dt-bindings: mtd: ingenic: Use standard ecc-engine property
[linux/fpc-iii.git] / drivers / clocksource / exynos_mct.c
blob34bd250d46c6ce26f796611f5dca6b4dceb52387
1 /* linux/arch/arm/mach-exynos4/mct.c
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
6 * EXYNOS4 MCT(Multi-Core Timer) support
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/interrupt.h>
14 #include <linux/irq.h>
15 #include <linux/err.h>
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 #include <linux/percpu.h>
21 #include <linux/of.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_address.h>
24 #include <linux/clocksource.h>
25 #include <linux/sched_clock.h>
27 #define EXYNOS4_MCTREG(x) (x)
28 #define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
29 #define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
30 #define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
31 #define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
32 #define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
33 #define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
34 #define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
35 #define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
36 #define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
37 #define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
38 #define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
39 #define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x))
40 #define EXYNOS4_MCT_L_MASK (0xffffff00)
42 #define MCT_L_TCNTB_OFFSET (0x00)
43 #define MCT_L_ICNTB_OFFSET (0x08)
44 #define MCT_L_TCON_OFFSET (0x20)
45 #define MCT_L_INT_CSTAT_OFFSET (0x30)
46 #define MCT_L_INT_ENB_OFFSET (0x34)
47 #define MCT_L_WSTAT_OFFSET (0x40)
48 #define MCT_G_TCON_START (1 << 8)
49 #define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
50 #define MCT_G_TCON_COMP0_ENABLE (1 << 0)
51 #define MCT_L_TCON_INTERVAL_MODE (1 << 2)
52 #define MCT_L_TCON_INT_START (1 << 1)
53 #define MCT_L_TCON_TIMER_START (1 << 0)
55 #define TICK_BASE_CNT 1
57 enum {
58 MCT_INT_SPI,
59 MCT_INT_PPI
62 enum {
63 MCT_G0_IRQ,
64 MCT_G1_IRQ,
65 MCT_G2_IRQ,
66 MCT_G3_IRQ,
67 MCT_L0_IRQ,
68 MCT_L1_IRQ,
69 MCT_L2_IRQ,
70 MCT_L3_IRQ,
71 MCT_L4_IRQ,
72 MCT_L5_IRQ,
73 MCT_L6_IRQ,
74 MCT_L7_IRQ,
75 MCT_NR_IRQS,
78 static void __iomem *reg_base;
79 static unsigned long clk_rate;
80 static unsigned int mct_int_type;
81 static int mct_irqs[MCT_NR_IRQS];
83 struct mct_clock_event_device {
84 struct clock_event_device evt;
85 unsigned long base;
86 char name[10];
89 static void exynos4_mct_write(unsigned int value, unsigned long offset)
91 unsigned long stat_addr;
92 u32 mask;
93 u32 i;
95 writel_relaxed(value, reg_base + offset);
97 if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
98 stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
99 switch (offset & ~EXYNOS4_MCT_L_MASK) {
100 case MCT_L_TCON_OFFSET:
101 mask = 1 << 3; /* L_TCON write status */
102 break;
103 case MCT_L_ICNTB_OFFSET:
104 mask = 1 << 1; /* L_ICNTB write status */
105 break;
106 case MCT_L_TCNTB_OFFSET:
107 mask = 1 << 0; /* L_TCNTB write status */
108 break;
109 default:
110 return;
112 } else {
113 switch (offset) {
114 case EXYNOS4_MCT_G_TCON:
115 stat_addr = EXYNOS4_MCT_G_WSTAT;
116 mask = 1 << 16; /* G_TCON write status */
117 break;
118 case EXYNOS4_MCT_G_COMP0_L:
119 stat_addr = EXYNOS4_MCT_G_WSTAT;
120 mask = 1 << 0; /* G_COMP0_L write status */
121 break;
122 case EXYNOS4_MCT_G_COMP0_U:
123 stat_addr = EXYNOS4_MCT_G_WSTAT;
124 mask = 1 << 1; /* G_COMP0_U write status */
125 break;
126 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
127 stat_addr = EXYNOS4_MCT_G_WSTAT;
128 mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
129 break;
130 case EXYNOS4_MCT_G_CNT_L:
131 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
132 mask = 1 << 0; /* G_CNT_L write status */
133 break;
134 case EXYNOS4_MCT_G_CNT_U:
135 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
136 mask = 1 << 1; /* G_CNT_U write status */
137 break;
138 default:
139 return;
143 /* Wait maximum 1 ms until written values are applied */
144 for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
145 if (readl_relaxed(reg_base + stat_addr) & mask) {
146 writel_relaxed(mask, reg_base + stat_addr);
147 return;
150 panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
153 /* Clocksource handling */
154 static void exynos4_mct_frc_start(void)
156 u32 reg;
158 reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
159 reg |= MCT_G_TCON_START;
160 exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
164 * exynos4_read_count_64 - Read all 64-bits of the global counter
166 * This will read all 64-bits of the global counter taking care to make sure
167 * that the upper and lower half match. Note that reading the MCT can be quite
168 * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
169 * only) version when possible.
171 * Returns the number of cycles in the global counter.
173 static u64 exynos4_read_count_64(void)
175 unsigned int lo, hi;
176 u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
178 do {
179 hi = hi2;
180 lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
181 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
182 } while (hi != hi2);
184 return ((u64)hi << 32) | lo;
188 * exynos4_read_count_32 - Read the lower 32-bits of the global counter
190 * This will read just the lower 32-bits of the global counter. This is marked
191 * as notrace so it can be used by the scheduler clock.
193 * Returns the number of cycles in the global counter (lower 32 bits).
195 static u32 notrace exynos4_read_count_32(void)
197 return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
200 static u64 exynos4_frc_read(struct clocksource *cs)
202 return exynos4_read_count_32();
205 static void exynos4_frc_resume(struct clocksource *cs)
207 exynos4_mct_frc_start();
210 static struct clocksource mct_frc = {
211 .name = "mct-frc",
212 .rating = 400,
213 .read = exynos4_frc_read,
214 .mask = CLOCKSOURCE_MASK(32),
215 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
216 .resume = exynos4_frc_resume,
219 static u64 notrace exynos4_read_sched_clock(void)
221 return exynos4_read_count_32();
224 #if defined(CONFIG_ARM)
225 static struct delay_timer exynos4_delay_timer;
227 static cycles_t exynos4_read_current_timer(void)
229 BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
230 "cycles_t needs to move to 32-bit for ARM64 usage");
231 return exynos4_read_count_32();
233 #endif
235 static int __init exynos4_clocksource_init(void)
237 exynos4_mct_frc_start();
239 #if defined(CONFIG_ARM)
240 exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
241 exynos4_delay_timer.freq = clk_rate;
242 register_current_timer_delay(&exynos4_delay_timer);
243 #endif
245 if (clocksource_register_hz(&mct_frc, clk_rate))
246 panic("%s: can't register clocksource\n", mct_frc.name);
248 sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
250 return 0;
253 static void exynos4_mct_comp0_stop(void)
255 unsigned int tcon;
257 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
258 tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
260 exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
261 exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
264 static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
266 unsigned int tcon;
267 u64 comp_cycle;
269 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
271 if (periodic) {
272 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
273 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
276 comp_cycle = exynos4_read_count_64() + cycles;
277 exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
278 exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
280 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
282 tcon |= MCT_G_TCON_COMP0_ENABLE;
283 exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
286 static int exynos4_comp_set_next_event(unsigned long cycles,
287 struct clock_event_device *evt)
289 exynos4_mct_comp0_start(false, cycles);
291 return 0;
294 static int mct_set_state_shutdown(struct clock_event_device *evt)
296 exynos4_mct_comp0_stop();
297 return 0;
300 static int mct_set_state_periodic(struct clock_event_device *evt)
302 unsigned long cycles_per_jiffy;
304 cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
305 >> evt->shift);
306 exynos4_mct_comp0_stop();
307 exynos4_mct_comp0_start(true, cycles_per_jiffy);
308 return 0;
311 static struct clock_event_device mct_comp_device = {
312 .name = "mct-comp",
313 .features = CLOCK_EVT_FEAT_PERIODIC |
314 CLOCK_EVT_FEAT_ONESHOT,
315 .rating = 250,
316 .set_next_event = exynos4_comp_set_next_event,
317 .set_state_periodic = mct_set_state_periodic,
318 .set_state_shutdown = mct_set_state_shutdown,
319 .set_state_oneshot = mct_set_state_shutdown,
320 .set_state_oneshot_stopped = mct_set_state_shutdown,
321 .tick_resume = mct_set_state_shutdown,
324 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
326 struct clock_event_device *evt = dev_id;
328 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
330 evt->event_handler(evt);
332 return IRQ_HANDLED;
335 static struct irqaction mct_comp_event_irq = {
336 .name = "mct_comp_irq",
337 .flags = IRQF_TIMER | IRQF_IRQPOLL,
338 .handler = exynos4_mct_comp_isr,
339 .dev_id = &mct_comp_device,
342 static int exynos4_clockevent_init(void)
344 mct_comp_device.cpumask = cpumask_of(0);
345 clockevents_config_and_register(&mct_comp_device, clk_rate,
346 0xf, 0xffffffff);
347 setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
349 return 0;
352 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
354 /* Clock event handling */
355 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
357 unsigned long tmp;
358 unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
359 unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
361 tmp = readl_relaxed(reg_base + offset);
362 if (tmp & mask) {
363 tmp &= ~mask;
364 exynos4_mct_write(tmp, offset);
368 static void exynos4_mct_tick_start(unsigned long cycles,
369 struct mct_clock_event_device *mevt)
371 unsigned long tmp;
373 exynos4_mct_tick_stop(mevt);
375 tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
377 /* update interrupt count buffer */
378 exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
380 /* enable MCT tick interrupt */
381 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
383 tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
384 tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
385 MCT_L_TCON_INTERVAL_MODE;
386 exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
389 static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
391 /* Clear the MCT tick interrupt */
392 if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
393 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
396 static int exynos4_tick_set_next_event(unsigned long cycles,
397 struct clock_event_device *evt)
399 struct mct_clock_event_device *mevt;
401 mevt = container_of(evt, struct mct_clock_event_device, evt);
402 exynos4_mct_tick_start(cycles, mevt);
403 return 0;
406 static int set_state_shutdown(struct clock_event_device *evt)
408 struct mct_clock_event_device *mevt;
410 mevt = container_of(evt, struct mct_clock_event_device, evt);
411 exynos4_mct_tick_stop(mevt);
412 exynos4_mct_tick_clear(mevt);
413 return 0;
416 static int set_state_periodic(struct clock_event_device *evt)
418 struct mct_clock_event_device *mevt;
419 unsigned long cycles_per_jiffy;
421 mevt = container_of(evt, struct mct_clock_event_device, evt);
422 cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
423 >> evt->shift);
424 exynos4_mct_tick_stop(mevt);
425 exynos4_mct_tick_start(cycles_per_jiffy, mevt);
426 return 0;
429 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
431 struct mct_clock_event_device *mevt = dev_id;
432 struct clock_event_device *evt = &mevt->evt;
435 * This is for supporting oneshot mode.
436 * Mct would generate interrupt periodically
437 * without explicit stopping.
439 if (!clockevent_state_periodic(&mevt->evt))
440 exynos4_mct_tick_stop(mevt);
442 exynos4_mct_tick_clear(mevt);
444 evt->event_handler(evt);
446 return IRQ_HANDLED;
449 static int exynos4_mct_starting_cpu(unsigned int cpu)
451 struct mct_clock_event_device *mevt =
452 per_cpu_ptr(&percpu_mct_tick, cpu);
453 struct clock_event_device *evt = &mevt->evt;
455 mevt->base = EXYNOS4_MCT_L_BASE(cpu);
456 snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
458 evt->name = mevt->name;
459 evt->cpumask = cpumask_of(cpu);
460 evt->set_next_event = exynos4_tick_set_next_event;
461 evt->set_state_periodic = set_state_periodic;
462 evt->set_state_shutdown = set_state_shutdown;
463 evt->set_state_oneshot = set_state_shutdown;
464 evt->set_state_oneshot_stopped = set_state_shutdown;
465 evt->tick_resume = set_state_shutdown;
466 evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
467 evt->rating = 450;
469 exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
471 if (mct_int_type == MCT_INT_SPI) {
473 if (evt->irq == -1)
474 return -EIO;
476 irq_force_affinity(evt->irq, cpumask_of(cpu));
477 enable_irq(evt->irq);
478 } else {
479 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
481 clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
482 0xf, 0x7fffffff);
484 return 0;
487 static int exynos4_mct_dying_cpu(unsigned int cpu)
489 struct mct_clock_event_device *mevt =
490 per_cpu_ptr(&percpu_mct_tick, cpu);
491 struct clock_event_device *evt = &mevt->evt;
493 evt->set_state_shutdown(evt);
494 if (mct_int_type == MCT_INT_SPI) {
495 if (evt->irq != -1)
496 disable_irq_nosync(evt->irq);
497 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
498 } else {
499 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
501 return 0;
504 static int __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
506 int err, cpu;
507 struct clk *mct_clk, *tick_clk;
509 tick_clk = of_clk_get_by_name(np, "fin_pll");
510 if (IS_ERR(tick_clk))
511 panic("%s: unable to determine tick clock rate\n", __func__);
512 clk_rate = clk_get_rate(tick_clk);
514 mct_clk = of_clk_get_by_name(np, "mct");
515 if (IS_ERR(mct_clk))
516 panic("%s: unable to retrieve mct clock instance\n", __func__);
517 clk_prepare_enable(mct_clk);
519 reg_base = base;
520 if (!reg_base)
521 panic("%s: unable to ioremap mct address space\n", __func__);
523 if (mct_int_type == MCT_INT_PPI) {
525 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
526 exynos4_mct_tick_isr, "MCT",
527 &percpu_mct_tick);
528 WARN(err, "MCT: can't request IRQ %d (%d)\n",
529 mct_irqs[MCT_L0_IRQ], err);
530 } else {
531 for_each_possible_cpu(cpu) {
532 int mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
533 struct mct_clock_event_device *pcpu_mevt =
534 per_cpu_ptr(&percpu_mct_tick, cpu);
536 pcpu_mevt->evt.irq = -1;
538 irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
539 if (request_irq(mct_irq,
540 exynos4_mct_tick_isr,
541 IRQF_TIMER | IRQF_NOBALANCING,
542 pcpu_mevt->name, pcpu_mevt)) {
543 pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
544 cpu);
546 continue;
548 pcpu_mevt->evt.irq = mct_irq;
552 /* Install hotplug callbacks which configure the timer on this CPU */
553 err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
554 "clockevents/exynos4/mct_timer:starting",
555 exynos4_mct_starting_cpu,
556 exynos4_mct_dying_cpu);
557 if (err)
558 goto out_irq;
560 return 0;
562 out_irq:
563 if (mct_int_type == MCT_INT_PPI) {
564 free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
565 } else {
566 for_each_possible_cpu(cpu) {
567 struct mct_clock_event_device *pcpu_mevt =
568 per_cpu_ptr(&percpu_mct_tick, cpu);
570 if (pcpu_mevt->evt.irq != -1) {
571 free_irq(pcpu_mevt->evt.irq, pcpu_mevt);
572 pcpu_mevt->evt.irq = -1;
576 return err;
579 static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
581 u32 nr_irqs, i;
582 int ret;
584 mct_int_type = int_type;
586 /* This driver uses only one global timer interrupt */
587 mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
590 * Find out the number of local irqs specified. The local
591 * timer irqs are specified after the four global timer
592 * irqs are specified.
594 nr_irqs = of_irq_count(np);
595 for (i = MCT_L0_IRQ; i < nr_irqs; i++)
596 mct_irqs[i] = irq_of_parse_and_map(np, i);
598 ret = exynos4_timer_resources(np, of_iomap(np, 0));
599 if (ret)
600 return ret;
602 ret = exynos4_clocksource_init();
603 if (ret)
604 return ret;
606 return exynos4_clockevent_init();
610 static int __init mct_init_spi(struct device_node *np)
612 return mct_init_dt(np, MCT_INT_SPI);
615 static int __init mct_init_ppi(struct device_node *np)
617 return mct_init_dt(np, MCT_INT_PPI);
619 TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
620 TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);