1 // SPDX-License-Identifier: GPL-2.0
3 * Faraday Technology FTTMR010 timer driver
4 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
6 * Based on a rewrite of arch/arm/mach-gemini/timer.c:
7 * Copyright (C) 2001-2006 Storlink, Corp.
8 * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
10 #include <linux/interrupt.h>
13 #include <linux/of_address.h>
14 #include <linux/of_irq.h>
15 #include <linux/clockchips.h>
16 #include <linux/clocksource.h>
17 #include <linux/sched_clock.h>
18 #include <linux/clk.h>
19 #include <linux/slab.h>
20 #include <linux/bitops.h>
21 #include <linux/delay.h>
24 * Register definitions common for all the timer variants.
26 #define TIMER1_COUNT (0x00)
27 #define TIMER1_LOAD (0x04)
28 #define TIMER1_MATCH1 (0x08)
29 #define TIMER1_MATCH2 (0x0c)
30 #define TIMER2_COUNT (0x10)
31 #define TIMER2_LOAD (0x14)
32 #define TIMER2_MATCH1 (0x18)
33 #define TIMER2_MATCH2 (0x1c)
34 #define TIMER3_COUNT (0x20)
35 #define TIMER3_LOAD (0x24)
36 #define TIMER3_MATCH1 (0x28)
37 #define TIMER3_MATCH2 (0x2c)
38 #define TIMER_CR (0x30)
41 * Control register (TMC30) bit fields for fttmr010/gemini/moxart timers.
43 #define TIMER_1_CR_ENABLE BIT(0)
44 #define TIMER_1_CR_CLOCK BIT(1)
45 #define TIMER_1_CR_INT BIT(2)
46 #define TIMER_2_CR_ENABLE BIT(3)
47 #define TIMER_2_CR_CLOCK BIT(4)
48 #define TIMER_2_CR_INT BIT(5)
49 #define TIMER_3_CR_ENABLE BIT(6)
50 #define TIMER_3_CR_CLOCK BIT(7)
51 #define TIMER_3_CR_INT BIT(8)
52 #define TIMER_1_CR_UPDOWN BIT(9)
53 #define TIMER_2_CR_UPDOWN BIT(10)
54 #define TIMER_3_CR_UPDOWN BIT(11)
57 * Control register (TMC30) bit fields for aspeed ast2400/ast2500 timers.
58 * The aspeed timers move bits around in the control register and lacks
59 * bits for setting the timer to count upwards.
61 #define TIMER_1_CR_ASPEED_ENABLE BIT(0)
62 #define TIMER_1_CR_ASPEED_CLOCK BIT(1)
63 #define TIMER_1_CR_ASPEED_INT BIT(2)
64 #define TIMER_2_CR_ASPEED_ENABLE BIT(4)
65 #define TIMER_2_CR_ASPEED_CLOCK BIT(5)
66 #define TIMER_2_CR_ASPEED_INT BIT(6)
67 #define TIMER_3_CR_ASPEED_ENABLE BIT(8)
68 #define TIMER_3_CR_ASPEED_CLOCK BIT(9)
69 #define TIMER_3_CR_ASPEED_INT BIT(10)
72 * Interrupt status/mask register definitions for fttmr010/gemini/moxart
74 * The registers don't exist and they are not needed on aspeed timers
76 * - aspeed timer overflow interrupt is controlled by bits in Control
78 * - aspeed timers always generate interrupt when either one of the
79 * Match registers equals to Status register.
81 #define TIMER_INTR_STATE (0x34)
82 #define TIMER_INTR_MASK (0x38)
83 #define TIMER_1_INT_MATCH1 BIT(0)
84 #define TIMER_1_INT_MATCH2 BIT(1)
85 #define TIMER_1_INT_OVERFLOW BIT(2)
86 #define TIMER_2_INT_MATCH1 BIT(3)
87 #define TIMER_2_INT_MATCH2 BIT(4)
88 #define TIMER_2_INT_OVERFLOW BIT(5)
89 #define TIMER_3_INT_MATCH1 BIT(6)
90 #define TIMER_3_INT_MATCH2 BIT(7)
91 #define TIMER_3_INT_OVERFLOW BIT(8)
92 #define TIMER_INT_ALL_MASK 0x1ff
96 unsigned int tick_rate
;
99 struct clock_event_device clkevt
;
101 struct delay_timer delay_timer
;
106 * A local singleton used by sched_clock and delay timer reads, which are
109 static struct fttmr010
*local_fttmr
;
111 static inline struct fttmr010
*to_fttmr010(struct clock_event_device
*evt
)
113 return container_of(evt
, struct fttmr010
, clkevt
);
116 static unsigned long fttmr010_read_current_timer_up(void)
118 return readl(local_fttmr
->base
+ TIMER2_COUNT
);
121 static unsigned long fttmr010_read_current_timer_down(void)
123 return ~readl(local_fttmr
->base
+ TIMER2_COUNT
);
126 static u64 notrace
fttmr010_read_sched_clock_up(void)
128 return fttmr010_read_current_timer_up();
131 static u64 notrace
fttmr010_read_sched_clock_down(void)
133 return fttmr010_read_current_timer_down();
136 static int fttmr010_timer_set_next_event(unsigned long cycles
,
137 struct clock_event_device
*evt
)
139 struct fttmr010
*fttmr010
= to_fttmr010(evt
);
143 cr
= readl(fttmr010
->base
+ TIMER_CR
);
144 cr
&= ~fttmr010
->t1_enable_val
;
145 writel(cr
, fttmr010
->base
+ TIMER_CR
);
147 if (fttmr010
->is_aspeed
) {
149 * ASPEED Timer Controller will load TIMER1_LOAD register
150 * into TIMER1_COUNT register when the timer is re-enabled.
152 writel(cycles
, fttmr010
->base
+ TIMER1_LOAD
);
154 /* Setup the match register forward in time */
155 cr
= readl(fttmr010
->base
+ TIMER1_COUNT
);
156 writel(cr
+ cycles
, fttmr010
->base
+ TIMER1_MATCH1
);
160 cr
= readl(fttmr010
->base
+ TIMER_CR
);
161 cr
|= fttmr010
->t1_enable_val
;
162 writel(cr
, fttmr010
->base
+ TIMER_CR
);
167 static int fttmr010_timer_shutdown(struct clock_event_device
*evt
)
169 struct fttmr010
*fttmr010
= to_fttmr010(evt
);
173 cr
= readl(fttmr010
->base
+ TIMER_CR
);
174 cr
&= ~fttmr010
->t1_enable_val
;
175 writel(cr
, fttmr010
->base
+ TIMER_CR
);
180 static int fttmr010_timer_set_oneshot(struct clock_event_device
*evt
)
182 struct fttmr010
*fttmr010
= to_fttmr010(evt
);
186 cr
= readl(fttmr010
->base
+ TIMER_CR
);
187 cr
&= ~fttmr010
->t1_enable_val
;
188 writel(cr
, fttmr010
->base
+ TIMER_CR
);
190 /* Setup counter start from 0 or ~0 */
191 writel(0, fttmr010
->base
+ TIMER1_COUNT
);
192 if (fttmr010
->is_aspeed
) {
193 writel(~0, fttmr010
->base
+ TIMER1_LOAD
);
195 writel(0, fttmr010
->base
+ TIMER1_LOAD
);
197 /* Enable interrupt */
198 cr
= readl(fttmr010
->base
+ TIMER_INTR_MASK
);
199 cr
&= ~(TIMER_1_INT_OVERFLOW
| TIMER_1_INT_MATCH2
);
200 cr
|= TIMER_1_INT_MATCH1
;
201 writel(cr
, fttmr010
->base
+ TIMER_INTR_MASK
);
207 static int fttmr010_timer_set_periodic(struct clock_event_device
*evt
)
209 struct fttmr010
*fttmr010
= to_fttmr010(evt
);
210 u32 period
= DIV_ROUND_CLOSEST(fttmr010
->tick_rate
, HZ
);
214 cr
= readl(fttmr010
->base
+ TIMER_CR
);
215 cr
&= ~fttmr010
->t1_enable_val
;
216 writel(cr
, fttmr010
->base
+ TIMER_CR
);
218 /* Setup timer to fire at 1/HZ intervals. */
219 if (fttmr010
->is_aspeed
) {
220 writel(period
, fttmr010
->base
+ TIMER1_LOAD
);
222 cr
= 0xffffffff - (period
- 1);
223 writel(cr
, fttmr010
->base
+ TIMER1_COUNT
);
224 writel(cr
, fttmr010
->base
+ TIMER1_LOAD
);
226 /* Enable interrupt on overflow */
227 cr
= readl(fttmr010
->base
+ TIMER_INTR_MASK
);
228 cr
&= ~(TIMER_1_INT_MATCH1
| TIMER_1_INT_MATCH2
);
229 cr
|= TIMER_1_INT_OVERFLOW
;
230 writel(cr
, fttmr010
->base
+ TIMER_INTR_MASK
);
233 /* Start the timer */
234 cr
= readl(fttmr010
->base
+ TIMER_CR
);
235 cr
|= fttmr010
->t1_enable_val
;
236 writel(cr
, fttmr010
->base
+ TIMER_CR
);
242 * IRQ handler for the timer
244 static irqreturn_t
fttmr010_timer_interrupt(int irq
, void *dev_id
)
246 struct clock_event_device
*evt
= dev_id
;
248 evt
->event_handler(evt
);
252 static int __init
fttmr010_common_init(struct device_node
*np
, bool is_aspeed
)
254 struct fttmr010
*fttmr010
;
261 * These implementations require a clock reference.
262 * FIXME: we currently only support clocking using PCLK
263 * and using EXTCLK is not supported in the driver.
265 clk
= of_clk_get_by_name(np
, "PCLK");
267 pr_err("could not get PCLK\n");
270 ret
= clk_prepare_enable(clk
);
272 pr_err("failed to enable PCLK\n");
276 fttmr010
= kzalloc(sizeof(*fttmr010
), GFP_KERNEL
);
279 goto out_disable_clock
;
281 fttmr010
->tick_rate
= clk_get_rate(clk
);
283 fttmr010
->base
= of_iomap(np
, 0);
284 if (!fttmr010
->base
) {
285 pr_err("Can't remap registers\n");
289 /* IRQ for timer 1 */
290 irq
= irq_of_parse_and_map(np
, 0);
292 pr_err("Can't parse IRQ\n");
298 * The Aspeed timers move bits around in the control register.
301 fttmr010
->t1_enable_val
= TIMER_1_CR_ASPEED_ENABLE
|
302 TIMER_1_CR_ASPEED_INT
;
303 fttmr010
->is_aspeed
= true;
305 fttmr010
->t1_enable_val
= TIMER_1_CR_ENABLE
| TIMER_1_CR_INT
;
308 * Reset the interrupt mask and status
310 writel(TIMER_INT_ALL_MASK
, fttmr010
->base
+ TIMER_INTR_MASK
);
311 writel(0, fttmr010
->base
+ TIMER_INTR_STATE
);
315 * Enable timer 1 count up, timer 2 count up, except on Aspeed,
316 * where everything just counts down.
319 val
= TIMER_2_CR_ASPEED_ENABLE
;
321 val
= TIMER_2_CR_ENABLE
| TIMER_1_CR_UPDOWN
|
324 writel(val
, fttmr010
->base
+ TIMER_CR
);
327 * Setup free-running clocksource timer (interrupts
330 local_fttmr
= fttmr010
;
331 writel(0, fttmr010
->base
+ TIMER2_COUNT
);
332 writel(0, fttmr010
->base
+ TIMER2_MATCH1
);
333 writel(0, fttmr010
->base
+ TIMER2_MATCH2
);
335 if (fttmr010
->is_aspeed
) {
336 writel(~0, fttmr010
->base
+ TIMER2_LOAD
);
337 clocksource_mmio_init(fttmr010
->base
+ TIMER2_COUNT
,
340 300, 32, clocksource_mmio_readl_down
);
341 sched_clock_register(fttmr010_read_sched_clock_down
, 32,
342 fttmr010
->tick_rate
);
344 writel(0, fttmr010
->base
+ TIMER2_LOAD
);
345 clocksource_mmio_init(fttmr010
->base
+ TIMER2_COUNT
,
348 300, 32, clocksource_mmio_readl_up
);
349 sched_clock_register(fttmr010_read_sched_clock_up
, 32,
350 fttmr010
->tick_rate
);
354 * Setup clockevent timer (interrupt-driven) on timer 1.
356 writel(0, fttmr010
->base
+ TIMER1_COUNT
);
357 writel(0, fttmr010
->base
+ TIMER1_LOAD
);
358 writel(0, fttmr010
->base
+ TIMER1_MATCH1
);
359 writel(0, fttmr010
->base
+ TIMER1_MATCH2
);
360 ret
= request_irq(irq
, fttmr010_timer_interrupt
, IRQF_TIMER
,
361 "FTTMR010-TIMER1", &fttmr010
->clkevt
);
363 pr_err("FTTMR010-TIMER1 no IRQ\n");
367 fttmr010
->clkevt
.name
= "FTTMR010-TIMER1";
368 /* Reasonably fast and accurate clock event */
369 fttmr010
->clkevt
.rating
= 300;
370 fttmr010
->clkevt
.features
= CLOCK_EVT_FEAT_PERIODIC
|
371 CLOCK_EVT_FEAT_ONESHOT
;
372 fttmr010
->clkevt
.set_next_event
= fttmr010_timer_set_next_event
;
373 fttmr010
->clkevt
.set_state_shutdown
= fttmr010_timer_shutdown
;
374 fttmr010
->clkevt
.set_state_periodic
= fttmr010_timer_set_periodic
;
375 fttmr010
->clkevt
.set_state_oneshot
= fttmr010_timer_set_oneshot
;
376 fttmr010
->clkevt
.tick_resume
= fttmr010_timer_shutdown
;
377 fttmr010
->clkevt
.cpumask
= cpumask_of(0);
378 fttmr010
->clkevt
.irq
= irq
;
379 clockevents_config_and_register(&fttmr010
->clkevt
,
384 /* Also use this timer for delays */
385 if (fttmr010
->is_aspeed
)
386 fttmr010
->delay_timer
.read_current_timer
=
387 fttmr010_read_current_timer_down
;
389 fttmr010
->delay_timer
.read_current_timer
=
390 fttmr010_read_current_timer_up
;
391 fttmr010
->delay_timer
.freq
= fttmr010
->tick_rate
;
392 register_current_timer_delay(&fttmr010
->delay_timer
);
398 iounmap(fttmr010
->base
);
402 clk_disable_unprepare(clk
);
407 static __init
int aspeed_timer_init(struct device_node
*np
)
409 return fttmr010_common_init(np
, true);
412 static __init
int fttmr010_timer_init(struct device_node
*np
)
414 return fttmr010_common_init(np
, false);
417 TIMER_OF_DECLARE(fttmr010
, "faraday,fttmr010", fttmr010_timer_init
);
418 TIMER_OF_DECLARE(gemini
, "cortina,gemini-timer", fttmr010_timer_init
);
419 TIMER_OF_DECLARE(moxart
, "moxa,moxart-timer", fttmr010_timer_init
);
420 TIMER_OF_DECLARE(ast2400
, "aspeed,ast2400-timer", aspeed_timer_init
);
421 TIMER_OF_DECLARE(ast2500
, "aspeed,ast2500-timer", aspeed_timer_init
);