2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
84 #include <linux/uaccess.h>
86 static DEFINE_IDR(loop_index_idr
);
87 static DEFINE_MUTEX(loop_ctl_mutex
);
90 static int part_shift
;
92 static int transfer_xor(struct loop_device
*lo
, int cmd
,
93 struct page
*raw_page
, unsigned raw_off
,
94 struct page
*loop_page
, unsigned loop_off
,
95 int size
, sector_t real_block
)
97 char *raw_buf
= kmap_atomic(raw_page
) + raw_off
;
98 char *loop_buf
= kmap_atomic(loop_page
) + loop_off
;
110 key
= lo
->lo_encrypt_key
;
111 keysize
= lo
->lo_encrypt_key_size
;
112 for (i
= 0; i
< size
; i
++)
113 *out
++ = *in
++ ^ key
[(i
& 511) % keysize
];
115 kunmap_atomic(loop_buf
);
116 kunmap_atomic(raw_buf
);
121 static int xor_init(struct loop_device
*lo
, const struct loop_info64
*info
)
123 if (unlikely(info
->lo_encrypt_key_size
<= 0))
128 static struct loop_func_table none_funcs
= {
129 .number
= LO_CRYPT_NONE
,
132 static struct loop_func_table xor_funcs
= {
133 .number
= LO_CRYPT_XOR
,
134 .transfer
= transfer_xor
,
138 /* xfer_funcs[0] is special - its release function is never called */
139 static struct loop_func_table
*xfer_funcs
[MAX_LO_CRYPT
] = {
144 static loff_t
get_size(loff_t offset
, loff_t sizelimit
, struct file
*file
)
148 /* Compute loopsize in bytes */
149 loopsize
= i_size_read(file
->f_mapping
->host
);
152 /* offset is beyond i_size, weird but possible */
156 if (sizelimit
> 0 && sizelimit
< loopsize
)
157 loopsize
= sizelimit
;
159 * Unfortunately, if we want to do I/O on the device,
160 * the number of 512-byte sectors has to fit into a sector_t.
162 return loopsize
>> 9;
165 static loff_t
get_loop_size(struct loop_device
*lo
, struct file
*file
)
167 return get_size(lo
->lo_offset
, lo
->lo_sizelimit
, file
);
170 static void __loop_update_dio(struct loop_device
*lo
, bool dio
)
172 struct file
*file
= lo
->lo_backing_file
;
173 struct address_space
*mapping
= file
->f_mapping
;
174 struct inode
*inode
= mapping
->host
;
175 unsigned short sb_bsize
= 0;
176 unsigned dio_align
= 0;
179 if (inode
->i_sb
->s_bdev
) {
180 sb_bsize
= bdev_logical_block_size(inode
->i_sb
->s_bdev
);
181 dio_align
= sb_bsize
- 1;
185 * We support direct I/O only if lo_offset is aligned with the
186 * logical I/O size of backing device, and the logical block
187 * size of loop is bigger than the backing device's and the loop
188 * needn't transform transfer.
190 * TODO: the above condition may be loosed in the future, and
191 * direct I/O may be switched runtime at that time because most
192 * of requests in sane applications should be PAGE_SIZE aligned
195 if (queue_logical_block_size(lo
->lo_queue
) >= sb_bsize
&&
196 !(lo
->lo_offset
& dio_align
) &&
197 mapping
->a_ops
->direct_IO
&&
206 if (lo
->use_dio
== use_dio
)
209 /* flush dirty pages before changing direct IO */
213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 * will get updated by ioctl(LOOP_GET_STATUS)
217 blk_mq_freeze_queue(lo
->lo_queue
);
218 lo
->use_dio
= use_dio
;
220 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES
, lo
->lo_queue
);
221 lo
->lo_flags
|= LO_FLAGS_DIRECT_IO
;
223 blk_queue_flag_set(QUEUE_FLAG_NOMERGES
, lo
->lo_queue
);
224 lo
->lo_flags
&= ~LO_FLAGS_DIRECT_IO
;
226 blk_mq_unfreeze_queue(lo
->lo_queue
);
230 figure_loop_size(struct loop_device
*lo
, loff_t offset
, loff_t sizelimit
)
232 loff_t size
= get_size(offset
, sizelimit
, lo
->lo_backing_file
);
233 sector_t x
= (sector_t
)size
;
234 struct block_device
*bdev
= lo
->lo_device
;
236 if (unlikely((loff_t
)x
!= size
))
238 if (lo
->lo_offset
!= offset
)
239 lo
->lo_offset
= offset
;
240 if (lo
->lo_sizelimit
!= sizelimit
)
241 lo
->lo_sizelimit
= sizelimit
;
242 set_capacity(lo
->lo_disk
, x
);
243 bd_set_size(bdev
, (loff_t
)get_capacity(bdev
->bd_disk
) << 9);
244 /* let user-space know about the new size */
245 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
250 lo_do_transfer(struct loop_device
*lo
, int cmd
,
251 struct page
*rpage
, unsigned roffs
,
252 struct page
*lpage
, unsigned loffs
,
253 int size
, sector_t rblock
)
257 ret
= lo
->transfer(lo
, cmd
, rpage
, roffs
, lpage
, loffs
, size
, rblock
);
261 printk_ratelimited(KERN_ERR
262 "loop: Transfer error at byte offset %llu, length %i.\n",
263 (unsigned long long)rblock
<< 9, size
);
267 static int lo_write_bvec(struct file
*file
, struct bio_vec
*bvec
, loff_t
*ppos
)
272 iov_iter_bvec(&i
, WRITE
, bvec
, 1, bvec
->bv_len
);
274 file_start_write(file
);
275 bw
= vfs_iter_write(file
, &i
, ppos
, 0);
276 file_end_write(file
);
278 if (likely(bw
== bvec
->bv_len
))
281 printk_ratelimited(KERN_ERR
282 "loop: Write error at byte offset %llu, length %i.\n",
283 (unsigned long long)*ppos
, bvec
->bv_len
);
289 static int lo_write_simple(struct loop_device
*lo
, struct request
*rq
,
293 struct req_iterator iter
;
296 rq_for_each_segment(bvec
, rq
, iter
) {
297 ret
= lo_write_bvec(lo
->lo_backing_file
, &bvec
, &pos
);
307 * This is the slow, transforming version that needs to double buffer the
308 * data as it cannot do the transformations in place without having direct
309 * access to the destination pages of the backing file.
311 static int lo_write_transfer(struct loop_device
*lo
, struct request
*rq
,
314 struct bio_vec bvec
, b
;
315 struct req_iterator iter
;
319 page
= alloc_page(GFP_NOIO
);
323 rq_for_each_segment(bvec
, rq
, iter
) {
324 ret
= lo_do_transfer(lo
, WRITE
, page
, 0, bvec
.bv_page
,
325 bvec
.bv_offset
, bvec
.bv_len
, pos
>> 9);
331 b
.bv_len
= bvec
.bv_len
;
332 ret
= lo_write_bvec(lo
->lo_backing_file
, &b
, &pos
);
341 static int lo_read_simple(struct loop_device
*lo
, struct request
*rq
,
345 struct req_iterator iter
;
349 rq_for_each_segment(bvec
, rq
, iter
) {
350 iov_iter_bvec(&i
, READ
, &bvec
, 1, bvec
.bv_len
);
351 len
= vfs_iter_read(lo
->lo_backing_file
, &i
, &pos
, 0);
355 flush_dcache_page(bvec
.bv_page
);
357 if (len
!= bvec
.bv_len
) {
360 __rq_for_each_bio(bio
, rq
)
370 static int lo_read_transfer(struct loop_device
*lo
, struct request
*rq
,
373 struct bio_vec bvec
, b
;
374 struct req_iterator iter
;
380 page
= alloc_page(GFP_NOIO
);
384 rq_for_each_segment(bvec
, rq
, iter
) {
389 b
.bv_len
= bvec
.bv_len
;
391 iov_iter_bvec(&i
, READ
, &b
, 1, b
.bv_len
);
392 len
= vfs_iter_read(lo
->lo_backing_file
, &i
, &pos
, 0);
398 ret
= lo_do_transfer(lo
, READ
, page
, 0, bvec
.bv_page
,
399 bvec
.bv_offset
, len
, offset
>> 9);
403 flush_dcache_page(bvec
.bv_page
);
405 if (len
!= bvec
.bv_len
) {
408 __rq_for_each_bio(bio
, rq
)
420 static int lo_discard(struct loop_device
*lo
, struct request
*rq
, loff_t pos
)
423 * We use punch hole to reclaim the free space used by the
424 * image a.k.a. discard. However we do not support discard if
425 * encryption is enabled, because it may give an attacker
426 * useful information.
428 struct file
*file
= lo
->lo_backing_file
;
429 int mode
= FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
;
432 if ((!file
->f_op
->fallocate
) || lo
->lo_encrypt_key_size
) {
437 ret
= file
->f_op
->fallocate(file
, mode
, pos
, blk_rq_bytes(rq
));
438 if (unlikely(ret
&& ret
!= -EINVAL
&& ret
!= -EOPNOTSUPP
))
444 static int lo_req_flush(struct loop_device
*lo
, struct request
*rq
)
446 struct file
*file
= lo
->lo_backing_file
;
447 int ret
= vfs_fsync(file
, 0);
448 if (unlikely(ret
&& ret
!= -EINVAL
))
454 static void lo_complete_rq(struct request
*rq
)
456 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
457 blk_status_t ret
= BLK_STS_OK
;
459 if (!cmd
->use_aio
|| cmd
->ret
< 0 || cmd
->ret
== blk_rq_bytes(rq
) ||
460 req_op(rq
) != REQ_OP_READ
) {
467 * Short READ - if we got some data, advance our request and
468 * retry it. If we got no data, end the rest with EIO.
471 blk_update_request(rq
, BLK_STS_OK
, cmd
->ret
);
473 blk_mq_requeue_request(rq
, true);
476 struct bio
*bio
= rq
->bio
;
485 blk_mq_end_request(rq
, ret
);
489 static void lo_rw_aio_do_completion(struct loop_cmd
*cmd
)
491 struct request
*rq
= blk_mq_rq_from_pdu(cmd
);
493 if (!atomic_dec_and_test(&cmd
->ref
))
497 blk_mq_complete_request(rq
);
500 static void lo_rw_aio_complete(struct kiocb
*iocb
, long ret
, long ret2
)
502 struct loop_cmd
*cmd
= container_of(iocb
, struct loop_cmd
, iocb
);
507 lo_rw_aio_do_completion(cmd
);
510 static int lo_rw_aio(struct loop_device
*lo
, struct loop_cmd
*cmd
,
513 struct iov_iter iter
;
514 struct req_iterator rq_iter
;
515 struct bio_vec
*bvec
;
516 struct request
*rq
= blk_mq_rq_from_pdu(cmd
);
517 struct bio
*bio
= rq
->bio
;
518 struct file
*file
= lo
->lo_backing_file
;
524 rq_for_each_bvec(tmp
, rq
, rq_iter
)
527 if (rq
->bio
!= rq
->biotail
) {
529 bvec
= kmalloc_array(nr_bvec
, sizeof(struct bio_vec
),
536 * The bios of the request may be started from the middle of
537 * the 'bvec' because of bio splitting, so we can't directly
538 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
539 * API will take care of all details for us.
541 rq_for_each_bvec(tmp
, rq
, rq_iter
) {
549 * Same here, this bio may be started from the middle of the
550 * 'bvec' because of bio splitting, so offset from the bvec
551 * must be passed to iov iterator
553 offset
= bio
->bi_iter
.bi_bvec_done
;
554 bvec
= __bvec_iter_bvec(bio
->bi_io_vec
, bio
->bi_iter
);
556 atomic_set(&cmd
->ref
, 2);
558 iov_iter_bvec(&iter
, rw
, bvec
, nr_bvec
, blk_rq_bytes(rq
));
559 iter
.iov_offset
= offset
;
561 cmd
->iocb
.ki_pos
= pos
;
562 cmd
->iocb
.ki_filp
= file
;
563 cmd
->iocb
.ki_complete
= lo_rw_aio_complete
;
564 cmd
->iocb
.ki_flags
= IOCB_DIRECT
;
565 cmd
->iocb
.ki_ioprio
= IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE
, 0);
567 kthread_associate_blkcg(cmd
->css
);
570 ret
= call_write_iter(file
, &cmd
->iocb
, &iter
);
572 ret
= call_read_iter(file
, &cmd
->iocb
, &iter
);
574 lo_rw_aio_do_completion(cmd
);
575 kthread_associate_blkcg(NULL
);
577 if (ret
!= -EIOCBQUEUED
)
578 cmd
->iocb
.ki_complete(&cmd
->iocb
, ret
, 0);
582 static int do_req_filebacked(struct loop_device
*lo
, struct request
*rq
)
584 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
585 loff_t pos
= ((loff_t
) blk_rq_pos(rq
) << 9) + lo
->lo_offset
;
588 * lo_write_simple and lo_read_simple should have been covered
589 * by io submit style function like lo_rw_aio(), one blocker
590 * is that lo_read_simple() need to call flush_dcache_page after
591 * the page is written from kernel, and it isn't easy to handle
592 * this in io submit style function which submits all segments
593 * of the req at one time. And direct read IO doesn't need to
594 * run flush_dcache_page().
596 switch (req_op(rq
)) {
598 return lo_req_flush(lo
, rq
);
600 case REQ_OP_WRITE_ZEROES
:
601 return lo_discard(lo
, rq
, pos
);
604 return lo_write_transfer(lo
, rq
, pos
);
605 else if (cmd
->use_aio
)
606 return lo_rw_aio(lo
, cmd
, pos
, WRITE
);
608 return lo_write_simple(lo
, rq
, pos
);
611 return lo_read_transfer(lo
, rq
, pos
);
612 else if (cmd
->use_aio
)
613 return lo_rw_aio(lo
, cmd
, pos
, READ
);
615 return lo_read_simple(lo
, rq
, pos
);
622 static inline void loop_update_dio(struct loop_device
*lo
)
624 __loop_update_dio(lo
, io_is_direct(lo
->lo_backing_file
) |
628 static void loop_reread_partitions(struct loop_device
*lo
,
629 struct block_device
*bdev
)
633 rc
= blkdev_reread_part(bdev
);
635 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
636 __func__
, lo
->lo_number
, lo
->lo_file_name
, rc
);
639 static inline int is_loop_device(struct file
*file
)
641 struct inode
*i
= file
->f_mapping
->host
;
643 return i
&& S_ISBLK(i
->i_mode
) && MAJOR(i
->i_rdev
) == LOOP_MAJOR
;
646 static int loop_validate_file(struct file
*file
, struct block_device
*bdev
)
648 struct inode
*inode
= file
->f_mapping
->host
;
649 struct file
*f
= file
;
651 /* Avoid recursion */
652 while (is_loop_device(f
)) {
653 struct loop_device
*l
;
655 if (f
->f_mapping
->host
->i_bdev
== bdev
)
658 l
= f
->f_mapping
->host
->i_bdev
->bd_disk
->private_data
;
659 if (l
->lo_state
== Lo_unbound
) {
662 f
= l
->lo_backing_file
;
664 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
670 * loop_change_fd switched the backing store of a loopback device to
671 * a new file. This is useful for operating system installers to free up
672 * the original file and in High Availability environments to switch to
673 * an alternative location for the content in case of server meltdown.
674 * This can only work if the loop device is used read-only, and if the
675 * new backing store is the same size and type as the old backing store.
677 static int loop_change_fd(struct loop_device
*lo
, struct block_device
*bdev
,
680 struct file
*file
= NULL
, *old_file
;
684 error
= mutex_lock_killable(&loop_ctl_mutex
);
688 if (lo
->lo_state
!= Lo_bound
)
691 /* the loop device has to be read-only */
693 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
))
701 error
= loop_validate_file(file
, bdev
);
705 old_file
= lo
->lo_backing_file
;
709 /* size of the new backing store needs to be the same */
710 if (get_loop_size(lo
, file
) != get_loop_size(lo
, old_file
))
714 blk_mq_freeze_queue(lo
->lo_queue
);
715 mapping_set_gfp_mask(old_file
->f_mapping
, lo
->old_gfp_mask
);
716 lo
->lo_backing_file
= file
;
717 lo
->old_gfp_mask
= mapping_gfp_mask(file
->f_mapping
);
718 mapping_set_gfp_mask(file
->f_mapping
,
719 lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
721 blk_mq_unfreeze_queue(lo
->lo_queue
);
722 partscan
= lo
->lo_flags
& LO_FLAGS_PARTSCAN
;
723 mutex_unlock(&loop_ctl_mutex
);
725 * We must drop file reference outside of loop_ctl_mutex as dropping
726 * the file ref can take bd_mutex which creates circular locking
731 loop_reread_partitions(lo
, bdev
);
735 mutex_unlock(&loop_ctl_mutex
);
741 /* loop sysfs attributes */
743 static ssize_t
loop_attr_show(struct device
*dev
, char *page
,
744 ssize_t (*callback
)(struct loop_device
*, char *))
746 struct gendisk
*disk
= dev_to_disk(dev
);
747 struct loop_device
*lo
= disk
->private_data
;
749 return callback(lo
, page
);
752 #define LOOP_ATTR_RO(_name) \
753 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
754 static ssize_t loop_attr_do_show_##_name(struct device *d, \
755 struct device_attribute *attr, char *b) \
757 return loop_attr_show(d, b, loop_attr_##_name##_show); \
759 static struct device_attribute loop_attr_##_name = \
760 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
762 static ssize_t
loop_attr_backing_file_show(struct loop_device
*lo
, char *buf
)
767 spin_lock_irq(&lo
->lo_lock
);
768 if (lo
->lo_backing_file
)
769 p
= file_path(lo
->lo_backing_file
, buf
, PAGE_SIZE
- 1);
770 spin_unlock_irq(&lo
->lo_lock
);
772 if (IS_ERR_OR_NULL(p
))
776 memmove(buf
, p
, ret
);
784 static ssize_t
loop_attr_offset_show(struct loop_device
*lo
, char *buf
)
786 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_offset
);
789 static ssize_t
loop_attr_sizelimit_show(struct loop_device
*lo
, char *buf
)
791 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_sizelimit
);
794 static ssize_t
loop_attr_autoclear_show(struct loop_device
*lo
, char *buf
)
796 int autoclear
= (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
);
798 return sprintf(buf
, "%s\n", autoclear
? "1" : "0");
801 static ssize_t
loop_attr_partscan_show(struct loop_device
*lo
, char *buf
)
803 int partscan
= (lo
->lo_flags
& LO_FLAGS_PARTSCAN
);
805 return sprintf(buf
, "%s\n", partscan
? "1" : "0");
808 static ssize_t
loop_attr_dio_show(struct loop_device
*lo
, char *buf
)
810 int dio
= (lo
->lo_flags
& LO_FLAGS_DIRECT_IO
);
812 return sprintf(buf
, "%s\n", dio
? "1" : "0");
815 LOOP_ATTR_RO(backing_file
);
816 LOOP_ATTR_RO(offset
);
817 LOOP_ATTR_RO(sizelimit
);
818 LOOP_ATTR_RO(autoclear
);
819 LOOP_ATTR_RO(partscan
);
822 static struct attribute
*loop_attrs
[] = {
823 &loop_attr_backing_file
.attr
,
824 &loop_attr_offset
.attr
,
825 &loop_attr_sizelimit
.attr
,
826 &loop_attr_autoclear
.attr
,
827 &loop_attr_partscan
.attr
,
832 static struct attribute_group loop_attribute_group
= {
837 static void loop_sysfs_init(struct loop_device
*lo
)
839 lo
->sysfs_inited
= !sysfs_create_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
840 &loop_attribute_group
);
843 static void loop_sysfs_exit(struct loop_device
*lo
)
845 if (lo
->sysfs_inited
)
846 sysfs_remove_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
847 &loop_attribute_group
);
850 static void loop_config_discard(struct loop_device
*lo
)
852 struct file
*file
= lo
->lo_backing_file
;
853 struct inode
*inode
= file
->f_mapping
->host
;
854 struct request_queue
*q
= lo
->lo_queue
;
857 * We use punch hole to reclaim the free space used by the
858 * image a.k.a. discard. However we do not support discard if
859 * encryption is enabled, because it may give an attacker
860 * useful information.
862 if ((!file
->f_op
->fallocate
) ||
863 lo
->lo_encrypt_key_size
) {
864 q
->limits
.discard_granularity
= 0;
865 q
->limits
.discard_alignment
= 0;
866 blk_queue_max_discard_sectors(q
, 0);
867 blk_queue_max_write_zeroes_sectors(q
, 0);
868 blk_queue_flag_clear(QUEUE_FLAG_DISCARD
, q
);
872 q
->limits
.discard_granularity
= inode
->i_sb
->s_blocksize
;
873 q
->limits
.discard_alignment
= 0;
875 blk_queue_max_discard_sectors(q
, UINT_MAX
>> 9);
876 blk_queue_max_write_zeroes_sectors(q
, UINT_MAX
>> 9);
877 blk_queue_flag_set(QUEUE_FLAG_DISCARD
, q
);
880 static void loop_unprepare_queue(struct loop_device
*lo
)
882 kthread_flush_worker(&lo
->worker
);
883 kthread_stop(lo
->worker_task
);
886 static int loop_kthread_worker_fn(void *worker_ptr
)
888 current
->flags
|= PF_LESS_THROTTLE
;
889 return kthread_worker_fn(worker_ptr
);
892 static int loop_prepare_queue(struct loop_device
*lo
)
894 kthread_init_worker(&lo
->worker
);
895 lo
->worker_task
= kthread_run(loop_kthread_worker_fn
,
896 &lo
->worker
, "loop%d", lo
->lo_number
);
897 if (IS_ERR(lo
->worker_task
))
899 set_user_nice(lo
->worker_task
, MIN_NICE
);
903 static int loop_set_fd(struct loop_device
*lo
, fmode_t mode
,
904 struct block_device
*bdev
, unsigned int arg
)
908 struct address_space
*mapping
;
914 /* This is safe, since we have a reference from open(). */
915 __module_get(THIS_MODULE
);
922 error
= mutex_lock_killable(&loop_ctl_mutex
);
927 if (lo
->lo_state
!= Lo_unbound
)
930 error
= loop_validate_file(file
, bdev
);
934 mapping
= file
->f_mapping
;
935 inode
= mapping
->host
;
937 if (!(file
->f_mode
& FMODE_WRITE
) || !(mode
& FMODE_WRITE
) ||
938 !file
->f_op
->write_iter
)
939 lo_flags
|= LO_FLAGS_READ_ONLY
;
942 size
= get_loop_size(lo
, file
);
943 if ((loff_t
)(sector_t
)size
!= size
)
945 error
= loop_prepare_queue(lo
);
951 set_device_ro(bdev
, (lo_flags
& LO_FLAGS_READ_ONLY
) != 0);
954 lo
->lo_device
= bdev
;
955 lo
->lo_flags
= lo_flags
;
956 lo
->lo_backing_file
= file
;
959 lo
->lo_sizelimit
= 0;
960 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
961 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
963 if (!(lo_flags
& LO_FLAGS_READ_ONLY
) && file
->f_op
->fsync
)
964 blk_queue_write_cache(lo
->lo_queue
, true, false);
967 set_capacity(lo
->lo_disk
, size
);
968 bd_set_size(bdev
, size
<< 9);
970 /* let user-space know about the new size */
971 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
973 set_blocksize(bdev
, S_ISBLK(inode
->i_mode
) ?
974 block_size(inode
->i_bdev
) : PAGE_SIZE
);
976 lo
->lo_state
= Lo_bound
;
978 lo
->lo_flags
|= LO_FLAGS_PARTSCAN
;
979 partscan
= lo
->lo_flags
& LO_FLAGS_PARTSCAN
;
981 /* Grab the block_device to prevent its destruction after we
982 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
985 mutex_unlock(&loop_ctl_mutex
);
987 loop_reread_partitions(lo
, bdev
);
991 mutex_unlock(&loop_ctl_mutex
);
995 /* This is safe: open() is still holding a reference. */
996 module_put(THIS_MODULE
);
1001 loop_release_xfer(struct loop_device
*lo
)
1004 struct loop_func_table
*xfer
= lo
->lo_encryption
;
1008 err
= xfer
->release(lo
);
1009 lo
->transfer
= NULL
;
1010 lo
->lo_encryption
= NULL
;
1011 module_put(xfer
->owner
);
1017 loop_init_xfer(struct loop_device
*lo
, struct loop_func_table
*xfer
,
1018 const struct loop_info64
*i
)
1023 struct module
*owner
= xfer
->owner
;
1025 if (!try_module_get(owner
))
1028 err
= xfer
->init(lo
, i
);
1032 lo
->lo_encryption
= xfer
;
1037 static int __loop_clr_fd(struct loop_device
*lo
, bool release
)
1039 struct file
*filp
= NULL
;
1040 gfp_t gfp
= lo
->old_gfp_mask
;
1041 struct block_device
*bdev
= lo
->lo_device
;
1043 bool partscan
= false;
1046 mutex_lock(&loop_ctl_mutex
);
1047 if (WARN_ON_ONCE(lo
->lo_state
!= Lo_rundown
)) {
1052 filp
= lo
->lo_backing_file
;
1058 /* freeze request queue during the transition */
1059 blk_mq_freeze_queue(lo
->lo_queue
);
1061 spin_lock_irq(&lo
->lo_lock
);
1062 lo
->lo_backing_file
= NULL
;
1063 spin_unlock_irq(&lo
->lo_lock
);
1065 loop_release_xfer(lo
);
1066 lo
->transfer
= NULL
;
1068 lo
->lo_device
= NULL
;
1069 lo
->lo_encryption
= NULL
;
1071 lo
->lo_sizelimit
= 0;
1072 lo
->lo_encrypt_key_size
= 0;
1073 memset(lo
->lo_encrypt_key
, 0, LO_KEY_SIZE
);
1074 memset(lo
->lo_crypt_name
, 0, LO_NAME_SIZE
);
1075 memset(lo
->lo_file_name
, 0, LO_NAME_SIZE
);
1076 blk_queue_logical_block_size(lo
->lo_queue
, 512);
1077 blk_queue_physical_block_size(lo
->lo_queue
, 512);
1078 blk_queue_io_min(lo
->lo_queue
, 512);
1081 invalidate_bdev(bdev
);
1082 bdev
->bd_inode
->i_mapping
->wb_err
= 0;
1084 set_capacity(lo
->lo_disk
, 0);
1085 loop_sysfs_exit(lo
);
1087 bd_set_size(bdev
, 0);
1088 /* let user-space know about this change */
1089 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
1091 mapping_set_gfp_mask(filp
->f_mapping
, gfp
);
1092 /* This is safe: open() is still holding a reference. */
1093 module_put(THIS_MODULE
);
1094 blk_mq_unfreeze_queue(lo
->lo_queue
);
1096 partscan
= lo
->lo_flags
& LO_FLAGS_PARTSCAN
&& bdev
;
1097 lo_number
= lo
->lo_number
;
1098 loop_unprepare_queue(lo
);
1100 mutex_unlock(&loop_ctl_mutex
);
1103 * bd_mutex has been held already in release path, so don't
1104 * acquire it if this function is called in such case.
1106 * If the reread partition isn't from release path, lo_refcnt
1107 * must be at least one and it can only become zero when the
1108 * current holder is released.
1111 err
= __blkdev_reread_part(bdev
);
1113 err
= blkdev_reread_part(bdev
);
1115 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1116 __func__
, lo_number
, err
);
1117 /* Device is gone, no point in returning error */
1122 * lo->lo_state is set to Lo_unbound here after above partscan has
1125 * There cannot be anybody else entering __loop_clr_fd() as
1126 * lo->lo_backing_file is already cleared and Lo_rundown state
1127 * protects us from all the other places trying to change the 'lo'
1130 mutex_lock(&loop_ctl_mutex
);
1133 lo
->lo_disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
1134 lo
->lo_state
= Lo_unbound
;
1135 mutex_unlock(&loop_ctl_mutex
);
1138 * Need not hold loop_ctl_mutex to fput backing file.
1139 * Calling fput holding loop_ctl_mutex triggers a circular
1140 * lock dependency possibility warning as fput can take
1141 * bd_mutex which is usually taken before loop_ctl_mutex.
1148 static int loop_clr_fd(struct loop_device
*lo
)
1152 err
= mutex_lock_killable(&loop_ctl_mutex
);
1155 if (lo
->lo_state
!= Lo_bound
) {
1156 mutex_unlock(&loop_ctl_mutex
);
1160 * If we've explicitly asked to tear down the loop device,
1161 * and it has an elevated reference count, set it for auto-teardown when
1162 * the last reference goes away. This stops $!~#$@ udev from
1163 * preventing teardown because it decided that it needs to run blkid on
1164 * the loopback device whenever they appear. xfstests is notorious for
1165 * failing tests because blkid via udev races with a losetup
1166 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1167 * command to fail with EBUSY.
1169 if (atomic_read(&lo
->lo_refcnt
) > 1) {
1170 lo
->lo_flags
|= LO_FLAGS_AUTOCLEAR
;
1171 mutex_unlock(&loop_ctl_mutex
);
1174 lo
->lo_state
= Lo_rundown
;
1175 mutex_unlock(&loop_ctl_mutex
);
1177 return __loop_clr_fd(lo
, false);
1181 loop_set_status(struct loop_device
*lo
, const struct loop_info64
*info
)
1184 struct loop_func_table
*xfer
;
1185 kuid_t uid
= current_uid();
1186 struct block_device
*bdev
;
1187 bool partscan
= false;
1189 err
= mutex_lock_killable(&loop_ctl_mutex
);
1192 if (lo
->lo_encrypt_key_size
&&
1193 !uid_eq(lo
->lo_key_owner
, uid
) &&
1194 !capable(CAP_SYS_ADMIN
)) {
1198 if (lo
->lo_state
!= Lo_bound
) {
1202 if ((unsigned int) info
->lo_encrypt_key_size
> LO_KEY_SIZE
) {
1207 if (lo
->lo_offset
!= info
->lo_offset
||
1208 lo
->lo_sizelimit
!= info
->lo_sizelimit
) {
1209 sync_blockdev(lo
->lo_device
);
1210 kill_bdev(lo
->lo_device
);
1213 /* I/O need to be drained during transfer transition */
1214 blk_mq_freeze_queue(lo
->lo_queue
);
1216 err
= loop_release_xfer(lo
);
1220 if (info
->lo_encrypt_type
) {
1221 unsigned int type
= info
->lo_encrypt_type
;
1223 if (type
>= MAX_LO_CRYPT
) {
1227 xfer
= xfer_funcs
[type
];
1235 err
= loop_init_xfer(lo
, xfer
, info
);
1239 if (lo
->lo_offset
!= info
->lo_offset
||
1240 lo
->lo_sizelimit
!= info
->lo_sizelimit
) {
1241 /* kill_bdev should have truncated all the pages */
1242 if (lo
->lo_device
->bd_inode
->i_mapping
->nrpages
) {
1244 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1245 __func__
, lo
->lo_number
, lo
->lo_file_name
,
1246 lo
->lo_device
->bd_inode
->i_mapping
->nrpages
);
1249 if (figure_loop_size(lo
, info
->lo_offset
, info
->lo_sizelimit
)) {
1255 loop_config_discard(lo
);
1257 memcpy(lo
->lo_file_name
, info
->lo_file_name
, LO_NAME_SIZE
);
1258 memcpy(lo
->lo_crypt_name
, info
->lo_crypt_name
, LO_NAME_SIZE
);
1259 lo
->lo_file_name
[LO_NAME_SIZE
-1] = 0;
1260 lo
->lo_crypt_name
[LO_NAME_SIZE
-1] = 0;
1264 lo
->transfer
= xfer
->transfer
;
1265 lo
->ioctl
= xfer
->ioctl
;
1267 if ((lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) !=
1268 (info
->lo_flags
& LO_FLAGS_AUTOCLEAR
))
1269 lo
->lo_flags
^= LO_FLAGS_AUTOCLEAR
;
1271 lo
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1272 lo
->lo_init
[0] = info
->lo_init
[0];
1273 lo
->lo_init
[1] = info
->lo_init
[1];
1274 if (info
->lo_encrypt_key_size
) {
1275 memcpy(lo
->lo_encrypt_key
, info
->lo_encrypt_key
,
1276 info
->lo_encrypt_key_size
);
1277 lo
->lo_key_owner
= uid
;
1280 /* update dio if lo_offset or transfer is changed */
1281 __loop_update_dio(lo
, lo
->use_dio
);
1284 blk_mq_unfreeze_queue(lo
->lo_queue
);
1286 if (!err
&& (info
->lo_flags
& LO_FLAGS_PARTSCAN
) &&
1287 !(lo
->lo_flags
& LO_FLAGS_PARTSCAN
)) {
1288 lo
->lo_flags
|= LO_FLAGS_PARTSCAN
;
1289 lo
->lo_disk
->flags
&= ~GENHD_FL_NO_PART_SCAN
;
1290 bdev
= lo
->lo_device
;
1294 mutex_unlock(&loop_ctl_mutex
);
1296 loop_reread_partitions(lo
, bdev
);
1302 loop_get_status(struct loop_device
*lo
, struct loop_info64
*info
)
1308 ret
= mutex_lock_killable(&loop_ctl_mutex
);
1311 if (lo
->lo_state
!= Lo_bound
) {
1312 mutex_unlock(&loop_ctl_mutex
);
1316 memset(info
, 0, sizeof(*info
));
1317 info
->lo_number
= lo
->lo_number
;
1318 info
->lo_offset
= lo
->lo_offset
;
1319 info
->lo_sizelimit
= lo
->lo_sizelimit
;
1320 info
->lo_flags
= lo
->lo_flags
;
1321 memcpy(info
->lo_file_name
, lo
->lo_file_name
, LO_NAME_SIZE
);
1322 memcpy(info
->lo_crypt_name
, lo
->lo_crypt_name
, LO_NAME_SIZE
);
1323 info
->lo_encrypt_type
=
1324 lo
->lo_encryption
? lo
->lo_encryption
->number
: 0;
1325 if (lo
->lo_encrypt_key_size
&& capable(CAP_SYS_ADMIN
)) {
1326 info
->lo_encrypt_key_size
= lo
->lo_encrypt_key_size
;
1327 memcpy(info
->lo_encrypt_key
, lo
->lo_encrypt_key
,
1328 lo
->lo_encrypt_key_size
);
1331 /* Drop loop_ctl_mutex while we call into the filesystem. */
1332 path
= lo
->lo_backing_file
->f_path
;
1334 mutex_unlock(&loop_ctl_mutex
);
1335 ret
= vfs_getattr(&path
, &stat
, STATX_INO
, AT_STATX_SYNC_AS_STAT
);
1337 info
->lo_device
= huge_encode_dev(stat
.dev
);
1338 info
->lo_inode
= stat
.ino
;
1339 info
->lo_rdevice
= huge_encode_dev(stat
.rdev
);
1346 loop_info64_from_old(const struct loop_info
*info
, struct loop_info64
*info64
)
1348 memset(info64
, 0, sizeof(*info64
));
1349 info64
->lo_number
= info
->lo_number
;
1350 info64
->lo_device
= info
->lo_device
;
1351 info64
->lo_inode
= info
->lo_inode
;
1352 info64
->lo_rdevice
= info
->lo_rdevice
;
1353 info64
->lo_offset
= info
->lo_offset
;
1354 info64
->lo_sizelimit
= 0;
1355 info64
->lo_encrypt_type
= info
->lo_encrypt_type
;
1356 info64
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1357 info64
->lo_flags
= info
->lo_flags
;
1358 info64
->lo_init
[0] = info
->lo_init
[0];
1359 info64
->lo_init
[1] = info
->lo_init
[1];
1360 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1361 memcpy(info64
->lo_crypt_name
, info
->lo_name
, LO_NAME_SIZE
);
1363 memcpy(info64
->lo_file_name
, info
->lo_name
, LO_NAME_SIZE
);
1364 memcpy(info64
->lo_encrypt_key
, info
->lo_encrypt_key
, LO_KEY_SIZE
);
1368 loop_info64_to_old(const struct loop_info64
*info64
, struct loop_info
*info
)
1370 memset(info
, 0, sizeof(*info
));
1371 info
->lo_number
= info64
->lo_number
;
1372 info
->lo_device
= info64
->lo_device
;
1373 info
->lo_inode
= info64
->lo_inode
;
1374 info
->lo_rdevice
= info64
->lo_rdevice
;
1375 info
->lo_offset
= info64
->lo_offset
;
1376 info
->lo_encrypt_type
= info64
->lo_encrypt_type
;
1377 info
->lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1378 info
->lo_flags
= info64
->lo_flags
;
1379 info
->lo_init
[0] = info64
->lo_init
[0];
1380 info
->lo_init
[1] = info64
->lo_init
[1];
1381 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1382 memcpy(info
->lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1384 memcpy(info
->lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1385 memcpy(info
->lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1387 /* error in case values were truncated */
1388 if (info
->lo_device
!= info64
->lo_device
||
1389 info
->lo_rdevice
!= info64
->lo_rdevice
||
1390 info
->lo_inode
!= info64
->lo_inode
||
1391 info
->lo_offset
!= info64
->lo_offset
)
1398 loop_set_status_old(struct loop_device
*lo
, const struct loop_info __user
*arg
)
1400 struct loop_info info
;
1401 struct loop_info64 info64
;
1403 if (copy_from_user(&info
, arg
, sizeof (struct loop_info
)))
1405 loop_info64_from_old(&info
, &info64
);
1406 return loop_set_status(lo
, &info64
);
1410 loop_set_status64(struct loop_device
*lo
, const struct loop_info64 __user
*arg
)
1412 struct loop_info64 info64
;
1414 if (copy_from_user(&info64
, arg
, sizeof (struct loop_info64
)))
1416 return loop_set_status(lo
, &info64
);
1420 loop_get_status_old(struct loop_device
*lo
, struct loop_info __user
*arg
) {
1421 struct loop_info info
;
1422 struct loop_info64 info64
;
1427 err
= loop_get_status(lo
, &info64
);
1429 err
= loop_info64_to_old(&info64
, &info
);
1430 if (!err
&& copy_to_user(arg
, &info
, sizeof(info
)))
1437 loop_get_status64(struct loop_device
*lo
, struct loop_info64 __user
*arg
) {
1438 struct loop_info64 info64
;
1443 err
= loop_get_status(lo
, &info64
);
1444 if (!err
&& copy_to_user(arg
, &info64
, sizeof(info64
)))
1450 static int loop_set_capacity(struct loop_device
*lo
)
1452 if (unlikely(lo
->lo_state
!= Lo_bound
))
1455 return figure_loop_size(lo
, lo
->lo_offset
, lo
->lo_sizelimit
);
1458 static int loop_set_dio(struct loop_device
*lo
, unsigned long arg
)
1461 if (lo
->lo_state
!= Lo_bound
)
1464 __loop_update_dio(lo
, !!arg
);
1465 if (lo
->use_dio
== !!arg
)
1472 static int loop_set_block_size(struct loop_device
*lo
, unsigned long arg
)
1476 if (lo
->lo_state
!= Lo_bound
)
1479 if (arg
< 512 || arg
> PAGE_SIZE
|| !is_power_of_2(arg
))
1482 if (lo
->lo_queue
->limits
.logical_block_size
!= arg
) {
1483 sync_blockdev(lo
->lo_device
);
1484 kill_bdev(lo
->lo_device
);
1487 blk_mq_freeze_queue(lo
->lo_queue
);
1489 /* kill_bdev should have truncated all the pages */
1490 if (lo
->lo_queue
->limits
.logical_block_size
!= arg
&&
1491 lo
->lo_device
->bd_inode
->i_mapping
->nrpages
) {
1493 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1494 __func__
, lo
->lo_number
, lo
->lo_file_name
,
1495 lo
->lo_device
->bd_inode
->i_mapping
->nrpages
);
1499 blk_queue_logical_block_size(lo
->lo_queue
, arg
);
1500 blk_queue_physical_block_size(lo
->lo_queue
, arg
);
1501 blk_queue_io_min(lo
->lo_queue
, arg
);
1502 loop_update_dio(lo
);
1504 blk_mq_unfreeze_queue(lo
->lo_queue
);
1509 static int lo_simple_ioctl(struct loop_device
*lo
, unsigned int cmd
,
1514 err
= mutex_lock_killable(&loop_ctl_mutex
);
1518 case LOOP_SET_CAPACITY
:
1519 err
= loop_set_capacity(lo
);
1521 case LOOP_SET_DIRECT_IO
:
1522 err
= loop_set_dio(lo
, arg
);
1524 case LOOP_SET_BLOCK_SIZE
:
1525 err
= loop_set_block_size(lo
, arg
);
1528 err
= lo
->ioctl
? lo
->ioctl(lo
, cmd
, arg
) : -EINVAL
;
1530 mutex_unlock(&loop_ctl_mutex
);
1534 static int lo_ioctl(struct block_device
*bdev
, fmode_t mode
,
1535 unsigned int cmd
, unsigned long arg
)
1537 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1542 return loop_set_fd(lo
, mode
, bdev
, arg
);
1543 case LOOP_CHANGE_FD
:
1544 return loop_change_fd(lo
, bdev
, arg
);
1546 return loop_clr_fd(lo
);
1547 case LOOP_SET_STATUS
:
1549 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
)) {
1550 err
= loop_set_status_old(lo
,
1551 (struct loop_info __user
*)arg
);
1554 case LOOP_GET_STATUS
:
1555 return loop_get_status_old(lo
, (struct loop_info __user
*) arg
);
1556 case LOOP_SET_STATUS64
:
1558 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
)) {
1559 err
= loop_set_status64(lo
,
1560 (struct loop_info64 __user
*) arg
);
1563 case LOOP_GET_STATUS64
:
1564 return loop_get_status64(lo
, (struct loop_info64 __user
*) arg
);
1565 case LOOP_SET_CAPACITY
:
1566 case LOOP_SET_DIRECT_IO
:
1567 case LOOP_SET_BLOCK_SIZE
:
1568 if (!(mode
& FMODE_WRITE
) && !capable(CAP_SYS_ADMIN
))
1572 err
= lo_simple_ioctl(lo
, cmd
, arg
);
1579 #ifdef CONFIG_COMPAT
1580 struct compat_loop_info
{
1581 compat_int_t lo_number
; /* ioctl r/o */
1582 compat_dev_t lo_device
; /* ioctl r/o */
1583 compat_ulong_t lo_inode
; /* ioctl r/o */
1584 compat_dev_t lo_rdevice
; /* ioctl r/o */
1585 compat_int_t lo_offset
;
1586 compat_int_t lo_encrypt_type
;
1587 compat_int_t lo_encrypt_key_size
; /* ioctl w/o */
1588 compat_int_t lo_flags
; /* ioctl r/o */
1589 char lo_name
[LO_NAME_SIZE
];
1590 unsigned char lo_encrypt_key
[LO_KEY_SIZE
]; /* ioctl w/o */
1591 compat_ulong_t lo_init
[2];
1596 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1597 * - noinlined to reduce stack space usage in main part of driver
1600 loop_info64_from_compat(const struct compat_loop_info __user
*arg
,
1601 struct loop_info64
*info64
)
1603 struct compat_loop_info info
;
1605 if (copy_from_user(&info
, arg
, sizeof(info
)))
1608 memset(info64
, 0, sizeof(*info64
));
1609 info64
->lo_number
= info
.lo_number
;
1610 info64
->lo_device
= info
.lo_device
;
1611 info64
->lo_inode
= info
.lo_inode
;
1612 info64
->lo_rdevice
= info
.lo_rdevice
;
1613 info64
->lo_offset
= info
.lo_offset
;
1614 info64
->lo_sizelimit
= 0;
1615 info64
->lo_encrypt_type
= info
.lo_encrypt_type
;
1616 info64
->lo_encrypt_key_size
= info
.lo_encrypt_key_size
;
1617 info64
->lo_flags
= info
.lo_flags
;
1618 info64
->lo_init
[0] = info
.lo_init
[0];
1619 info64
->lo_init
[1] = info
.lo_init
[1];
1620 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1621 memcpy(info64
->lo_crypt_name
, info
.lo_name
, LO_NAME_SIZE
);
1623 memcpy(info64
->lo_file_name
, info
.lo_name
, LO_NAME_SIZE
);
1624 memcpy(info64
->lo_encrypt_key
, info
.lo_encrypt_key
, LO_KEY_SIZE
);
1629 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1630 * - noinlined to reduce stack space usage in main part of driver
1633 loop_info64_to_compat(const struct loop_info64
*info64
,
1634 struct compat_loop_info __user
*arg
)
1636 struct compat_loop_info info
;
1638 memset(&info
, 0, sizeof(info
));
1639 info
.lo_number
= info64
->lo_number
;
1640 info
.lo_device
= info64
->lo_device
;
1641 info
.lo_inode
= info64
->lo_inode
;
1642 info
.lo_rdevice
= info64
->lo_rdevice
;
1643 info
.lo_offset
= info64
->lo_offset
;
1644 info
.lo_encrypt_type
= info64
->lo_encrypt_type
;
1645 info
.lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1646 info
.lo_flags
= info64
->lo_flags
;
1647 info
.lo_init
[0] = info64
->lo_init
[0];
1648 info
.lo_init
[1] = info64
->lo_init
[1];
1649 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1650 memcpy(info
.lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1652 memcpy(info
.lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1653 memcpy(info
.lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1655 /* error in case values were truncated */
1656 if (info
.lo_device
!= info64
->lo_device
||
1657 info
.lo_rdevice
!= info64
->lo_rdevice
||
1658 info
.lo_inode
!= info64
->lo_inode
||
1659 info
.lo_offset
!= info64
->lo_offset
||
1660 info
.lo_init
[0] != info64
->lo_init
[0] ||
1661 info
.lo_init
[1] != info64
->lo_init
[1])
1664 if (copy_to_user(arg
, &info
, sizeof(info
)))
1670 loop_set_status_compat(struct loop_device
*lo
,
1671 const struct compat_loop_info __user
*arg
)
1673 struct loop_info64 info64
;
1676 ret
= loop_info64_from_compat(arg
, &info64
);
1679 return loop_set_status(lo
, &info64
);
1683 loop_get_status_compat(struct loop_device
*lo
,
1684 struct compat_loop_info __user
*arg
)
1686 struct loop_info64 info64
;
1691 err
= loop_get_status(lo
, &info64
);
1693 err
= loop_info64_to_compat(&info64
, arg
);
1697 static int lo_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1698 unsigned int cmd
, unsigned long arg
)
1700 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1704 case LOOP_SET_STATUS
:
1705 err
= loop_set_status_compat(lo
,
1706 (const struct compat_loop_info __user
*)arg
);
1708 case LOOP_GET_STATUS
:
1709 err
= loop_get_status_compat(lo
,
1710 (struct compat_loop_info __user
*)arg
);
1712 case LOOP_SET_CAPACITY
:
1714 case LOOP_GET_STATUS64
:
1715 case LOOP_SET_STATUS64
:
1716 arg
= (unsigned long) compat_ptr(arg
);
1719 case LOOP_CHANGE_FD
:
1720 case LOOP_SET_BLOCK_SIZE
:
1721 err
= lo_ioctl(bdev
, mode
, cmd
, arg
);
1731 static int lo_open(struct block_device
*bdev
, fmode_t mode
)
1733 struct loop_device
*lo
;
1736 err
= mutex_lock_killable(&loop_ctl_mutex
);
1739 lo
= bdev
->bd_disk
->private_data
;
1745 atomic_inc(&lo
->lo_refcnt
);
1747 mutex_unlock(&loop_ctl_mutex
);
1751 static void lo_release(struct gendisk
*disk
, fmode_t mode
)
1753 struct loop_device
*lo
;
1755 mutex_lock(&loop_ctl_mutex
);
1756 lo
= disk
->private_data
;
1757 if (atomic_dec_return(&lo
->lo_refcnt
))
1760 if (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) {
1761 if (lo
->lo_state
!= Lo_bound
)
1763 lo
->lo_state
= Lo_rundown
;
1764 mutex_unlock(&loop_ctl_mutex
);
1766 * In autoclear mode, stop the loop thread
1767 * and remove configuration after last close.
1769 __loop_clr_fd(lo
, true);
1771 } else if (lo
->lo_state
== Lo_bound
) {
1773 * Otherwise keep thread (if running) and config,
1774 * but flush possible ongoing bios in thread.
1776 blk_mq_freeze_queue(lo
->lo_queue
);
1777 blk_mq_unfreeze_queue(lo
->lo_queue
);
1781 mutex_unlock(&loop_ctl_mutex
);
1784 static const struct block_device_operations lo_fops
= {
1785 .owner
= THIS_MODULE
,
1787 .release
= lo_release
,
1789 #ifdef CONFIG_COMPAT
1790 .compat_ioctl
= lo_compat_ioctl
,
1795 * And now the modules code and kernel interface.
1797 static int max_loop
;
1798 module_param(max_loop
, int, 0444);
1799 MODULE_PARM_DESC(max_loop
, "Maximum number of loop devices");
1800 module_param(max_part
, int, 0444);
1801 MODULE_PARM_DESC(max_part
, "Maximum number of partitions per loop device");
1802 MODULE_LICENSE("GPL");
1803 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR
);
1805 int loop_register_transfer(struct loop_func_table
*funcs
)
1807 unsigned int n
= funcs
->number
;
1809 if (n
>= MAX_LO_CRYPT
|| xfer_funcs
[n
])
1811 xfer_funcs
[n
] = funcs
;
1815 static int unregister_transfer_cb(int id
, void *ptr
, void *data
)
1817 struct loop_device
*lo
= ptr
;
1818 struct loop_func_table
*xfer
= data
;
1820 mutex_lock(&loop_ctl_mutex
);
1821 if (lo
->lo_encryption
== xfer
)
1822 loop_release_xfer(lo
);
1823 mutex_unlock(&loop_ctl_mutex
);
1827 int loop_unregister_transfer(int number
)
1829 unsigned int n
= number
;
1830 struct loop_func_table
*xfer
;
1832 if (n
== 0 || n
>= MAX_LO_CRYPT
|| (xfer
= xfer_funcs
[n
]) == NULL
)
1835 xfer_funcs
[n
] = NULL
;
1836 idr_for_each(&loop_index_idr
, &unregister_transfer_cb
, xfer
);
1840 EXPORT_SYMBOL(loop_register_transfer
);
1841 EXPORT_SYMBOL(loop_unregister_transfer
);
1843 static blk_status_t
loop_queue_rq(struct blk_mq_hw_ctx
*hctx
,
1844 const struct blk_mq_queue_data
*bd
)
1846 struct request
*rq
= bd
->rq
;
1847 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
1848 struct loop_device
*lo
= rq
->q
->queuedata
;
1850 blk_mq_start_request(rq
);
1852 if (lo
->lo_state
!= Lo_bound
)
1853 return BLK_STS_IOERR
;
1855 switch (req_op(rq
)) {
1857 case REQ_OP_DISCARD
:
1858 case REQ_OP_WRITE_ZEROES
:
1859 cmd
->use_aio
= false;
1862 cmd
->use_aio
= lo
->use_dio
;
1866 /* always use the first bio's css */
1867 #ifdef CONFIG_BLK_CGROUP
1868 if (cmd
->use_aio
&& rq
->bio
&& rq
->bio
->bi_blkg
) {
1869 cmd
->css
= &bio_blkcg(rq
->bio
)->css
;
1874 kthread_queue_work(&lo
->worker
, &cmd
->work
);
1879 static void loop_handle_cmd(struct loop_cmd
*cmd
)
1881 struct request
*rq
= blk_mq_rq_from_pdu(cmd
);
1882 const bool write
= op_is_write(req_op(rq
));
1883 struct loop_device
*lo
= rq
->q
->queuedata
;
1886 if (write
&& (lo
->lo_flags
& LO_FLAGS_READ_ONLY
)) {
1891 ret
= do_req_filebacked(lo
, rq
);
1893 /* complete non-aio request */
1894 if (!cmd
->use_aio
|| ret
) {
1895 cmd
->ret
= ret
? -EIO
: 0;
1896 blk_mq_complete_request(rq
);
1900 static void loop_queue_work(struct kthread_work
*work
)
1902 struct loop_cmd
*cmd
=
1903 container_of(work
, struct loop_cmd
, work
);
1905 loop_handle_cmd(cmd
);
1908 static int loop_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
1909 unsigned int hctx_idx
, unsigned int numa_node
)
1911 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
1913 kthread_init_work(&cmd
->work
, loop_queue_work
);
1917 static const struct blk_mq_ops loop_mq_ops
= {
1918 .queue_rq
= loop_queue_rq
,
1919 .init_request
= loop_init_request
,
1920 .complete
= lo_complete_rq
,
1923 static int loop_add(struct loop_device
**l
, int i
)
1925 struct loop_device
*lo
;
1926 struct gendisk
*disk
;
1930 lo
= kzalloc(sizeof(*lo
), GFP_KERNEL
);
1934 lo
->lo_state
= Lo_unbound
;
1936 /* allocate id, if @id >= 0, we're requesting that specific id */
1938 err
= idr_alloc(&loop_index_idr
, lo
, i
, i
+ 1, GFP_KERNEL
);
1942 err
= idr_alloc(&loop_index_idr
, lo
, 0, 0, GFP_KERNEL
);
1949 lo
->tag_set
.ops
= &loop_mq_ops
;
1950 lo
->tag_set
.nr_hw_queues
= 1;
1951 lo
->tag_set
.queue_depth
= 128;
1952 lo
->tag_set
.numa_node
= NUMA_NO_NODE
;
1953 lo
->tag_set
.cmd_size
= sizeof(struct loop_cmd
);
1954 lo
->tag_set
.flags
= BLK_MQ_F_SHOULD_MERGE
;
1955 lo
->tag_set
.driver_data
= lo
;
1957 err
= blk_mq_alloc_tag_set(&lo
->tag_set
);
1961 lo
->lo_queue
= blk_mq_init_queue(&lo
->tag_set
);
1962 if (IS_ERR(lo
->lo_queue
)) {
1963 err
= PTR_ERR(lo
->lo_queue
);
1964 goto out_cleanup_tags
;
1966 lo
->lo_queue
->queuedata
= lo
;
1968 blk_queue_max_hw_sectors(lo
->lo_queue
, BLK_DEF_MAX_SECTORS
);
1971 * By default, we do buffer IO, so it doesn't make sense to enable
1972 * merge because the I/O submitted to backing file is handled page by
1973 * page. For directio mode, merge does help to dispatch bigger request
1974 * to underlayer disk. We will enable merge once directio is enabled.
1976 blk_queue_flag_set(QUEUE_FLAG_NOMERGES
, lo
->lo_queue
);
1979 disk
= lo
->lo_disk
= alloc_disk(1 << part_shift
);
1981 goto out_free_queue
;
1984 * Disable partition scanning by default. The in-kernel partition
1985 * scanning can be requested individually per-device during its
1986 * setup. Userspace can always add and remove partitions from all
1987 * devices. The needed partition minors are allocated from the
1988 * extended minor space, the main loop device numbers will continue
1989 * to match the loop minors, regardless of the number of partitions
1992 * If max_part is given, partition scanning is globally enabled for
1993 * all loop devices. The minors for the main loop devices will be
1994 * multiples of max_part.
1996 * Note: Global-for-all-devices, set-only-at-init, read-only module
1997 * parameteters like 'max_loop' and 'max_part' make things needlessly
1998 * complicated, are too static, inflexible and may surprise
1999 * userspace tools. Parameters like this in general should be avoided.
2002 disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
2003 disk
->flags
|= GENHD_FL_EXT_DEVT
;
2004 atomic_set(&lo
->lo_refcnt
, 0);
2006 spin_lock_init(&lo
->lo_lock
);
2007 disk
->major
= LOOP_MAJOR
;
2008 disk
->first_minor
= i
<< part_shift
;
2009 disk
->fops
= &lo_fops
;
2010 disk
->private_data
= lo
;
2011 disk
->queue
= lo
->lo_queue
;
2012 sprintf(disk
->disk_name
, "loop%d", i
);
2015 return lo
->lo_number
;
2018 blk_cleanup_queue(lo
->lo_queue
);
2020 blk_mq_free_tag_set(&lo
->tag_set
);
2022 idr_remove(&loop_index_idr
, i
);
2029 static void loop_remove(struct loop_device
*lo
)
2031 del_gendisk(lo
->lo_disk
);
2032 blk_cleanup_queue(lo
->lo_queue
);
2033 blk_mq_free_tag_set(&lo
->tag_set
);
2034 put_disk(lo
->lo_disk
);
2038 static int find_free_cb(int id
, void *ptr
, void *data
)
2040 struct loop_device
*lo
= ptr
;
2041 struct loop_device
**l
= data
;
2043 if (lo
->lo_state
== Lo_unbound
) {
2050 static int loop_lookup(struct loop_device
**l
, int i
)
2052 struct loop_device
*lo
;
2058 err
= idr_for_each(&loop_index_idr
, &find_free_cb
, &lo
);
2061 ret
= lo
->lo_number
;
2066 /* lookup and return a specific i */
2067 lo
= idr_find(&loop_index_idr
, i
);
2070 ret
= lo
->lo_number
;
2076 static struct kobject
*loop_probe(dev_t dev
, int *part
, void *data
)
2078 struct loop_device
*lo
;
2079 struct kobject
*kobj
;
2082 mutex_lock(&loop_ctl_mutex
);
2083 err
= loop_lookup(&lo
, MINOR(dev
) >> part_shift
);
2085 err
= loop_add(&lo
, MINOR(dev
) >> part_shift
);
2089 kobj
= get_disk_and_module(lo
->lo_disk
);
2090 mutex_unlock(&loop_ctl_mutex
);
2096 static long loop_control_ioctl(struct file
*file
, unsigned int cmd
,
2099 struct loop_device
*lo
;
2102 ret
= mutex_lock_killable(&loop_ctl_mutex
);
2109 ret
= loop_lookup(&lo
, parm
);
2114 ret
= loop_add(&lo
, parm
);
2116 case LOOP_CTL_REMOVE
:
2117 ret
= loop_lookup(&lo
, parm
);
2120 if (lo
->lo_state
!= Lo_unbound
) {
2124 if (atomic_read(&lo
->lo_refcnt
) > 0) {
2128 lo
->lo_disk
->private_data
= NULL
;
2129 idr_remove(&loop_index_idr
, lo
->lo_number
);
2132 case LOOP_CTL_GET_FREE
:
2133 ret
= loop_lookup(&lo
, -1);
2136 ret
= loop_add(&lo
, -1);
2138 mutex_unlock(&loop_ctl_mutex
);
2143 static const struct file_operations loop_ctl_fops
= {
2144 .open
= nonseekable_open
,
2145 .unlocked_ioctl
= loop_control_ioctl
,
2146 .compat_ioctl
= loop_control_ioctl
,
2147 .owner
= THIS_MODULE
,
2148 .llseek
= noop_llseek
,
2151 static struct miscdevice loop_misc
= {
2152 .minor
= LOOP_CTRL_MINOR
,
2153 .name
= "loop-control",
2154 .fops
= &loop_ctl_fops
,
2157 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR
);
2158 MODULE_ALIAS("devname:loop-control");
2160 static int __init
loop_init(void)
2163 unsigned long range
;
2164 struct loop_device
*lo
;
2169 part_shift
= fls(max_part
);
2172 * Adjust max_part according to part_shift as it is exported
2173 * to user space so that user can decide correct minor number
2174 * if [s]he want to create more devices.
2176 * Note that -1 is required because partition 0 is reserved
2177 * for the whole disk.
2179 max_part
= (1UL << part_shift
) - 1;
2182 if ((1UL << part_shift
) > DISK_MAX_PARTS
) {
2187 if (max_loop
> 1UL << (MINORBITS
- part_shift
)) {
2193 * If max_loop is specified, create that many devices upfront.
2194 * This also becomes a hard limit. If max_loop is not specified,
2195 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2196 * init time. Loop devices can be requested on-demand with the
2197 * /dev/loop-control interface, or be instantiated by accessing
2198 * a 'dead' device node.
2202 range
= max_loop
<< part_shift
;
2204 nr
= CONFIG_BLK_DEV_LOOP_MIN_COUNT
;
2205 range
= 1UL << MINORBITS
;
2208 err
= misc_register(&loop_misc
);
2213 if (register_blkdev(LOOP_MAJOR
, "loop")) {
2218 blk_register_region(MKDEV(LOOP_MAJOR
, 0), range
,
2219 THIS_MODULE
, loop_probe
, NULL
, NULL
);
2221 /* pre-create number of devices given by config or max_loop */
2222 mutex_lock(&loop_ctl_mutex
);
2223 for (i
= 0; i
< nr
; i
++)
2225 mutex_unlock(&loop_ctl_mutex
);
2227 printk(KERN_INFO
"loop: module loaded\n");
2231 misc_deregister(&loop_misc
);
2236 static int loop_exit_cb(int id
, void *ptr
, void *data
)
2238 struct loop_device
*lo
= ptr
;
2244 static void __exit
loop_exit(void)
2246 unsigned long range
;
2248 range
= max_loop
? max_loop
<< part_shift
: 1UL << MINORBITS
;
2250 idr_for_each(&loop_index_idr
, &loop_exit_cb
, NULL
);
2251 idr_destroy(&loop_index_idr
);
2253 blk_unregister_region(MKDEV(LOOP_MAJOR
, 0), range
);
2254 unregister_blkdev(LOOP_MAJOR
, "loop");
2256 misc_deregister(&loop_misc
);
2259 module_init(loop_init
);
2260 module_exit(loop_exit
);
2263 static int __init
max_loop_setup(char *str
)
2265 max_loop
= simple_strtol(str
, NULL
, 0);
2269 __setup("max_loop=", max_loop_setup
);