * sata_down_spd_limit - adjust SATA spd limit downward
3036 * @link: Link to adjust SATA spd limit for
3037 * @spd_limit: Additional limit
3039 * Adjust SATA spd limit of @link downward. Note that this
3040 * function only adjusts the limit. The change must be applied
3041 * using sata_set_spd().
3043 * If @spd_limit is non-zero, the speed is limited to equal to or
3044 * lower than @spd_limit if such speed is supported. If
3045 * @spd_limit is slower than any supported speed, only the lowest
3046 * supported speed is allowed.
3049 * Inherited from caller.
3052 * 0 on success, negative errno on failure
3054 int sata_down_spd_limit(struct ata_link
*link
, u32 spd_limit
)
3056 u32 sstatus
, spd
, mask
;
3059 if (!sata_scr_valid(link
))
3062 /* If SCR can be read, use it to determine the current SPD.
3063 * If not, use cached value in link->sata_spd.
3065 rc
= sata_scr_read(link
, SCR_STATUS
, &sstatus
);
3066 if (rc
== 0 && ata_sstatus_online(sstatus
))
3067 spd
= (sstatus
>> 4) & 0xf;
3069 spd
= link
->sata_spd
;
3071 mask
= link
->sata_spd_limit
;
3075 /* unconditionally mask off the highest bit */
3076 bit
= fls(mask
) - 1;
3077 mask
&= ~(1 << bit
);
3080 * Mask off all speeds higher than or equal to the current one. At
3081 * this point, if current SPD is not available and we previously
3082 * recorded the link speed from SStatus, the driver has already
3083 * masked off the highest bit so mask should already be 1 or 0.
3084 * Otherwise, we should not force 1.5Gbps on a link where we have
3085 * not previously recorded speed from SStatus. Just return in this
3089 mask
&= (1 << (spd
- 1)) - 1;
3093 /* were we already at the bottom? */
3098 if (mask
& ((1 << spd_limit
) - 1))
3099 mask
&= (1 << spd_limit
) - 1;
3101 bit
= ffs(mask
) - 1;
3106 link
->sata_spd_limit
= mask
;
3108 ata_link_warn(link
, "limiting SATA link speed to %s\n",
3109 sata_spd_string(fls(mask
)));
3114 static int __sata_set_spd_needed(struct ata_link
*link
, u32
*scontrol
)
3116 struct ata_link
*host_link
= &link
->ap
->link
;
3117 u32 limit
, target
, spd
;
3119 limit
= link
->sata_spd_limit
;
3121 /* Don't configure downstream link faster than upstream link.
3122 * It doesn't speed up anything and some PMPs choke on such
3125 if (!ata_is_host_link(link
) && host_link
->sata_spd
)
3126 limit
&= (1 << host_link
->sata_spd
) - 1;
3128 if (limit
== UINT_MAX
)
3131 target
= fls(limit
);
3133 spd
= (*scontrol
>> 4) & 0xf;
3134 *scontrol
= (*scontrol
& ~0xf0) | ((target
& 0xf) << 4);
3136 return spd
!= target
;
3140 * sata_set_spd_needed - is SATA spd configuration needed
3141 * @link: Link in question
3143 * Test whether the spd limit in SControl matches
3144 * @link->sata_spd_limit. This function is used to determine
3145 * whether hardreset is necessary to apply SATA spd
3149 * Inherited from caller.
3152 * 1 if SATA spd configuration is needed, 0 otherwise.
3154 static int sata_set_spd_needed(struct ata_link
*link
)
3158 if (sata_scr_read(link
, SCR_CONTROL
, &scontrol
))
3161 return __sata_set_spd_needed(link
, &scontrol
);
3165 * sata_set_spd - set SATA spd according to spd limit
3166 * @link: Link to set SATA spd for
3168 * Set SATA spd of @link according to sata_spd_limit.
3171 * Inherited from caller.
3174 * 0 if spd doesn't need to be changed, 1 if spd has been
3175 * changed. Negative errno if SCR registers are inaccessible.
3177 int sata_set_spd(struct ata_link
*link
)
3182 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3185 if (!__sata_set_spd_needed(link
, &scontrol
))
3188 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3195 * This mode timing computation functionality is ported over from
3196 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3199 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3200 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3201 * for UDMA6, which is currently supported only by Maxtor drives.
3203 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3206 static const struct ata_timing ata_timing
[] = {
3207 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3208 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3209 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3210 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3211 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3212 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3213 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3214 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3216 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3217 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3218 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3220 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3221 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3222 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3223 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3224 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3226 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3227 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3228 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3229 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3230 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3231 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3232 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3233 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3238 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3239 #define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0)
3241 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
3243 q
->setup
= EZ(t
->setup
, T
);
3244 q
->act8b
= EZ(t
->act8b
, T
);
3245 q
->rec8b
= EZ(t
->rec8b
, T
);
3246 q
->cyc8b
= EZ(t
->cyc8b
, T
);
3247 q
->active
= EZ(t
->active
, T
);
3248 q
->recover
= EZ(t
->recover
, T
);
3249 q
->dmack_hold
= EZ(t
->dmack_hold
, T
);
3250 q
->cycle
= EZ(t
->cycle
, T
);
3251 q
->udma
= EZ(t
->udma
, UT
);
3254 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
3255 struct ata_timing
*m
, unsigned int what
)
3257 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
3258 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
3259 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
3260 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
3261 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
3262 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
3263 if (what
& ATA_TIMING_DMACK_HOLD
) m
->dmack_hold
= max(a
->dmack_hold
, b
->dmack_hold
);
3264 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
3265 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
3268 const struct ata_timing
*ata_timing_find_mode(u8 xfer_mode
)
3270 const struct ata_timing
*t
= ata_timing
;
3272 while (xfer_mode
> t
->mode
)
3275 if (xfer_mode
== t
->mode
)
3278 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3279 __func__
, xfer_mode
);
3284 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
3285 struct ata_timing
*t
, int T
, int UT
)
3287 const u16
*id
= adev
->id
;
3288 const struct ata_timing
*s
;
3289 struct ata_timing p
;
3295 if (!(s
= ata_timing_find_mode(speed
)))
3298 memcpy(t
, s
, sizeof(*s
));
3301 * If the drive is an EIDE drive, it can tell us it needs extended
3302 * PIO/MW_DMA cycle timing.
3305 if (id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
3306 memset(&p
, 0, sizeof(p
));
3308 if (speed
>= XFER_PIO_0
&& speed
< XFER_SW_DMA_0
) {
3309 if (speed
<= XFER_PIO_2
)
3310 p
.cycle
= p
.cyc8b
= id
[ATA_ID_EIDE_PIO
];
3311 else if ((speed
<= XFER_PIO_4
) ||
3312 (speed
== XFER_PIO_5
&& !ata_id_is_cfa(id
)))
3313 p
.cycle
= p
.cyc8b
= id
[ATA_ID_EIDE_PIO_IORDY
];
3314 } else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
)
3315 p
.cycle
= id
[ATA_ID_EIDE_DMA_MIN
];
3317 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
3321 * Convert the timing to bus clock counts.
3324 ata_timing_quantize(t
, t
, T
, UT
);
3327 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3328 * S.M.A.R.T * and some other commands. We have to ensure that the
3329 * DMA cycle timing is slower/equal than the fastest PIO timing.
3332 if (speed
> XFER_PIO_6
) {
3333 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
3334 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
3338 * Lengthen active & recovery time so that cycle time is correct.
3341 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
3342 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
3343 t
->rec8b
= t
->cyc8b
- t
->act8b
;
3346 if (t
->active
+ t
->recover
< t
->cycle
) {
3347 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
3348 t
->recover
= t
->cycle
- t
->active
;
3351 /* In a few cases quantisation may produce enough errors to
3352 leave t->cycle too low for the sum of active and recovery
3353 if so we must correct this */
3354 if (t
->active
+ t
->recover
> t
->cycle
)
3355 t
->cycle
= t
->active
+ t
->recover
;
3361 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3362 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3363 * @cycle: cycle duration in ns
3365 * Return matching xfer mode for @cycle. The returned mode is of
3366 * the transfer type specified by @xfer_shift. If @cycle is too
3367 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3368 * than the fastest known mode, the fasted mode is returned.
3374 * Matching xfer_mode, 0xff if no match found.
3376 u8
ata_timing_cycle2mode(unsigned int xfer_shift
, int cycle
)
3378 u8 base_mode
= 0xff, last_mode
= 0xff;
3379 const struct ata_xfer_ent
*ent
;
3380 const struct ata_timing
*t
;
3382 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
3383 if (ent
->shift
== xfer_shift
)
3384 base_mode
= ent
->base
;
3386 for (t
= ata_timing_find_mode(base_mode
);
3387 t
&& ata_xfer_mode2shift(t
->mode
) == xfer_shift
; t
++) {
3388 unsigned short this_cycle
;
3390 switch (xfer_shift
) {
3392 case ATA_SHIFT_MWDMA
:
3393 this_cycle
= t
->cycle
;
3395 case ATA_SHIFT_UDMA
:
3396 this_cycle
= t
->udma
;
3402 if (cycle
> this_cycle
)
3405 last_mode
= t
->mode
;
3412 * ata_down_xfermask_limit - adjust dev xfer masks downward
3413 * @dev: Device to adjust xfer masks
3414 * @sel: ATA_DNXFER_* selector
3416 * Adjust xfer masks of @dev downward. Note that this function
3417 * does not apply the change. Invoking ata_set_mode() afterwards
3418 * will apply the limit.
3421 * Inherited from caller.
3424 * 0 on success, negative errno on failure
3426 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
3429 unsigned long orig_mask
, xfer_mask
;
3430 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
3433 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
3434 sel
&= ~ATA_DNXFER_QUIET
;
3436 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
3439 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
3442 case ATA_DNXFER_PIO
:
3443 highbit
= fls(pio_mask
) - 1;
3444 pio_mask
&= ~(1 << highbit
);
3447 case ATA_DNXFER_DMA
:
3449 highbit
= fls(udma_mask
) - 1;
3450 udma_mask
&= ~(1 << highbit
);
3453 } else if (mwdma_mask
) {
3454 highbit
= fls(mwdma_mask
) - 1;
3455 mwdma_mask
&= ~(1 << highbit
);
3461 case ATA_DNXFER_40C
:
3462 udma_mask
&= ATA_UDMA_MASK_40C
;
3465 case ATA_DNXFER_FORCE_PIO0
:
3468 case ATA_DNXFER_FORCE_PIO
:
3477 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
3479 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
3483 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
3484 snprintf(buf
, sizeof(buf
), "%s:%s",
3485 ata_mode_string(xfer_mask
),
3486 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
3488 snprintf(buf
, sizeof(buf
), "%s",
3489 ata_mode_string(xfer_mask
));
3491 ata_dev_warn(dev
, "limiting speed to %s\n", buf
);
3494 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
3500 static int ata_dev_set_mode(struct ata_device
*dev
)
3502 struct ata_port
*ap
= dev
->link
->ap
;
3503 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
3504 const bool nosetxfer
= dev
->horkage
& ATA_HORKAGE_NOSETXFER
;
3505 const char *dev_err_whine
= "";
3506 int ign_dev_err
= 0;
3507 unsigned int err_mask
= 0;
3510 dev
->flags
&= ~ATA_DFLAG_PIO
;
3511 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
3512 dev
->flags
|= ATA_DFLAG_PIO
;
3514 if (nosetxfer
&& ap
->flags
& ATA_FLAG_SATA
&& ata_id_is_sata(dev
->id
))
3515 dev_err_whine
= " (SET_XFERMODE skipped)";
3519 "NOSETXFER but PATA detected - can't "
3520 "skip SETXFER, might malfunction\n");
3521 err_mask
= ata_dev_set_xfermode(dev
);
3524 if (err_mask
& ~AC_ERR_DEV
)
3528 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
3529 rc
= ata_dev_revalidate(dev
, ATA_DEV_UNKNOWN
, 0);
3530 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
3534 if (dev
->xfer_shift
== ATA_SHIFT_PIO
) {
3535 /* Old CFA may refuse this command, which is just fine */
3536 if (ata_id_is_cfa(dev
->id
))
3538 /* Catch several broken garbage emulations plus some pre
3540 if (ata_id_major_version(dev
->id
) == 0 &&
3541 dev
->pio_mode
<= XFER_PIO_2
)
3543 /* Some very old devices and some bad newer ones fail
3544 any kind of SET_XFERMODE request but support PIO0-2
3545 timings and no IORDY */
3546 if (!ata_id_has_iordy(dev
->id
) && dev
->pio_mode
<= XFER_PIO_2
)
3549 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3550 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3551 if (dev
->xfer_shift
== ATA_SHIFT_MWDMA
&&
3552 dev
->dma_mode
== XFER_MW_DMA_0
&&
3553 (dev
->id
[63] >> 8) & 1)
3556 /* if the device is actually configured correctly, ignore dev err */
3557 if (dev
->xfer_mode
== ata_xfer_mask2mode(ata_id_xfermask(dev
->id
)))
3560 if (err_mask
& AC_ERR_DEV
) {
3564 dev_err_whine
= " (device error ignored)";
3567 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3568 dev
->xfer_shift
, (int)dev
->xfer_mode
);
3570 if (!(ehc
->i
.flags
& ATA_EHI_QUIET
) ||
3571 ehc
->i
.flags
& ATA_EHI_DID_HARDRESET
)
3572 ata_dev_info(dev
, "configured for %s%s\n",
3573 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)),
3579 ata_dev_err(dev
, "failed to set xfermode (err_mask=0x%x)\n", err_mask
);
3584 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3585 * @link: link on which timings will be programmed
3586 * @r_failed_dev: out parameter for failed device
3588 * Standard implementation of the function used to tune and set
3589 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3590 * ata_dev_set_mode() fails, pointer to the failing device is
3591 * returned in @r_failed_dev.
3594 * PCI/etc. bus probe sem.
3597 * 0 on success, negative errno otherwise
3600 int ata_do_set_mode(struct ata_link
*link
, struct ata_device
**r_failed_dev
)
3602 struct ata_port
*ap
= link
->ap
;
3603 struct ata_device
*dev
;
3604 int rc
= 0, used_dma
= 0, found
= 0;
3606 /* step 1: calculate xfer_mask */
3607 ata_for_each_dev(dev
, link
, ENABLED
) {
3608 unsigned long pio_mask
, dma_mask
;
3609 unsigned int mode_mask
;
3611 mode_mask
= ATA_DMA_MASK_ATA
;
3612 if (dev
->class == ATA_DEV_ATAPI
)
3613 mode_mask
= ATA_DMA_MASK_ATAPI
;
3614 else if (ata_id_is_cfa(dev
->id
))
3615 mode_mask
= ATA_DMA_MASK_CFA
;
3617 ata_dev_xfermask(dev
);
3618 ata_force_xfermask(dev
);
3620 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
3622 if (libata_dma_mask
& mode_mask
)
3623 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
,
3628 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
3629 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
3632 if (ata_dma_enabled(dev
))
3638 /* step 2: always set host PIO timings */
3639 ata_for_each_dev(dev
, link
, ENABLED
) {
3640 if (dev
->pio_mode
== 0xff) {
3641 ata_dev_warn(dev
, "no PIO support\n");
3646 dev
->xfer_mode
= dev
->pio_mode
;
3647 dev
->xfer_shift
= ATA_SHIFT_PIO
;
3648 if (ap
->ops
->set_piomode
)
3649 ap
->ops
->set_piomode(ap
, dev
);
3652 /* step 3: set host DMA timings */
3653 ata_for_each_dev(dev
, link
, ENABLED
) {
3654 if (!ata_dma_enabled(dev
))
3657 dev
->xfer_mode
= dev
->dma_mode
;
3658 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
3659 if (ap
->ops
->set_dmamode
)
3660 ap
->ops
->set_dmamode(ap
, dev
);
3663 /* step 4: update devices' xfer mode */
3664 ata_for_each_dev(dev
, link
, ENABLED
) {
3665 rc
= ata_dev_set_mode(dev
);
3670 /* Record simplex status. If we selected DMA then the other
3671 * host channels are not permitted to do so.
3673 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
3674 ap
->host
->simplex_claimed
= ap
;
3678 *r_failed_dev
= dev
;
3683 * ata_wait_ready - wait for link to become ready
3684 * @link: link to be waited on
3685 * @deadline: deadline jiffies for the operation
3686 * @check_ready: callback to check link readiness
3688 * Wait for @link to become ready. @check_ready should return
3689 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3690 * link doesn't seem to be occupied, other errno for other error
3693 * Transient -ENODEV conditions are allowed for
3694 * ATA_TMOUT_FF_WAIT.
3700 * 0 if @link is ready before @deadline; otherwise, -errno.
3702 int ata_wait_ready(struct ata_link
*link
, unsigned long deadline
,
3703 int (*check_ready
)(struct ata_link
*link
))
3705 unsigned long start
= jiffies
;
3706 unsigned long nodev_deadline
;
3709 /* choose which 0xff timeout to use, read comment in libata.h */
3710 if (link
->ap
->host
->flags
& ATA_HOST_PARALLEL_SCAN
)
3711 nodev_deadline
= ata_deadline(start
, ATA_TMOUT_FF_WAIT_LONG
);
3713 nodev_deadline
= ata_deadline(start
, ATA_TMOUT_FF_WAIT
);
3715 /* Slave readiness can't be tested separately from master. On
3716 * M/S emulation configuration, this function should be called
3717 * only on the master and it will handle both master and slave.
3719 WARN_ON(link
== link
->ap
->slave_link
);
3721 if (time_after(nodev_deadline
, deadline
))
3722 nodev_deadline
= deadline
;
3725 unsigned long now
= jiffies
;
3728 ready
= tmp
= check_ready(link
);
3733 * -ENODEV could be transient. Ignore -ENODEV if link
3734 * is online. Also, some SATA devices take a long
3735 * time to clear 0xff after reset. Wait for
3736 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3739 * Note that some PATA controllers (pata_ali) explode
3740 * if status register is read more than once when
3741 * there's no device attached.
3743 if (ready
== -ENODEV
) {
3744 if (ata_link_online(link
))
3746 else if ((link
->ap
->flags
& ATA_FLAG_SATA
) &&
3747 !ata_link_offline(link
) &&
3748 time_before(now
, nodev_deadline
))
3754 if (time_after(now
, deadline
))
3757 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3758 (deadline
- now
> 3 * HZ
)) {
3760 "link is slow to respond, please be patient "
3761 "(ready=%d)\n", tmp
);
3765 ata_msleep(link
->ap
, 50);
3770 * ata_wait_after_reset - wait for link to become ready after reset
3771 * @link: link to be waited on
3772 * @deadline: deadline jiffies for the operation
3773 * @check_ready: callback to check link readiness
3775 * Wait for @link to become ready after reset.
3781 * 0 if @link is ready before @deadline; otherwise, -errno.
3783 int ata_wait_after_reset(struct ata_link
*link
, unsigned long deadline
,
3784 int (*check_ready
)(struct ata_link
*link
))
3786 ata_msleep(link
->ap
, ATA_WAIT_AFTER_RESET
);
3788 return ata_wait_ready(link
, deadline
, check_ready
);
3792 * sata_link_debounce - debounce SATA phy status
3793 * @link: ATA link to debounce SATA phy status for
3794 * @params: timing parameters { interval, duration, timeout } in msec
3795 * @deadline: deadline jiffies for the operation
3797 * Make sure SStatus of @link reaches stable state, determined by
3798 * holding the same value where DET is not 1 for @duration polled
3799 * every @interval, before @timeout. Timeout constraints the
3800 * beginning of the stable state. Because DET gets stuck at 1 on
3801 * some controllers after hot unplugging, this functions waits
3802 * until timeout then returns 0 if DET is stable at 1.
3804 * @timeout is further limited by @deadline. The sooner of the
3808 * Kernel thread context (may sleep)
3811 * 0 on success, -errno on failure.
3813 int sata_link_debounce(struct ata_link
*link
, const unsigned long *params
,
3814 unsigned long deadline
)
3816 unsigned long interval
= params
[0];
3817 unsigned long duration
= params
[1];
3818 unsigned long last_jiffies
, t
;
3822 t
= ata_deadline(jiffies
, params
[2]);
3823 if (time_before(t
, deadline
))
3826 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3831 last_jiffies
= jiffies
;
3834 ata_msleep(link
->ap
, interval
);
3835 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3841 if (cur
== 1 && time_before(jiffies
, deadline
))
3843 if (time_after(jiffies
,
3844 ata_deadline(last_jiffies
, duration
)))
3849 /* unstable, start over */
3851 last_jiffies
= jiffies
;
3853 /* Check deadline. If debouncing failed, return
3854 * -EPIPE to tell upper layer to lower link speed.
3856 if (time_after(jiffies
, deadline
))
3862 * sata_link_resume - resume SATA link
3863 * @link: ATA link to resume SATA
3864 * @params: timing parameters { interval, duration, timeout } in msec
3865 * @deadline: deadline jiffies for the operation
3867 * Resume SATA phy @link and debounce it.
3870 * Kernel thread context (may sleep)
3873 * 0 on success, -errno on failure.
3875 int sata_link_resume(struct ata_link
*link
, const unsigned long *params
,
3876 unsigned long deadline
)
3878 int tries
= ATA_LINK_RESUME_TRIES
;
3879 u32 scontrol
, serror
;
3882 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3886 * Writes to SControl sometimes get ignored under certain
3887 * controllers (ata_piix SIDPR). Make sure DET actually is
3891 scontrol
= (scontrol
& 0x0f0) | 0x300;
3892 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3895 * Some PHYs react badly if SStatus is pounded
3896 * immediately after resuming. Delay 200ms before
3899 if (!(link
->flags
& ATA_LFLAG_NO_DB_DELAY
))
3900 ata_msleep(link
->ap
, 200);
3902 /* is SControl restored correctly? */
3903 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3905 } while ((scontrol
& 0xf0f) != 0x300 && --tries
);
3907 if ((scontrol
& 0xf0f) != 0x300) {
3908 ata_link_warn(link
, "failed to resume link (SControl %X)\n",
3913 if (tries
< ATA_LINK_RESUME_TRIES
)
3914 ata_link_warn(link
, "link resume succeeded after %d retries\n",
3915 ATA_LINK_RESUME_TRIES
- tries
);
3917 if ((rc
= sata_link_debounce(link
, params
, deadline
)))
3920 /* clear SError, some PHYs require this even for SRST to work */
3921 if (!(rc
= sata_scr_read(link
, SCR_ERROR
, &serror
)))
3922 rc
= sata_scr_write(link
, SCR_ERROR
, serror
);
3924 return rc
!= -EINVAL
? rc
: 0;
3928 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3929 * @link: ATA link to manipulate SControl for
3930 * @policy: LPM policy to configure
3931 * @spm_wakeup: initiate LPM transition to active state
3933 * Manipulate the IPM field of the SControl register of @link
3934 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3935 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3936 * the link. This function also clears PHYRDY_CHG before
3943 * 0 on success, -errno otherwise.
3945 int sata_link_scr_lpm(struct ata_link
*link
, enum ata_lpm_policy policy
,
3948 struct ata_eh_context
*ehc
= &link
->eh_context
;
3949 bool woken_up
= false;
3953 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
3958 case ATA_LPM_MAX_POWER
:
3959 /* disable all LPM transitions */
3960 scontrol
|= (0x7 << 8);
3961 /* initiate transition to active state */
3963 scontrol
|= (0x4 << 12);
3967 case ATA_LPM_MED_POWER
:
3968 /* allow LPM to PARTIAL */
3969 scontrol
&= ~(0x1 << 8);
3970 scontrol
|= (0x6 << 8);
3972 case ATA_LPM_MED_POWER_WITH_DIPM
:
3973 case ATA_LPM_MIN_POWER_WITH_PARTIAL
:
3974 case ATA_LPM_MIN_POWER
:
3975 if (ata_link_nr_enabled(link
) > 0)
3976 /* no restrictions on LPM transitions */
3977 scontrol
&= ~(0x7 << 8);
3979 /* empty port, power off */
3981 scontrol
|= (0x1 << 2);
3988 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
3992 /* give the link time to transit out of LPM state */
3996 /* clear PHYRDY_CHG from SError */
3997 ehc
->i
.serror
&= ~SERR_PHYRDY_CHG
;
3998 return sata_scr_write(link
, SCR_ERROR
, SERR_PHYRDY_CHG
);
4002 * ata_std_prereset - prepare for reset
4003 * @link: ATA link to be reset
4004 * @deadline: deadline jiffies for the operation
4006 * @link is about to be reset. Initialize it. Failure from
4007 * prereset makes libata abort whole reset sequence and give up
4008 * that port, so prereset should be best-effort. It does its
4009 * best to prepare for reset sequence but if things go wrong, it
4010 * should just whine, not fail.
4013 * Kernel thread context (may sleep)
4016 * 0 on success, -errno otherwise.
4018 int ata_std_prereset(struct ata_link
*link
, unsigned long deadline
)
4020 struct ata_port
*ap
= link
->ap
;
4021 struct ata_eh_context
*ehc
= &link
->eh_context
;
4022 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
4025 /* if we're about to do hardreset, nothing more to do */
4026 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
4029 /* if SATA, resume link */
4030 if (ap
->flags
& ATA_FLAG_SATA
) {
4031 rc
= sata_link_resume(link
, timing
, deadline
);
4032 /* whine about phy resume failure but proceed */
4033 if (rc
&& rc
!= -EOPNOTSUPP
)
4035 "failed to resume link for reset (errno=%d)\n",
4039 /* no point in trying softreset on offline link */
4040 if (ata_phys_link_offline(link
))
4041 ehc
->i
.action
&= ~ATA_EH_SOFTRESET
;
4047 * sata_link_hardreset - reset link via SATA phy reset
4048 * @link: link to reset
4049 * @timing: timing parameters { interval, duration, timeout } in msec
4050 * @deadline: deadline jiffies for the operation
4051 * @online: optional out parameter indicating link onlineness
4052 * @check_ready: optional callback to check link readiness
4054 * SATA phy-reset @link using DET bits of SControl register.
4055 * After hardreset, link readiness is waited upon using
4056 * ata_wait_ready() if @check_ready is specified. LLDs are
4057 * allowed to not specify @check_ready and wait itself after this
4058 * function returns. Device classification is LLD's
4061 * *@online is set to one iff reset succeeded and @link is online
4065 * Kernel thread context (may sleep)
4068 * 0 on success, -errno otherwise.
4070 int sata_link_hardreset(struct ata_link
*link
, const unsigned long *timing
,
4071 unsigned long deadline
,
4072 bool *online
, int (*check_ready
)(struct ata_link
*))
4082 if (sata_set_spd_needed(link
)) {
4083 /* SATA spec says nothing about how to reconfigure
4084 * spd. To be on the safe side, turn off phy during
4085 * reconfiguration. This works for at least ICH7 AHCI
4088 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
4091 scontrol
= (scontrol
& 0x0f0) | 0x304;
4093 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
4099 /* issue phy wake/reset */
4100 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
4103 scontrol
= (scontrol
& 0x0f0) | 0x301;
4105 if ((rc
= sata_scr_write_flush(link
, SCR_CONTROL
, scontrol
)))
4108 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4109 * 10.4.2 says at least 1 ms.
4111 ata_msleep(link
->ap
, 1);
4113 /* bring link back */
4114 rc
= sata_link_resume(link
, timing
, deadline
);
4117 /* if link is offline nothing more to do */
4118 if (ata_phys_link_offline(link
))
4121 /* Link is online. From this point, -ENODEV too is an error. */
4125 if (sata_pmp_supported(link
->ap
) && ata_is_host_link(link
)) {
4126 /* If PMP is supported, we have to do follow-up SRST.
4127 * Some PMPs don't send D2H Reg FIS after hardreset if
4128 * the first port is empty. Wait only for
4129 * ATA_TMOUT_PMP_SRST_WAIT.
4132 unsigned long pmp_deadline
;
4134 pmp_deadline
= ata_deadline(jiffies
,
4135 ATA_TMOUT_PMP_SRST_WAIT
);
4136 if (time_after(pmp_deadline
, deadline
))
4137 pmp_deadline
= deadline
;
4138 ata_wait_ready(link
, pmp_deadline
, check_ready
);
4146 rc
= ata_wait_ready(link
, deadline
, check_ready
);
4148 if (rc
&& rc
!= -EAGAIN
) {
4149 /* online is set iff link is online && reset succeeded */
4152 ata_link_err(link
, "COMRESET failed (errno=%d)\n", rc
);
4154 DPRINTK("EXIT, rc=%d\n", rc
);
4159 * sata_std_hardreset - COMRESET w/o waiting or classification
4160 * @link: link to reset
4161 * @class: resulting class of attached device
4162 * @deadline: deadline jiffies for the operation
4164 * Standard SATA COMRESET w/o waiting or classification.
4167 * Kernel thread context (may sleep)
4170 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4172 int sata_std_hardreset(struct ata_link
*link
, unsigned int *class,
4173 unsigned long deadline
)
4175 const unsigned long *timing
= sata_ehc_deb_timing(&link
->eh_context
);
4180 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
, NULL
);
4181 return online
? -EAGAIN
: rc
;
4185 * ata_std_postreset - standard postreset callback
4186 * @link: the target ata_link
4187 * @classes: classes of attached devices
4189 * This function is invoked after a successful reset. Note that
4190 * the device might have been reset more than once using
4191 * different reset methods before postreset is invoked.
4194 * Kernel thread context (may sleep)
4196 void ata_std_postreset(struct ata_link
*link
, unsigned int *classes
)
4202 /* reset complete, clear SError */
4203 if (!sata_scr_read(link
, SCR_ERROR
, &serror
))
4204 sata_scr_write(link
, SCR_ERROR
, serror
);
4206 /* print link status */
4207 sata_print_link_status(link
);
4213 * ata_dev_same_device - Determine whether new ID matches configured device
4214 * @dev: device to compare against
4215 * @new_class: class of the new device
4216 * @new_id: IDENTIFY page of the new device
4218 * Compare @new_class and @new_id against @dev and determine
4219 * whether @dev is the device indicated by @new_class and
4226 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4228 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
4231 const u16
*old_id
= dev
->id
;
4232 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
4233 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
4235 if (dev
->class != new_class
) {
4236 ata_dev_info(dev
, "class mismatch %d != %d\n",
4237 dev
->class, new_class
);
4241 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
4242 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
4243 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
4244 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
4246 if (strcmp(model
[0], model
[1])) {
4247 ata_dev_info(dev
, "model number mismatch '%s' != '%s'\n",
4248 model
[0], model
[1]);
4252 if (strcmp(serial
[0], serial
[1])) {
4253 ata_dev_info(dev
, "serial number mismatch '%s' != '%s'\n",
4254 serial
[0], serial
[1]);
4262 * ata_dev_reread_id - Re-read IDENTIFY data
4263 * @dev: target ATA device
4264 * @readid_flags: read ID flags
4266 * Re-read IDENTIFY page and make sure @dev is still attached to
4270 * Kernel thread context (may sleep)
4273 * 0 on success, negative errno otherwise
4275 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
4277 unsigned int class = dev
->class;
4278 u16
*id
= (void *)dev
->link
->ap
->sector_buf
;
4282 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
4286 /* is the device still there? */
4287 if (!ata_dev_same_device(dev
, class, id
))
4290 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
4295 * ata_dev_revalidate - Revalidate ATA device
4296 * @dev: device to revalidate
4297 * @new_class: new class code
4298 * @readid_flags: read ID flags
4300 * Re-read IDENTIFY page, make sure @dev is still attached to the
4301 * port and reconfigure it according to the new IDENTIFY page.
4304 * Kernel thread context (may sleep)
4307 * 0 on success, negative errno otherwise
4309 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int new_class
,
4310 unsigned int readid_flags
)
4312 u64 n_sectors
= dev
->n_sectors
;
4313 u64 n_native_sectors
= dev
->n_native_sectors
;
4316 if (!ata_dev_enabled(dev
))
4319 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4320 if (ata_class_enabled(new_class
) &&
4321 new_class
!= ATA_DEV_ATA
&&
4322 new_class
!= ATA_DEV_ATAPI
&&
4323 new_class
!= ATA_DEV_ZAC
&&
4324 new_class
!= ATA_DEV_SEMB
) {
4325 ata_dev_info(dev
, "class mismatch %u != %u\n",
4326 dev
->class, new_class
);
4332 rc
= ata_dev_reread_id(dev
, readid_flags
);
4336 /* configure device according to the new ID */
4337 rc
= ata_dev_configure(dev
);
4341 /* verify n_sectors hasn't changed */
4342 if (dev
->class != ATA_DEV_ATA
|| !n_sectors
||
4343 dev
->n_sectors
== n_sectors
)
4346 /* n_sectors has changed */
4347 ata_dev_warn(dev
, "n_sectors mismatch %llu != %llu\n",
4348 (unsigned long long)n_sectors
,
4349 (unsigned long long)dev
->n_sectors
);
4352 * Something could have caused HPA to be unlocked
4353 * involuntarily. If n_native_sectors hasn't changed and the
4354 * new size matches it, keep the device.
4356 if (dev
->n_native_sectors
== n_native_sectors
&&
4357 dev
->n_sectors
> n_sectors
&& dev
->n_sectors
== n_native_sectors
) {
4359 "new n_sectors matches native, probably "
4360 "late HPA unlock, n_sectors updated\n");
4361 /* use the larger n_sectors */
4366 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4367 * unlocking HPA in those cases.
4369 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4371 if (dev
->n_native_sectors
== n_native_sectors
&&
4372 dev
->n_sectors
< n_sectors
&& n_sectors
== n_native_sectors
&&
4373 !(dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
)) {
4375 "old n_sectors matches native, probably "
4376 "late HPA lock, will try to unlock HPA\n");
4377 /* try unlocking HPA */
4378 dev
->flags
|= ATA_DFLAG_UNLOCK_HPA
;
4383 /* restore original n_[native_]sectors and fail */
4384 dev
->n_native_sectors
= n_native_sectors
;
4385 dev
->n_sectors
= n_sectors
;
4387 ata_dev_err(dev
, "revalidation failed (errno=%d)\n", rc
);
4391 struct ata_blacklist_entry
{
4392 const char *model_num
;
4393 const char *model_rev
;
4394 unsigned long horkage
;
4397 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
4398 /* Devices with DMA related problems under Linux */
4399 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
4400 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
4401 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
4402 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
4403 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
4404 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
4405 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
4406 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
4407 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
4408 { "CRD-848[02]B", NULL
, ATA_HORKAGE_NODMA
},
4409 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
4410 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
4411 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
4412 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
4413 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
4414 { "HITACHI CDR-8[34]35",NULL
, ATA_HORKAGE_NODMA
},
4415 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
4416 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
4417 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
4418 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
4419 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
4420 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
4421 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
4422 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
4423 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
4424 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
4425 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA
},
4426 { "Seagate STT20000A", NULL
, ATA_HORKAGE_NODMA
},
4427 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA
},
4428 { "VRFDFC22048UCHC-TE*", NULL
, ATA_HORKAGE_NODMA
},
4429 /* Odd clown on sil3726/4726 PMPs */
4430 { "Config Disk", NULL
, ATA_HORKAGE_DISABLE
},
4432 /* Weird ATAPI devices */
4433 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
},
4434 { "QUANTUM DAT DAT72-000", NULL
, ATA_HORKAGE_ATAPI_MOD16_DMA
},
4435 { "Slimtype DVD A DS8A8SH", NULL
, ATA_HORKAGE_MAX_SEC_LBA48
},
4436 { "Slimtype DVD A DS8A9SH", NULL
, ATA_HORKAGE_MAX_SEC_LBA48
},
4439 * Causes silent data corruption with higher max sects.
4440 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4442 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024
},
4445 * These devices time out with higher max sects.
4446 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4448 { "LITEON CX1-JB*-HP", NULL
, ATA_HORKAGE_MAX_SEC_1024
},
4449 { "LITEON EP1-*", NULL
, ATA_HORKAGE_MAX_SEC_1024
},
4451 /* Devices we expect to fail diagnostics */
4453 /* Devices where NCQ should be avoided */
4455 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
4456 { "WDC WD740ADFD-00NLR1", NULL
, ATA_HORKAGE_NONCQ
, },
4457 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4458 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
4460 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ
},
4461 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ
},
4462 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ
},
4463 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ
},
4464 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ
},
4466 /* Seagate NCQ + FLUSH CACHE firmware bug */
4467 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4468 ATA_HORKAGE_FIRMWARE_WARN
},
4470 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4471 ATA_HORKAGE_FIRMWARE_WARN
},
4473 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4474 ATA_HORKAGE_FIRMWARE_WARN
},
4476 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4477 ATA_HORKAGE_FIRMWARE_WARN
},
4479 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4480 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA
},
4481 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA
},
4482 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA
},
4484 /* Blacklist entries taken from Silicon Image 3124/3132
4485 Windows driver .inf file - also several Linux problem reports */
4486 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
4487 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
4488 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
4490 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4491 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ
, },
4493 /* Some Sandisk SSDs lock up hard with NCQ enabled. Reported on
4494 SD7SN6S256G and SD8SN8U256G */
4495 { "SanDisk SD[78]SN*G", NULL
, ATA_HORKAGE_NONCQ
, },
4497 /* devices which puke on READ_NATIVE_MAX */
4498 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA
, },
4499 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA
},
4500 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA
},
4501 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA
},
4503 /* this one allows HPA unlocking but fails IOs on the area */
4504 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA
},
4506 /* Devices which report 1 sector over size HPA */
4507 { "ST340823A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4508 { "ST320413A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4509 { "ST310211A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4511 /* Devices which get the IVB wrong */
4512 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB
, },
4513 /* Maybe we should just blacklist TSSTcorp... */
4514 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB
, },
4516 /* Devices that do not need bridging limits applied */
4517 { "MTRON MSP-SATA*", NULL
, ATA_HORKAGE_BRIDGE_OK
, },
4518 { "BUFFALO HD-QSU2/R5", NULL
, ATA_HORKAGE_BRIDGE_OK
, },
4520 /* Devices which aren't very happy with higher link speeds */
4521 { "WD My Book", NULL
, ATA_HORKAGE_1_5_GBPS
, },
4522 { "Seagate FreeAgent GoFlex", NULL
, ATA_HORKAGE_1_5_GBPS
, },
4525 * Devices which choke on SETXFER. Applies only if both the
4526 * device and controller are SATA.
4528 { "PIONEER DVD-RW DVRTD08", NULL
, ATA_HORKAGE_NOSETXFER
},
4529 { "PIONEER DVD-RW DVRTD08A", NULL
, ATA_HORKAGE_NOSETXFER
},
4530 { "PIONEER DVD-RW DVR-215", NULL
, ATA_HORKAGE_NOSETXFER
},
4531 { "PIONEER DVD-RW DVR-212D", NULL
, ATA_HORKAGE_NOSETXFER
},
4532 { "PIONEER DVD-RW DVR-216D", NULL
, ATA_HORKAGE_NOSETXFER
},
4534 /* Crucial BX100 SSD 500GB has broken LPM support */
4535 { "CT500BX100SSD1", NULL
, ATA_HORKAGE_NOLPM
},
4537 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4538 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM
|
4539 ATA_HORKAGE_ZERO_AFTER_TRIM
|
4540 ATA_HORKAGE_NOLPM
, },
4541 /* 512GB MX100 with newer firmware has only LPM issues */
4542 { "Crucial_CT512MX100*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
|
4543 ATA_HORKAGE_NOLPM
, },
4545 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4546 { "Crucial_CT480M500*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4547 ATA_HORKAGE_ZERO_AFTER_TRIM
|
4548 ATA_HORKAGE_NOLPM
, },
4549 { "Crucial_CT960M500*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4550 ATA_HORKAGE_ZERO_AFTER_TRIM
|
4551 ATA_HORKAGE_NOLPM
, },
4553 /* These specific Samsung models/firmware-revs do not handle LPM well */
4554 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM
, },
4555 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM
, },
4556 { "SAMSUNG MZ7TD256HAFV-000L9", NULL
, ATA_HORKAGE_NOLPM
, },
4557 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM
, },
4559 /* devices that don't properly handle queued TRIM commands */
4560 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM
|
4561 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4562 { "Micron_M500_*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4563 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4564 { "Crucial_CT*M500*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4565 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4566 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM
|
4567 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4568 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM
|
4569 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4570 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM
|
4571 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4572 { "Samsung SSD 840*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4573 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4574 { "Samsung SSD 850*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4575 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4576 { "FCCT*M500*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4577 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4579 /* devices that don't properly handle TRIM commands */
4580 { "SuperSSpeed S238*", NULL
, ATA_HORKAGE_NOTRIM
, },
4583 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4584 * (Return Zero After Trim) flags in the ATA Command Set are
4585 * unreliable in the sense that they only define what happens if
4586 * the device successfully executed the DSM TRIM command. TRIM
4587 * is only advisory, however, and the device is free to silently
4588 * ignore all or parts of the request.
4590 * Whitelist drives that are known to reliably return zeroes
4595 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4596 * that model before whitelisting all other intel SSDs.
4598 { "INTEL*SSDSC2MH*", NULL
, 0, },
4600 { "Micron*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4601 { "Crucial*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4602 { "INTEL*SSD*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4603 { "SSD*INTEL*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4604 { "Samsung*SSD*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4605 { "SAMSUNG*SSD*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4606 { "SAMSUNG*MZ7KM*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4607 { "ST[1248][0248]0[FH]*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4610 * Some WD SATA-I drives spin up and down erratically when the link
4611 * is put into the slumber mode. We don't have full list of the
4612 * affected devices. Disable LPM if the device matches one of the
4613 * known prefixes and is SATA-1. As a side effect LPM partial is
4616 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4618 { "WDC WD800JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4619 { "WDC WD1200JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4620 { "WDC WD1600JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4621 { "WDC WD2000JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4622 { "WDC WD2500JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4623 { "WDC WD3000JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4624 { "WDC WD3200JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4630 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
)
4632 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
4633 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
4634 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
4636 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
4637 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
4639 while (ad
->model_num
) {
4640 if (glob_match(ad
->model_num
, model_num
)) {
4641 if (ad
->model_rev
== NULL
)
4643 if (glob_match(ad
->model_rev
, model_rev
))
4651 static int ata_dma_blacklisted(const struct ata_device
*dev
)
4653 /* We don't support polling DMA.
4654 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4655 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4657 if ((dev
->link
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
4658 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
4660 return (dev
->horkage
& ATA_HORKAGE_NODMA
) ? 1 : 0;
4664 * ata_is_40wire - check drive side detection
4667 * Perform drive side detection decoding, allowing for device vendors
4668 * who can't follow the documentation.
4671 static int ata_is_40wire(struct ata_device
*dev
)
4673 if (dev
->horkage
& ATA_HORKAGE_IVB
)
4674 return ata_drive_40wire_relaxed(dev
->id
);
4675 return ata_drive_40wire(dev
->id
);
4679 * cable_is_40wire - 40/80/SATA decider
4680 * @ap: port to consider
4682 * This function encapsulates the policy for speed management
4683 * in one place. At the moment we don't cache the result but
4684 * there is a good case for setting ap->cbl to the result when
4685 * we are called with unknown cables (and figuring out if it
4686 * impacts hotplug at all).
4688 * Return 1 if the cable appears to be 40 wire.
4691 static int cable_is_40wire(struct ata_port
*ap
)
4693 struct ata_link
*link
;
4694 struct ata_device
*dev
;
4696 /* If the controller thinks we are 40 wire, we are. */
4697 if (ap
->cbl
== ATA_CBL_PATA40
)
4700 /* If the controller thinks we are 80 wire, we are. */
4701 if (ap
->cbl
== ATA_CBL_PATA80
|| ap
->cbl
== ATA_CBL_SATA
)
4704 /* If the system is known to be 40 wire short cable (eg
4705 * laptop), then we allow 80 wire modes even if the drive
4708 if (ap
->cbl
== ATA_CBL_PATA40_SHORT
)
4711 /* If the controller doesn't know, we scan.
4713 * Note: We look for all 40 wire detects at this point. Any
4714 * 80 wire detect is taken to be 80 wire cable because
4715 * - in many setups only the one drive (slave if present) will
4716 * give a valid detect
4717 * - if you have a non detect capable drive you don't want it
4718 * to colour the choice
4720 ata_for_each_link(link
, ap
, EDGE
) {
4721 ata_for_each_dev(dev
, link
, ENABLED
) {
4722 if (!ata_is_40wire(dev
))
4730 * ata_dev_xfermask - Compute supported xfermask of the given device
4731 * @dev: Device to compute xfermask for
4733 * Compute supported xfermask of @dev and store it in
4734 * dev->*_mask. This function is responsible for applying all
4735 * known limits including host controller limits, device
4741 static void ata_dev_xfermask(struct ata_device
*dev
)
4743 struct ata_link
*link
= dev
->link
;
4744 struct ata_port
*ap
= link
->ap
;
4745 struct ata_host
*host
= ap
->host
;
4746 unsigned long xfer_mask
;
4748 /* controller modes available */
4749 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
4750 ap
->mwdma_mask
, ap
->udma_mask
);
4752 /* drive modes available */
4753 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
4754 dev
->mwdma_mask
, dev
->udma_mask
);
4755 xfer_mask
&= ata_id_xfermask(dev
->id
);
4758 * CFA Advanced TrueIDE timings are not allowed on a shared
4761 if (ata_dev_pair(dev
)) {
4762 /* No PIO5 or PIO6 */
4763 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
4764 /* No MWDMA3 or MWDMA 4 */
4765 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
4768 if (ata_dma_blacklisted(dev
)) {
4769 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4771 "device is on DMA blacklist, disabling DMA\n");
4774 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
4775 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
4776 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4778 "simplex DMA is claimed by other device, disabling DMA\n");
4781 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
4782 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
4784 if (ap
->ops
->mode_filter
)
4785 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
4787 /* Apply cable rule here. Don't apply it early because when
4788 * we handle hot plug the cable type can itself change.
4789 * Check this last so that we know if the transfer rate was
4790 * solely limited by the cable.
4791 * Unknown or 80 wire cables reported host side are checked
4792 * drive side as well. Cases where we know a 40wire cable
4793 * is used safely for 80 are not checked here.
4795 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
4796 /* UDMA/44 or higher would be available */
4797 if (cable_is_40wire(ap
)) {
4799 "limited to UDMA/33 due to 40-wire cable\n");
4800 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
4803 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
4804 &dev
->mwdma_mask
, &dev
->udma_mask
);
4808 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4809 * @dev: Device to which command will be sent
4811 * Issue SET FEATURES - XFER MODE command to device @dev
4815 * PCI/etc. bus probe sem.
4818 * 0 on success, AC_ERR_* mask otherwise.
4821 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
4823 struct ata_taskfile tf
;
4824 unsigned int err_mask
;
4826 /* set up set-features taskfile */
4827 DPRINTK("set features - xfer mode\n");
4829 /* Some controllers and ATAPI devices show flaky interrupt
4830 * behavior after setting xfer mode. Use polling instead.
4832 ata_tf_init(dev
, &tf
);
4833 tf
.command
= ATA_CMD_SET_FEATURES
;
4834 tf
.feature
= SETFEATURES_XFER
;
4835 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
| ATA_TFLAG_POLLING
;
4836 tf
.protocol
= ATA_PROT_NODATA
;
4837 /* If we are using IORDY we must send the mode setting command */
4838 if (ata_pio_need_iordy(dev
))
4839 tf
.nsect
= dev
->xfer_mode
;
4840 /* If the device has IORDY and the controller does not - turn it off */
4841 else if (ata_id_has_iordy(dev
->id
))
4843 else /* In the ancient relic department - skip all of this */
4846 /* On some disks, this command causes spin-up, so we need longer timeout */
4847 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 15000);
4849 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4854 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4855 * @dev: Device to which command will be sent
4856 * @enable: Whether to enable or disable the feature
4857 * @feature: The sector count represents the feature to set
4859 * Issue SET FEATURES - SATA FEATURES command to device @dev
4860 * on port @ap with sector count
4863 * PCI/etc. bus probe sem.
4866 * 0 on success, AC_ERR_* mask otherwise.
4868 unsigned int ata_dev_set_feature(struct ata_device
*dev
, u8 enable
, u8 feature
)
4870 struct ata_taskfile tf
;
4871 unsigned int err_mask
;
4872 unsigned long timeout
= 0;
4874 /* set up set-features taskfile */
4875 DPRINTK("set features - SATA features\n");
4877 ata_tf_init(dev
, &tf
);
4878 tf
.command
= ATA_CMD_SET_FEATURES
;
4879 tf
.feature
= enable
;
4880 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4881 tf
.protocol
= ATA_PROT_NODATA
;
4884 if (enable
== SETFEATURES_SPINUP
)
4885 timeout
= ata_probe_timeout
?
4886 ata_probe_timeout
* 1000 : SETFEATURES_SPINUP_TIMEOUT
;
4887 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, timeout
);
4889 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4892 EXPORT_SYMBOL_GPL(ata_dev_set_feature
);
4895 * ata_dev_init_params - Issue INIT DEV PARAMS command
4896 * @dev: Device to which command will be sent
4897 * @heads: Number of heads (taskfile parameter)
4898 * @sectors: Number of sectors (taskfile parameter)
4901 * Kernel thread context (may sleep)
4904 * 0 on success, AC_ERR_* mask otherwise.
4906 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
4907 u16 heads
, u16 sectors
)
4909 struct ata_taskfile tf
;
4910 unsigned int err_mask
;
4912 /* Number of sectors per track 1-255. Number of heads 1-16 */
4913 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
4914 return AC_ERR_INVALID
;
4916 /* set up init dev params taskfile */
4917 DPRINTK("init dev params \n");
4919 ata_tf_init(dev
, &tf
);
4920 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
4921 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4922 tf
.protocol
= ATA_PROT_NODATA
;
4924 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
4926 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4927 /* A clean abort indicates an original or just out of spec drive
4928 and we should continue as we issue the setup based on the
4929 drive reported working geometry */
4930 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
4933 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4938 * atapi_check_dma - Check whether ATAPI DMA can be supported
4939 * @qc: Metadata associated with taskfile to check
4941 * Allow low-level driver to filter ATA PACKET commands, returning
4942 * a status indicating whether or not it is OK to use DMA for the
4943 * supplied PACKET command.
4946 * spin_lock_irqsave(host lock)
4948 * RETURNS: 0 when ATAPI DMA can be used
4951 int atapi_check_dma(struct ata_queued_cmd
*qc
)
4953 struct ata_port
*ap
= qc
->ap
;
4955 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4956 * few ATAPI devices choke on such DMA requests.
4958 if (!(qc
->dev
->horkage
& ATA_HORKAGE_ATAPI_MOD16_DMA
) &&
4959 unlikely(qc
->nbytes
& 15))
4962 if (ap
->ops
->check_atapi_dma
)
4963 return ap
->ops
->check_atapi_dma(qc
);
4969 * ata_std_qc_defer - Check whether a qc needs to be deferred
4970 * @qc: ATA command in question
4972 * Non-NCQ commands cannot run with any other command, NCQ or
4973 * not. As upper layer only knows the queue depth, we are
4974 * responsible for maintaining exclusion. This function checks
4975 * whether a new command @qc can be issued.
4978 * spin_lock_irqsave(host lock)
4981 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4983 int ata_std_qc_defer(struct ata_queued_cmd
*qc
)
4985 struct ata_link
*link
= qc
->dev
->link
;
4987 if (ata_is_ncq(qc
->tf
.protocol
)) {
4988 if (!ata_tag_valid(link
->active_tag
))
4991 if (!ata_tag_valid(link
->active_tag
) && !link
->sactive
)
4995 return ATA_DEFER_LINK
;
4998 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
5001 * ata_sg_init - Associate command with scatter-gather table.
5002 * @qc: Command to be associated
5003 * @sg: Scatter-gather table.
5004 * @n_elem: Number of elements in s/g table.
5006 * Initialize the data-related elements of queued_cmd @qc
5007 * to point to a scatter-gather table @sg, containing @n_elem
5011 * spin_lock_irqsave(host lock)
5013 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
5014 unsigned int n_elem
)
5017 qc
->n_elem
= n_elem
;
5021 #ifdef CONFIG_HAS_DMA
5024 * ata_sg_clean - Unmap DMA memory associated with command
5025 * @qc: Command containing DMA memory to be released
5027 * Unmap all mapped DMA memory associated with this command.
5030 * spin_lock_irqsave(host lock)
5032 static void ata_sg_clean(struct ata_queued_cmd
*qc
)
5034 struct ata_port
*ap
= qc
->ap
;
5035 struct scatterlist
*sg
= qc
->sg
;
5036 int dir
= qc
->dma_dir
;
5038 WARN_ON_ONCE(sg
== NULL
);
5040 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
5043 dma_unmap_sg(ap
->dev
, sg
, qc
->orig_n_elem
, dir
);
5045 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
5050 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5051 * @qc: Command with scatter-gather table to be mapped.
5053 * DMA-map the scatter-gather table associated with queued_cmd @qc.
5056 * spin_lock_irqsave(host lock)
5059 * Zero on success, negative on error.
5062 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
5064 struct ata_port
*ap
= qc
->ap
;
5065 unsigned int n_elem
;
5067 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
5069 n_elem
= dma_map_sg(ap
->dev
, qc
->sg
, qc
->n_elem
, qc
->dma_dir
);
5073 VPRINTK("%d sg elements mapped\n", n_elem
);
5074 qc
->orig_n_elem
= qc
->n_elem
;
5075 qc
->n_elem
= n_elem
;
5076 qc
->flags
|= ATA_QCFLAG_DMAMAP
;
5081 #else /* !CONFIG_HAS_DMA */
5083 static inline void ata_sg_clean(struct ata_queued_cmd
*qc
) {}
5084 static inline int ata_sg_setup(struct ata_queued_cmd
*qc
) { return -1; }
5086 #endif /* !CONFIG_HAS_DMA */
5089 * swap_buf_le16 - swap halves of 16-bit words in place
5090 * @buf: Buffer to swap
5091 * @buf_words: Number of 16-bit words in buffer.
5093 * Swap halves of 16-bit words if needed to convert from
5094 * little-endian byte order to native cpu byte order, or
5098 * Inherited from caller.
5100 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
5105 for (i
= 0; i
< buf_words
; i
++)
5106 buf
[i
] = le16_to_cpu(buf
[i
]);
5107 #endif /* __BIG_ENDIAN */
5111 * ata_qc_new_init - Request an available ATA command, and initialize it
5112 * @dev: Device from whom we request an available command structure
5119 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
, int tag
)
5121 struct ata_port
*ap
= dev
->link
->ap
;
5122 struct ata_queued_cmd
*qc
;
5124 /* no command while frozen */
5125 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
5129 if (ap
->flags
& ATA_FLAG_SAS_HOST
) {
5130 tag
= ata_sas_allocate_tag(ap
);
5135 qc
= __ata_qc_from_tag(ap
, tag
);
5136 qc
->tag
= qc
->hw_tag
= tag
;
5147 * ata_qc_free - free unused ata_queued_cmd
5148 * @qc: Command to complete
5150 * Designed to free unused ata_queued_cmd object
5151 * in case something prevents using it.
5154 * spin_lock_irqsave(host lock)
5156 void ata_qc_free(struct ata_queued_cmd
*qc
)
5158 struct ata_port
*ap
;
5161 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
5166 if (ata_tag_valid(tag
)) {
5167 qc
->tag
= ATA_TAG_POISON
;
5168 if (ap
->flags
& ATA_FLAG_SAS_HOST
)
5169 ata_sas_free_tag(tag
, ap
);
5173 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
5175 struct ata_port
*ap
;
5176 struct ata_link
*link
;
5178 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
5179 WARN_ON_ONCE(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
5181 link
= qc
->dev
->link
;
5183 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
5186 /* command should be marked inactive atomically with qc completion */
5187 if (ata_is_ncq(qc
->tf
.protocol
)) {
5188 link
->sactive
&= ~(1 << qc
->hw_tag
);
5190 ap
->nr_active_links
--;
5192 link
->active_tag
= ATA_TAG_POISON
;
5193 ap
->nr_active_links
--;
5196 /* clear exclusive status */
5197 if (unlikely(qc
->flags
& ATA_QCFLAG_CLEAR_EXCL
&&
5198 ap
->excl_link
== link
))
5199 ap
->excl_link
= NULL
;
5201 /* atapi: mark qc as inactive to prevent the interrupt handler
5202 * from completing the command twice later, before the error handler
5203 * is called. (when rc != 0 and atapi request sense is needed)
5205 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
5206 ap
->qc_active
&= ~(1ULL << qc
->tag
);
5208 /* call completion callback */
5209 qc
->complete_fn(qc
);
5212 static void fill_result_tf(struct ata_queued_cmd
*qc
)
5214 struct ata_port
*ap
= qc
->ap
;
5216 qc
->result_tf
.flags
= qc
->tf
.flags
;
5217 ap
->ops
->qc_fill_rtf(qc
);
5220 static void ata_verify_xfer(struct ata_queued_cmd
*qc
)
5222 struct ata_device
*dev
= qc
->dev
;
5224 if (!ata_is_data(qc
->tf
.protocol
))
5227 if ((dev
->mwdma_mask
|| dev
->udma_mask
) && ata_is_pio(qc
->tf
.protocol
))
5230 dev
->flags
&= ~ATA_DFLAG_DUBIOUS_XFER
;
5234 * ata_qc_complete - Complete an active ATA command
5235 * @qc: Command to complete
5237 * Indicate to the mid and upper layers that an ATA command has
5238 * completed, with either an ok or not-ok status.
5240 * Refrain from calling this function multiple times when
5241 * successfully completing multiple NCQ commands.
5242 * ata_qc_complete_multiple() should be used instead, which will
5243 * properly update IRQ expect state.
5246 * spin_lock_irqsave(host lock)
5248 void ata_qc_complete(struct ata_queued_cmd
*qc
)
5250 struct ata_port
*ap
= qc
->ap
;
5252 /* Trigger the LED (if available) */
5253 ledtrig_disk_activity(!!(qc
->tf
.flags
& ATA_TFLAG_WRITE
));
5255 /* XXX: New EH and old EH use different mechanisms to
5256 * synchronize EH with regular execution path.
5258 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5259 * Normal execution path is responsible for not accessing a
5260 * failed qc. libata core enforces the rule by returning NULL
5261 * from ata_qc_from_tag() for failed qcs.
5263 * Old EH depends on ata_qc_complete() nullifying completion
5264 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5265 * not synchronize with interrupt handler. Only PIO task is
5268 if (ap
->ops
->error_handler
) {
5269 struct ata_device
*dev
= qc
->dev
;
5270 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
5272 if (unlikely(qc
->err_mask
))
5273 qc
->flags
|= ATA_QCFLAG_FAILED
;
5276 * Finish internal commands without any further processing
5277 * and always with the result TF filled.
5279 if (unlikely(ata_tag_internal(qc
->tag
))) {
5281 trace_ata_qc_complete_internal(qc
);
5282 __ata_qc_complete(qc
);
5287 * Non-internal qc has failed. Fill the result TF and
5290 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
5292 trace_ata_qc_complete_failed(qc
);
5293 ata_qc_schedule_eh(qc
);
5297 WARN_ON_ONCE(ap
->pflags
& ATA_PFLAG_FROZEN
);
5299 /* read result TF if requested */
5300 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5303 trace_ata_qc_complete_done(qc
);
5304 /* Some commands need post-processing after successful
5307 switch (qc
->tf
.command
) {
5308 case ATA_CMD_SET_FEATURES
:
5309 if (qc
->tf
.feature
!= SETFEATURES_WC_ON
&&
5310 qc
->tf
.feature
!= SETFEATURES_WC_OFF
&&
5311 qc
->tf
.feature
!= SETFEATURES_RA_ON
&&
5312 qc
->tf
.feature
!= SETFEATURES_RA_OFF
)
5315 case ATA_CMD_INIT_DEV_PARAMS
: /* CHS translation changed */
5316 case ATA_CMD_SET_MULTI
: /* multi_count changed */
5317 /* revalidate device */
5318 ehi
->dev_action
[dev
->devno
] |= ATA_EH_REVALIDATE
;
5319 ata_port_schedule_eh(ap
);
5323 dev
->flags
|= ATA_DFLAG_SLEEPING
;
5327 if (unlikely(dev
->flags
& ATA_DFLAG_DUBIOUS_XFER
))
5328 ata_verify_xfer(qc
);
5330 __ata_qc_complete(qc
);
5332 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
5335 /* read result TF if failed or requested */
5336 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5339 __ata_qc_complete(qc
);
5344 * ata_qc_complete_multiple - Complete multiple qcs successfully
5345 * @ap: port in question
5346 * @qc_active: new qc_active mask
5348 * Complete in-flight commands. This functions is meant to be
5349 * called from low-level driver's interrupt routine to complete
5350 * requests normally. ap->qc_active and @qc_active is compared
5351 * and commands are completed accordingly.
5353 * Always use this function when completing multiple NCQ commands
5354 * from IRQ handlers instead of calling ata_qc_complete()
5355 * multiple times to keep IRQ expect status properly in sync.
5358 * spin_lock_irqsave(host lock)
5361 * Number of completed commands on success, -errno otherwise.
5363 int ata_qc_complete_multiple(struct ata_port
*ap
, u64 qc_active
)
5365 u64 done_mask
, ap_qc_active
= ap
->qc_active
;
5369 * If the internal tag is set on ap->qc_active, then we care about
5370 * bit0 on the passed in qc_active mask. Move that bit up to match
5373 if (ap_qc_active
& (1ULL << ATA_TAG_INTERNAL
)) {
5374 qc_active
|= (qc_active
& 0x01) << ATA_TAG_INTERNAL
;
5375 qc_active
^= qc_active
& 0x01;
5378 done_mask
= ap_qc_active
^ qc_active
;
5380 if (unlikely(done_mask
& qc_active
)) {
5381 ata_port_err(ap
, "illegal qc_active transition (%08llx->%08llx)\n",
5382 ap
->qc_active
, qc_active
);
5387 struct ata_queued_cmd
*qc
;
5388 unsigned int tag
= __ffs64(done_mask
);
5390 qc
= ata_qc_from_tag(ap
, tag
);
5392 ata_qc_complete(qc
);
5395 done_mask
&= ~(1ULL << tag
);
5402 * ata_qc_issue - issue taskfile to device
5403 * @qc: command to issue to device
5405 * Prepare an ATA command to submission to device.
5406 * This includes mapping the data into a DMA-able
5407 * area, filling in the S/G table, and finally
5408 * writing the taskfile to hardware, starting the command.
5411 * spin_lock_irqsave(host lock)
5413 void ata_qc_issue(struct ata_queued_cmd
*qc
)
5415 struct ata_port
*ap
= qc
->ap
;
5416 struct ata_link
*link
= qc
->dev
->link
;
5417 u8 prot
= qc
->tf
.protocol
;
5419 /* Make sure only one non-NCQ command is outstanding. The
5420 * check is skipped for old EH because it reuses active qc to
5421 * request ATAPI sense.
5423 WARN_ON_ONCE(ap
->ops
->error_handler
&& ata_tag_valid(link
->active_tag
));
5425 if (ata_is_ncq(prot
)) {
5426 WARN_ON_ONCE(link
->sactive
& (1 << qc
->hw_tag
));
5429 ap
->nr_active_links
++;
5430 link
->sactive
|= 1 << qc
->hw_tag
;
5432 WARN_ON_ONCE(link
->sactive
);
5434 ap
->nr_active_links
++;
5435 link
->active_tag
= qc
->tag
;
5438 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
5439 ap
->qc_active
|= 1ULL << qc
->tag
;
5442 * We guarantee to LLDs that they will have at least one
5443 * non-zero sg if the command is a data command.
5445 if (ata_is_data(prot
) && (!qc
->sg
|| !qc
->n_elem
|| !qc
->nbytes
))
5448 if (ata_is_dma(prot
) || (ata_is_pio(prot
) &&
5449 (ap
->flags
& ATA_FLAG_PIO_DMA
)))
5450 if (ata_sg_setup(qc
))
5453 /* if device is sleeping, schedule reset and abort the link */
5454 if (unlikely(qc
->dev
->flags
& ATA_DFLAG_SLEEPING
)) {
5455 link
->eh_info
.action
|= ATA_EH_RESET
;
5456 ata_ehi_push_desc(&link
->eh_info
, "waking up from sleep");
5457 ata_link_abort(link
);
5461 ap
->ops
->qc_prep(qc
);
5462 trace_ata_qc_issue(qc
);
5463 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
5464 if (unlikely(qc
->err_mask
))
5469 qc
->err_mask
|= AC_ERR_SYSTEM
;
5471 ata_qc_complete(qc
);
5475 * sata_scr_valid - test whether SCRs are accessible
5476 * @link: ATA link to test SCR accessibility for
5478 * Test whether SCRs are accessible for @link.
5484 * 1 if SCRs are accessible, 0 otherwise.
5486 int sata_scr_valid(struct ata_link
*link
)
5488 struct ata_port
*ap
= link
->ap
;
5490 return (ap
->flags
& ATA_FLAG_SATA
) && ap
->ops
->scr_read
;
5494 * sata_scr_read - read SCR register of the specified port
5495 * @link: ATA link to read SCR for
5497 * @val: Place to store read value
5499 * Read SCR register @reg of @link into *@val. This function is
5500 * guaranteed to succeed if @link is ap->link, the cable type of
5501 * the port is SATA and the port implements ->scr_read.
5504 * None if @link is ap->link. Kernel thread context otherwise.
5507 * 0 on success, negative errno on failure.
5509 int sata_scr_read(struct ata_link
*link
, int reg
, u32
*val
)
5511 if (ata_is_host_link(link
)) {
5512 if (sata_scr_valid(link
))
5513 return link
->ap
->ops
->scr_read(link
, reg
, val
);
5517 return sata_pmp_scr_read(link
, reg
, val
);
5521 * sata_scr_write - write SCR register of the specified port
5522 * @link: ATA link to write SCR for
5523 * @reg: SCR to write
5524 * @val: value to write
5526 * Write @val to SCR register @reg of @link. This function is
5527 * guaranteed to succeed if @link is ap->link, the cable type of
5528 * the port is SATA and the port implements ->scr_read.
5531 * None if @link is ap->link. Kernel thread context otherwise.
5534 * 0 on success, negative errno on failure.
5536 int sata_scr_write(struct ata_link
*link
, int reg
, u32 val
)
5538 if (ata_is_host_link(link
)) {
5539 if (sata_scr_valid(link
))
5540 return link
->ap
->ops
->scr_write(link
, reg
, val
);
5544 return sata_pmp_scr_write(link
, reg
, val
);
5548 * sata_scr_write_flush - write SCR register of the specified port and flush
5549 * @link: ATA link to write SCR for
5550 * @reg: SCR to write
5551 * @val: value to write
5553 * This function is identical to sata_scr_write() except that this
5554 * function performs flush after writing to the register.
5557 * None if @link is ap->link. Kernel thread context otherwise.
5560 * 0 on success, negative errno on failure.
5562 int sata_scr_write_flush(struct ata_link
*link
, int reg
, u32 val
)
5564 if (ata_is_host_link(link
)) {
5567 if (sata_scr_valid(link
)) {
5568 rc
= link
->ap
->ops
->scr_write(link
, reg
, val
);
5570 rc
= link
->ap
->ops
->scr_read(link
, reg
, &val
);
5576 return sata_pmp_scr_write(link
, reg
, val
);
5580 * ata_phys_link_online - test whether the given link is online
5581 * @link: ATA link to test
5583 * Test whether @link is online. Note that this function returns
5584 * 0 if online status of @link cannot be obtained, so
5585 * ata_link_online(link) != !ata_link_offline(link).
5591 * True if the port online status is available and online.
5593 bool ata_phys_link_online(struct ata_link
*link
)
5597 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5598 ata_sstatus_online(sstatus
))
5604 * ata_phys_link_offline - test whether the given link is offline
5605 * @link: ATA link to test
5607 * Test whether @link is offline. Note that this function
5608 * returns 0 if offline status of @link cannot be obtained, so
5609 * ata_link_online(link) != !ata_link_offline(link).
5615 * True if the port offline status is available and offline.
5617 bool ata_phys_link_offline(struct ata_link
*link
)
5621 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5622 !ata_sstatus_online(sstatus
))
5628 * ata_link_online - test whether the given link is online
5629 * @link: ATA link to test
5631 * Test whether @link is online. This is identical to
5632 * ata_phys_link_online() when there's no slave link. When
5633 * there's a slave link, this function should only be called on
5634 * the master link and will return true if any of M/S links is
5641 * True if the port online status is available and online.
5643 bool ata_link_online(struct ata_link
*link
)
5645 struct ata_link
*slave
= link
->ap
->slave_link
;
5647 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5649 return ata_phys_link_online(link
) ||
5650 (slave
&& ata_phys_link_online(slave
));
5654 * ata_link_offline - test whether the given link is offline
5655 * @link: ATA link to test
5657 * Test whether @link is offline. This is identical to
5658 * ata_phys_link_offline() when there's no slave link. When
5659 * there's a slave link, this function should only be called on
5660 * the master link and will return true if both M/S links are
5667 * True if the port offline status is available and offline.
5669 bool ata_link_offline(struct ata_link
*link
)
5671 struct ata_link
*slave
= link
->ap
->slave_link
;
5673 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5675 return ata_phys_link_offline(link
) &&
5676 (!slave
|| ata_phys_link_offline(slave
));
5680 static void ata_port_request_pm(struct ata_port
*ap
, pm_message_t mesg
,
5681 unsigned int action
, unsigned int ehi_flags
,
5684 struct ata_link
*link
;
5685 unsigned long flags
;
5687 /* Previous resume operation might still be in
5688 * progress. Wait for PM_PENDING to clear.
5690 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
5691 ata_port_wait_eh(ap
);
5692 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5695 /* request PM ops to EH */
5696 spin_lock_irqsave(ap
->lock
, flags
);
5699 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
5700 ata_for_each_link(link
, ap
, HOST_FIRST
) {
5701 link
->eh_info
.action
|= action
;
5702 link
->eh_info
.flags
|= ehi_flags
;
5705 ata_port_schedule_eh(ap
);
5707 spin_unlock_irqrestore(ap
->lock
, flags
);
5710 ata_port_wait_eh(ap
);
5711 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5716 * On some hardware, device fails to respond after spun down for suspend. As
5717 * the device won't be used before being resumed, we don't need to touch the
5718 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5720 * http://thread.gmane.org/gmane.linux.ide/46764
5722 static const unsigned int ata_port_suspend_ehi
= ATA_EHI_QUIET
5723 | ATA_EHI_NO_AUTOPSY
5724 | ATA_EHI_NO_RECOVERY
;
5726 static void ata_port_suspend(struct ata_port
*ap
, pm_message_t mesg
)
5728 ata_port_request_pm(ap
, mesg
, 0, ata_port_suspend_ehi
, false);
5731 static void ata_port_suspend_async(struct ata_port
*ap
, pm_message_t mesg
)
5733 ata_port_request_pm(ap
, mesg
, 0, ata_port_suspend_ehi
, true);
5736 static int ata_port_pm_suspend(struct device
*dev
)
5738 struct ata_port
*ap
= to_ata_port(dev
);
5740 if (pm_runtime_suspended(dev
))
5743 ata_port_suspend(ap
, PMSG_SUSPEND
);
5747 static int ata_port_pm_freeze(struct device
*dev
)
5749 struct ata_port
*ap
= to_ata_port(dev
);
5751 if (pm_runtime_suspended(dev
))
5754 ata_port_suspend(ap
, PMSG_FREEZE
);
5758 static int ata_port_pm_poweroff(struct device
*dev
)
5760 ata_port_suspend(to_ata_port(dev
), PMSG_HIBERNATE
);
5764 static const unsigned int ata_port_resume_ehi
= ATA_EHI_NO_AUTOPSY
5767 static void ata_port_resume(struct ata_port
*ap
, pm_message_t mesg
)
5769 ata_port_request_pm(ap
, mesg
, ATA_EH_RESET
, ata_port_resume_ehi
, false);
5772 static void ata_port_resume_async(struct ata_port
*ap
, pm_message_t mesg
)
5774 ata_port_request_pm(ap
, mesg
, ATA_EH_RESET
, ata_port_resume_ehi
, true);
5777 static int ata_port_pm_resume(struct device
*dev
)
5779 ata_port_resume_async(to_ata_port(dev
), PMSG_RESUME
);
5780 pm_runtime_disable(dev
);
5781 pm_runtime_set_active(dev
);
5782 pm_runtime_enable(dev
);
5787 * For ODDs, the upper layer will poll for media change every few seconds,
5788 * which will make it enter and leave suspend state every few seconds. And
5789 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5790 * is very little and the ODD may malfunction after constantly being reset.
5791 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5792 * ODD is attached to the port.
5794 static int ata_port_runtime_idle(struct device
*dev
)
5796 struct ata_port
*ap
= to_ata_port(dev
);
5797 struct ata_link
*link
;
5798 struct ata_device
*adev
;
5800 ata_for_each_link(link
, ap
, HOST_FIRST
) {
5801 ata_for_each_dev(adev
, link
, ENABLED
)
5802 if (adev
->class == ATA_DEV_ATAPI
&&
5803 !zpodd_dev_enabled(adev
))
5810 static int ata_port_runtime_suspend(struct device
*dev
)
5812 ata_port_suspend(to_ata_port(dev
), PMSG_AUTO_SUSPEND
);
5816 static int ata_port_runtime_resume(struct device
*dev
)
5818 ata_port_resume(to_ata_port(dev
), PMSG_AUTO_RESUME
);
5822 static const struct dev_pm_ops ata_port_pm_ops
= {
5823 .suspend
= ata_port_pm_suspend
,
5824 .resume
= ata_port_pm_resume
,
5825 .freeze
= ata_port_pm_freeze
,
5826 .thaw
= ata_port_pm_resume
,
5827 .poweroff
= ata_port_pm_poweroff
,
5828 .restore
= ata_port_pm_resume
,
5830 .runtime_suspend
= ata_port_runtime_suspend
,
5831 .runtime_resume
= ata_port_runtime_resume
,
5832 .runtime_idle
= ata_port_runtime_idle
,
5835 /* sas ports don't participate in pm runtime management of ata_ports,
5836 * and need to resume ata devices at the domain level, not the per-port
5837 * level. sas suspend/resume is async to allow parallel port recovery
5838 * since sas has multiple ata_port instances per Scsi_Host.
5840 void ata_sas_port_suspend(struct ata_port
*ap
)
5842 ata_port_suspend_async(ap
, PMSG_SUSPEND
);
5844 EXPORT_SYMBOL_GPL(ata_sas_port_suspend
);
5846 void ata_sas_port_resume(struct ata_port
*ap
)
5848 ata_port_resume_async(ap
, PMSG_RESUME
);
5850 EXPORT_SYMBOL_GPL(ata_sas_port_resume
);
5853 * ata_host_suspend - suspend host
5854 * @host: host to suspend
5857 * Suspend @host. Actual operation is performed by port suspend.
5859 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5861 host
->dev
->power
.power_state
= mesg
;
5866 * ata_host_resume - resume host
5867 * @host: host to resume
5869 * Resume @host. Actual operation is performed by port resume.
5871 void ata_host_resume(struct ata_host
*host
)
5873 host
->dev
->power
.power_state
= PMSG_ON
;
5877 const struct device_type ata_port_type
= {
5880 .pm
= &ata_port_pm_ops
,
5885 * ata_dev_init - Initialize an ata_device structure
5886 * @dev: Device structure to initialize
5888 * Initialize @dev in preparation for probing.
5891 * Inherited from caller.
5893 void ata_dev_init(struct ata_device
*dev
)
5895 struct ata_link
*link
= ata_dev_phys_link(dev
);
5896 struct ata_port
*ap
= link
->ap
;
5897 unsigned long flags
;
5899 /* SATA spd limit is bound to the attached device, reset together */
5900 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5903 /* High bits of dev->flags are used to record warm plug
5904 * requests which occur asynchronously. Synchronize using
5907 spin_lock_irqsave(ap
->lock
, flags
);
5908 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5910 spin_unlock_irqrestore(ap
->lock
, flags
);
5912 memset((void *)dev
+ ATA_DEVICE_CLEAR_BEGIN
, 0,
5913 ATA_DEVICE_CLEAR_END
- ATA_DEVICE_CLEAR_BEGIN
);
5914 dev
->pio_mask
= UINT_MAX
;
5915 dev
->mwdma_mask
= UINT_MAX
;
5916 dev
->udma_mask
= UINT_MAX
;
5920 * ata_link_init - Initialize an ata_link structure
5921 * @ap: ATA port link is attached to
5922 * @link: Link structure to initialize
5923 * @pmp: Port multiplier port number
5928 * Kernel thread context (may sleep)
5930 void ata_link_init(struct ata_port
*ap
, struct ata_link
*link
, int pmp
)
5934 /* clear everything except for devices */
5935 memset((void *)link
+ ATA_LINK_CLEAR_BEGIN
, 0,
5936 ATA_LINK_CLEAR_END
- ATA_LINK_CLEAR_BEGIN
);
5940 link
->active_tag
= ATA_TAG_POISON
;
5941 link
->hw_sata_spd_limit
= UINT_MAX
;
5943 /* can't use iterator, ap isn't initialized yet */
5944 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
5945 struct ata_device
*dev
= &link
->device
[i
];
5948 dev
->devno
= dev
- link
->device
;
5949 #ifdef CONFIG_ATA_ACPI
5950 dev
->gtf_filter
= ata_acpi_gtf_filter
;
5957 * sata_link_init_spd - Initialize link->sata_spd_limit
5958 * @link: Link to configure sata_spd_limit for
5960 * Initialize @link->[hw_]sata_spd_limit to the currently
5964 * Kernel thread context (may sleep).
5967 * 0 on success, -errno on failure.
5969 int sata_link_init_spd(struct ata_link
*link
)
5974 rc
= sata_scr_read(link
, SCR_CONTROL
, &link
->saved_scontrol
);
5978 spd
= (link
->saved_scontrol
>> 4) & 0xf;
5980 link
->hw_sata_spd_limit
&= (1 << spd
) - 1;
5982 ata_force_link_limits(link
);
5984 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5990 * ata_port_alloc - allocate and initialize basic ATA port resources
5991 * @host: ATA host this allocated port belongs to
5993 * Allocate and initialize basic ATA port resources.
5996 * Allocate ATA port on success, NULL on failure.
5999 * Inherited from calling layer (may sleep).
6001 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
6003 struct ata_port
*ap
;
6007 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
6011 ap
->pflags
|= ATA_PFLAG_INITIALIZING
| ATA_PFLAG_FROZEN
;
6012 ap
->lock
= &host
->lock
;
6014 ap
->local_port_no
= -1;
6016 ap
->dev
= host
->dev
;
6018 #if defined(ATA_VERBOSE_DEBUG)
6019 /* turn on all debugging levels */
6020 ap
->msg_enable
= 0x00FF;
6021 #elif defined(ATA_DEBUG)
6022 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
6024 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
6027 mutex_init(&ap
->scsi_scan_mutex
);
6028 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
6029 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
6030 INIT_LIST_HEAD(&ap
->eh_done_q
);
6031 init_waitqueue_head(&ap
->eh_wait_q
);
6032 init_completion(&ap
->park_req_pending
);
6033 timer_setup(&ap
->fastdrain_timer
, ata_eh_fastdrain_timerfn
,
6036 ap
->cbl
= ATA_CBL_NONE
;
6038 ata_link_init(ap
, &ap
->link
, 0);
6041 ap
->stats
.unhandled_irq
= 1;
6042 ap
->stats
.idle_irq
= 1;
6044 ata_sff_port_init(ap
);
6049 static void ata_devres_release(struct device
*gendev
, void *res
)
6051 struct ata_host
*host
= dev_get_drvdata(gendev
);
6054 for (i
= 0; i
< host
->n_ports
; i
++) {
6055 struct ata_port
*ap
= host
->ports
[i
];
6061 scsi_host_put(ap
->scsi_host
);
6065 dev_set_drvdata(gendev
, NULL
);
6069 static void ata_host_release(struct kref
*kref
)
6071 struct ata_host
*host
= container_of(kref
, struct ata_host
, kref
);
6074 for (i
= 0; i
< host
->n_ports
; i
++) {
6075 struct ata_port
*ap
= host
->ports
[i
];
6077 kfree(ap
->pmp_link
);
6078 kfree(ap
->slave_link
);
6080 host
->ports
[i
] = NULL
;
6085 void ata_host_get(struct ata_host
*host
)
6087 kref_get(&host
->kref
);
6090 void ata_host_put(struct ata_host
*host
)
6092 kref_put(&host
->kref
, ata_host_release
);
6096 * ata_host_alloc - allocate and init basic ATA host resources
6097 * @dev: generic device this host is associated with
6098 * @max_ports: maximum number of ATA ports associated with this host
6100 * Allocate and initialize basic ATA host resources. LLD calls
6101 * this function to allocate a host, initializes it fully and
6102 * attaches it using ata_host_register().
6104 * @max_ports ports are allocated and host->n_ports is
6105 * initialized to @max_ports. The caller is allowed to decrease
6106 * host->n_ports before calling ata_host_register(). The unused
6107 * ports will be automatically freed on registration.
6110 * Allocate ATA host on success, NULL on failure.
6113 * Inherited from calling layer (may sleep).
6115 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
6117 struct ata_host
*host
;
6124 /* alloc a container for our list of ATA ports (buses) */
6125 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
6126 host
= kzalloc(sz
, GFP_KERNEL
);
6130 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
6133 dr
= devres_alloc(ata_devres_release
, 0, GFP_KERNEL
);
6137 devres_add(dev
, dr
);
6138 dev_set_drvdata(dev
, host
);
6140 spin_lock_init(&host
->lock
);
6141 mutex_init(&host
->eh_mutex
);
6143 host
->n_ports
= max_ports
;
6144 kref_init(&host
->kref
);
6146 /* allocate ports bound to this host */
6147 for (i
= 0; i
< max_ports
; i
++) {
6148 struct ata_port
*ap
;
6150 ap
= ata_port_alloc(host
);
6155 host
->ports
[i
] = ap
;
6158 devres_remove_group(dev
, NULL
);
6162 devres_release_group(dev
, NULL
);
6169 * ata_host_alloc_pinfo - alloc host and init with port_info array
6170 * @dev: generic device this host is associated with
6171 * @ppi: array of ATA port_info to initialize host with
6172 * @n_ports: number of ATA ports attached to this host
6174 * Allocate ATA host and initialize with info from @ppi. If NULL
6175 * terminated, @ppi may contain fewer entries than @n_ports. The
6176 * last entry will be used for the remaining ports.
6179 * Allocate ATA host on success, NULL on failure.
6182 * Inherited from calling layer (may sleep).
6184 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
6185 const struct ata_port_info
* const * ppi
,
6188 const struct ata_port_info
*pi
;
6189 struct ata_host
*host
;
6192 host
= ata_host_alloc(dev
, n_ports
);
6196 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
6197 struct ata_port
*ap
= host
->ports
[i
];
6202 ap
->pio_mask
= pi
->pio_mask
;
6203 ap
->mwdma_mask
= pi
->mwdma_mask
;
6204 ap
->udma_mask
= pi
->udma_mask
;
6205 ap
->flags
|= pi
->flags
;
6206 ap
->link
.flags
|= pi
->link_flags
;
6207 ap
->ops
= pi
->port_ops
;
6209 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
6210 host
->ops
= pi
->port_ops
;
6217 * ata_slave_link_init - initialize slave link
6218 * @ap: port to initialize slave link for
6220 * Create and initialize slave link for @ap. This enables slave
6221 * link handling on the port.
6223 * In libata, a port contains links and a link contains devices.
6224 * There is single host link but if a PMP is attached to it,
6225 * there can be multiple fan-out links. On SATA, there's usually
6226 * a single device connected to a link but PATA and SATA
6227 * controllers emulating TF based interface can have two - master
6230 * However, there are a few controllers which don't fit into this
6231 * abstraction too well - SATA controllers which emulate TF
6232 * interface with both master and slave devices but also have
6233 * separate SCR register sets for each device. These controllers
6234 * need separate links for physical link handling
6235 * (e.g. onlineness, link speed) but should be treated like a
6236 * traditional M/S controller for everything else (e.g. command
6237 * issue, softreset).
6239 * slave_link is libata's way of handling this class of
6240 * controllers without impacting core layer too much. For
6241 * anything other than physical link handling, the default host
6242 * link is used for both master and slave. For physical link
6243 * handling, separate @ap->slave_link is used. All dirty details
6244 * are implemented inside libata core layer. From LLD's POV, the
6245 * only difference is that prereset, hardreset and postreset are
6246 * called once more for the slave link, so the reset sequence
6247 * looks like the following.
6249 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6250 * softreset(M) -> postreset(M) -> postreset(S)
6252 * Note that softreset is called only for the master. Softreset
6253 * resets both M/S by definition, so SRST on master should handle
6254 * both (the standard method will work just fine).
6257 * Should be called before host is registered.
6260 * 0 on success, -errno on failure.
6262 int ata_slave_link_init(struct ata_port
*ap
)
6264 struct ata_link
*link
;
6266 WARN_ON(ap
->slave_link
);
6267 WARN_ON(ap
->flags
& ATA_FLAG_PMP
);
6269 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
6273 ata_link_init(ap
, link
, 1);
6274 ap
->slave_link
= link
;
6278 static void ata_host_stop(struct device
*gendev
, void *res
)
6280 struct ata_host
*host
= dev_get_drvdata(gendev
);
6283 WARN_ON(!(host
->flags
& ATA_HOST_STARTED
));
6285 for (i
= 0; i
< host
->n_ports
; i
++) {
6286 struct ata_port
*ap
= host
->ports
[i
];
6288 if (ap
->ops
->port_stop
)
6289 ap
->ops
->port_stop(ap
);
6292 if (host
->ops
->host_stop
)
6293 host
->ops
->host_stop(host
);
6297 * ata_finalize_port_ops - finalize ata_port_operations
6298 * @ops: ata_port_operations to finalize
6300 * An ata_port_operations can inherit from another ops and that
6301 * ops can again inherit from another. This can go on as many
6302 * times as necessary as long as there is no loop in the
6303 * inheritance chain.
6305 * Ops tables are finalized when the host is started. NULL or
6306 * unspecified entries are inherited from the closet ancestor
6307 * which has the method and the entry is populated with it.
6308 * After finalization, the ops table directly points to all the
6309 * methods and ->inherits is no longer necessary and cleared.
6311 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6316 static void ata_finalize_port_ops(struct ata_port_operations
*ops
)
6318 static DEFINE_SPINLOCK(lock
);
6319 const struct ata_port_operations
*cur
;
6320 void **begin
= (void **)ops
;
6321 void **end
= (void **)&ops
->inherits
;
6324 if (!ops
|| !ops
->inherits
)
6329 for (cur
= ops
->inherits
; cur
; cur
= cur
->inherits
) {
6330 void **inherit
= (void **)cur
;
6332 for (pp
= begin
; pp
< end
; pp
++, inherit
++)
6337 for (pp
= begin
; pp
< end
; pp
++)
6341 ops
->inherits
= NULL
;
6347 * ata_host_start - start and freeze ports of an ATA host
6348 * @host: ATA host to start ports for
6350 * Start and then freeze ports of @host. Started status is
6351 * recorded in host->flags, so this function can be called
6352 * multiple times. Ports are guaranteed to get started only
6353 * once. If host->ops isn't initialized yet, its set to the
6354 * first non-dummy port ops.
6357 * Inherited from calling layer (may sleep).
6360 * 0 if all ports are started successfully, -errno otherwise.
6362 int ata_host_start(struct ata_host
*host
)
6365 void *start_dr
= NULL
;
6368 if (host
->flags
& ATA_HOST_STARTED
)
6371 ata_finalize_port_ops(host
->ops
);
6373 for (i
= 0; i
< host
->n_ports
; i
++) {
6374 struct ata_port
*ap
= host
->ports
[i
];
6376 ata_finalize_port_ops(ap
->ops
);
6378 if (!host
->ops
&& !ata_port_is_dummy(ap
))
6379 host
->ops
= ap
->ops
;
6381 if (ap
->ops
->port_stop
)
6385 if (host
->ops
->host_stop
)
6389 start_dr
= devres_alloc(ata_host_stop
, 0, GFP_KERNEL
);
6394 for (i
= 0; i
< host
->n_ports
; i
++) {
6395 struct ata_port
*ap
= host
->ports
[i
];
6397 if (ap
->ops
->port_start
) {
6398 rc
= ap
->ops
->port_start(ap
);
6402 "failed to start port %d (errno=%d)\n",
6407 ata_eh_freeze_port(ap
);
6411 devres_add(host
->dev
, start_dr
);
6412 host
->flags
|= ATA_HOST_STARTED
;
6417 struct ata_port
*ap
= host
->ports
[i
];
6419 if (ap
->ops
->port_stop
)
6420 ap
->ops
->port_stop(ap
);
6422 devres_free(start_dr
);
6427 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6428 * @host: host to initialize
6429 * @dev: device host is attached to
6433 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
6434 struct ata_port_operations
*ops
)
6436 spin_lock_init(&host
->lock
);
6437 mutex_init(&host
->eh_mutex
);
6438 host
->n_tags
= ATA_MAX_QUEUE
;
6441 kref_init(&host
->kref
);
6444 void __ata_port_probe(struct ata_port
*ap
)
6446 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
6447 unsigned long flags
;
6449 /* kick EH for boot probing */
6450 spin_lock_irqsave(ap
->lock
, flags
);
6452 ehi
->probe_mask
|= ATA_ALL_DEVICES
;
6453 ehi
->action
|= ATA_EH_RESET
;
6454 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
6456 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
6457 ap
->pflags
|= ATA_PFLAG_LOADING
;
6458 ata_port_schedule_eh(ap
);
6460 spin_unlock_irqrestore(ap
->lock
, flags
);
6463 int ata_port_probe(struct ata_port
*ap
)
6467 if (ap
->ops
->error_handler
) {
6468 __ata_port_probe(ap
);
6469 ata_port_wait_eh(ap
);
6471 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
6472 rc
= ata_bus_probe(ap
);
6473 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
6479 static void async_port_probe(void *data
, async_cookie_t cookie
)
6481 struct ata_port
*ap
= data
;
6484 * If we're not allowed to scan this host in parallel,
6485 * we need to wait until all previous scans have completed
6486 * before going further.
6487 * Jeff Garzik says this is only within a controller, so we
6488 * don't need to wait for port 0, only for later ports.
6490 if (!(ap
->host
->flags
& ATA_HOST_PARALLEL_SCAN
) && ap
->port_no
!= 0)
6491 async_synchronize_cookie(cookie
);
6493 (void)ata_port_probe(ap
);
6495 /* in order to keep device order, we need to synchronize at this point */
6496 async_synchronize_cookie(cookie
);
6498 ata_scsi_scan_host(ap
, 1);
6502 * ata_host_register - register initialized ATA host
6503 * @host: ATA host to register
6504 * @sht: template for SCSI host
6506 * Register initialized ATA host. @host is allocated using
6507 * ata_host_alloc() and fully initialized by LLD. This function
6508 * starts ports, registers @host with ATA and SCSI layers and
6509 * probe registered devices.
6512 * Inherited from calling layer (may sleep).
6515 * 0 on success, -errno otherwise.
6517 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
6521 host
->n_tags
= clamp(sht
->can_queue
, 1, ATA_MAX_QUEUE
);
6523 /* host must have been started */
6524 if (!(host
->flags
& ATA_HOST_STARTED
)) {
6525 dev_err(host
->dev
, "BUG: trying to register unstarted host\n");
6530 /* Blow away unused ports. This happens when LLD can't
6531 * determine the exact number of ports to allocate at
6534 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
6535 kfree(host
->ports
[i
]);
6537 /* give ports names and add SCSI hosts */
6538 for (i
= 0; i
< host
->n_ports
; i
++) {
6539 host
->ports
[i
]->print_id
= atomic_inc_return(&ata_print_id
);
6540 host
->ports
[i
]->local_port_no
= i
+ 1;
6543 /* Create associated sysfs transport objects */
6544 for (i
= 0; i
< host
->n_ports
; i
++) {
6545 rc
= ata_tport_add(host
->dev
,host
->ports
[i
]);
6551 rc
= ata_scsi_add_hosts(host
, sht
);
6555 /* set cable, sata_spd_limit and report */
6556 for (i
= 0; i
< host
->n_ports
; i
++) {
6557 struct ata_port
*ap
= host
->ports
[i
];
6558 unsigned long xfer_mask
;
6560 /* set SATA cable type if still unset */
6561 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
6562 ap
->cbl
= ATA_CBL_SATA
;
6564 /* init sata_spd_limit to the current value */
6565 sata_link_init_spd(&ap
->link
);
6567 sata_link_init_spd(ap
->slave_link
);
6569 /* print per-port info to dmesg */
6570 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
6573 if (!ata_port_is_dummy(ap
)) {
6574 ata_port_info(ap
, "%cATA max %s %s\n",
6575 (ap
->flags
& ATA_FLAG_SATA
) ? 'S' : 'P',
6576 ata_mode_string(xfer_mask
),
6577 ap
->link
.eh_info
.desc
);
6578 ata_ehi_clear_desc(&ap
->link
.eh_info
);
6580 ata_port_info(ap
, "DUMMY\n");
6583 /* perform each probe asynchronously */
6584 for (i
= 0; i
< host
->n_ports
; i
++) {
6585 struct ata_port
*ap
= host
->ports
[i
];
6586 async_schedule(async_port_probe
, ap
);
6593 ata_tport_delete(host
->ports
[i
]);
6600 * ata_host_activate - start host, request IRQ and register it
6601 * @host: target ATA host
6602 * @irq: IRQ to request
6603 * @irq_handler: irq_handler used when requesting IRQ
6604 * @irq_flags: irq_flags used when requesting IRQ
6605 * @sht: scsi_host_template to use when registering the host
6607 * After allocating an ATA host and initializing it, most libata
6608 * LLDs perform three steps to activate the host - start host,
6609 * request IRQ and register it. This helper takes necessary
6610 * arguments and performs the three steps in one go.
6612 * An invalid IRQ skips the IRQ registration and expects the host to
6613 * have set polling mode on the port. In this case, @irq_handler
6617 * Inherited from calling layer (may sleep).
6620 * 0 on success, -errno otherwise.
6622 int ata_host_activate(struct ata_host
*host
, int irq
,
6623 irq_handler_t irq_handler
, unsigned long irq_flags
,
6624 struct scsi_host_template
*sht
)
6629 rc
= ata_host_start(host
);
6633 /* Special case for polling mode */
6635 WARN_ON(irq_handler
);
6636 return ata_host_register(host
, sht
);
6639 irq_desc
= devm_kasprintf(host
->dev
, GFP_KERNEL
, "%s[%s]",
6640 dev_driver_string(host
->dev
),
6641 dev_name(host
->dev
));
6645 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
6650 for (i
= 0; i
< host
->n_ports
; i
++)
6651 ata_port_desc(host
->ports
[i
], "irq %d", irq
);
6653 rc
= ata_host_register(host
, sht
);
6654 /* if failed, just free the IRQ and leave ports alone */
6656 devm_free_irq(host
->dev
, irq
, host
);
6662 * ata_port_detach - Detach ATA port in preparation of device removal
6663 * @ap: ATA port to be detached
6665 * Detach all ATA devices and the associated SCSI devices of @ap;
6666 * then, remove the associated SCSI host. @ap is guaranteed to
6667 * be quiescent on return from this function.
6670 * Kernel thread context (may sleep).
6672 static void ata_port_detach(struct ata_port
*ap
)
6674 unsigned long flags
;
6675 struct ata_link
*link
;
6676 struct ata_device
*dev
;
6678 if (!ap
->ops
->error_handler
)
6681 /* tell EH we're leaving & flush EH */
6682 spin_lock_irqsave(ap
->lock
, flags
);
6683 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
6684 ata_port_schedule_eh(ap
);
6685 spin_unlock_irqrestore(ap
->lock
, flags
);
6687 /* wait till EH commits suicide */
6688 ata_port_wait_eh(ap
);
6690 /* it better be dead now */
6691 WARN_ON(!(ap
->pflags
& ATA_PFLAG_UNLOADED
));
6693 cancel_delayed_work_sync(&ap
->hotplug_task
);
6696 /* clean up zpodd on port removal */
6697 ata_for_each_link(link
, ap
, HOST_FIRST
) {
6698 ata_for_each_dev(dev
, link
, ALL
) {
6699 if (zpodd_dev_enabled(dev
))
6705 for (i
= 0; i
< SATA_PMP_MAX_PORTS
; i
++)
6706 ata_tlink_delete(&ap
->pmp_link
[i
]);
6708 /* remove the associated SCSI host */
6709 scsi_remove_host(ap
->scsi_host
);
6710 ata_tport_delete(ap
);
6714 * ata_host_detach - Detach all ports of an ATA host
6715 * @host: Host to detach
6717 * Detach all ports of @host.
6720 * Kernel thread context (may sleep).
6722 void ata_host_detach(struct ata_host
*host
)
6726 for (i
= 0; i
< host
->n_ports
; i
++)
6727 ata_port_detach(host
->ports
[i
]);
6729 /* the host is dead now, dissociate ACPI */
6730 ata_acpi_dissociate(host
);
6736 * ata_pci_remove_one - PCI layer callback for device removal
6737 * @pdev: PCI device that was removed
6739 * PCI layer indicates to libata via this hook that hot-unplug or
6740 * module unload event has occurred. Detach all ports. Resource
6741 * release is handled via devres.
6744 * Inherited from PCI layer (may sleep).
6746 void ata_pci_remove_one(struct pci_dev
*pdev
)
6748 struct ata_host
*host
= pci_get_drvdata(pdev
);
6750 ata_host_detach(host
);
6753 /* move to PCI subsystem */
6754 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
6756 unsigned long tmp
= 0;
6758 switch (bits
->width
) {
6761 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
6767 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
6773 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
6784 return (tmp
== bits
->val
) ? 1 : 0;
6788 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6790 pci_save_state(pdev
);
6791 pci_disable_device(pdev
);
6793 if (mesg
.event
& PM_EVENT_SLEEP
)
6794 pci_set_power_state(pdev
, PCI_D3hot
);
6797 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
6801 pci_set_power_state(pdev
, PCI_D0
);
6802 pci_restore_state(pdev
);
6804 rc
= pcim_enable_device(pdev
);
6807 "failed to enable device after resume (%d)\n", rc
);
6811 pci_set_master(pdev
);
6815 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6817 struct ata_host
*host
= pci_get_drvdata(pdev
);
6820 rc
= ata_host_suspend(host
, mesg
);
6824 ata_pci_device_do_suspend(pdev
, mesg
);
6829 int ata_pci_device_resume(struct pci_dev
*pdev
)
6831 struct ata_host
*host
= pci_get_drvdata(pdev
);
6834 rc
= ata_pci_device_do_resume(pdev
);
6836 ata_host_resume(host
);
6839 #endif /* CONFIG_PM */
6841 #endif /* CONFIG_PCI */
6844 * ata_platform_remove_one - Platform layer callback for device removal
6845 * @pdev: Platform device that was removed
6847 * Platform layer indicates to libata via this hook that hot-unplug or
6848 * module unload event has occurred. Detach all ports. Resource
6849 * release is handled via devres.
6852 * Inherited from platform layer (may sleep).
6854 int ata_platform_remove_one(struct platform_device
*pdev
)
6856 struct ata_host
*host
= platform_get_drvdata(pdev
);
6858 ata_host_detach(host
);
6863 static int __init
ata_parse_force_one(char **cur
,
6864 struct ata_force_ent
*force_ent
,
6865 const char **reason
)
6867 static const struct ata_force_param force_tbl
[] __initconst
= {
6868 { "40c", .cbl
= ATA_CBL_PATA40
},
6869 { "80c", .cbl
= ATA_CBL_PATA80
},
6870 { "short40c", .cbl
= ATA_CBL_PATA40_SHORT
},
6871 { "unk", .cbl
= ATA_CBL_PATA_UNK
},
6872 { "ign", .cbl
= ATA_CBL_PATA_IGN
},
6873 { "sata", .cbl
= ATA_CBL_SATA
},
6874 { "1.5Gbps", .spd_limit
= 1 },
6875 { "3.0Gbps", .spd_limit
= 2 },
6876 { "noncq", .horkage_on
= ATA_HORKAGE_NONCQ
},
6877 { "ncq", .horkage_off
= ATA_HORKAGE_NONCQ
},
6878 { "noncqtrim", .horkage_on
= ATA_HORKAGE_NO_NCQ_TRIM
},
6879 { "ncqtrim", .horkage_off
= ATA_HORKAGE_NO_NCQ_TRIM
},
6880 { "dump_id", .horkage_on
= ATA_HORKAGE_DUMP_ID
},
6881 { "pio0", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 0) },
6882 { "pio1", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 1) },
6883 { "pio2", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 2) },
6884 { "pio3", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 3) },
6885 { "pio4", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 4) },
6886 { "pio5", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 5) },
6887 { "pio6", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 6) },
6888 { "mwdma0", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 0) },
6889 { "mwdma1", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 1) },
6890 { "mwdma2", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 2) },
6891 { "mwdma3", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 3) },
6892 { "mwdma4", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 4) },
6893 { "udma0", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6894 { "udma16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6895 { "udma/16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6896 { "udma1", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6897 { "udma25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6898 { "udma/25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6899 { "udma2", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6900 { "udma33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6901 { "udma/33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6902 { "udma3", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6903 { "udma44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6904 { "udma/44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6905 { "udma4", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6906 { "udma66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6907 { "udma/66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6908 { "udma5", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6909 { "udma100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6910 { "udma/100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6911 { "udma6", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6912 { "udma133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6913 { "udma/133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6914 { "udma7", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 7) },
6915 { "nohrst", .lflags
= ATA_LFLAG_NO_HRST
},
6916 { "nosrst", .lflags
= ATA_LFLAG_NO_SRST
},
6917 { "norst", .lflags
= ATA_LFLAG_NO_HRST
| ATA_LFLAG_NO_SRST
},
6918 { "rstonce", .lflags
= ATA_LFLAG_RST_ONCE
},
6919 { "atapi_dmadir", .horkage_on
= ATA_HORKAGE_ATAPI_DMADIR
},
6920 { "disable", .horkage_on
= ATA_HORKAGE_DISABLE
},
6922 char *start
= *cur
, *p
= *cur
;
6923 char *id
, *val
, *endp
;
6924 const struct ata_force_param
*match_fp
= NULL
;
6925 int nr_matches
= 0, i
;
6927 /* find where this param ends and update *cur */
6928 while (*p
!= '\0' && *p
!= ',')
6939 p
= strchr(start
, ':');
6941 val
= strstrip(start
);
6946 id
= strstrip(start
);
6947 val
= strstrip(p
+ 1);
6950 p
= strchr(id
, '.');
6953 force_ent
->device
= simple_strtoul(p
, &endp
, 10);
6954 if (p
== endp
|| *endp
!= '\0') {
6955 *reason
= "invalid device";
6960 force_ent
->port
= simple_strtoul(id
, &endp
, 10);
6961 if (id
== endp
|| *endp
!= '\0') {
6962 *reason
= "invalid port/link";
6967 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6968 for (i
= 0; i
< ARRAY_SIZE(force_tbl
); i
++) {
6969 const struct ata_force_param
*fp
= &force_tbl
[i
];
6971 if (strncasecmp(val
, fp
->name
, strlen(val
)))
6977 if (strcasecmp(val
, fp
->name
) == 0) {
6984 *reason
= "unknown value";
6987 if (nr_matches
> 1) {
6988 *reason
= "ambiguous value";
6992 force_ent
->param
= *match_fp
;
6997 static void __init
ata_parse_force_param(void)
6999 int idx
= 0, size
= 1;
7000 int last_port
= -1, last_device
= -1;
7001 char *p
, *cur
, *next
;
7003 /* calculate maximum number of params and allocate force_tbl */
7004 for (p
= ata_force_param_buf
; *p
; p
++)
7008 ata_force_tbl
= kcalloc(size
, sizeof(ata_force_tbl
[0]), GFP_KERNEL
);
7009 if (!ata_force_tbl
) {
7010 printk(KERN_WARNING
"ata: failed to extend force table, "
7011 "libata.force ignored\n");
7015 /* parse and populate the table */
7016 for (cur
= ata_force_param_buf
; *cur
!= '\0'; cur
= next
) {
7017 const char *reason
= "";
7018 struct ata_force_ent te
= { .port
= -1, .device
= -1 };
7021 if (ata_parse_force_one(&next
, &te
, &reason
)) {
7022 printk(KERN_WARNING
"ata: failed to parse force "
7023 "parameter \"%s\" (%s)\n",
7028 if (te
.port
== -1) {
7029 te
.port
= last_port
;
7030 te
.device
= last_device
;
7033 ata_force_tbl
[idx
++] = te
;
7035 last_port
= te
.port
;
7036 last_device
= te
.device
;
7039 ata_force_tbl_size
= idx
;
7042 static int __init
ata_init(void)
7046 ata_parse_force_param();
7048 rc
= ata_sff_init();
7050 kfree(ata_force_tbl
);
7054 libata_transport_init();
7055 ata_scsi_transport_template
= ata_attach_transport();
7056 if (!ata_scsi_transport_template
) {
7062 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
7069 static void __exit
ata_exit(void)
7071 ata_release_transport(ata_scsi_transport_template
);
7072 libata_transport_exit();
7074 kfree(ata_force_tbl
);
7077 subsys_initcall(ata_init
);
7078 module_exit(ata_exit
);
7080 static DEFINE_RATELIMIT_STATE(ratelimit
, HZ
/ 5, 1);
7082 int ata_ratelimit(void)
7084 return __ratelimit(&ratelimit
);
7088 * ata_msleep - ATA EH owner aware msleep
7089 * @ap: ATA port to attribute the sleep to
7090 * @msecs: duration to sleep in milliseconds
7092 * Sleeps @msecs. If the current task is owner of @ap's EH, the
7093 * ownership is released before going to sleep and reacquired
7094 * after the sleep is complete. IOW, other ports sharing the
7095 * @ap->host will be allowed to own the EH while this task is
7101 void ata_msleep(struct ata_port
*ap
, unsigned int msecs
)
7103 bool owns_eh
= ap
&& ap
->host
->eh_owner
== current
;
7109 unsigned long usecs
= msecs
* USEC_PER_MSEC
;
7110 usleep_range(usecs
, usecs
+ 50);
7120 * ata_wait_register - wait until register value changes
7121 * @ap: ATA port to wait register for, can be NULL
7122 * @reg: IO-mapped register
7123 * @mask: Mask to apply to read register value
7124 * @val: Wait condition
7125 * @interval: polling interval in milliseconds
7126 * @timeout: timeout in milliseconds
7128 * Waiting for some bits of register to change is a common
7129 * operation for ATA controllers. This function reads 32bit LE
7130 * IO-mapped register @reg and tests for the following condition.
7132 * (*@reg & mask) != val
7134 * If the condition is met, it returns; otherwise, the process is
7135 * repeated after @interval_msec until timeout.
7138 * Kernel thread context (may sleep)
7141 * The final register value.
7143 u32
ata_wait_register(struct ata_port
*ap
, void __iomem
*reg
, u32 mask
, u32 val
,
7144 unsigned long interval
, unsigned long timeout
)
7146 unsigned long deadline
;
7149 tmp
= ioread32(reg
);
7151 /* Calculate timeout _after_ the first read to make sure
7152 * preceding writes reach the controller before starting to
7153 * eat away the timeout.
7155 deadline
= ata_deadline(jiffies
, timeout
);
7157 while ((tmp
& mask
) == val
&& time_before(jiffies
, deadline
)) {
7158 ata_msleep(ap
, interval
);
7159 tmp
= ioread32(reg
);
7166 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
7167 * @link: Link receiving the event
7169 * Test whether the received PHY event has to be ignored or not.
7175 * True if the event has to be ignored.
7177 bool sata_lpm_ignore_phy_events(struct ata_link
*link
)
7179 unsigned long lpm_timeout
= link
->last_lpm_change
+
7180 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY
);
7182 /* if LPM is enabled, PHYRDY doesn't mean anything */
7183 if (link
->lpm_policy
> ATA_LPM_MAX_POWER
)
7186 /* ignore the first PHY event after the LPM policy changed
7187 * as it is might be spurious
7189 if ((link
->flags
& ATA_LFLAG_CHANGED
) &&
7190 time_before(jiffies
, lpm_timeout
))
7195 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events
);
7200 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
7202 return AC_ERR_SYSTEM
;
7205 static void ata_dummy_error_handler(struct ata_port
*ap
)
7210 struct ata_port_operations ata_dummy_port_ops
= {
7211 .qc_prep
= ata_noop_qc_prep
,
7212 .qc_issue
= ata_dummy_qc_issue
,
7213 .error_handler
= ata_dummy_error_handler
,
7214 .sched_eh
= ata_std_sched_eh
,
7215 .end_eh
= ata_std_end_eh
,
7218 const struct ata_port_info ata_dummy_port_info
= {
7219 .port_ops
= &ata_dummy_port_ops
,
7223 * Utility print functions
7225 void ata_port_printk(const struct ata_port
*ap
, const char *level
,
7226 const char *fmt
, ...)
7228 struct va_format vaf
;
7231 va_start(args
, fmt
);
7236 printk("%sata%u: %pV", level
, ap
->print_id
, &vaf
);
7240 EXPORT_SYMBOL(ata_port_printk
);
7242 void ata_link_printk(const struct ata_link
*link
, const char *level
,
7243 const char *fmt
, ...)
7245 struct va_format vaf
;
7248 va_start(args
, fmt
);
7253 if (sata_pmp_attached(link
->ap
) || link
->ap
->slave_link
)
7254 printk("%sata%u.%02u: %pV",
7255 level
, link
->ap
->print_id
, link
->pmp
, &vaf
);
7257 printk("%sata%u: %pV",
7258 level
, link
->ap
->print_id
, &vaf
);
7262 EXPORT_SYMBOL(ata_link_printk
);
7264 void ata_dev_printk(const struct ata_device
*dev
, const char *level
,
7265 const char *fmt
, ...)
7267 struct va_format vaf
;
7270 va_start(args
, fmt
);
7275 printk("%sata%u.%02u: %pV",
7276 level
, dev
->link
->ap
->print_id
, dev
->link
->pmp
+ dev
->devno
,
7281 EXPORT_SYMBOL(ata_dev_printk
);
7283 void ata_print_version(const struct device
*dev
, const char *version
)
7285 dev_printk(KERN_DEBUG
, dev
, "version %s\n", version
);
7287 EXPORT_SYMBOL(ata_print_version
);
7290 * libata is essentially a library of internal helper functions for
7291 * low-level ATA host controller drivers. As such, the API/ABI is
7292 * likely to change as new drivers are added and updated.
7293 * Do not depend on ABI/API stability.
7295 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
7296 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
7297 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
7298 EXPORT_SYMBOL_GPL(ata_base_port_ops
);
7299 EXPORT_SYMBOL_GPL(sata_port_ops
);
7300 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
7301 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
7302 EXPORT_SYMBOL_GPL(ata_link_next
);
7303 EXPORT_SYMBOL_GPL(ata_dev_next
);
7304 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
7305 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity
);
7306 EXPORT_SYMBOL_GPL(ata_host_init
);
7307 EXPORT_SYMBOL_GPL(ata_host_alloc
);
7308 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
7309 EXPORT_SYMBOL_GPL(ata_slave_link_init
);
7310 EXPORT_SYMBOL_GPL(ata_host_start
);
7311 EXPORT_SYMBOL_GPL(ata_host_register
);
7312 EXPORT_SYMBOL_GPL(ata_host_activate
);
7313 EXPORT_SYMBOL_GPL(ata_host_detach
);
7314 EXPORT_SYMBOL_GPL(ata_sg_init
);
7315 EXPORT_SYMBOL_GPL(ata_qc_complete
);
7316 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
7317 EXPORT_SYMBOL_GPL(atapi_cmd_type
);
7318 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
7319 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
7320 EXPORT_SYMBOL_GPL(ata_pack_xfermask
);
7321 EXPORT_SYMBOL_GPL(ata_unpack_xfermask
);
7322 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode
);
7323 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask
);
7324 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift
);
7325 EXPORT_SYMBOL_GPL(ata_mode_string
);
7326 EXPORT_SYMBOL_GPL(ata_id_xfermask
);
7327 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
7328 EXPORT_SYMBOL_GPL(ata_std_qc_defer
);
7329 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
7330 EXPORT_SYMBOL_GPL(ata_dev_disable
);
7331 EXPORT_SYMBOL_GPL(sata_set_spd
);
7332 EXPORT_SYMBOL_GPL(ata_wait_after_reset
);
7333 EXPORT_SYMBOL_GPL(sata_link_debounce
);
7334 EXPORT_SYMBOL_GPL(sata_link_resume
);
7335 EXPORT_SYMBOL_GPL(sata_link_scr_lpm
);
7336 EXPORT_SYMBOL_GPL(ata_std_prereset
);
7337 EXPORT_SYMBOL_GPL(sata_link_hardreset
);
7338 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
7339 EXPORT_SYMBOL_GPL(ata_std_postreset
);
7340 EXPORT_SYMBOL_GPL(ata_dev_classify
);
7341 EXPORT_SYMBOL_GPL(ata_dev_pair
);
7342 EXPORT_SYMBOL_GPL(ata_ratelimit
);
7343 EXPORT_SYMBOL_GPL(ata_msleep
);
7344 EXPORT_SYMBOL_GPL(ata_wait_register
);
7345 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
7346 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
7347 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
7348 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
7349 EXPORT_SYMBOL_GPL(__ata_change_queue_depth
);
7350 EXPORT_SYMBOL_GPL(sata_scr_valid
);
7351 EXPORT_SYMBOL_GPL(sata_scr_read
);
7352 EXPORT_SYMBOL_GPL(sata_scr_write
);
7353 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
7354 EXPORT_SYMBOL_GPL(ata_link_online
);
7355 EXPORT_SYMBOL_GPL(ata_link_offline
);
7357 EXPORT_SYMBOL_GPL(ata_host_suspend
);
7358 EXPORT_SYMBOL_GPL(ata_host_resume
);
7359 #endif /* CONFIG_PM */
7360 EXPORT_SYMBOL_GPL(ata_id_string
);
7361 EXPORT_SYMBOL_GPL(ata_id_c_string
);
7362 EXPORT_SYMBOL_GPL(ata_do_dev_read_id
);
7363 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
7365 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
7366 EXPORT_SYMBOL_GPL(ata_timing_find_mode
);
7367 EXPORT_SYMBOL_GPL(ata_timing_compute
);
7368 EXPORT_SYMBOL_GPL(ata_timing_merge
);
7369 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode
);
7372 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
7373 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
7375 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
7376 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
7377 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
7378 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
7379 #endif /* CONFIG_PM */
7380 #endif /* CONFIG_PCI */
7382 EXPORT_SYMBOL_GPL(ata_platform_remove_one
);
7384 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc
);
7385 EXPORT_SYMBOL_GPL(ata_ehi_push_desc
);
7386 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc
);
7387 EXPORT_SYMBOL_GPL(ata_port_desc
);
7389 EXPORT_SYMBOL_GPL(ata_port_pbar_desc
);
7390 #endif /* CONFIG_PCI */
7391 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
7392 EXPORT_SYMBOL_GPL(ata_link_abort
);
7393 EXPORT_SYMBOL_GPL(ata_port_abort
);
7394 EXPORT_SYMBOL_GPL(ata_port_freeze
);
7395 EXPORT_SYMBOL_GPL(sata_async_notification
);
7396 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
7397 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
7398 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
7399 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
7400 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error
);
7401 EXPORT_SYMBOL_GPL(ata_do_eh
);
7402 EXPORT_SYMBOL_GPL(ata_std_error_handler
);
7404 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
7405 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
7406 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
7407 EXPORT_SYMBOL_GPL(ata_cable_ignore
);
7408 EXPORT_SYMBOL_GPL(ata_cable_sata
);
7409 EXPORT_SYMBOL_GPL(ata_host_get
);
7410 EXPORT_SYMBOL_GPL(ata_host_put
);