dt-bindings: mtd: ingenic: Use standard ecc-engine property
[linux/fpc-iii.git] / drivers / base / arch_topology.c
blobedfcf8d982e4186a80a3bf76ab626976bb86d200
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Arch specific cpu topology information
5 * Copyright (C) 2016, ARM Ltd.
6 * Written by: Juri Lelli, ARM Ltd.
7 */
9 #include <linux/acpi.h>
10 #include <linux/arch_topology.h>
11 #include <linux/cpu.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/of.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/sched/topology.h>
18 #include <linux/cpuset.h>
20 DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE;
22 void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
23 unsigned long max_freq)
25 unsigned long scale;
26 int i;
28 scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
30 for_each_cpu(i, cpus)
31 per_cpu(freq_scale, i) = scale;
34 static DEFINE_MUTEX(cpu_scale_mutex);
35 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
37 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
39 per_cpu(cpu_scale, cpu) = capacity;
42 static ssize_t cpu_capacity_show(struct device *dev,
43 struct device_attribute *attr,
44 char *buf)
46 struct cpu *cpu = container_of(dev, struct cpu, dev);
48 return sprintf(buf, "%lu\n", topology_get_cpu_scale(NULL, cpu->dev.id));
51 static void update_topology_flags_workfn(struct work_struct *work);
52 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
54 static ssize_t cpu_capacity_store(struct device *dev,
55 struct device_attribute *attr,
56 const char *buf,
57 size_t count)
59 struct cpu *cpu = container_of(dev, struct cpu, dev);
60 int this_cpu = cpu->dev.id;
61 int i;
62 unsigned long new_capacity;
63 ssize_t ret;
65 if (!count)
66 return 0;
68 ret = kstrtoul(buf, 0, &new_capacity);
69 if (ret)
70 return ret;
71 if (new_capacity > SCHED_CAPACITY_SCALE)
72 return -EINVAL;
74 mutex_lock(&cpu_scale_mutex);
75 for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
76 topology_set_cpu_scale(i, new_capacity);
77 mutex_unlock(&cpu_scale_mutex);
79 schedule_work(&update_topology_flags_work);
81 return count;
84 static DEVICE_ATTR_RW(cpu_capacity);
86 static int register_cpu_capacity_sysctl(void)
88 int i;
89 struct device *cpu;
91 for_each_possible_cpu(i) {
92 cpu = get_cpu_device(i);
93 if (!cpu) {
94 pr_err("%s: too early to get CPU%d device!\n",
95 __func__, i);
96 continue;
98 device_create_file(cpu, &dev_attr_cpu_capacity);
101 return 0;
103 subsys_initcall(register_cpu_capacity_sysctl);
105 static int update_topology;
107 int topology_update_cpu_topology(void)
109 return update_topology;
113 * Updating the sched_domains can't be done directly from cpufreq callbacks
114 * due to locking, so queue the work for later.
116 static void update_topology_flags_workfn(struct work_struct *work)
118 update_topology = 1;
119 rebuild_sched_domains();
120 pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
121 update_topology = 0;
124 static u32 capacity_scale;
125 static u32 *raw_capacity;
127 static int free_raw_capacity(void)
129 kfree(raw_capacity);
130 raw_capacity = NULL;
132 return 0;
135 void topology_normalize_cpu_scale(void)
137 u64 capacity;
138 int cpu;
140 if (!raw_capacity)
141 return;
143 pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
144 mutex_lock(&cpu_scale_mutex);
145 for_each_possible_cpu(cpu) {
146 pr_debug("cpu_capacity: cpu=%d raw_capacity=%u\n",
147 cpu, raw_capacity[cpu]);
148 capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
149 / capacity_scale;
150 topology_set_cpu_scale(cpu, capacity);
151 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
152 cpu, topology_get_cpu_scale(NULL, cpu));
154 mutex_unlock(&cpu_scale_mutex);
157 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
159 static bool cap_parsing_failed;
160 int ret;
161 u32 cpu_capacity;
163 if (cap_parsing_failed)
164 return false;
166 ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
167 &cpu_capacity);
168 if (!ret) {
169 if (!raw_capacity) {
170 raw_capacity = kcalloc(num_possible_cpus(),
171 sizeof(*raw_capacity),
172 GFP_KERNEL);
173 if (!raw_capacity) {
174 pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
175 cap_parsing_failed = true;
176 return false;
179 capacity_scale = max(cpu_capacity, capacity_scale);
180 raw_capacity[cpu] = cpu_capacity;
181 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
182 cpu_node, raw_capacity[cpu]);
183 } else {
184 if (raw_capacity) {
185 pr_err("cpu_capacity: missing %pOF raw capacity\n",
186 cpu_node);
187 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
189 cap_parsing_failed = true;
190 free_raw_capacity();
193 return !ret;
196 #ifdef CONFIG_CPU_FREQ
197 static cpumask_var_t cpus_to_visit;
198 static void parsing_done_workfn(struct work_struct *work);
199 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
201 static int
202 init_cpu_capacity_callback(struct notifier_block *nb,
203 unsigned long val,
204 void *data)
206 struct cpufreq_policy *policy = data;
207 int cpu;
209 if (!raw_capacity)
210 return 0;
212 if (val != CPUFREQ_NOTIFY)
213 return 0;
215 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
216 cpumask_pr_args(policy->related_cpus),
217 cpumask_pr_args(cpus_to_visit));
219 cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
221 for_each_cpu(cpu, policy->related_cpus) {
222 raw_capacity[cpu] = topology_get_cpu_scale(NULL, cpu) *
223 policy->cpuinfo.max_freq / 1000UL;
224 capacity_scale = max(raw_capacity[cpu], capacity_scale);
227 if (cpumask_empty(cpus_to_visit)) {
228 topology_normalize_cpu_scale();
229 schedule_work(&update_topology_flags_work);
230 free_raw_capacity();
231 pr_debug("cpu_capacity: parsing done\n");
232 schedule_work(&parsing_done_work);
235 return 0;
238 static struct notifier_block init_cpu_capacity_notifier = {
239 .notifier_call = init_cpu_capacity_callback,
242 static int __init register_cpufreq_notifier(void)
244 int ret;
247 * on ACPI-based systems we need to use the default cpu capacity
248 * until we have the necessary code to parse the cpu capacity, so
249 * skip registering cpufreq notifier.
251 if (!acpi_disabled || !raw_capacity)
252 return -EINVAL;
254 if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
255 pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
256 return -ENOMEM;
259 cpumask_copy(cpus_to_visit, cpu_possible_mask);
261 ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
262 CPUFREQ_POLICY_NOTIFIER);
264 if (ret)
265 free_cpumask_var(cpus_to_visit);
267 return ret;
269 core_initcall(register_cpufreq_notifier);
271 static void parsing_done_workfn(struct work_struct *work)
273 cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
274 CPUFREQ_POLICY_NOTIFIER);
275 free_cpumask_var(cpus_to_visit);
278 #else
279 core_initcall(free_raw_capacity);
280 #endif