2 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
3 * Shaohua Li <shli@fb.com>
5 #include <linux/module.h>
7 #include <linux/moduleparam.h>
8 #include <linux/sched.h>
10 #include <linux/init.h>
13 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
14 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
15 #define SECTOR_MASK (PAGE_SECTORS - 1)
19 #define TICKS_PER_SEC 50ULL
20 #define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC)
22 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
23 static DECLARE_FAULT_ATTR(null_timeout_attr
);
24 static DECLARE_FAULT_ATTR(null_requeue_attr
);
27 static inline u64
mb_per_tick(int mbps
)
29 return (1 << 20) / TICKS_PER_SEC
* ((u64
) mbps
);
33 * Status flags for nullb_device.
35 * CONFIGURED: Device has been configured and turned on. Cannot reconfigure.
36 * UP: Device is currently on and visible in userspace.
37 * THROTTLED: Device is being throttled.
38 * CACHE: Device is using a write-back cache.
40 enum nullb_device_flags
{
41 NULLB_DEV_FL_CONFIGURED
= 0,
43 NULLB_DEV_FL_THROTTLED
= 2,
44 NULLB_DEV_FL_CACHE
= 3,
47 #define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
49 * nullb_page is a page in memory for nullb devices.
51 * @page: The page holding the data.
52 * @bitmap: The bitmap represents which sector in the page has data.
53 * Each bit represents one block size. For example, sector 8
54 * will use the 7th bit
55 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
56 * page is being flushing to storage. FREE means the cache page is freed and
57 * should be skipped from flushing to storage. Please see
58 * null_make_cache_space
62 DECLARE_BITMAP(bitmap
, MAP_SZ
);
64 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
65 #define NULLB_PAGE_FREE (MAP_SZ - 2)
67 static LIST_HEAD(nullb_list
);
68 static struct mutex lock
;
69 static int null_major
;
70 static DEFINE_IDA(nullb_indexes
);
71 static struct blk_mq_tag_set tag_set
;
85 static int g_no_sched
;
86 module_param_named(no_sched
, g_no_sched
, int, 0444);
87 MODULE_PARM_DESC(no_sched
, "No io scheduler");
89 static int g_submit_queues
= 1;
90 module_param_named(submit_queues
, g_submit_queues
, int, 0444);
91 MODULE_PARM_DESC(submit_queues
, "Number of submission queues");
93 static int g_home_node
= NUMA_NO_NODE
;
94 module_param_named(home_node
, g_home_node
, int, 0444);
95 MODULE_PARM_DESC(home_node
, "Home node for the device");
97 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
98 static char g_timeout_str
[80];
99 module_param_string(timeout
, g_timeout_str
, sizeof(g_timeout_str
), 0444);
101 static char g_requeue_str
[80];
102 module_param_string(requeue
, g_requeue_str
, sizeof(g_requeue_str
), 0444);
105 static int g_queue_mode
= NULL_Q_MQ
;
107 static int null_param_store_val(const char *str
, int *val
, int min
, int max
)
111 ret
= kstrtoint(str
, 10, &new_val
);
115 if (new_val
< min
|| new_val
> max
)
122 static int null_set_queue_mode(const char *str
, const struct kernel_param
*kp
)
124 return null_param_store_val(str
, &g_queue_mode
, NULL_Q_BIO
, NULL_Q_MQ
);
127 static const struct kernel_param_ops null_queue_mode_param_ops
= {
128 .set
= null_set_queue_mode
,
129 .get
= param_get_int
,
132 device_param_cb(queue_mode
, &null_queue_mode_param_ops
, &g_queue_mode
, 0444);
133 MODULE_PARM_DESC(queue_mode
, "Block interface to use (0=bio,1=rq,2=multiqueue)");
135 static int g_gb
= 250;
136 module_param_named(gb
, g_gb
, int, 0444);
137 MODULE_PARM_DESC(gb
, "Size in GB");
139 static int g_bs
= 512;
140 module_param_named(bs
, g_bs
, int, 0444);
141 MODULE_PARM_DESC(bs
, "Block size (in bytes)");
143 static int nr_devices
= 1;
144 module_param(nr_devices
, int, 0444);
145 MODULE_PARM_DESC(nr_devices
, "Number of devices to register");
147 static bool g_blocking
;
148 module_param_named(blocking
, g_blocking
, bool, 0444);
149 MODULE_PARM_DESC(blocking
, "Register as a blocking blk-mq driver device");
151 static bool shared_tags
;
152 module_param(shared_tags
, bool, 0444);
153 MODULE_PARM_DESC(shared_tags
, "Share tag set between devices for blk-mq");
155 static int g_irqmode
= NULL_IRQ_SOFTIRQ
;
157 static int null_set_irqmode(const char *str
, const struct kernel_param
*kp
)
159 return null_param_store_val(str
, &g_irqmode
, NULL_IRQ_NONE
,
163 static const struct kernel_param_ops null_irqmode_param_ops
= {
164 .set
= null_set_irqmode
,
165 .get
= param_get_int
,
168 device_param_cb(irqmode
, &null_irqmode_param_ops
, &g_irqmode
, 0444);
169 MODULE_PARM_DESC(irqmode
, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
171 static unsigned long g_completion_nsec
= 10000;
172 module_param_named(completion_nsec
, g_completion_nsec
, ulong
, 0444);
173 MODULE_PARM_DESC(completion_nsec
, "Time in ns to complete a request in hardware. Default: 10,000ns");
175 static int g_hw_queue_depth
= 64;
176 module_param_named(hw_queue_depth
, g_hw_queue_depth
, int, 0444);
177 MODULE_PARM_DESC(hw_queue_depth
, "Queue depth for each hardware queue. Default: 64");
179 static bool g_use_per_node_hctx
;
180 module_param_named(use_per_node_hctx
, g_use_per_node_hctx
, bool, 0444);
181 MODULE_PARM_DESC(use_per_node_hctx
, "Use per-node allocation for hardware context queues. Default: false");
184 module_param_named(zoned
, g_zoned
, bool, S_IRUGO
);
185 MODULE_PARM_DESC(zoned
, "Make device as a host-managed zoned block device. Default: false");
187 static unsigned long g_zone_size
= 256;
188 module_param_named(zone_size
, g_zone_size
, ulong
, S_IRUGO
);
189 MODULE_PARM_DESC(zone_size
, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
191 static unsigned int g_zone_nr_conv
;
192 module_param_named(zone_nr_conv
, g_zone_nr_conv
, uint
, 0444);
193 MODULE_PARM_DESC(zone_nr_conv
, "Number of conventional zones when block device is zoned. Default: 0");
195 static struct nullb_device
*null_alloc_dev(void);
196 static void null_free_dev(struct nullb_device
*dev
);
197 static void null_del_dev(struct nullb
*nullb
);
198 static int null_add_dev(struct nullb_device
*dev
);
199 static void null_free_device_storage(struct nullb_device
*dev
, bool is_cache
);
201 static inline struct nullb_device
*to_nullb_device(struct config_item
*item
)
203 return item
? container_of(item
, struct nullb_device
, item
) : NULL
;
206 static inline ssize_t
nullb_device_uint_attr_show(unsigned int val
, char *page
)
208 return snprintf(page
, PAGE_SIZE
, "%u\n", val
);
211 static inline ssize_t
nullb_device_ulong_attr_show(unsigned long val
,
214 return snprintf(page
, PAGE_SIZE
, "%lu\n", val
);
217 static inline ssize_t
nullb_device_bool_attr_show(bool val
, char *page
)
219 return snprintf(page
, PAGE_SIZE
, "%u\n", val
);
222 static ssize_t
nullb_device_uint_attr_store(unsigned int *val
,
223 const char *page
, size_t count
)
228 result
= kstrtouint(page
, 0, &tmp
);
236 static ssize_t
nullb_device_ulong_attr_store(unsigned long *val
,
237 const char *page
, size_t count
)
242 result
= kstrtoul(page
, 0, &tmp
);
250 static ssize_t
nullb_device_bool_attr_store(bool *val
, const char *page
,
256 result
= kstrtobool(page
, &tmp
);
264 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
265 #define NULLB_DEVICE_ATTR(NAME, TYPE) \
267 nullb_device_##NAME##_show(struct config_item *item, char *page) \
269 return nullb_device_##TYPE##_attr_show( \
270 to_nullb_device(item)->NAME, page); \
273 nullb_device_##NAME##_store(struct config_item *item, const char *page, \
276 if (test_bit(NULLB_DEV_FL_CONFIGURED, &to_nullb_device(item)->flags)) \
278 return nullb_device_##TYPE##_attr_store( \
279 &to_nullb_device(item)->NAME, page, count); \
281 CONFIGFS_ATTR(nullb_device_, NAME);
283 NULLB_DEVICE_ATTR(size
, ulong
);
284 NULLB_DEVICE_ATTR(completion_nsec
, ulong
);
285 NULLB_DEVICE_ATTR(submit_queues
, uint
);
286 NULLB_DEVICE_ATTR(home_node
, uint
);
287 NULLB_DEVICE_ATTR(queue_mode
, uint
);
288 NULLB_DEVICE_ATTR(blocksize
, uint
);
289 NULLB_DEVICE_ATTR(irqmode
, uint
);
290 NULLB_DEVICE_ATTR(hw_queue_depth
, uint
);
291 NULLB_DEVICE_ATTR(index
, uint
);
292 NULLB_DEVICE_ATTR(blocking
, bool);
293 NULLB_DEVICE_ATTR(use_per_node_hctx
, bool);
294 NULLB_DEVICE_ATTR(memory_backed
, bool);
295 NULLB_DEVICE_ATTR(discard
, bool);
296 NULLB_DEVICE_ATTR(mbps
, uint
);
297 NULLB_DEVICE_ATTR(cache_size
, ulong
);
298 NULLB_DEVICE_ATTR(zoned
, bool);
299 NULLB_DEVICE_ATTR(zone_size
, ulong
);
300 NULLB_DEVICE_ATTR(zone_nr_conv
, uint
);
302 static ssize_t
nullb_device_power_show(struct config_item
*item
, char *page
)
304 return nullb_device_bool_attr_show(to_nullb_device(item
)->power
, page
);
307 static ssize_t
nullb_device_power_store(struct config_item
*item
,
308 const char *page
, size_t count
)
310 struct nullb_device
*dev
= to_nullb_device(item
);
314 ret
= nullb_device_bool_attr_store(&newp
, page
, count
);
318 if (!dev
->power
&& newp
) {
319 if (test_and_set_bit(NULLB_DEV_FL_UP
, &dev
->flags
))
321 if (null_add_dev(dev
)) {
322 clear_bit(NULLB_DEV_FL_UP
, &dev
->flags
);
326 set_bit(NULLB_DEV_FL_CONFIGURED
, &dev
->flags
);
328 } else if (dev
->power
&& !newp
) {
331 null_del_dev(dev
->nullb
);
333 clear_bit(NULLB_DEV_FL_UP
, &dev
->flags
);
334 clear_bit(NULLB_DEV_FL_CONFIGURED
, &dev
->flags
);
340 CONFIGFS_ATTR(nullb_device_
, power
);
342 static ssize_t
nullb_device_badblocks_show(struct config_item
*item
, char *page
)
344 struct nullb_device
*t_dev
= to_nullb_device(item
);
346 return badblocks_show(&t_dev
->badblocks
, page
, 0);
349 static ssize_t
nullb_device_badblocks_store(struct config_item
*item
,
350 const char *page
, size_t count
)
352 struct nullb_device
*t_dev
= to_nullb_device(item
);
353 char *orig
, *buf
, *tmp
;
357 orig
= kstrndup(page
, count
, GFP_KERNEL
);
361 buf
= strstrip(orig
);
364 if (buf
[0] != '+' && buf
[0] != '-')
366 tmp
= strchr(&buf
[1], '-');
370 ret
= kstrtoull(buf
+ 1, 0, &start
);
373 ret
= kstrtoull(tmp
+ 1, 0, &end
);
379 /* enable badblocks */
380 cmpxchg(&t_dev
->badblocks
.shift
, -1, 0);
382 ret
= badblocks_set(&t_dev
->badblocks
, start
,
385 ret
= badblocks_clear(&t_dev
->badblocks
, start
,
393 CONFIGFS_ATTR(nullb_device_
, badblocks
);
395 static struct configfs_attribute
*nullb_device_attrs
[] = {
396 &nullb_device_attr_size
,
397 &nullb_device_attr_completion_nsec
,
398 &nullb_device_attr_submit_queues
,
399 &nullb_device_attr_home_node
,
400 &nullb_device_attr_queue_mode
,
401 &nullb_device_attr_blocksize
,
402 &nullb_device_attr_irqmode
,
403 &nullb_device_attr_hw_queue_depth
,
404 &nullb_device_attr_index
,
405 &nullb_device_attr_blocking
,
406 &nullb_device_attr_use_per_node_hctx
,
407 &nullb_device_attr_power
,
408 &nullb_device_attr_memory_backed
,
409 &nullb_device_attr_discard
,
410 &nullb_device_attr_mbps
,
411 &nullb_device_attr_cache_size
,
412 &nullb_device_attr_badblocks
,
413 &nullb_device_attr_zoned
,
414 &nullb_device_attr_zone_size
,
415 &nullb_device_attr_zone_nr_conv
,
419 static void nullb_device_release(struct config_item
*item
)
421 struct nullb_device
*dev
= to_nullb_device(item
);
423 null_free_device_storage(dev
, false);
427 static struct configfs_item_operations nullb_device_ops
= {
428 .release
= nullb_device_release
,
431 static const struct config_item_type nullb_device_type
= {
432 .ct_item_ops
= &nullb_device_ops
,
433 .ct_attrs
= nullb_device_attrs
,
434 .ct_owner
= THIS_MODULE
,
438 config_item
*nullb_group_make_item(struct config_group
*group
, const char *name
)
440 struct nullb_device
*dev
;
442 dev
= null_alloc_dev();
444 return ERR_PTR(-ENOMEM
);
446 config_item_init_type_name(&dev
->item
, name
, &nullb_device_type
);
452 nullb_group_drop_item(struct config_group
*group
, struct config_item
*item
)
454 struct nullb_device
*dev
= to_nullb_device(item
);
456 if (test_and_clear_bit(NULLB_DEV_FL_UP
, &dev
->flags
)) {
459 null_del_dev(dev
->nullb
);
463 config_item_put(item
);
466 static ssize_t
memb_group_features_show(struct config_item
*item
, char *page
)
468 return snprintf(page
, PAGE_SIZE
, "memory_backed,discard,bandwidth,cache,badblocks,zoned,zone_size\n");
471 CONFIGFS_ATTR_RO(memb_group_
, features
);
473 static struct configfs_attribute
*nullb_group_attrs
[] = {
474 &memb_group_attr_features
,
478 static struct configfs_group_operations nullb_group_ops
= {
479 .make_item
= nullb_group_make_item
,
480 .drop_item
= nullb_group_drop_item
,
483 static const struct config_item_type nullb_group_type
= {
484 .ct_group_ops
= &nullb_group_ops
,
485 .ct_attrs
= nullb_group_attrs
,
486 .ct_owner
= THIS_MODULE
,
489 static struct configfs_subsystem nullb_subsys
= {
492 .ci_namebuf
= "nullb",
493 .ci_type
= &nullb_group_type
,
498 static inline int null_cache_active(struct nullb
*nullb
)
500 return test_bit(NULLB_DEV_FL_CACHE
, &nullb
->dev
->flags
);
503 static struct nullb_device
*null_alloc_dev(void)
505 struct nullb_device
*dev
;
507 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
510 INIT_RADIX_TREE(&dev
->data
, GFP_ATOMIC
);
511 INIT_RADIX_TREE(&dev
->cache
, GFP_ATOMIC
);
512 if (badblocks_init(&dev
->badblocks
, 0)) {
517 dev
->size
= g_gb
* 1024;
518 dev
->completion_nsec
= g_completion_nsec
;
519 dev
->submit_queues
= g_submit_queues
;
520 dev
->home_node
= g_home_node
;
521 dev
->queue_mode
= g_queue_mode
;
522 dev
->blocksize
= g_bs
;
523 dev
->irqmode
= g_irqmode
;
524 dev
->hw_queue_depth
= g_hw_queue_depth
;
525 dev
->blocking
= g_blocking
;
526 dev
->use_per_node_hctx
= g_use_per_node_hctx
;
527 dev
->zoned
= g_zoned
;
528 dev
->zone_size
= g_zone_size
;
529 dev
->zone_nr_conv
= g_zone_nr_conv
;
533 static void null_free_dev(struct nullb_device
*dev
)
539 badblocks_exit(&dev
->badblocks
);
543 static void put_tag(struct nullb_queue
*nq
, unsigned int tag
)
545 clear_bit_unlock(tag
, nq
->tag_map
);
547 if (waitqueue_active(&nq
->wait
))
551 static unsigned int get_tag(struct nullb_queue
*nq
)
556 tag
= find_first_zero_bit(nq
->tag_map
, nq
->queue_depth
);
557 if (tag
>= nq
->queue_depth
)
559 } while (test_and_set_bit_lock(tag
, nq
->tag_map
));
564 static void free_cmd(struct nullb_cmd
*cmd
)
566 put_tag(cmd
->nq
, cmd
->tag
);
569 static enum hrtimer_restart
null_cmd_timer_expired(struct hrtimer
*timer
);
571 static struct nullb_cmd
*__alloc_cmd(struct nullb_queue
*nq
)
573 struct nullb_cmd
*cmd
;
578 cmd
= &nq
->cmds
[tag
];
581 if (nq
->dev
->irqmode
== NULL_IRQ_TIMER
) {
582 hrtimer_init(&cmd
->timer
, CLOCK_MONOTONIC
,
584 cmd
->timer
.function
= null_cmd_timer_expired
;
592 static struct nullb_cmd
*alloc_cmd(struct nullb_queue
*nq
, int can_wait
)
594 struct nullb_cmd
*cmd
;
597 cmd
= __alloc_cmd(nq
);
598 if (cmd
|| !can_wait
)
602 prepare_to_wait(&nq
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
603 cmd
= __alloc_cmd(nq
);
610 finish_wait(&nq
->wait
, &wait
);
614 static void end_cmd(struct nullb_cmd
*cmd
)
616 int queue_mode
= cmd
->nq
->dev
->queue_mode
;
618 switch (queue_mode
) {
620 blk_mq_end_request(cmd
->rq
, cmd
->error
);
623 cmd
->bio
->bi_status
= cmd
->error
;
631 static enum hrtimer_restart
null_cmd_timer_expired(struct hrtimer
*timer
)
633 end_cmd(container_of(timer
, struct nullb_cmd
, timer
));
635 return HRTIMER_NORESTART
;
638 static void null_cmd_end_timer(struct nullb_cmd
*cmd
)
640 ktime_t kt
= cmd
->nq
->dev
->completion_nsec
;
642 hrtimer_start(&cmd
->timer
, kt
, HRTIMER_MODE_REL
);
645 static void null_complete_rq(struct request
*rq
)
647 end_cmd(blk_mq_rq_to_pdu(rq
));
650 static struct nullb_page
*null_alloc_page(gfp_t gfp_flags
)
652 struct nullb_page
*t_page
;
654 t_page
= kmalloc(sizeof(struct nullb_page
), gfp_flags
);
658 t_page
->page
= alloc_pages(gfp_flags
, 0);
662 memset(t_page
->bitmap
, 0, sizeof(t_page
->bitmap
));
670 static void null_free_page(struct nullb_page
*t_page
)
672 __set_bit(NULLB_PAGE_FREE
, t_page
->bitmap
);
673 if (test_bit(NULLB_PAGE_LOCK
, t_page
->bitmap
))
675 __free_page(t_page
->page
);
679 static bool null_page_empty(struct nullb_page
*page
)
681 int size
= MAP_SZ
- 2;
683 return find_first_bit(page
->bitmap
, size
) == size
;
686 static void null_free_sector(struct nullb
*nullb
, sector_t sector
,
689 unsigned int sector_bit
;
691 struct nullb_page
*t_page
, *ret
;
692 struct radix_tree_root
*root
;
694 root
= is_cache
? &nullb
->dev
->cache
: &nullb
->dev
->data
;
695 idx
= sector
>> PAGE_SECTORS_SHIFT
;
696 sector_bit
= (sector
& SECTOR_MASK
);
698 t_page
= radix_tree_lookup(root
, idx
);
700 __clear_bit(sector_bit
, t_page
->bitmap
);
702 if (null_page_empty(t_page
)) {
703 ret
= radix_tree_delete_item(root
, idx
, t_page
);
704 WARN_ON(ret
!= t_page
);
707 nullb
->dev
->curr_cache
-= PAGE_SIZE
;
712 static struct nullb_page
*null_radix_tree_insert(struct nullb
*nullb
, u64 idx
,
713 struct nullb_page
*t_page
, bool is_cache
)
715 struct radix_tree_root
*root
;
717 root
= is_cache
? &nullb
->dev
->cache
: &nullb
->dev
->data
;
719 if (radix_tree_insert(root
, idx
, t_page
)) {
720 null_free_page(t_page
);
721 t_page
= radix_tree_lookup(root
, idx
);
722 WARN_ON(!t_page
|| t_page
->page
->index
!= idx
);
724 nullb
->dev
->curr_cache
+= PAGE_SIZE
;
729 static void null_free_device_storage(struct nullb_device
*dev
, bool is_cache
)
731 unsigned long pos
= 0;
733 struct nullb_page
*ret
, *t_pages
[FREE_BATCH
];
734 struct radix_tree_root
*root
;
736 root
= is_cache
? &dev
->cache
: &dev
->data
;
741 nr_pages
= radix_tree_gang_lookup(root
,
742 (void **)t_pages
, pos
, FREE_BATCH
);
744 for (i
= 0; i
< nr_pages
; i
++) {
745 pos
= t_pages
[i
]->page
->index
;
746 ret
= radix_tree_delete_item(root
, pos
, t_pages
[i
]);
747 WARN_ON(ret
!= t_pages
[i
]);
752 } while (nr_pages
== FREE_BATCH
);
758 static struct nullb_page
*__null_lookup_page(struct nullb
*nullb
,
759 sector_t sector
, bool for_write
, bool is_cache
)
761 unsigned int sector_bit
;
763 struct nullb_page
*t_page
;
764 struct radix_tree_root
*root
;
766 idx
= sector
>> PAGE_SECTORS_SHIFT
;
767 sector_bit
= (sector
& SECTOR_MASK
);
769 root
= is_cache
? &nullb
->dev
->cache
: &nullb
->dev
->data
;
770 t_page
= radix_tree_lookup(root
, idx
);
771 WARN_ON(t_page
&& t_page
->page
->index
!= idx
);
773 if (t_page
&& (for_write
|| test_bit(sector_bit
, t_page
->bitmap
)))
779 static struct nullb_page
*null_lookup_page(struct nullb
*nullb
,
780 sector_t sector
, bool for_write
, bool ignore_cache
)
782 struct nullb_page
*page
= NULL
;
785 page
= __null_lookup_page(nullb
, sector
, for_write
, true);
788 return __null_lookup_page(nullb
, sector
, for_write
, false);
791 static struct nullb_page
*null_insert_page(struct nullb
*nullb
,
792 sector_t sector
, bool ignore_cache
)
793 __releases(&nullb
->lock
)
794 __acquires(&nullb
->lock
)
797 struct nullb_page
*t_page
;
799 t_page
= null_lookup_page(nullb
, sector
, true, ignore_cache
);
803 spin_unlock_irq(&nullb
->lock
);
805 t_page
= null_alloc_page(GFP_NOIO
);
809 if (radix_tree_preload(GFP_NOIO
))
812 spin_lock_irq(&nullb
->lock
);
813 idx
= sector
>> PAGE_SECTORS_SHIFT
;
814 t_page
->page
->index
= idx
;
815 t_page
= null_radix_tree_insert(nullb
, idx
, t_page
, !ignore_cache
);
816 radix_tree_preload_end();
820 null_free_page(t_page
);
822 spin_lock_irq(&nullb
->lock
);
823 return null_lookup_page(nullb
, sector
, true, ignore_cache
);
826 static int null_flush_cache_page(struct nullb
*nullb
, struct nullb_page
*c_page
)
831 struct nullb_page
*t_page
, *ret
;
834 idx
= c_page
->page
->index
;
836 t_page
= null_insert_page(nullb
, idx
<< PAGE_SECTORS_SHIFT
, true);
838 __clear_bit(NULLB_PAGE_LOCK
, c_page
->bitmap
);
839 if (test_bit(NULLB_PAGE_FREE
, c_page
->bitmap
)) {
840 null_free_page(c_page
);
841 if (t_page
&& null_page_empty(t_page
)) {
842 ret
= radix_tree_delete_item(&nullb
->dev
->data
,
844 null_free_page(t_page
);
852 src
= kmap_atomic(c_page
->page
);
853 dst
= kmap_atomic(t_page
->page
);
855 for (i
= 0; i
< PAGE_SECTORS
;
856 i
+= (nullb
->dev
->blocksize
>> SECTOR_SHIFT
)) {
857 if (test_bit(i
, c_page
->bitmap
)) {
858 offset
= (i
<< SECTOR_SHIFT
);
859 memcpy(dst
+ offset
, src
+ offset
,
860 nullb
->dev
->blocksize
);
861 __set_bit(i
, t_page
->bitmap
);
868 ret
= radix_tree_delete_item(&nullb
->dev
->cache
, idx
, c_page
);
870 nullb
->dev
->curr_cache
-= PAGE_SIZE
;
875 static int null_make_cache_space(struct nullb
*nullb
, unsigned long n
)
877 int i
, err
, nr_pages
;
878 struct nullb_page
*c_pages
[FREE_BATCH
];
879 unsigned long flushed
= 0, one_round
;
882 if ((nullb
->dev
->cache_size
* 1024 * 1024) >
883 nullb
->dev
->curr_cache
+ n
|| nullb
->dev
->curr_cache
== 0)
886 nr_pages
= radix_tree_gang_lookup(&nullb
->dev
->cache
,
887 (void **)c_pages
, nullb
->cache_flush_pos
, FREE_BATCH
);
889 * nullb_flush_cache_page could unlock before using the c_pages. To
890 * avoid race, we don't allow page free
892 for (i
= 0; i
< nr_pages
; i
++) {
893 nullb
->cache_flush_pos
= c_pages
[i
]->page
->index
;
895 * We found the page which is being flushed to disk by other
898 if (test_bit(NULLB_PAGE_LOCK
, c_pages
[i
]->bitmap
))
901 __set_bit(NULLB_PAGE_LOCK
, c_pages
[i
]->bitmap
);
905 for (i
= 0; i
< nr_pages
; i
++) {
906 if (c_pages
[i
] == NULL
)
908 err
= null_flush_cache_page(nullb
, c_pages
[i
]);
913 flushed
+= one_round
<< PAGE_SHIFT
;
917 nullb
->cache_flush_pos
= 0;
918 if (one_round
== 0) {
919 /* give other threads a chance */
920 spin_unlock_irq(&nullb
->lock
);
921 spin_lock_irq(&nullb
->lock
);
928 static int copy_to_nullb(struct nullb
*nullb
, struct page
*source
,
929 unsigned int off
, sector_t sector
, size_t n
, bool is_fua
)
931 size_t temp
, count
= 0;
933 struct nullb_page
*t_page
;
937 temp
= min_t(size_t, nullb
->dev
->blocksize
, n
- count
);
939 if (null_cache_active(nullb
) && !is_fua
)
940 null_make_cache_space(nullb
, PAGE_SIZE
);
942 offset
= (sector
& SECTOR_MASK
) << SECTOR_SHIFT
;
943 t_page
= null_insert_page(nullb
, sector
,
944 !null_cache_active(nullb
) || is_fua
);
948 src
= kmap_atomic(source
);
949 dst
= kmap_atomic(t_page
->page
);
950 memcpy(dst
+ offset
, src
+ off
+ count
, temp
);
954 __set_bit(sector
& SECTOR_MASK
, t_page
->bitmap
);
957 null_free_sector(nullb
, sector
, true);
960 sector
+= temp
>> SECTOR_SHIFT
;
965 static int copy_from_nullb(struct nullb
*nullb
, struct page
*dest
,
966 unsigned int off
, sector_t sector
, size_t n
)
968 size_t temp
, count
= 0;
970 struct nullb_page
*t_page
;
974 temp
= min_t(size_t, nullb
->dev
->blocksize
, n
- count
);
976 offset
= (sector
& SECTOR_MASK
) << SECTOR_SHIFT
;
977 t_page
= null_lookup_page(nullb
, sector
, false,
978 !null_cache_active(nullb
));
980 dst
= kmap_atomic(dest
);
982 memset(dst
+ off
+ count
, 0, temp
);
985 src
= kmap_atomic(t_page
->page
);
986 memcpy(dst
+ off
+ count
, src
+ offset
, temp
);
992 sector
+= temp
>> SECTOR_SHIFT
;
997 static void null_handle_discard(struct nullb
*nullb
, sector_t sector
, size_t n
)
1001 spin_lock_irq(&nullb
->lock
);
1003 temp
= min_t(size_t, n
, nullb
->dev
->blocksize
);
1004 null_free_sector(nullb
, sector
, false);
1005 if (null_cache_active(nullb
))
1006 null_free_sector(nullb
, sector
, true);
1007 sector
+= temp
>> SECTOR_SHIFT
;
1010 spin_unlock_irq(&nullb
->lock
);
1013 static int null_handle_flush(struct nullb
*nullb
)
1017 if (!null_cache_active(nullb
))
1020 spin_lock_irq(&nullb
->lock
);
1022 err
= null_make_cache_space(nullb
,
1023 nullb
->dev
->cache_size
* 1024 * 1024);
1024 if (err
|| nullb
->dev
->curr_cache
== 0)
1028 WARN_ON(!radix_tree_empty(&nullb
->dev
->cache
));
1029 spin_unlock_irq(&nullb
->lock
);
1033 static int null_transfer(struct nullb
*nullb
, struct page
*page
,
1034 unsigned int len
, unsigned int off
, bool is_write
, sector_t sector
,
1040 err
= copy_from_nullb(nullb
, page
, off
, sector
, len
);
1041 flush_dcache_page(page
);
1043 flush_dcache_page(page
);
1044 err
= copy_to_nullb(nullb
, page
, off
, sector
, len
, is_fua
);
1050 static int null_handle_rq(struct nullb_cmd
*cmd
)
1052 struct request
*rq
= cmd
->rq
;
1053 struct nullb
*nullb
= cmd
->nq
->dev
->nullb
;
1057 struct req_iterator iter
;
1058 struct bio_vec bvec
;
1060 sector
= blk_rq_pos(rq
);
1062 if (req_op(rq
) == REQ_OP_DISCARD
) {
1063 null_handle_discard(nullb
, sector
, blk_rq_bytes(rq
));
1067 spin_lock_irq(&nullb
->lock
);
1068 rq_for_each_segment(bvec
, rq
, iter
) {
1070 err
= null_transfer(nullb
, bvec
.bv_page
, len
, bvec
.bv_offset
,
1071 op_is_write(req_op(rq
)), sector
,
1072 req_op(rq
) & REQ_FUA
);
1074 spin_unlock_irq(&nullb
->lock
);
1077 sector
+= len
>> SECTOR_SHIFT
;
1079 spin_unlock_irq(&nullb
->lock
);
1084 static int null_handle_bio(struct nullb_cmd
*cmd
)
1086 struct bio
*bio
= cmd
->bio
;
1087 struct nullb
*nullb
= cmd
->nq
->dev
->nullb
;
1091 struct bio_vec bvec
;
1092 struct bvec_iter iter
;
1094 sector
= bio
->bi_iter
.bi_sector
;
1096 if (bio_op(bio
) == REQ_OP_DISCARD
) {
1097 null_handle_discard(nullb
, sector
,
1098 bio_sectors(bio
) << SECTOR_SHIFT
);
1102 spin_lock_irq(&nullb
->lock
);
1103 bio_for_each_segment(bvec
, bio
, iter
) {
1105 err
= null_transfer(nullb
, bvec
.bv_page
, len
, bvec
.bv_offset
,
1106 op_is_write(bio_op(bio
)), sector
,
1107 bio
->bi_opf
& REQ_FUA
);
1109 spin_unlock_irq(&nullb
->lock
);
1112 sector
+= len
>> SECTOR_SHIFT
;
1114 spin_unlock_irq(&nullb
->lock
);
1118 static void null_stop_queue(struct nullb
*nullb
)
1120 struct request_queue
*q
= nullb
->q
;
1122 if (nullb
->dev
->queue_mode
== NULL_Q_MQ
)
1123 blk_mq_stop_hw_queues(q
);
1126 static void null_restart_queue_async(struct nullb
*nullb
)
1128 struct request_queue
*q
= nullb
->q
;
1130 if (nullb
->dev
->queue_mode
== NULL_Q_MQ
)
1131 blk_mq_start_stopped_hw_queues(q
, true);
1134 static blk_status_t
null_handle_cmd(struct nullb_cmd
*cmd
)
1136 struct nullb_device
*dev
= cmd
->nq
->dev
;
1137 struct nullb
*nullb
= dev
->nullb
;
1140 if (test_bit(NULLB_DEV_FL_THROTTLED
, &dev
->flags
)) {
1141 struct request
*rq
= cmd
->rq
;
1143 if (!hrtimer_active(&nullb
->bw_timer
))
1144 hrtimer_restart(&nullb
->bw_timer
);
1146 if (atomic_long_sub_return(blk_rq_bytes(rq
),
1147 &nullb
->cur_bytes
) < 0) {
1148 null_stop_queue(nullb
);
1149 /* race with timer */
1150 if (atomic_long_read(&nullb
->cur_bytes
) > 0)
1151 null_restart_queue_async(nullb
);
1152 /* requeue request */
1153 return BLK_STS_DEV_RESOURCE
;
1157 if (nullb
->dev
->badblocks
.shift
!= -1) {
1159 sector_t sector
, size
, first_bad
;
1160 bool is_flush
= true;
1162 if (dev
->queue_mode
== NULL_Q_BIO
&&
1163 bio_op(cmd
->bio
) != REQ_OP_FLUSH
) {
1165 sector
= cmd
->bio
->bi_iter
.bi_sector
;
1166 size
= bio_sectors(cmd
->bio
);
1168 if (dev
->queue_mode
!= NULL_Q_BIO
&&
1169 req_op(cmd
->rq
) != REQ_OP_FLUSH
) {
1171 sector
= blk_rq_pos(cmd
->rq
);
1172 size
= blk_rq_sectors(cmd
->rq
);
1174 if (!is_flush
&& badblocks_check(&nullb
->dev
->badblocks
, sector
,
1175 size
, &first_bad
, &bad_sectors
)) {
1176 cmd
->error
= BLK_STS_IOERR
;
1181 if (dev
->memory_backed
) {
1182 if (dev
->queue_mode
== NULL_Q_BIO
) {
1183 if (bio_op(cmd
->bio
) == REQ_OP_FLUSH
)
1184 err
= null_handle_flush(nullb
);
1186 err
= null_handle_bio(cmd
);
1188 if (req_op(cmd
->rq
) == REQ_OP_FLUSH
)
1189 err
= null_handle_flush(nullb
);
1191 err
= null_handle_rq(cmd
);
1194 cmd
->error
= errno_to_blk_status(err
);
1196 if (!cmd
->error
&& dev
->zoned
) {
1198 unsigned int nr_sectors
;
1201 if (dev
->queue_mode
== NULL_Q_BIO
) {
1202 op
= bio_op(cmd
->bio
);
1203 sector
= cmd
->bio
->bi_iter
.bi_sector
;
1204 nr_sectors
= cmd
->bio
->bi_iter
.bi_size
>> 9;
1206 op
= req_op(cmd
->rq
);
1207 sector
= blk_rq_pos(cmd
->rq
);
1208 nr_sectors
= blk_rq_sectors(cmd
->rq
);
1211 if (op
== REQ_OP_WRITE
)
1212 null_zone_write(cmd
, sector
, nr_sectors
);
1213 else if (op
== REQ_OP_ZONE_RESET
)
1214 null_zone_reset(cmd
, sector
);
1217 /* Complete IO by inline, softirq or timer */
1218 switch (dev
->irqmode
) {
1219 case NULL_IRQ_SOFTIRQ
:
1220 switch (dev
->queue_mode
) {
1222 blk_mq_complete_request(cmd
->rq
);
1226 * XXX: no proper submitting cpu information available.
1235 case NULL_IRQ_TIMER
:
1236 null_cmd_end_timer(cmd
);
1242 static enum hrtimer_restart
nullb_bwtimer_fn(struct hrtimer
*timer
)
1244 struct nullb
*nullb
= container_of(timer
, struct nullb
, bw_timer
);
1245 ktime_t timer_interval
= ktime_set(0, TIMER_INTERVAL
);
1246 unsigned int mbps
= nullb
->dev
->mbps
;
1248 if (atomic_long_read(&nullb
->cur_bytes
) == mb_per_tick(mbps
))
1249 return HRTIMER_NORESTART
;
1251 atomic_long_set(&nullb
->cur_bytes
, mb_per_tick(mbps
));
1252 null_restart_queue_async(nullb
);
1254 hrtimer_forward_now(&nullb
->bw_timer
, timer_interval
);
1256 return HRTIMER_RESTART
;
1259 static void nullb_setup_bwtimer(struct nullb
*nullb
)
1261 ktime_t timer_interval
= ktime_set(0, TIMER_INTERVAL
);
1263 hrtimer_init(&nullb
->bw_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1264 nullb
->bw_timer
.function
= nullb_bwtimer_fn
;
1265 atomic_long_set(&nullb
->cur_bytes
, mb_per_tick(nullb
->dev
->mbps
));
1266 hrtimer_start(&nullb
->bw_timer
, timer_interval
, HRTIMER_MODE_REL
);
1269 static struct nullb_queue
*nullb_to_queue(struct nullb
*nullb
)
1273 if (nullb
->nr_queues
!= 1)
1274 index
= raw_smp_processor_id() / ((nr_cpu_ids
+ nullb
->nr_queues
- 1) / nullb
->nr_queues
);
1276 return &nullb
->queues
[index
];
1279 static blk_qc_t
null_queue_bio(struct request_queue
*q
, struct bio
*bio
)
1281 struct nullb
*nullb
= q
->queuedata
;
1282 struct nullb_queue
*nq
= nullb_to_queue(nullb
);
1283 struct nullb_cmd
*cmd
;
1285 cmd
= alloc_cmd(nq
, 1);
1288 null_handle_cmd(cmd
);
1289 return BLK_QC_T_NONE
;
1292 static bool should_timeout_request(struct request
*rq
)
1294 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1295 if (g_timeout_str
[0])
1296 return should_fail(&null_timeout_attr
, 1);
1301 static bool should_requeue_request(struct request
*rq
)
1303 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1304 if (g_requeue_str
[0])
1305 return should_fail(&null_requeue_attr
, 1);
1310 static enum blk_eh_timer_return
null_timeout_rq(struct request
*rq
, bool res
)
1312 pr_info("null: rq %p timed out\n", rq
);
1313 blk_mq_complete_request(rq
);
1317 static blk_status_t
null_queue_rq(struct blk_mq_hw_ctx
*hctx
,
1318 const struct blk_mq_queue_data
*bd
)
1320 struct nullb_cmd
*cmd
= blk_mq_rq_to_pdu(bd
->rq
);
1321 struct nullb_queue
*nq
= hctx
->driver_data
;
1323 might_sleep_if(hctx
->flags
& BLK_MQ_F_BLOCKING
);
1325 if (nq
->dev
->irqmode
== NULL_IRQ_TIMER
) {
1326 hrtimer_init(&cmd
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1327 cmd
->timer
.function
= null_cmd_timer_expired
;
1332 blk_mq_start_request(bd
->rq
);
1334 if (should_requeue_request(bd
->rq
)) {
1336 * Alternate between hitting the core BUSY path, and the
1337 * driver driven requeue path
1339 nq
->requeue_selection
++;
1340 if (nq
->requeue_selection
& 1)
1341 return BLK_STS_RESOURCE
;
1343 blk_mq_requeue_request(bd
->rq
, true);
1347 if (should_timeout_request(bd
->rq
))
1350 return null_handle_cmd(cmd
);
1353 static const struct blk_mq_ops null_mq_ops
= {
1354 .queue_rq
= null_queue_rq
,
1355 .complete
= null_complete_rq
,
1356 .timeout
= null_timeout_rq
,
1359 static void cleanup_queue(struct nullb_queue
*nq
)
1365 static void cleanup_queues(struct nullb
*nullb
)
1369 for (i
= 0; i
< nullb
->nr_queues
; i
++)
1370 cleanup_queue(&nullb
->queues
[i
]);
1372 kfree(nullb
->queues
);
1375 static void null_del_dev(struct nullb
*nullb
)
1377 struct nullb_device
*dev
= nullb
->dev
;
1379 ida_simple_remove(&nullb_indexes
, nullb
->index
);
1381 list_del_init(&nullb
->list
);
1383 del_gendisk(nullb
->disk
);
1385 if (test_bit(NULLB_DEV_FL_THROTTLED
, &nullb
->dev
->flags
)) {
1386 hrtimer_cancel(&nullb
->bw_timer
);
1387 atomic_long_set(&nullb
->cur_bytes
, LONG_MAX
);
1388 null_restart_queue_async(nullb
);
1391 blk_cleanup_queue(nullb
->q
);
1392 if (dev
->queue_mode
== NULL_Q_MQ
&&
1393 nullb
->tag_set
== &nullb
->__tag_set
)
1394 blk_mq_free_tag_set(nullb
->tag_set
);
1395 put_disk(nullb
->disk
);
1396 cleanup_queues(nullb
);
1397 if (null_cache_active(nullb
))
1398 null_free_device_storage(nullb
->dev
, true);
1403 static void null_config_discard(struct nullb
*nullb
)
1405 if (nullb
->dev
->discard
== false)
1407 nullb
->q
->limits
.discard_granularity
= nullb
->dev
->blocksize
;
1408 nullb
->q
->limits
.discard_alignment
= nullb
->dev
->blocksize
;
1409 blk_queue_max_discard_sectors(nullb
->q
, UINT_MAX
>> 9);
1410 blk_queue_flag_set(QUEUE_FLAG_DISCARD
, nullb
->q
);
1413 static int null_open(struct block_device
*bdev
, fmode_t mode
)
1418 static void null_release(struct gendisk
*disk
, fmode_t mode
)
1422 static const struct block_device_operations null_fops
= {
1423 .owner
= THIS_MODULE
,
1425 .release
= null_release
,
1426 .report_zones
= null_zone_report
,
1429 static void null_init_queue(struct nullb
*nullb
, struct nullb_queue
*nq
)
1434 init_waitqueue_head(&nq
->wait
);
1435 nq
->queue_depth
= nullb
->queue_depth
;
1436 nq
->dev
= nullb
->dev
;
1439 static void null_init_queues(struct nullb
*nullb
)
1441 struct request_queue
*q
= nullb
->q
;
1442 struct blk_mq_hw_ctx
*hctx
;
1443 struct nullb_queue
*nq
;
1446 queue_for_each_hw_ctx(q
, hctx
, i
) {
1447 if (!hctx
->nr_ctx
|| !hctx
->tags
)
1449 nq
= &nullb
->queues
[i
];
1450 hctx
->driver_data
= nq
;
1451 null_init_queue(nullb
, nq
);
1456 static int setup_commands(struct nullb_queue
*nq
)
1458 struct nullb_cmd
*cmd
;
1461 nq
->cmds
= kcalloc(nq
->queue_depth
, sizeof(*cmd
), GFP_KERNEL
);
1465 tag_size
= ALIGN(nq
->queue_depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
1466 nq
->tag_map
= kcalloc(tag_size
, sizeof(unsigned long), GFP_KERNEL
);
1472 for (i
= 0; i
< nq
->queue_depth
; i
++) {
1474 INIT_LIST_HEAD(&cmd
->list
);
1475 cmd
->ll_list
.next
= NULL
;
1482 static int setup_queues(struct nullb
*nullb
)
1484 nullb
->queues
= kcalloc(nullb
->dev
->submit_queues
,
1485 sizeof(struct nullb_queue
),
1490 nullb
->nr_queues
= 0;
1491 nullb
->queue_depth
= nullb
->dev
->hw_queue_depth
;
1496 static int init_driver_queues(struct nullb
*nullb
)
1498 struct nullb_queue
*nq
;
1501 for (i
= 0; i
< nullb
->dev
->submit_queues
; i
++) {
1502 nq
= &nullb
->queues
[i
];
1504 null_init_queue(nullb
, nq
);
1506 ret
= setup_commands(nq
);
1514 static int null_gendisk_register(struct nullb
*nullb
)
1516 struct gendisk
*disk
;
1519 disk
= nullb
->disk
= alloc_disk_node(1, nullb
->dev
->home_node
);
1522 size
= (sector_t
)nullb
->dev
->size
* 1024 * 1024ULL;
1523 set_capacity(disk
, size
>> 9);
1525 disk
->flags
|= GENHD_FL_EXT_DEVT
| GENHD_FL_SUPPRESS_PARTITION_INFO
;
1526 disk
->major
= null_major
;
1527 disk
->first_minor
= nullb
->index
;
1528 disk
->fops
= &null_fops
;
1529 disk
->private_data
= nullb
;
1530 disk
->queue
= nullb
->q
;
1531 strncpy(disk
->disk_name
, nullb
->disk_name
, DISK_NAME_LEN
);
1533 if (nullb
->dev
->zoned
) {
1534 int ret
= blk_revalidate_disk_zones(disk
);
1544 static int null_init_tag_set(struct nullb
*nullb
, struct blk_mq_tag_set
*set
)
1546 set
->ops
= &null_mq_ops
;
1547 set
->nr_hw_queues
= nullb
? nullb
->dev
->submit_queues
:
1549 set
->queue_depth
= nullb
? nullb
->dev
->hw_queue_depth
:
1551 set
->numa_node
= nullb
? nullb
->dev
->home_node
: g_home_node
;
1552 set
->cmd_size
= sizeof(struct nullb_cmd
);
1553 set
->flags
= BLK_MQ_F_SHOULD_MERGE
;
1555 set
->flags
|= BLK_MQ_F_NO_SCHED
;
1556 set
->driver_data
= NULL
;
1558 if ((nullb
&& nullb
->dev
->blocking
) || g_blocking
)
1559 set
->flags
|= BLK_MQ_F_BLOCKING
;
1561 return blk_mq_alloc_tag_set(set
);
1564 static void null_validate_conf(struct nullb_device
*dev
)
1566 dev
->blocksize
= round_down(dev
->blocksize
, 512);
1567 dev
->blocksize
= clamp_t(unsigned int, dev
->blocksize
, 512, 4096);
1569 if (dev
->queue_mode
== NULL_Q_MQ
&& dev
->use_per_node_hctx
) {
1570 if (dev
->submit_queues
!= nr_online_nodes
)
1571 dev
->submit_queues
= nr_online_nodes
;
1572 } else if (dev
->submit_queues
> nr_cpu_ids
)
1573 dev
->submit_queues
= nr_cpu_ids
;
1574 else if (dev
->submit_queues
== 0)
1575 dev
->submit_queues
= 1;
1577 dev
->queue_mode
= min_t(unsigned int, dev
->queue_mode
, NULL_Q_MQ
);
1578 dev
->irqmode
= min_t(unsigned int, dev
->irqmode
, NULL_IRQ_TIMER
);
1580 /* Do memory allocation, so set blocking */
1581 if (dev
->memory_backed
)
1582 dev
->blocking
= true;
1583 else /* cache is meaningless */
1584 dev
->cache_size
= 0;
1585 dev
->cache_size
= min_t(unsigned long, ULONG_MAX
/ 1024 / 1024,
1587 dev
->mbps
= min_t(unsigned int, 1024 * 40, dev
->mbps
);
1588 /* can not stop a queue */
1589 if (dev
->queue_mode
== NULL_Q_BIO
)
1593 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1594 static bool __null_setup_fault(struct fault_attr
*attr
, char *str
)
1599 if (!setup_fault_attr(attr
, str
))
1607 static bool null_setup_fault(void)
1609 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1610 if (!__null_setup_fault(&null_timeout_attr
, g_timeout_str
))
1612 if (!__null_setup_fault(&null_requeue_attr
, g_requeue_str
))
1618 static int null_add_dev(struct nullb_device
*dev
)
1620 struct nullb
*nullb
;
1623 null_validate_conf(dev
);
1625 nullb
= kzalloc_node(sizeof(*nullb
), GFP_KERNEL
, dev
->home_node
);
1633 spin_lock_init(&nullb
->lock
);
1635 rv
= setup_queues(nullb
);
1637 goto out_free_nullb
;
1639 if (dev
->queue_mode
== NULL_Q_MQ
) {
1641 nullb
->tag_set
= &tag_set
;
1644 nullb
->tag_set
= &nullb
->__tag_set
;
1645 rv
= null_init_tag_set(nullb
, nullb
->tag_set
);
1649 goto out_cleanup_queues
;
1651 if (!null_setup_fault())
1652 goto out_cleanup_queues
;
1654 nullb
->tag_set
->timeout
= 5 * HZ
;
1655 nullb
->q
= blk_mq_init_queue(nullb
->tag_set
);
1656 if (IS_ERR(nullb
->q
)) {
1658 goto out_cleanup_tags
;
1660 null_init_queues(nullb
);
1661 } else if (dev
->queue_mode
== NULL_Q_BIO
) {
1662 nullb
->q
= blk_alloc_queue_node(GFP_KERNEL
, dev
->home_node
);
1665 goto out_cleanup_queues
;
1667 blk_queue_make_request(nullb
->q
, null_queue_bio
);
1668 rv
= init_driver_queues(nullb
);
1670 goto out_cleanup_blk_queue
;
1674 set_bit(NULLB_DEV_FL_THROTTLED
, &dev
->flags
);
1675 nullb_setup_bwtimer(nullb
);
1678 if (dev
->cache_size
> 0) {
1679 set_bit(NULLB_DEV_FL_CACHE
, &nullb
->dev
->flags
);
1680 blk_queue_write_cache(nullb
->q
, true, true);
1684 rv
= null_zone_init(dev
);
1686 goto out_cleanup_blk_queue
;
1688 blk_queue_chunk_sectors(nullb
->q
, dev
->zone_size_sects
);
1689 nullb
->q
->limits
.zoned
= BLK_ZONED_HM
;
1692 nullb
->q
->queuedata
= nullb
;
1693 blk_queue_flag_set(QUEUE_FLAG_NONROT
, nullb
->q
);
1694 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM
, nullb
->q
);
1697 nullb
->index
= ida_simple_get(&nullb_indexes
, 0, 0, GFP_KERNEL
);
1698 dev
->index
= nullb
->index
;
1699 mutex_unlock(&lock
);
1701 blk_queue_logical_block_size(nullb
->q
, dev
->blocksize
);
1702 blk_queue_physical_block_size(nullb
->q
, dev
->blocksize
);
1704 null_config_discard(nullb
);
1706 sprintf(nullb
->disk_name
, "nullb%d", nullb
->index
);
1708 rv
= null_gendisk_register(nullb
);
1710 goto out_cleanup_zone
;
1713 list_add_tail(&nullb
->list
, &nullb_list
);
1714 mutex_unlock(&lock
);
1719 null_zone_exit(dev
);
1720 out_cleanup_blk_queue
:
1721 blk_cleanup_queue(nullb
->q
);
1723 if (dev
->queue_mode
== NULL_Q_MQ
&& nullb
->tag_set
== &nullb
->__tag_set
)
1724 blk_mq_free_tag_set(nullb
->tag_set
);
1726 cleanup_queues(nullb
);
1733 static int __init
null_init(void)
1737 struct nullb
*nullb
;
1738 struct nullb_device
*dev
;
1740 if (g_bs
> PAGE_SIZE
) {
1741 pr_warn("null_blk: invalid block size\n");
1742 pr_warn("null_blk: defaults block size to %lu\n", PAGE_SIZE
);
1746 if (!is_power_of_2(g_zone_size
)) {
1747 pr_err("null_blk: zone_size must be power-of-two\n");
1751 if (g_queue_mode
== NULL_Q_RQ
) {
1752 pr_err("null_blk: legacy IO path no longer available\n");
1755 if (g_queue_mode
== NULL_Q_MQ
&& g_use_per_node_hctx
) {
1756 if (g_submit_queues
!= nr_online_nodes
) {
1757 pr_warn("null_blk: submit_queues param is set to %u.\n",
1759 g_submit_queues
= nr_online_nodes
;
1761 } else if (g_submit_queues
> nr_cpu_ids
)
1762 g_submit_queues
= nr_cpu_ids
;
1763 else if (g_submit_queues
<= 0)
1764 g_submit_queues
= 1;
1766 if (g_queue_mode
== NULL_Q_MQ
&& shared_tags
) {
1767 ret
= null_init_tag_set(NULL
, &tag_set
);
1772 config_group_init(&nullb_subsys
.su_group
);
1773 mutex_init(&nullb_subsys
.su_mutex
);
1775 ret
= configfs_register_subsystem(&nullb_subsys
);
1781 null_major
= register_blkdev(0, "nullb");
1782 if (null_major
< 0) {
1787 for (i
= 0; i
< nr_devices
; i
++) {
1788 dev
= null_alloc_dev();
1793 ret
= null_add_dev(dev
);
1800 pr_info("null: module loaded\n");
1804 while (!list_empty(&nullb_list
)) {
1805 nullb
= list_entry(nullb_list
.next
, struct nullb
, list
);
1807 null_del_dev(nullb
);
1810 unregister_blkdev(null_major
, "nullb");
1812 configfs_unregister_subsystem(&nullb_subsys
);
1814 if (g_queue_mode
== NULL_Q_MQ
&& shared_tags
)
1815 blk_mq_free_tag_set(&tag_set
);
1819 static void __exit
null_exit(void)
1821 struct nullb
*nullb
;
1823 configfs_unregister_subsystem(&nullb_subsys
);
1825 unregister_blkdev(null_major
, "nullb");
1828 while (!list_empty(&nullb_list
)) {
1829 struct nullb_device
*dev
;
1831 nullb
= list_entry(nullb_list
.next
, struct nullb
, list
);
1833 null_del_dev(nullb
);
1836 mutex_unlock(&lock
);
1838 if (g_queue_mode
== NULL_Q_MQ
&& shared_tags
)
1839 blk_mq_free_tag_set(&tag_set
);
1842 module_init(null_init
);
1843 module_exit(null_exit
);
1845 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
1846 MODULE_LICENSE("GPL");