1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2012 Regents of the University of California
4 * Copyright (C) 2017 SiFive
6 #include <linux/clocksource.h>
7 #include <linux/clockchips.h>
9 #include <linux/delay.h>
10 #include <linux/irq.h>
11 #include <linux/sched_clock.h>
16 * All RISC-V systems have a timer attached to every hart. These timers can be
17 * read by the 'rdcycle' pseudo instruction, and can use the SBI to setup
18 * events. In order to abstract the architecture-specific timer reading and
19 * setting functions away from the clock event insertion code, we provide
20 * function pointers to the clockevent subsystem that perform two basic
21 * operations: rdtime() reads the timer on the current CPU, and
22 * next_event(delta) sets the next timer event to 'delta' cycles in the future.
23 * As the timers are inherently a per-cpu resource, these callbacks perform
24 * operations on the current hart. There is guaranteed to be exactly one timer
25 * per hart on all RISC-V systems.
28 static int riscv_clock_next_event(unsigned long delta
,
29 struct clock_event_device
*ce
)
31 csr_set(sie
, SIE_STIE
);
32 sbi_set_timer(get_cycles64() + delta
);
36 static DEFINE_PER_CPU(struct clock_event_device
, riscv_clock_event
) = {
37 .name
= "riscv_timer_clockevent",
38 .features
= CLOCK_EVT_FEAT_ONESHOT
,
40 .set_next_event
= riscv_clock_next_event
,
44 * It is guaranteed that all the timers across all the harts are synchronized
45 * within one tick of each other, so while this could technically go
46 * backwards when hopping between CPUs, practically it won't happen.
48 static unsigned long long riscv_clocksource_rdtime(struct clocksource
*cs
)
50 return get_cycles64();
53 static u64
riscv_sched_clock(void)
55 return get_cycles64();
58 static DEFINE_PER_CPU(struct clocksource
, riscv_clocksource
) = {
59 .name
= "riscv_clocksource",
61 .mask
= CLOCKSOURCE_MASK(BITS_PER_LONG
),
62 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
63 .read
= riscv_clocksource_rdtime
,
66 static int riscv_timer_starting_cpu(unsigned int cpu
)
68 struct clock_event_device
*ce
= per_cpu_ptr(&riscv_clock_event
, cpu
);
70 ce
->cpumask
= cpumask_of(cpu
);
71 clockevents_config_and_register(ce
, riscv_timebase
, 100, 0x7fffffff);
73 csr_set(sie
, SIE_STIE
);
77 static int riscv_timer_dying_cpu(unsigned int cpu
)
79 csr_clear(sie
, SIE_STIE
);
83 /* called directly from the low-level interrupt handler */
84 void riscv_timer_interrupt(void)
86 struct clock_event_device
*evdev
= this_cpu_ptr(&riscv_clock_event
);
88 csr_clear(sie
, SIE_STIE
);
89 evdev
->event_handler(evdev
);
92 static int __init
riscv_timer_init_dt(struct device_node
*n
)
94 int cpuid
, hartid
, error
;
95 struct clocksource
*cs
;
97 hartid
= riscv_of_processor_hartid(n
);
99 pr_warn("Not valid hartid for node [%pOF] error = [%d]\n",
104 cpuid
= riscv_hartid_to_cpuid(hartid
);
106 pr_warn("Invalid cpuid for hartid [%d]\n", hartid
);
110 if (cpuid
!= smp_processor_id())
113 pr_info("%s: Registering clocksource cpuid [%d] hartid [%d]\n",
114 __func__
, cpuid
, hartid
);
115 cs
= per_cpu_ptr(&riscv_clocksource
, cpuid
);
116 error
= clocksource_register_hz(cs
, riscv_timebase
);
118 pr_err("RISCV timer register failed [%d] for cpu = [%d]\n",
123 sched_clock_register(riscv_sched_clock
,
124 BITS_PER_LONG
, riscv_timebase
);
126 error
= cpuhp_setup_state(CPUHP_AP_RISCV_TIMER_STARTING
,
127 "clockevents/riscv/timer:starting",
128 riscv_timer_starting_cpu
, riscv_timer_dying_cpu
);
130 pr_err("cpu hp setup state failed for RISCV timer [%d]\n",
135 TIMER_OF_DECLARE(riscv_timer
, "riscv", riscv_timer_init_dt
);