2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
47 #include <asm/byteorder.h>
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
57 #define ohci_info(ohci, f, args...) dev_info(ohci->card.device, f, ##args)
58 #define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args)
59 #define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args)
61 #define DESCRIPTOR_OUTPUT_MORE 0
62 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
63 #define DESCRIPTOR_INPUT_MORE (2 << 12)
64 #define DESCRIPTOR_INPUT_LAST (3 << 12)
65 #define DESCRIPTOR_STATUS (1 << 11)
66 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
67 #define DESCRIPTOR_PING (1 << 7)
68 #define DESCRIPTOR_YY (1 << 6)
69 #define DESCRIPTOR_NO_IRQ (0 << 4)
70 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
71 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
72 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
73 #define DESCRIPTOR_WAIT (3 << 0)
75 #define DESCRIPTOR_CMD (0xf << 12)
81 __le32 branch_address
;
83 __le16 transfer_status
;
84 } __attribute__((aligned(16)));
86 #define CONTROL_SET(regs) (regs)
87 #define CONTROL_CLEAR(regs) ((regs) + 4)
88 #define COMMAND_PTR(regs) ((regs) + 12)
89 #define CONTEXT_MATCH(regs) ((regs) + 16)
91 #define AR_BUFFER_SIZE (32*1024)
92 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
93 /* we need at least two pages for proper list management */
94 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
96 #define MAX_ASYNC_PAYLOAD 4096
97 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
98 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
101 struct fw_ohci
*ohci
;
102 struct page
*pages
[AR_BUFFERS
];
104 struct descriptor
*descriptors
;
105 dma_addr_t descriptors_bus
;
107 unsigned int last_buffer_index
;
109 struct tasklet_struct tasklet
;
114 typedef int (*descriptor_callback_t
)(struct context
*ctx
,
115 struct descriptor
*d
,
116 struct descriptor
*last
);
119 * A buffer that contains a block of DMA-able coherent memory used for
120 * storing a portion of a DMA descriptor program.
122 struct descriptor_buffer
{
123 struct list_head list
;
124 dma_addr_t buffer_bus
;
127 struct descriptor buffer
[0];
131 struct fw_ohci
*ohci
;
133 int total_allocation
;
139 * List of page-sized buffers for storing DMA descriptors.
140 * Head of list contains buffers in use and tail of list contains
143 struct list_head buffer_list
;
146 * Pointer to a buffer inside buffer_list that contains the tail
147 * end of the current DMA program.
149 struct descriptor_buffer
*buffer_tail
;
152 * The descriptor containing the branch address of the first
153 * descriptor that has not yet been filled by the device.
155 struct descriptor
*last
;
158 * The last descriptor block in the DMA program. It contains the branch
159 * address that must be updated upon appending a new descriptor.
161 struct descriptor
*prev
;
164 descriptor_callback_t callback
;
166 struct tasklet_struct tasklet
;
169 #define IT_HEADER_SY(v) ((v) << 0)
170 #define IT_HEADER_TCODE(v) ((v) << 4)
171 #define IT_HEADER_CHANNEL(v) ((v) << 8)
172 #define IT_HEADER_TAG(v) ((v) << 14)
173 #define IT_HEADER_SPEED(v) ((v) << 16)
174 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
177 struct fw_iso_context base
;
178 struct context context
;
180 size_t header_length
;
181 unsigned long flushing_completions
;
189 #define CONFIG_ROM_SIZE 1024
194 __iomem
char *registers
;
197 int request_generation
; /* for timestamping incoming requests */
199 unsigned int pri_req_max
;
201 bool bus_time_running
;
203 bool csr_state_setclear_abdicate
;
207 * Spinlock for accessing fw_ohci data. Never call out of
208 * this driver with this lock held.
212 struct mutex phy_reg_mutex
;
215 dma_addr_t misc_buffer_bus
;
217 struct ar_context ar_request_ctx
;
218 struct ar_context ar_response_ctx
;
219 struct context at_request_ctx
;
220 struct context at_response_ctx
;
222 u32 it_context_support
;
223 u32 it_context_mask
; /* unoccupied IT contexts */
224 struct iso_context
*it_context_list
;
225 u64 ir_context_channels
; /* unoccupied channels */
226 u32 ir_context_support
;
227 u32 ir_context_mask
; /* unoccupied IR contexts */
228 struct iso_context
*ir_context_list
;
229 u64 mc_channels
; /* channels in use by the multichannel IR context */
233 dma_addr_t config_rom_bus
;
234 __be32
*next_config_rom
;
235 dma_addr_t next_config_rom_bus
;
239 dma_addr_t self_id_bus
;
240 struct work_struct bus_reset_work
;
242 u32 self_id_buffer
[512];
245 static struct workqueue_struct
*selfid_workqueue
;
247 static inline struct fw_ohci
*fw_ohci(struct fw_card
*card
)
249 return container_of(card
, struct fw_ohci
, card
);
252 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
253 #define IR_CONTEXT_BUFFER_FILL 0x80000000
254 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
255 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
256 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
257 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
259 #define CONTEXT_RUN 0x8000
260 #define CONTEXT_WAKE 0x1000
261 #define CONTEXT_DEAD 0x0800
262 #define CONTEXT_ACTIVE 0x0400
264 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
265 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
266 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
268 #define OHCI1394_REGISTER_SIZE 0x800
269 #define OHCI1394_PCI_HCI_Control 0x40
270 #define SELF_ID_BUF_SIZE 0x800
271 #define OHCI_TCODE_PHY_PACKET 0x0e
272 #define OHCI_VERSION_1_1 0x010010
274 static char ohci_driver_name
[] = KBUILD_MODNAME
;
276 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
277 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
278 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
279 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
280 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
281 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
282 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
283 #define PCI_DEVICE_ID_VIA_VT630X 0x3044
284 #define PCI_REV_ID_VIA_VT6306 0x46
285 #define PCI_DEVICE_ID_VIA_VT6315 0x3403
287 #define QUIRK_CYCLE_TIMER 0x1
288 #define QUIRK_RESET_PACKET 0x2
289 #define QUIRK_BE_HEADERS 0x4
290 #define QUIRK_NO_1394A 0x8
291 #define QUIRK_NO_MSI 0x10
292 #define QUIRK_TI_SLLZ059 0x20
293 #define QUIRK_IR_WAKE 0x40
295 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
296 static const struct {
297 unsigned short vendor
, device
, revision
, flags
;
299 {PCI_VENDOR_ID_AL
, PCI_ANY_ID
, PCI_ANY_ID
,
302 {PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_FW
, PCI_ANY_ID
,
305 {PCI_VENDOR_ID_ATT
, PCI_DEVICE_ID_AGERE_FW643
, 6,
308 {PCI_VENDOR_ID_CREATIVE
, PCI_DEVICE_ID_CREATIVE_SB1394
, PCI_ANY_ID
,
311 {PCI_VENDOR_ID_JMICRON
, PCI_DEVICE_ID_JMICRON_JMB38X_FW
, PCI_ANY_ID
,
314 {PCI_VENDOR_ID_NEC
, PCI_ANY_ID
, PCI_ANY_ID
,
317 {PCI_VENDOR_ID_O2
, PCI_ANY_ID
, PCI_ANY_ID
,
320 {PCI_VENDOR_ID_RICOH
, PCI_ANY_ID
, PCI_ANY_ID
,
321 QUIRK_CYCLE_TIMER
| QUIRK_NO_MSI
},
323 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB12LV22
, PCI_ANY_ID
,
324 QUIRK_CYCLE_TIMER
| QUIRK_RESET_PACKET
| QUIRK_NO_1394A
},
326 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB12LV26
, PCI_ANY_ID
,
327 QUIRK_RESET_PACKET
| QUIRK_TI_SLLZ059
},
329 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB82AA2
, PCI_ANY_ID
,
330 QUIRK_RESET_PACKET
| QUIRK_TI_SLLZ059
},
332 {PCI_VENDOR_ID_TI
, PCI_ANY_ID
, PCI_ANY_ID
,
335 {PCI_VENDOR_ID_VIA
, PCI_DEVICE_ID_VIA_VT630X
, PCI_REV_ID_VIA_VT6306
,
336 QUIRK_CYCLE_TIMER
| QUIRK_IR_WAKE
},
338 {PCI_VENDOR_ID_VIA
, PCI_DEVICE_ID_VIA_VT6315
, 0,
339 QUIRK_CYCLE_TIMER
/* FIXME: necessary? */ | QUIRK_NO_MSI
},
341 {PCI_VENDOR_ID_VIA
, PCI_DEVICE_ID_VIA_VT6315
, PCI_ANY_ID
,
344 {PCI_VENDOR_ID_VIA
, PCI_ANY_ID
, PCI_ANY_ID
,
345 QUIRK_CYCLE_TIMER
| QUIRK_NO_MSI
},
348 /* This overrides anything that was found in ohci_quirks[]. */
349 static int param_quirks
;
350 module_param_named(quirks
, param_quirks
, int, 0644);
351 MODULE_PARM_DESC(quirks
, "Chip quirks (default = 0"
352 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER
)
353 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET
)
354 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS
)
355 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A
)
356 ", disable MSI = " __stringify(QUIRK_NO_MSI
)
357 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059
)
358 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE
)
361 #define OHCI_PARAM_DEBUG_AT_AR 1
362 #define OHCI_PARAM_DEBUG_SELFIDS 2
363 #define OHCI_PARAM_DEBUG_IRQS 4
364 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
366 static int param_debug
;
367 module_param_named(debug
, param_debug
, int, 0644);
368 MODULE_PARM_DESC(debug
, "Verbose logging (default = 0"
369 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR
)
370 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS
)
371 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS
)
372 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS
)
373 ", or a combination, or all = -1)");
375 static bool param_remote_dma
;
376 module_param_named(remote_dma
, param_remote_dma
, bool, 0444);
377 MODULE_PARM_DESC(remote_dma
, "Enable unfiltered remote DMA (default = N)");
379 static void log_irqs(struct fw_ohci
*ohci
, u32 evt
)
381 if (likely(!(param_debug
&
382 (OHCI_PARAM_DEBUG_IRQS
| OHCI_PARAM_DEBUG_BUSRESETS
))))
385 if (!(param_debug
& OHCI_PARAM_DEBUG_IRQS
) &&
386 !(evt
& OHCI1394_busReset
))
389 ohci_notice(ohci
, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt
,
390 evt
& OHCI1394_selfIDComplete
? " selfID" : "",
391 evt
& OHCI1394_RQPkt
? " AR_req" : "",
392 evt
& OHCI1394_RSPkt
? " AR_resp" : "",
393 evt
& OHCI1394_reqTxComplete
? " AT_req" : "",
394 evt
& OHCI1394_respTxComplete
? " AT_resp" : "",
395 evt
& OHCI1394_isochRx
? " IR" : "",
396 evt
& OHCI1394_isochTx
? " IT" : "",
397 evt
& OHCI1394_postedWriteErr
? " postedWriteErr" : "",
398 evt
& OHCI1394_cycleTooLong
? " cycleTooLong" : "",
399 evt
& OHCI1394_cycle64Seconds
? " cycle64Seconds" : "",
400 evt
& OHCI1394_cycleInconsistent
? " cycleInconsistent" : "",
401 evt
& OHCI1394_regAccessFail
? " regAccessFail" : "",
402 evt
& OHCI1394_unrecoverableError
? " unrecoverableError" : "",
403 evt
& OHCI1394_busReset
? " busReset" : "",
404 evt
& ~(OHCI1394_selfIDComplete
| OHCI1394_RQPkt
|
405 OHCI1394_RSPkt
| OHCI1394_reqTxComplete
|
406 OHCI1394_respTxComplete
| OHCI1394_isochRx
|
407 OHCI1394_isochTx
| OHCI1394_postedWriteErr
|
408 OHCI1394_cycleTooLong
| OHCI1394_cycle64Seconds
|
409 OHCI1394_cycleInconsistent
|
410 OHCI1394_regAccessFail
| OHCI1394_busReset
)
414 static const char *speed
[] = {
415 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
417 static const char *power
[] = {
418 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
419 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
421 static const char port
[] = { '.', '-', 'p', 'c', };
423 static char _p(u32
*s
, int shift
)
425 return port
[*s
>> shift
& 3];
428 static void log_selfids(struct fw_ohci
*ohci
, int generation
, int self_id_count
)
432 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_SELFIDS
)))
435 ohci_notice(ohci
, "%d selfIDs, generation %d, local node ID %04x\n",
436 self_id_count
, generation
, ohci
->node_id
);
438 for (s
= ohci
->self_id_buffer
; self_id_count
--; ++s
)
439 if ((*s
& 1 << 23) == 0)
441 "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
442 *s
, *s
>> 24 & 63, _p(s
, 6), _p(s
, 4), _p(s
, 2),
443 speed
[*s
>> 14 & 3], *s
>> 16 & 63,
444 power
[*s
>> 8 & 7], *s
>> 22 & 1 ? "L" : "",
445 *s
>> 11 & 1 ? "c" : "", *s
& 2 ? "i" : "");
448 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
450 _p(s
, 16), _p(s
, 14), _p(s
, 12), _p(s
, 10),
451 _p(s
, 8), _p(s
, 6), _p(s
, 4), _p(s
, 2));
454 static const char *evts
[] = {
455 [0x00] = "evt_no_status", [0x01] = "-reserved-",
456 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
457 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
458 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
459 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
460 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
461 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
462 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
463 [0x10] = "-reserved-", [0x11] = "ack_complete",
464 [0x12] = "ack_pending ", [0x13] = "-reserved-",
465 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
466 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
467 [0x18] = "-reserved-", [0x19] = "-reserved-",
468 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
469 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
470 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
471 [0x20] = "pending/cancelled",
473 static const char *tcodes
[] = {
474 [0x0] = "QW req", [0x1] = "BW req",
475 [0x2] = "W resp", [0x3] = "-reserved-",
476 [0x4] = "QR req", [0x5] = "BR req",
477 [0x6] = "QR resp", [0x7] = "BR resp",
478 [0x8] = "cycle start", [0x9] = "Lk req",
479 [0xa] = "async stream packet", [0xb] = "Lk resp",
480 [0xc] = "-reserved-", [0xd] = "-reserved-",
481 [0xe] = "link internal", [0xf] = "-reserved-",
484 static void log_ar_at_event(struct fw_ohci
*ohci
,
485 char dir
, int speed
, u32
*header
, int evt
)
487 int tcode
= header
[0] >> 4 & 0xf;
490 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_AT_AR
)))
493 if (unlikely(evt
>= ARRAY_SIZE(evts
)))
496 if (evt
== OHCI1394_evt_bus_reset
) {
497 ohci_notice(ohci
, "A%c evt_bus_reset, generation %d\n",
498 dir
, (header
[2] >> 16) & 0xff);
503 case 0x0: case 0x6: case 0x8:
504 snprintf(specific
, sizeof(specific
), " = %08x",
505 be32_to_cpu((__force __be32
)header
[3]));
507 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
508 snprintf(specific
, sizeof(specific
), " %x,%x",
509 header
[3] >> 16, header
[3] & 0xffff);
517 ohci_notice(ohci
, "A%c %s, %s\n",
518 dir
, evts
[evt
], tcodes
[tcode
]);
521 ohci_notice(ohci
, "A%c %s, PHY %08x %08x\n",
522 dir
, evts
[evt
], header
[1], header
[2]);
524 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
526 "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
527 dir
, speed
, header
[0] >> 10 & 0x3f,
528 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
529 tcodes
[tcode
], header
[1] & 0xffff, header
[2], specific
);
533 "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
534 dir
, speed
, header
[0] >> 10 & 0x3f,
535 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
536 tcodes
[tcode
], specific
);
540 static inline void reg_write(const struct fw_ohci
*ohci
, int offset
, u32 data
)
542 writel(data
, ohci
->registers
+ offset
);
545 static inline u32
reg_read(const struct fw_ohci
*ohci
, int offset
)
547 return readl(ohci
->registers
+ offset
);
550 static inline void flush_writes(const struct fw_ohci
*ohci
)
552 /* Do a dummy read to flush writes. */
553 reg_read(ohci
, OHCI1394_Version
);
557 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
558 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
559 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
560 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
562 static int read_phy_reg(struct fw_ohci
*ohci
, int addr
)
567 reg_write(ohci
, OHCI1394_PhyControl
, OHCI1394_PhyControl_Read(addr
));
568 for (i
= 0; i
< 3 + 100; i
++) {
569 val
= reg_read(ohci
, OHCI1394_PhyControl
);
571 return -ENODEV
; /* Card was ejected. */
573 if (val
& OHCI1394_PhyControl_ReadDone
)
574 return OHCI1394_PhyControl_ReadData(val
);
577 * Try a few times without waiting. Sleeping is necessary
578 * only when the link/PHY interface is busy.
583 ohci_err(ohci
, "failed to read phy reg %d\n", addr
);
589 static int write_phy_reg(const struct fw_ohci
*ohci
, int addr
, u32 val
)
593 reg_write(ohci
, OHCI1394_PhyControl
,
594 OHCI1394_PhyControl_Write(addr
, val
));
595 for (i
= 0; i
< 3 + 100; i
++) {
596 val
= reg_read(ohci
, OHCI1394_PhyControl
);
598 return -ENODEV
; /* Card was ejected. */
600 if (!(val
& OHCI1394_PhyControl_WritePending
))
606 ohci_err(ohci
, "failed to write phy reg %d, val %u\n", addr
, val
);
612 static int update_phy_reg(struct fw_ohci
*ohci
, int addr
,
613 int clear_bits
, int set_bits
)
615 int ret
= read_phy_reg(ohci
, addr
);
620 * The interrupt status bits are cleared by writing a one bit.
621 * Avoid clearing them unless explicitly requested in set_bits.
624 clear_bits
|= PHY_INT_STATUS_BITS
;
626 return write_phy_reg(ohci
, addr
, (ret
& ~clear_bits
) | set_bits
);
629 static int read_paged_phy_reg(struct fw_ohci
*ohci
, int page
, int addr
)
633 ret
= update_phy_reg(ohci
, 7, PHY_PAGE_SELECT
, page
<< 5);
637 return read_phy_reg(ohci
, addr
);
640 static int ohci_read_phy_reg(struct fw_card
*card
, int addr
)
642 struct fw_ohci
*ohci
= fw_ohci(card
);
645 mutex_lock(&ohci
->phy_reg_mutex
);
646 ret
= read_phy_reg(ohci
, addr
);
647 mutex_unlock(&ohci
->phy_reg_mutex
);
652 static int ohci_update_phy_reg(struct fw_card
*card
, int addr
,
653 int clear_bits
, int set_bits
)
655 struct fw_ohci
*ohci
= fw_ohci(card
);
658 mutex_lock(&ohci
->phy_reg_mutex
);
659 ret
= update_phy_reg(ohci
, addr
, clear_bits
, set_bits
);
660 mutex_unlock(&ohci
->phy_reg_mutex
);
665 static inline dma_addr_t
ar_buffer_bus(struct ar_context
*ctx
, unsigned int i
)
667 return page_private(ctx
->pages
[i
]);
670 static void ar_context_link_page(struct ar_context
*ctx
, unsigned int index
)
672 struct descriptor
*d
;
674 d
= &ctx
->descriptors
[index
];
675 d
->branch_address
&= cpu_to_le32(~0xf);
676 d
->res_count
= cpu_to_le16(PAGE_SIZE
);
677 d
->transfer_status
= 0;
679 wmb(); /* finish init of new descriptors before branch_address update */
680 d
= &ctx
->descriptors
[ctx
->last_buffer_index
];
681 d
->branch_address
|= cpu_to_le32(1);
683 ctx
->last_buffer_index
= index
;
685 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
688 static void ar_context_release(struct ar_context
*ctx
)
694 for (i
= 0; i
< AR_BUFFERS
; i
++)
696 dma_unmap_page(ctx
->ohci
->card
.device
,
697 ar_buffer_bus(ctx
, i
),
698 PAGE_SIZE
, DMA_FROM_DEVICE
);
699 __free_page(ctx
->pages
[i
]);
703 static void ar_context_abort(struct ar_context
*ctx
, const char *error_msg
)
705 struct fw_ohci
*ohci
= ctx
->ohci
;
707 if (reg_read(ohci
, CONTROL_CLEAR(ctx
->regs
)) & CONTEXT_RUN
) {
708 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
711 ohci_err(ohci
, "AR error: %s; DMA stopped\n", error_msg
);
713 /* FIXME: restart? */
716 static inline unsigned int ar_next_buffer_index(unsigned int index
)
718 return (index
+ 1) % AR_BUFFERS
;
721 static inline unsigned int ar_first_buffer_index(struct ar_context
*ctx
)
723 return ar_next_buffer_index(ctx
->last_buffer_index
);
727 * We search for the buffer that contains the last AR packet DMA data written
730 static unsigned int ar_search_last_active_buffer(struct ar_context
*ctx
,
731 unsigned int *buffer_offset
)
733 unsigned int i
, next_i
, last
= ctx
->last_buffer_index
;
734 __le16 res_count
, next_res_count
;
736 i
= ar_first_buffer_index(ctx
);
737 res_count
= READ_ONCE(ctx
->descriptors
[i
].res_count
);
739 /* A buffer that is not yet completely filled must be the last one. */
740 while (i
!= last
&& res_count
== 0) {
742 /* Peek at the next descriptor. */
743 next_i
= ar_next_buffer_index(i
);
744 rmb(); /* read descriptors in order */
745 next_res_count
= READ_ONCE(ctx
->descriptors
[next_i
].res_count
);
747 * If the next descriptor is still empty, we must stop at this
750 if (next_res_count
== cpu_to_le16(PAGE_SIZE
)) {
752 * The exception is when the DMA data for one packet is
753 * split over three buffers; in this case, the middle
754 * buffer's descriptor might be never updated by the
755 * controller and look still empty, and we have to peek
758 if (MAX_AR_PACKET_SIZE
> PAGE_SIZE
&& i
!= last
) {
759 next_i
= ar_next_buffer_index(next_i
);
761 next_res_count
= READ_ONCE(ctx
->descriptors
[next_i
].res_count
);
762 if (next_res_count
!= cpu_to_le16(PAGE_SIZE
))
763 goto next_buffer_is_active
;
769 next_buffer_is_active
:
771 res_count
= next_res_count
;
774 rmb(); /* read res_count before the DMA data */
776 *buffer_offset
= PAGE_SIZE
- le16_to_cpu(res_count
);
777 if (*buffer_offset
> PAGE_SIZE
) {
779 ar_context_abort(ctx
, "corrupted descriptor");
785 static void ar_sync_buffers_for_cpu(struct ar_context
*ctx
,
786 unsigned int end_buffer_index
,
787 unsigned int end_buffer_offset
)
791 i
= ar_first_buffer_index(ctx
);
792 while (i
!= end_buffer_index
) {
793 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
794 ar_buffer_bus(ctx
, i
),
795 PAGE_SIZE
, DMA_FROM_DEVICE
);
796 i
= ar_next_buffer_index(i
);
798 if (end_buffer_offset
> 0)
799 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
800 ar_buffer_bus(ctx
, i
),
801 end_buffer_offset
, DMA_FROM_DEVICE
);
804 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
805 #define cond_le32_to_cpu(v) \
806 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
808 #define cond_le32_to_cpu(v) le32_to_cpu(v)
811 static __le32
*handle_ar_packet(struct ar_context
*ctx
, __le32
*buffer
)
813 struct fw_ohci
*ohci
= ctx
->ohci
;
815 u32 status
, length
, tcode
;
818 p
.header
[0] = cond_le32_to_cpu(buffer
[0]);
819 p
.header
[1] = cond_le32_to_cpu(buffer
[1]);
820 p
.header
[2] = cond_le32_to_cpu(buffer
[2]);
822 tcode
= (p
.header
[0] >> 4) & 0x0f;
824 case TCODE_WRITE_QUADLET_REQUEST
:
825 case TCODE_READ_QUADLET_RESPONSE
:
826 p
.header
[3] = (__force __u32
) buffer
[3];
827 p
.header_length
= 16;
828 p
.payload_length
= 0;
831 case TCODE_READ_BLOCK_REQUEST
:
832 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
833 p
.header_length
= 16;
834 p
.payload_length
= 0;
837 case TCODE_WRITE_BLOCK_REQUEST
:
838 case TCODE_READ_BLOCK_RESPONSE
:
839 case TCODE_LOCK_REQUEST
:
840 case TCODE_LOCK_RESPONSE
:
841 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
842 p
.header_length
= 16;
843 p
.payload_length
= p
.header
[3] >> 16;
844 if (p
.payload_length
> MAX_ASYNC_PAYLOAD
) {
845 ar_context_abort(ctx
, "invalid packet length");
850 case TCODE_WRITE_RESPONSE
:
851 case TCODE_READ_QUADLET_REQUEST
:
852 case OHCI_TCODE_PHY_PACKET
:
853 p
.header_length
= 12;
854 p
.payload_length
= 0;
858 ar_context_abort(ctx
, "invalid tcode");
862 p
.payload
= (void *) buffer
+ p
.header_length
;
864 /* FIXME: What to do about evt_* errors? */
865 length
= (p
.header_length
+ p
.payload_length
+ 3) / 4;
866 status
= cond_le32_to_cpu(buffer
[length
]);
867 evt
= (status
>> 16) & 0x1f;
870 p
.speed
= (status
>> 21) & 0x7;
871 p
.timestamp
= status
& 0xffff;
872 p
.generation
= ohci
->request_generation
;
874 log_ar_at_event(ohci
, 'R', p
.speed
, p
.header
, evt
);
877 * Several controllers, notably from NEC and VIA, forget to
878 * write ack_complete status at PHY packet reception.
880 if (evt
== OHCI1394_evt_no_status
&&
881 (p
.header
[0] & 0xff) == (OHCI1394_phy_tcode
<< 4))
882 p
.ack
= ACK_COMPLETE
;
885 * The OHCI bus reset handler synthesizes a PHY packet with
886 * the new generation number when a bus reset happens (see
887 * section 8.4.2.3). This helps us determine when a request
888 * was received and make sure we send the response in the same
889 * generation. We only need this for requests; for responses
890 * we use the unique tlabel for finding the matching
893 * Alas some chips sometimes emit bus reset packets with a
894 * wrong generation. We set the correct generation for these
895 * at a slightly incorrect time (in bus_reset_work).
897 if (evt
== OHCI1394_evt_bus_reset
) {
898 if (!(ohci
->quirks
& QUIRK_RESET_PACKET
))
899 ohci
->request_generation
= (p
.header
[2] >> 16) & 0xff;
900 } else if (ctx
== &ohci
->ar_request_ctx
) {
901 fw_core_handle_request(&ohci
->card
, &p
);
903 fw_core_handle_response(&ohci
->card
, &p
);
906 return buffer
+ length
+ 1;
909 static void *handle_ar_packets(struct ar_context
*ctx
, void *p
, void *end
)
914 next
= handle_ar_packet(ctx
, p
);
923 static void ar_recycle_buffers(struct ar_context
*ctx
, unsigned int end_buffer
)
927 i
= ar_first_buffer_index(ctx
);
928 while (i
!= end_buffer
) {
929 dma_sync_single_for_device(ctx
->ohci
->card
.device
,
930 ar_buffer_bus(ctx
, i
),
931 PAGE_SIZE
, DMA_FROM_DEVICE
);
932 ar_context_link_page(ctx
, i
);
933 i
= ar_next_buffer_index(i
);
937 static void ar_context_tasklet(unsigned long data
)
939 struct ar_context
*ctx
= (struct ar_context
*)data
;
940 unsigned int end_buffer_index
, end_buffer_offset
;
947 end_buffer_index
= ar_search_last_active_buffer(ctx
,
949 ar_sync_buffers_for_cpu(ctx
, end_buffer_index
, end_buffer_offset
);
950 end
= ctx
->buffer
+ end_buffer_index
* PAGE_SIZE
+ end_buffer_offset
;
952 if (end_buffer_index
< ar_first_buffer_index(ctx
)) {
954 * The filled part of the overall buffer wraps around; handle
955 * all packets up to the buffer end here. If the last packet
956 * wraps around, its tail will be visible after the buffer end
957 * because the buffer start pages are mapped there again.
959 void *buffer_end
= ctx
->buffer
+ AR_BUFFERS
* PAGE_SIZE
;
960 p
= handle_ar_packets(ctx
, p
, buffer_end
);
963 /* adjust p to point back into the actual buffer */
964 p
-= AR_BUFFERS
* PAGE_SIZE
;
967 p
= handle_ar_packets(ctx
, p
, end
);
970 ar_context_abort(ctx
, "inconsistent descriptor");
975 ar_recycle_buffers(ctx
, end_buffer_index
);
983 static int ar_context_init(struct ar_context
*ctx
, struct fw_ohci
*ohci
,
984 unsigned int descriptors_offset
, u32 regs
)
988 struct page
*pages
[AR_BUFFERS
+ AR_WRAPAROUND_PAGES
];
989 struct descriptor
*d
;
993 tasklet_init(&ctx
->tasklet
, ar_context_tasklet
, (unsigned long)ctx
);
995 for (i
= 0; i
< AR_BUFFERS
; i
++) {
996 ctx
->pages
[i
] = alloc_page(GFP_KERNEL
| GFP_DMA32
);
999 dma_addr
= dma_map_page(ohci
->card
.device
, ctx
->pages
[i
],
1000 0, PAGE_SIZE
, DMA_FROM_DEVICE
);
1001 if (dma_mapping_error(ohci
->card
.device
, dma_addr
)) {
1002 __free_page(ctx
->pages
[i
]);
1003 ctx
->pages
[i
] = NULL
;
1006 set_page_private(ctx
->pages
[i
], dma_addr
);
1009 for (i
= 0; i
< AR_BUFFERS
; i
++)
1010 pages
[i
] = ctx
->pages
[i
];
1011 for (i
= 0; i
< AR_WRAPAROUND_PAGES
; i
++)
1012 pages
[AR_BUFFERS
+ i
] = ctx
->pages
[i
];
1013 ctx
->buffer
= vmap(pages
, ARRAY_SIZE(pages
), VM_MAP
, PAGE_KERNEL
);
1017 ctx
->descriptors
= ohci
->misc_buffer
+ descriptors_offset
;
1018 ctx
->descriptors_bus
= ohci
->misc_buffer_bus
+ descriptors_offset
;
1020 for (i
= 0; i
< AR_BUFFERS
; i
++) {
1021 d
= &ctx
->descriptors
[i
];
1022 d
->req_count
= cpu_to_le16(PAGE_SIZE
);
1023 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
1025 DESCRIPTOR_BRANCH_ALWAYS
);
1026 d
->data_address
= cpu_to_le32(ar_buffer_bus(ctx
, i
));
1027 d
->branch_address
= cpu_to_le32(ctx
->descriptors_bus
+
1028 ar_next_buffer_index(i
) * sizeof(struct descriptor
));
1034 ar_context_release(ctx
);
1039 static void ar_context_run(struct ar_context
*ctx
)
1043 for (i
= 0; i
< AR_BUFFERS
; i
++)
1044 ar_context_link_page(ctx
, i
);
1046 ctx
->pointer
= ctx
->buffer
;
1048 reg_write(ctx
->ohci
, COMMAND_PTR(ctx
->regs
), ctx
->descriptors_bus
| 1);
1049 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
);
1052 static struct descriptor
*find_branch_descriptor(struct descriptor
*d
, int z
)
1056 branch
= d
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
);
1058 /* figure out which descriptor the branch address goes in */
1059 if (z
== 2 && branch
== cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
1065 static void context_tasklet(unsigned long data
)
1067 struct context
*ctx
= (struct context
*) data
;
1068 struct descriptor
*d
, *last
;
1071 struct descriptor_buffer
*desc
;
1073 desc
= list_entry(ctx
->buffer_list
.next
,
1074 struct descriptor_buffer
, list
);
1076 while (last
->branch_address
!= 0) {
1077 struct descriptor_buffer
*old_desc
= desc
;
1078 address
= le32_to_cpu(last
->branch_address
);
1081 ctx
->current_bus
= address
;
1083 /* If the branch address points to a buffer outside of the
1084 * current buffer, advance to the next buffer. */
1085 if (address
< desc
->buffer_bus
||
1086 address
>= desc
->buffer_bus
+ desc
->used
)
1087 desc
= list_entry(desc
->list
.next
,
1088 struct descriptor_buffer
, list
);
1089 d
= desc
->buffer
+ (address
- desc
->buffer_bus
) / sizeof(*d
);
1090 last
= find_branch_descriptor(d
, z
);
1092 if (!ctx
->callback(ctx
, d
, last
))
1095 if (old_desc
!= desc
) {
1096 /* If we've advanced to the next buffer, move the
1097 * previous buffer to the free list. */
1098 unsigned long flags
;
1100 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1101 list_move_tail(&old_desc
->list
, &ctx
->buffer_list
);
1102 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1109 * Allocate a new buffer and add it to the list of free buffers for this
1110 * context. Must be called with ohci->lock held.
1112 static int context_add_buffer(struct context
*ctx
)
1114 struct descriptor_buffer
*desc
;
1115 dma_addr_t
uninitialized_var(bus_addr
);
1119 * 16MB of descriptors should be far more than enough for any DMA
1120 * program. This will catch run-away userspace or DoS attacks.
1122 if (ctx
->total_allocation
>= 16*1024*1024)
1125 desc
= dma_alloc_coherent(ctx
->ohci
->card
.device
, PAGE_SIZE
,
1126 &bus_addr
, GFP_ATOMIC
);
1130 offset
= (void *)&desc
->buffer
- (void *)desc
;
1132 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1133 * for descriptors, even 0x10-byte ones. This can cause page faults when
1134 * an IOMMU is in use and the oversized read crosses a page boundary.
1135 * Work around this by always leaving at least 0x10 bytes of padding.
1137 desc
->buffer_size
= PAGE_SIZE
- offset
- 0x10;
1138 desc
->buffer_bus
= bus_addr
+ offset
;
1141 list_add_tail(&desc
->list
, &ctx
->buffer_list
);
1142 ctx
->total_allocation
+= PAGE_SIZE
;
1147 static int context_init(struct context
*ctx
, struct fw_ohci
*ohci
,
1148 u32 regs
, descriptor_callback_t callback
)
1152 ctx
->total_allocation
= 0;
1154 INIT_LIST_HEAD(&ctx
->buffer_list
);
1155 if (context_add_buffer(ctx
) < 0)
1158 ctx
->buffer_tail
= list_entry(ctx
->buffer_list
.next
,
1159 struct descriptor_buffer
, list
);
1161 tasklet_init(&ctx
->tasklet
, context_tasklet
, (unsigned long)ctx
);
1162 ctx
->callback
= callback
;
1165 * We put a dummy descriptor in the buffer that has a NULL
1166 * branch address and looks like it's been sent. That way we
1167 * have a descriptor to append DMA programs to.
1169 memset(ctx
->buffer_tail
->buffer
, 0, sizeof(*ctx
->buffer_tail
->buffer
));
1170 ctx
->buffer_tail
->buffer
->control
= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
);
1171 ctx
->buffer_tail
->buffer
->transfer_status
= cpu_to_le16(0x8011);
1172 ctx
->buffer_tail
->used
+= sizeof(*ctx
->buffer_tail
->buffer
);
1173 ctx
->last
= ctx
->buffer_tail
->buffer
;
1174 ctx
->prev
= ctx
->buffer_tail
->buffer
;
1180 static void context_release(struct context
*ctx
)
1182 struct fw_card
*card
= &ctx
->ohci
->card
;
1183 struct descriptor_buffer
*desc
, *tmp
;
1185 list_for_each_entry_safe(desc
, tmp
, &ctx
->buffer_list
, list
)
1186 dma_free_coherent(card
->device
, PAGE_SIZE
, desc
,
1188 ((void *)&desc
->buffer
- (void *)desc
));
1191 /* Must be called with ohci->lock held */
1192 static struct descriptor
*context_get_descriptors(struct context
*ctx
,
1193 int z
, dma_addr_t
*d_bus
)
1195 struct descriptor
*d
= NULL
;
1196 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1198 if (z
* sizeof(*d
) > desc
->buffer_size
)
1201 if (z
* sizeof(*d
) > desc
->buffer_size
- desc
->used
) {
1202 /* No room for the descriptor in this buffer, so advance to the
1205 if (desc
->list
.next
== &ctx
->buffer_list
) {
1206 /* If there is no free buffer next in the list,
1208 if (context_add_buffer(ctx
) < 0)
1211 desc
= list_entry(desc
->list
.next
,
1212 struct descriptor_buffer
, list
);
1213 ctx
->buffer_tail
= desc
;
1216 d
= desc
->buffer
+ desc
->used
/ sizeof(*d
);
1217 memset(d
, 0, z
* sizeof(*d
));
1218 *d_bus
= desc
->buffer_bus
+ desc
->used
;
1223 static void context_run(struct context
*ctx
, u32 extra
)
1225 struct fw_ohci
*ohci
= ctx
->ohci
;
1227 reg_write(ohci
, COMMAND_PTR(ctx
->regs
),
1228 le32_to_cpu(ctx
->last
->branch_address
));
1229 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), ~0);
1230 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
| extra
);
1231 ctx
->running
= true;
1235 static void context_append(struct context
*ctx
,
1236 struct descriptor
*d
, int z
, int extra
)
1239 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1240 struct descriptor
*d_branch
;
1242 d_bus
= desc
->buffer_bus
+ (d
- desc
->buffer
) * sizeof(*d
);
1244 desc
->used
+= (z
+ extra
) * sizeof(*d
);
1246 wmb(); /* finish init of new descriptors before branch_address update */
1248 d_branch
= find_branch_descriptor(ctx
->prev
, ctx
->prev_z
);
1249 d_branch
->branch_address
= cpu_to_le32(d_bus
| z
);
1252 * VT6306 incorrectly checks only the single descriptor at the
1253 * CommandPtr when the wake bit is written, so if it's a
1254 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1255 * the branch address in the first descriptor.
1257 * Not doing this for transmit contexts since not sure how it interacts
1258 * with skip addresses.
1260 if (unlikely(ctx
->ohci
->quirks
& QUIRK_IR_WAKE
) &&
1261 d_branch
!= ctx
->prev
&&
1262 (ctx
->prev
->control
& cpu_to_le16(DESCRIPTOR_CMD
)) ==
1263 cpu_to_le16(DESCRIPTOR_INPUT_MORE
)) {
1264 ctx
->prev
->branch_address
= cpu_to_le32(d_bus
| z
);
1271 static void context_stop(struct context
*ctx
)
1273 struct fw_ohci
*ohci
= ctx
->ohci
;
1277 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
1278 ctx
->running
= false;
1280 for (i
= 0; i
< 1000; i
++) {
1281 reg
= reg_read(ohci
, CONTROL_SET(ctx
->regs
));
1282 if ((reg
& CONTEXT_ACTIVE
) == 0)
1288 ohci_err(ohci
, "DMA context still active (0x%08x)\n", reg
);
1291 struct driver_data
{
1293 struct fw_packet
*packet
;
1297 * This function apppends a packet to the DMA queue for transmission.
1298 * Must always be called with the ochi->lock held to ensure proper
1299 * generation handling and locking around packet queue manipulation.
1301 static int at_context_queue_packet(struct context
*ctx
,
1302 struct fw_packet
*packet
)
1304 struct fw_ohci
*ohci
= ctx
->ohci
;
1305 dma_addr_t d_bus
, uninitialized_var(payload_bus
);
1306 struct driver_data
*driver_data
;
1307 struct descriptor
*d
, *last
;
1311 d
= context_get_descriptors(ctx
, 4, &d_bus
);
1313 packet
->ack
= RCODE_SEND_ERROR
;
1317 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
1318 d
[0].res_count
= cpu_to_le16(packet
->timestamp
);
1321 * The DMA format for asynchronous link packets is different
1322 * from the IEEE1394 layout, so shift the fields around
1326 tcode
= (packet
->header
[0] >> 4) & 0x0f;
1327 header
= (__le32
*) &d
[1];
1329 case TCODE_WRITE_QUADLET_REQUEST
:
1330 case TCODE_WRITE_BLOCK_REQUEST
:
1331 case TCODE_WRITE_RESPONSE
:
1332 case TCODE_READ_QUADLET_REQUEST
:
1333 case TCODE_READ_BLOCK_REQUEST
:
1334 case TCODE_READ_QUADLET_RESPONSE
:
1335 case TCODE_READ_BLOCK_RESPONSE
:
1336 case TCODE_LOCK_REQUEST
:
1337 case TCODE_LOCK_RESPONSE
:
1338 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1339 (packet
->speed
<< 16));
1340 header
[1] = cpu_to_le32((packet
->header
[1] & 0xffff) |
1341 (packet
->header
[0] & 0xffff0000));
1342 header
[2] = cpu_to_le32(packet
->header
[2]);
1344 if (TCODE_IS_BLOCK_PACKET(tcode
))
1345 header
[3] = cpu_to_le32(packet
->header
[3]);
1347 header
[3] = (__force __le32
) packet
->header
[3];
1349 d
[0].req_count
= cpu_to_le16(packet
->header_length
);
1352 case TCODE_LINK_INTERNAL
:
1353 header
[0] = cpu_to_le32((OHCI1394_phy_tcode
<< 4) |
1354 (packet
->speed
<< 16));
1355 header
[1] = cpu_to_le32(packet
->header
[1]);
1356 header
[2] = cpu_to_le32(packet
->header
[2]);
1357 d
[0].req_count
= cpu_to_le16(12);
1359 if (is_ping_packet(&packet
->header
[1]))
1360 d
[0].control
|= cpu_to_le16(DESCRIPTOR_PING
);
1363 case TCODE_STREAM_DATA
:
1364 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1365 (packet
->speed
<< 16));
1366 header
[1] = cpu_to_le32(packet
->header
[0] & 0xffff0000);
1367 d
[0].req_count
= cpu_to_le16(8);
1372 packet
->ack
= RCODE_SEND_ERROR
;
1376 BUILD_BUG_ON(sizeof(struct driver_data
) > sizeof(struct descriptor
));
1377 driver_data
= (struct driver_data
*) &d
[3];
1378 driver_data
->packet
= packet
;
1379 packet
->driver_data
= driver_data
;
1381 if (packet
->payload_length
> 0) {
1382 if (packet
->payload_length
> sizeof(driver_data
->inline_data
)) {
1383 payload_bus
= dma_map_single(ohci
->card
.device
,
1385 packet
->payload_length
,
1387 if (dma_mapping_error(ohci
->card
.device
, payload_bus
)) {
1388 packet
->ack
= RCODE_SEND_ERROR
;
1391 packet
->payload_bus
= payload_bus
;
1392 packet
->payload_mapped
= true;
1394 memcpy(driver_data
->inline_data
, packet
->payload
,
1395 packet
->payload_length
);
1396 payload_bus
= d_bus
+ 3 * sizeof(*d
);
1399 d
[2].req_count
= cpu_to_le16(packet
->payload_length
);
1400 d
[2].data_address
= cpu_to_le32(payload_bus
);
1408 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
1409 DESCRIPTOR_IRQ_ALWAYS
|
1410 DESCRIPTOR_BRANCH_ALWAYS
);
1412 /* FIXME: Document how the locking works. */
1413 if (ohci
->generation
!= packet
->generation
) {
1414 if (packet
->payload_mapped
)
1415 dma_unmap_single(ohci
->card
.device
, payload_bus
,
1416 packet
->payload_length
, DMA_TO_DEVICE
);
1417 packet
->ack
= RCODE_GENERATION
;
1421 context_append(ctx
, d
, z
, 4 - z
);
1424 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
1426 context_run(ctx
, 0);
1431 static void at_context_flush(struct context
*ctx
)
1433 tasklet_disable(&ctx
->tasklet
);
1435 ctx
->flushing
= true;
1436 context_tasklet((unsigned long)ctx
);
1437 ctx
->flushing
= false;
1439 tasklet_enable(&ctx
->tasklet
);
1442 static int handle_at_packet(struct context
*context
,
1443 struct descriptor
*d
,
1444 struct descriptor
*last
)
1446 struct driver_data
*driver_data
;
1447 struct fw_packet
*packet
;
1448 struct fw_ohci
*ohci
= context
->ohci
;
1451 if (last
->transfer_status
== 0 && !context
->flushing
)
1452 /* This descriptor isn't done yet, stop iteration. */
1455 driver_data
= (struct driver_data
*) &d
[3];
1456 packet
= driver_data
->packet
;
1458 /* This packet was cancelled, just continue. */
1461 if (packet
->payload_mapped
)
1462 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
1463 packet
->payload_length
, DMA_TO_DEVICE
);
1465 evt
= le16_to_cpu(last
->transfer_status
) & 0x1f;
1466 packet
->timestamp
= le16_to_cpu(last
->res_count
);
1468 log_ar_at_event(ohci
, 'T', packet
->speed
, packet
->header
, evt
);
1471 case OHCI1394_evt_timeout
:
1472 /* Async response transmit timed out. */
1473 packet
->ack
= RCODE_CANCELLED
;
1476 case OHCI1394_evt_flushed
:
1478 * The packet was flushed should give same error as
1479 * when we try to use a stale generation count.
1481 packet
->ack
= RCODE_GENERATION
;
1484 case OHCI1394_evt_missing_ack
:
1485 if (context
->flushing
)
1486 packet
->ack
= RCODE_GENERATION
;
1489 * Using a valid (current) generation count, but the
1490 * node is not on the bus or not sending acks.
1492 packet
->ack
= RCODE_NO_ACK
;
1496 case ACK_COMPLETE
+ 0x10:
1497 case ACK_PENDING
+ 0x10:
1498 case ACK_BUSY_X
+ 0x10:
1499 case ACK_BUSY_A
+ 0x10:
1500 case ACK_BUSY_B
+ 0x10:
1501 case ACK_DATA_ERROR
+ 0x10:
1502 case ACK_TYPE_ERROR
+ 0x10:
1503 packet
->ack
= evt
- 0x10;
1506 case OHCI1394_evt_no_status
:
1507 if (context
->flushing
) {
1508 packet
->ack
= RCODE_GENERATION
;
1514 packet
->ack
= RCODE_SEND_ERROR
;
1518 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1523 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1524 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1525 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1526 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1527 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1529 static void handle_local_rom(struct fw_ohci
*ohci
,
1530 struct fw_packet
*packet
, u32 csr
)
1532 struct fw_packet response
;
1533 int tcode
, length
, i
;
1535 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1536 if (TCODE_IS_BLOCK_PACKET(tcode
))
1537 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1541 i
= csr
- CSR_CONFIG_ROM
;
1542 if (i
+ length
> CONFIG_ROM_SIZE
) {
1543 fw_fill_response(&response
, packet
->header
,
1544 RCODE_ADDRESS_ERROR
, NULL
, 0);
1545 } else if (!TCODE_IS_READ_REQUEST(tcode
)) {
1546 fw_fill_response(&response
, packet
->header
,
1547 RCODE_TYPE_ERROR
, NULL
, 0);
1549 fw_fill_response(&response
, packet
->header
, RCODE_COMPLETE
,
1550 (void *) ohci
->config_rom
+ i
, length
);
1553 fw_core_handle_response(&ohci
->card
, &response
);
1556 static void handle_local_lock(struct fw_ohci
*ohci
,
1557 struct fw_packet
*packet
, u32 csr
)
1559 struct fw_packet response
;
1560 int tcode
, length
, ext_tcode
, sel
, try;
1561 __be32
*payload
, lock_old
;
1562 u32 lock_arg
, lock_data
;
1564 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1565 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1566 payload
= packet
->payload
;
1567 ext_tcode
= HEADER_GET_EXTENDED_TCODE(packet
->header
[3]);
1569 if (tcode
== TCODE_LOCK_REQUEST
&&
1570 ext_tcode
== EXTCODE_COMPARE_SWAP
&& length
== 8) {
1571 lock_arg
= be32_to_cpu(payload
[0]);
1572 lock_data
= be32_to_cpu(payload
[1]);
1573 } else if (tcode
== TCODE_READ_QUADLET_REQUEST
) {
1577 fw_fill_response(&response
, packet
->header
,
1578 RCODE_TYPE_ERROR
, NULL
, 0);
1582 sel
= (csr
- CSR_BUS_MANAGER_ID
) / 4;
1583 reg_write(ohci
, OHCI1394_CSRData
, lock_data
);
1584 reg_write(ohci
, OHCI1394_CSRCompareData
, lock_arg
);
1585 reg_write(ohci
, OHCI1394_CSRControl
, sel
);
1587 for (try = 0; try < 20; try++)
1588 if (reg_read(ohci
, OHCI1394_CSRControl
) & 0x80000000) {
1589 lock_old
= cpu_to_be32(reg_read(ohci
,
1591 fw_fill_response(&response
, packet
->header
,
1593 &lock_old
, sizeof(lock_old
));
1597 ohci_err(ohci
, "swap not done (CSR lock timeout)\n");
1598 fw_fill_response(&response
, packet
->header
, RCODE_BUSY
, NULL
, 0);
1601 fw_core_handle_response(&ohci
->card
, &response
);
1604 static void handle_local_request(struct context
*ctx
, struct fw_packet
*packet
)
1608 if (ctx
== &ctx
->ohci
->at_request_ctx
) {
1609 packet
->ack
= ACK_PENDING
;
1610 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1614 ((unsigned long long)
1615 HEADER_GET_OFFSET_HIGH(packet
->header
[1]) << 32) |
1617 csr
= offset
- CSR_REGISTER_BASE
;
1619 /* Handle config rom reads. */
1620 if (csr
>= CSR_CONFIG_ROM
&& csr
< CSR_CONFIG_ROM_END
)
1621 handle_local_rom(ctx
->ohci
, packet
, csr
);
1623 case CSR_BUS_MANAGER_ID
:
1624 case CSR_BANDWIDTH_AVAILABLE
:
1625 case CSR_CHANNELS_AVAILABLE_HI
:
1626 case CSR_CHANNELS_AVAILABLE_LO
:
1627 handle_local_lock(ctx
->ohci
, packet
, csr
);
1630 if (ctx
== &ctx
->ohci
->at_request_ctx
)
1631 fw_core_handle_request(&ctx
->ohci
->card
, packet
);
1633 fw_core_handle_response(&ctx
->ohci
->card
, packet
);
1637 if (ctx
== &ctx
->ohci
->at_response_ctx
) {
1638 packet
->ack
= ACK_COMPLETE
;
1639 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1643 static void at_context_transmit(struct context
*ctx
, struct fw_packet
*packet
)
1645 unsigned long flags
;
1648 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1650 if (HEADER_GET_DESTINATION(packet
->header
[0]) == ctx
->ohci
->node_id
&&
1651 ctx
->ohci
->generation
== packet
->generation
) {
1652 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1653 handle_local_request(ctx
, packet
);
1657 ret
= at_context_queue_packet(ctx
, packet
);
1658 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1661 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1665 static void detect_dead_context(struct fw_ohci
*ohci
,
1666 const char *name
, unsigned int regs
)
1670 ctl
= reg_read(ohci
, CONTROL_SET(regs
));
1671 if (ctl
& CONTEXT_DEAD
)
1672 ohci_err(ohci
, "DMA context %s has stopped, error code: %s\n",
1673 name
, evts
[ctl
& 0x1f]);
1676 static void handle_dead_contexts(struct fw_ohci
*ohci
)
1681 detect_dead_context(ohci
, "ATReq", OHCI1394_AsReqTrContextBase
);
1682 detect_dead_context(ohci
, "ATRsp", OHCI1394_AsRspTrContextBase
);
1683 detect_dead_context(ohci
, "ARReq", OHCI1394_AsReqRcvContextBase
);
1684 detect_dead_context(ohci
, "ARRsp", OHCI1394_AsRspRcvContextBase
);
1685 for (i
= 0; i
< 32; ++i
) {
1686 if (!(ohci
->it_context_support
& (1 << i
)))
1688 sprintf(name
, "IT%u", i
);
1689 detect_dead_context(ohci
, name
, OHCI1394_IsoXmitContextBase(i
));
1691 for (i
= 0; i
< 32; ++i
) {
1692 if (!(ohci
->ir_context_support
& (1 << i
)))
1694 sprintf(name
, "IR%u", i
);
1695 detect_dead_context(ohci
, name
, OHCI1394_IsoRcvContextBase(i
));
1697 /* TODO: maybe try to flush and restart the dead contexts */
1700 static u32
cycle_timer_ticks(u32 cycle_timer
)
1704 ticks
= cycle_timer
& 0xfff;
1705 ticks
+= 3072 * ((cycle_timer
>> 12) & 0x1fff);
1706 ticks
+= (3072 * 8000) * (cycle_timer
>> 25);
1712 * Some controllers exhibit one or more of the following bugs when updating the
1713 * iso cycle timer register:
1714 * - When the lowest six bits are wrapping around to zero, a read that happens
1715 * at the same time will return garbage in the lowest ten bits.
1716 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1717 * not incremented for about 60 ns.
1718 * - Occasionally, the entire register reads zero.
1720 * To catch these, we read the register three times and ensure that the
1721 * difference between each two consecutive reads is approximately the same, i.e.
1722 * less than twice the other. Furthermore, any negative difference indicates an
1723 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1724 * execute, so we have enough precision to compute the ratio of the differences.)
1726 static u32
get_cycle_time(struct fw_ohci
*ohci
)
1733 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1735 if (ohci
->quirks
& QUIRK_CYCLE_TIMER
) {
1738 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1742 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1743 t0
= cycle_timer_ticks(c0
);
1744 t1
= cycle_timer_ticks(c1
);
1745 t2
= cycle_timer_ticks(c2
);
1748 } while ((diff01
<= 0 || diff12
<= 0 ||
1749 diff01
/ diff12
>= 2 || diff12
/ diff01
>= 2)
1757 * This function has to be called at least every 64 seconds. The bus_time
1758 * field stores not only the upper 25 bits of the BUS_TIME register but also
1759 * the most significant bit of the cycle timer in bit 6 so that we can detect
1760 * changes in this bit.
1762 static u32
update_bus_time(struct fw_ohci
*ohci
)
1764 u32 cycle_time_seconds
= get_cycle_time(ohci
) >> 25;
1766 if (unlikely(!ohci
->bus_time_running
)) {
1767 reg_write(ohci
, OHCI1394_IntMaskSet
, OHCI1394_cycle64Seconds
);
1768 ohci
->bus_time
= (lower_32_bits(get_seconds()) & ~0x7f) |
1769 (cycle_time_seconds
& 0x40);
1770 ohci
->bus_time_running
= true;
1773 if ((ohci
->bus_time
& 0x40) != (cycle_time_seconds
& 0x40))
1774 ohci
->bus_time
+= 0x40;
1776 return ohci
->bus_time
| cycle_time_seconds
;
1779 static int get_status_for_port(struct fw_ohci
*ohci
, int port_index
)
1783 mutex_lock(&ohci
->phy_reg_mutex
);
1784 reg
= write_phy_reg(ohci
, 7, port_index
);
1786 reg
= read_phy_reg(ohci
, 8);
1787 mutex_unlock(&ohci
->phy_reg_mutex
);
1791 switch (reg
& 0x0f) {
1793 return 2; /* is child node (connected to parent node) */
1795 return 3; /* is parent node (connected to child node) */
1797 return 1; /* not connected */
1800 static int get_self_id_pos(struct fw_ohci
*ohci
, u32 self_id
,
1806 for (i
= 0; i
< self_id_count
; i
++) {
1807 entry
= ohci
->self_id_buffer
[i
];
1808 if ((self_id
& 0xff000000) == (entry
& 0xff000000))
1810 if ((self_id
& 0xff000000) < (entry
& 0xff000000))
1816 static int initiated_reset(struct fw_ohci
*ohci
)
1821 mutex_lock(&ohci
->phy_reg_mutex
);
1822 reg
= write_phy_reg(ohci
, 7, 0xe0); /* Select page 7 */
1824 reg
= read_phy_reg(ohci
, 8);
1826 reg
= write_phy_reg(ohci
, 8, reg
); /* set PMODE bit */
1828 reg
= read_phy_reg(ohci
, 12); /* read register 12 */
1830 if ((reg
& 0x08) == 0x08) {
1831 /* bit 3 indicates "initiated reset" */
1837 mutex_unlock(&ohci
->phy_reg_mutex
);
1842 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1843 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1844 * Construct the selfID from phy register contents.
1846 static int find_and_insert_self_id(struct fw_ohci
*ohci
, int self_id_count
)
1848 int reg
, i
, pos
, status
;
1849 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1850 u32 self_id
= 0x8040c800;
1852 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1853 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1855 "node ID not valid, new bus reset in progress\n");
1858 self_id
|= ((reg
& 0x3f) << 24); /* phy ID */
1860 reg
= ohci_read_phy_reg(&ohci
->card
, 4);
1863 self_id
|= ((reg
& 0x07) << 8); /* power class */
1865 reg
= ohci_read_phy_reg(&ohci
->card
, 1);
1868 self_id
|= ((reg
& 0x3f) << 16); /* gap count */
1870 for (i
= 0; i
< 3; i
++) {
1871 status
= get_status_for_port(ohci
, i
);
1874 self_id
|= ((status
& 0x3) << (6 - (i
* 2)));
1877 self_id
|= initiated_reset(ohci
);
1879 pos
= get_self_id_pos(ohci
, self_id
, self_id_count
);
1881 memmove(&(ohci
->self_id_buffer
[pos
+1]),
1882 &(ohci
->self_id_buffer
[pos
]),
1883 (self_id_count
- pos
) * sizeof(*ohci
->self_id_buffer
));
1884 ohci
->self_id_buffer
[pos
] = self_id
;
1887 return self_id_count
;
1890 static void bus_reset_work(struct work_struct
*work
)
1892 struct fw_ohci
*ohci
=
1893 container_of(work
, struct fw_ohci
, bus_reset_work
);
1894 int self_id_count
, generation
, new_generation
, i
, j
;
1896 void *free_rom
= NULL
;
1897 dma_addr_t free_rom_bus
= 0;
1900 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1901 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1903 "node ID not valid, new bus reset in progress\n");
1906 if ((reg
& OHCI1394_NodeID_nodeNumber
) == 63) {
1907 ohci_notice(ohci
, "malconfigured bus\n");
1910 ohci
->node_id
= reg
& (OHCI1394_NodeID_busNumber
|
1911 OHCI1394_NodeID_nodeNumber
);
1913 is_new_root
= (reg
& OHCI1394_NodeID_root
) != 0;
1914 if (!(ohci
->is_root
&& is_new_root
))
1915 reg_write(ohci
, OHCI1394_LinkControlSet
,
1916 OHCI1394_LinkControl_cycleMaster
);
1917 ohci
->is_root
= is_new_root
;
1919 reg
= reg_read(ohci
, OHCI1394_SelfIDCount
);
1920 if (reg
& OHCI1394_SelfIDCount_selfIDError
) {
1921 ohci_notice(ohci
, "self ID receive error\n");
1925 * The count in the SelfIDCount register is the number of
1926 * bytes in the self ID receive buffer. Since we also receive
1927 * the inverted quadlets and a header quadlet, we shift one
1928 * bit extra to get the actual number of self IDs.
1930 self_id_count
= (reg
>> 3) & 0xff;
1932 if (self_id_count
> 252) {
1933 ohci_notice(ohci
, "bad selfIDSize (%08x)\n", reg
);
1937 generation
= (cond_le32_to_cpu(ohci
->self_id
[0]) >> 16) & 0xff;
1940 for (i
= 1, j
= 0; j
< self_id_count
; i
+= 2, j
++) {
1941 u32 id
= cond_le32_to_cpu(ohci
->self_id
[i
]);
1942 u32 id2
= cond_le32_to_cpu(ohci
->self_id
[i
+ 1]);
1946 * If the invalid data looks like a cycle start packet,
1947 * it's likely to be the result of the cycle master
1948 * having a wrong gap count. In this case, the self IDs
1949 * so far are valid and should be processed so that the
1950 * bus manager can then correct the gap count.
1952 if (id
== 0xffff008f) {
1953 ohci_notice(ohci
, "ignoring spurious self IDs\n");
1958 ohci_notice(ohci
, "bad self ID %d/%d (%08x != ~%08x)\n",
1959 j
, self_id_count
, id
, id2
);
1962 ohci
->self_id_buffer
[j
] = id
;
1965 if (ohci
->quirks
& QUIRK_TI_SLLZ059
) {
1966 self_id_count
= find_and_insert_self_id(ohci
, self_id_count
);
1967 if (self_id_count
< 0) {
1969 "could not construct local self ID\n");
1974 if (self_id_count
== 0) {
1975 ohci_notice(ohci
, "no self IDs\n");
1981 * Check the consistency of the self IDs we just read. The
1982 * problem we face is that a new bus reset can start while we
1983 * read out the self IDs from the DMA buffer. If this happens,
1984 * the DMA buffer will be overwritten with new self IDs and we
1985 * will read out inconsistent data. The OHCI specification
1986 * (section 11.2) recommends a technique similar to
1987 * linux/seqlock.h, where we remember the generation of the
1988 * self IDs in the buffer before reading them out and compare
1989 * it to the current generation after reading them out. If
1990 * the two generations match we know we have a consistent set
1994 new_generation
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 16) & 0xff;
1995 if (new_generation
!= generation
) {
1996 ohci_notice(ohci
, "new bus reset, discarding self ids\n");
2000 /* FIXME: Document how the locking works. */
2001 spin_lock_irq(&ohci
->lock
);
2003 ohci
->generation
= -1; /* prevent AT packet queueing */
2004 context_stop(&ohci
->at_request_ctx
);
2005 context_stop(&ohci
->at_response_ctx
);
2007 spin_unlock_irq(&ohci
->lock
);
2010 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2011 * packets in the AT queues and software needs to drain them.
2012 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2014 at_context_flush(&ohci
->at_request_ctx
);
2015 at_context_flush(&ohci
->at_response_ctx
);
2017 spin_lock_irq(&ohci
->lock
);
2019 ohci
->generation
= generation
;
2020 reg_write(ohci
, OHCI1394_IntEventClear
, OHCI1394_busReset
);
2022 if (ohci
->quirks
& QUIRK_RESET_PACKET
)
2023 ohci
->request_generation
= generation
;
2026 * This next bit is unrelated to the AT context stuff but we
2027 * have to do it under the spinlock also. If a new config rom
2028 * was set up before this reset, the old one is now no longer
2029 * in use and we can free it. Update the config rom pointers
2030 * to point to the current config rom and clear the
2031 * next_config_rom pointer so a new update can take place.
2034 if (ohci
->next_config_rom
!= NULL
) {
2035 if (ohci
->next_config_rom
!= ohci
->config_rom
) {
2036 free_rom
= ohci
->config_rom
;
2037 free_rom_bus
= ohci
->config_rom_bus
;
2039 ohci
->config_rom
= ohci
->next_config_rom
;
2040 ohci
->config_rom_bus
= ohci
->next_config_rom_bus
;
2041 ohci
->next_config_rom
= NULL
;
2044 * Restore config_rom image and manually update
2045 * config_rom registers. Writing the header quadlet
2046 * will indicate that the config rom is ready, so we
2049 reg_write(ohci
, OHCI1394_BusOptions
,
2050 be32_to_cpu(ohci
->config_rom
[2]));
2051 ohci
->config_rom
[0] = ohci
->next_header
;
2052 reg_write(ohci
, OHCI1394_ConfigROMhdr
,
2053 be32_to_cpu(ohci
->next_header
));
2056 if (param_remote_dma
) {
2057 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, ~0);
2058 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, ~0);
2061 spin_unlock_irq(&ohci
->lock
);
2064 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2065 free_rom
, free_rom_bus
);
2067 log_selfids(ohci
, generation
, self_id_count
);
2069 fw_core_handle_bus_reset(&ohci
->card
, ohci
->node_id
, generation
,
2070 self_id_count
, ohci
->self_id_buffer
,
2071 ohci
->csr_state_setclear_abdicate
);
2072 ohci
->csr_state_setclear_abdicate
= false;
2075 static irqreturn_t
irq_handler(int irq
, void *data
)
2077 struct fw_ohci
*ohci
= data
;
2078 u32 event
, iso_event
;
2081 event
= reg_read(ohci
, OHCI1394_IntEventClear
);
2083 if (!event
|| !~event
)
2087 * busReset and postedWriteErr must not be cleared yet
2088 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2090 reg_write(ohci
, OHCI1394_IntEventClear
,
2091 event
& ~(OHCI1394_busReset
| OHCI1394_postedWriteErr
));
2092 log_irqs(ohci
, event
);
2094 if (event
& OHCI1394_selfIDComplete
)
2095 queue_work(selfid_workqueue
, &ohci
->bus_reset_work
);
2097 if (event
& OHCI1394_RQPkt
)
2098 tasklet_schedule(&ohci
->ar_request_ctx
.tasklet
);
2100 if (event
& OHCI1394_RSPkt
)
2101 tasklet_schedule(&ohci
->ar_response_ctx
.tasklet
);
2103 if (event
& OHCI1394_reqTxComplete
)
2104 tasklet_schedule(&ohci
->at_request_ctx
.tasklet
);
2106 if (event
& OHCI1394_respTxComplete
)
2107 tasklet_schedule(&ohci
->at_response_ctx
.tasklet
);
2109 if (event
& OHCI1394_isochRx
) {
2110 iso_event
= reg_read(ohci
, OHCI1394_IsoRecvIntEventClear
);
2111 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, iso_event
);
2114 i
= ffs(iso_event
) - 1;
2116 &ohci
->ir_context_list
[i
].context
.tasklet
);
2117 iso_event
&= ~(1 << i
);
2121 if (event
& OHCI1394_isochTx
) {
2122 iso_event
= reg_read(ohci
, OHCI1394_IsoXmitIntEventClear
);
2123 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, iso_event
);
2126 i
= ffs(iso_event
) - 1;
2128 &ohci
->it_context_list
[i
].context
.tasklet
);
2129 iso_event
&= ~(1 << i
);
2133 if (unlikely(event
& OHCI1394_regAccessFail
))
2134 ohci_err(ohci
, "register access failure\n");
2136 if (unlikely(event
& OHCI1394_postedWriteErr
)) {
2137 reg_read(ohci
, OHCI1394_PostedWriteAddressHi
);
2138 reg_read(ohci
, OHCI1394_PostedWriteAddressLo
);
2139 reg_write(ohci
, OHCI1394_IntEventClear
,
2140 OHCI1394_postedWriteErr
);
2141 if (printk_ratelimit())
2142 ohci_err(ohci
, "PCI posted write error\n");
2145 if (unlikely(event
& OHCI1394_cycleTooLong
)) {
2146 if (printk_ratelimit())
2147 ohci_notice(ohci
, "isochronous cycle too long\n");
2148 reg_write(ohci
, OHCI1394_LinkControlSet
,
2149 OHCI1394_LinkControl_cycleMaster
);
2152 if (unlikely(event
& OHCI1394_cycleInconsistent
)) {
2154 * We need to clear this event bit in order to make
2155 * cycleMatch isochronous I/O work. In theory we should
2156 * stop active cycleMatch iso contexts now and restart
2157 * them at least two cycles later. (FIXME?)
2159 if (printk_ratelimit())
2160 ohci_notice(ohci
, "isochronous cycle inconsistent\n");
2163 if (unlikely(event
& OHCI1394_unrecoverableError
))
2164 handle_dead_contexts(ohci
);
2166 if (event
& OHCI1394_cycle64Seconds
) {
2167 spin_lock(&ohci
->lock
);
2168 update_bus_time(ohci
);
2169 spin_unlock(&ohci
->lock
);
2176 static int software_reset(struct fw_ohci
*ohci
)
2181 reg_write(ohci
, OHCI1394_HCControlSet
, OHCI1394_HCControl_softReset
);
2182 for (i
= 0; i
< 500; i
++) {
2183 val
= reg_read(ohci
, OHCI1394_HCControlSet
);
2185 return -ENODEV
; /* Card was ejected. */
2187 if (!(val
& OHCI1394_HCControl_softReset
))
2196 static void copy_config_rom(__be32
*dest
, const __be32
*src
, size_t length
)
2198 size_t size
= length
* 4;
2200 memcpy(dest
, src
, size
);
2201 if (size
< CONFIG_ROM_SIZE
)
2202 memset(&dest
[length
], 0, CONFIG_ROM_SIZE
- size
);
2205 static int configure_1394a_enhancements(struct fw_ohci
*ohci
)
2208 int ret
, clear
, set
, offset
;
2210 /* Check if the driver should configure link and PHY. */
2211 if (!(reg_read(ohci
, OHCI1394_HCControlSet
) &
2212 OHCI1394_HCControl_programPhyEnable
))
2215 /* Paranoia: check whether the PHY supports 1394a, too. */
2216 enable_1394a
= false;
2217 ret
= read_phy_reg(ohci
, 2);
2220 if ((ret
& PHY_EXTENDED_REGISTERS
) == PHY_EXTENDED_REGISTERS
) {
2221 ret
= read_paged_phy_reg(ohci
, 1, 8);
2225 enable_1394a
= true;
2228 if (ohci
->quirks
& QUIRK_NO_1394A
)
2229 enable_1394a
= false;
2231 /* Configure PHY and link consistently. */
2234 set
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2236 clear
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2239 ret
= update_phy_reg(ohci
, 5, clear
, set
);
2244 offset
= OHCI1394_HCControlSet
;
2246 offset
= OHCI1394_HCControlClear
;
2247 reg_write(ohci
, offset
, OHCI1394_HCControl_aPhyEnhanceEnable
);
2249 /* Clean up: configuration has been taken care of. */
2250 reg_write(ohci
, OHCI1394_HCControlClear
,
2251 OHCI1394_HCControl_programPhyEnable
);
2256 static int probe_tsb41ba3d(struct fw_ohci
*ohci
)
2258 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2259 static const u8 id
[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2262 reg
= read_phy_reg(ohci
, 2);
2265 if ((reg
& PHY_EXTENDED_REGISTERS
) != PHY_EXTENDED_REGISTERS
)
2268 for (i
= ARRAY_SIZE(id
) - 1; i
>= 0; i
--) {
2269 reg
= read_paged_phy_reg(ohci
, 1, i
+ 10);
2278 static int ohci_enable(struct fw_card
*card
,
2279 const __be32
*config_rom
, size_t length
)
2281 struct fw_ohci
*ohci
= fw_ohci(card
);
2282 u32 lps
, version
, irqs
;
2285 ret
= software_reset(ohci
);
2287 ohci_err(ohci
, "failed to reset ohci card\n");
2292 * Now enable LPS, which we need in order to start accessing
2293 * most of the registers. In fact, on some cards (ALI M5251),
2294 * accessing registers in the SClk domain without LPS enabled
2295 * will lock up the machine. Wait 50msec to make sure we have
2296 * full link enabled. However, with some cards (well, at least
2297 * a JMicron PCIe card), we have to try again sometimes.
2299 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2300 * cannot actually use the phy at that time. These need tens of
2301 * millisecods pause between LPS write and first phy access too.
2304 reg_write(ohci
, OHCI1394_HCControlSet
,
2305 OHCI1394_HCControl_LPS
|
2306 OHCI1394_HCControl_postedWriteEnable
);
2309 for (lps
= 0, i
= 0; !lps
&& i
< 3; i
++) {
2311 lps
= reg_read(ohci
, OHCI1394_HCControlSet
) &
2312 OHCI1394_HCControl_LPS
;
2316 ohci_err(ohci
, "failed to set Link Power Status\n");
2320 if (ohci
->quirks
& QUIRK_TI_SLLZ059
) {
2321 ret
= probe_tsb41ba3d(ohci
);
2325 ohci_notice(ohci
, "local TSB41BA3D phy\n");
2327 ohci
->quirks
&= ~QUIRK_TI_SLLZ059
;
2330 reg_write(ohci
, OHCI1394_HCControlClear
,
2331 OHCI1394_HCControl_noByteSwapData
);
2333 reg_write(ohci
, OHCI1394_SelfIDBuffer
, ohci
->self_id_bus
);
2334 reg_write(ohci
, OHCI1394_LinkControlSet
,
2335 OHCI1394_LinkControl_cycleTimerEnable
|
2336 OHCI1394_LinkControl_cycleMaster
);
2338 reg_write(ohci
, OHCI1394_ATRetries
,
2339 OHCI1394_MAX_AT_REQ_RETRIES
|
2340 (OHCI1394_MAX_AT_RESP_RETRIES
<< 4) |
2341 (OHCI1394_MAX_PHYS_RESP_RETRIES
<< 8) |
2344 ohci
->bus_time_running
= false;
2346 for (i
= 0; i
< 32; i
++)
2347 if (ohci
->ir_context_support
& (1 << i
))
2348 reg_write(ohci
, OHCI1394_IsoRcvContextControlClear(i
),
2349 IR_CONTEXT_MULTI_CHANNEL_MODE
);
2351 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
2352 if (version
>= OHCI_VERSION_1_1
) {
2353 reg_write(ohci
, OHCI1394_InitialChannelsAvailableHi
,
2355 card
->broadcast_channel_auto_allocated
= true;
2358 /* Get implemented bits of the priority arbitration request counter. */
2359 reg_write(ohci
, OHCI1394_FairnessControl
, 0x3f);
2360 ohci
->pri_req_max
= reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f;
2361 reg_write(ohci
, OHCI1394_FairnessControl
, 0);
2362 card
->priority_budget_implemented
= ohci
->pri_req_max
!= 0;
2364 reg_write(ohci
, OHCI1394_PhyUpperBound
, FW_MAX_PHYSICAL_RANGE
>> 16);
2365 reg_write(ohci
, OHCI1394_IntEventClear
, ~0);
2366 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
2368 ret
= configure_1394a_enhancements(ohci
);
2372 /* Activate link_on bit and contender bit in our self ID packets.*/
2373 ret
= ohci_update_phy_reg(card
, 4, 0, PHY_LINK_ACTIVE
| PHY_CONTENDER
);
2378 * When the link is not yet enabled, the atomic config rom
2379 * update mechanism described below in ohci_set_config_rom()
2380 * is not active. We have to update ConfigRomHeader and
2381 * BusOptions manually, and the write to ConfigROMmap takes
2382 * effect immediately. We tie this to the enabling of the
2383 * link, so we have a valid config rom before enabling - the
2384 * OHCI requires that ConfigROMhdr and BusOptions have valid
2385 * values before enabling.
2387 * However, when the ConfigROMmap is written, some controllers
2388 * always read back quadlets 0 and 2 from the config rom to
2389 * the ConfigRomHeader and BusOptions registers on bus reset.
2390 * They shouldn't do that in this initial case where the link
2391 * isn't enabled. This means we have to use the same
2392 * workaround here, setting the bus header to 0 and then write
2393 * the right values in the bus reset tasklet.
2397 ohci
->next_config_rom
=
2398 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2399 &ohci
->next_config_rom_bus
,
2401 if (ohci
->next_config_rom
== NULL
)
2404 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2407 * In the suspend case, config_rom is NULL, which
2408 * means that we just reuse the old config rom.
2410 ohci
->next_config_rom
= ohci
->config_rom
;
2411 ohci
->next_config_rom_bus
= ohci
->config_rom_bus
;
2414 ohci
->next_header
= ohci
->next_config_rom
[0];
2415 ohci
->next_config_rom
[0] = 0;
2416 reg_write(ohci
, OHCI1394_ConfigROMhdr
, 0);
2417 reg_write(ohci
, OHCI1394_BusOptions
,
2418 be32_to_cpu(ohci
->next_config_rom
[2]));
2419 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
2421 reg_write(ohci
, OHCI1394_AsReqFilterHiSet
, 0x80000000);
2423 irqs
= OHCI1394_reqTxComplete
| OHCI1394_respTxComplete
|
2424 OHCI1394_RQPkt
| OHCI1394_RSPkt
|
2425 OHCI1394_isochTx
| OHCI1394_isochRx
|
2426 OHCI1394_postedWriteErr
|
2427 OHCI1394_selfIDComplete
|
2428 OHCI1394_regAccessFail
|
2429 OHCI1394_cycleInconsistent
|
2430 OHCI1394_unrecoverableError
|
2431 OHCI1394_cycleTooLong
|
2432 OHCI1394_masterIntEnable
;
2433 if (param_debug
& OHCI_PARAM_DEBUG_BUSRESETS
)
2434 irqs
|= OHCI1394_busReset
;
2435 reg_write(ohci
, OHCI1394_IntMaskSet
, irqs
);
2437 reg_write(ohci
, OHCI1394_HCControlSet
,
2438 OHCI1394_HCControl_linkEnable
|
2439 OHCI1394_HCControl_BIBimageValid
);
2441 reg_write(ohci
, OHCI1394_LinkControlSet
,
2442 OHCI1394_LinkControl_rcvSelfID
|
2443 OHCI1394_LinkControl_rcvPhyPkt
);
2445 ar_context_run(&ohci
->ar_request_ctx
);
2446 ar_context_run(&ohci
->ar_response_ctx
);
2450 /* We are ready to go, reset bus to finish initialization. */
2451 fw_schedule_bus_reset(&ohci
->card
, false, true);
2456 static int ohci_set_config_rom(struct fw_card
*card
,
2457 const __be32
*config_rom
, size_t length
)
2459 struct fw_ohci
*ohci
;
2460 __be32
*next_config_rom
;
2461 dma_addr_t
uninitialized_var(next_config_rom_bus
);
2463 ohci
= fw_ohci(card
);
2466 * When the OHCI controller is enabled, the config rom update
2467 * mechanism is a bit tricky, but easy enough to use. See
2468 * section 5.5.6 in the OHCI specification.
2470 * The OHCI controller caches the new config rom address in a
2471 * shadow register (ConfigROMmapNext) and needs a bus reset
2472 * for the changes to take place. When the bus reset is
2473 * detected, the controller loads the new values for the
2474 * ConfigRomHeader and BusOptions registers from the specified
2475 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2476 * shadow register. All automatically and atomically.
2478 * Now, there's a twist to this story. The automatic load of
2479 * ConfigRomHeader and BusOptions doesn't honor the
2480 * noByteSwapData bit, so with a be32 config rom, the
2481 * controller will load be32 values in to these registers
2482 * during the atomic update, even on litte endian
2483 * architectures. The workaround we use is to put a 0 in the
2484 * header quadlet; 0 is endian agnostic and means that the
2485 * config rom isn't ready yet. In the bus reset tasklet we
2486 * then set up the real values for the two registers.
2488 * We use ohci->lock to avoid racing with the code that sets
2489 * ohci->next_config_rom to NULL (see bus_reset_work).
2493 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2494 &next_config_rom_bus
, GFP_KERNEL
);
2495 if (next_config_rom
== NULL
)
2498 spin_lock_irq(&ohci
->lock
);
2501 * If there is not an already pending config_rom update,
2502 * push our new allocation into the ohci->next_config_rom
2503 * and then mark the local variable as null so that we
2504 * won't deallocate the new buffer.
2506 * OTOH, if there is a pending config_rom update, just
2507 * use that buffer with the new config_rom data, and
2508 * let this routine free the unused DMA allocation.
2511 if (ohci
->next_config_rom
== NULL
) {
2512 ohci
->next_config_rom
= next_config_rom
;
2513 ohci
->next_config_rom_bus
= next_config_rom_bus
;
2514 next_config_rom
= NULL
;
2517 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2519 ohci
->next_header
= config_rom
[0];
2520 ohci
->next_config_rom
[0] = 0;
2522 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
2524 spin_unlock_irq(&ohci
->lock
);
2526 /* If we didn't use the DMA allocation, delete it. */
2527 if (next_config_rom
!= NULL
)
2528 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2529 next_config_rom
, next_config_rom_bus
);
2532 * Now initiate a bus reset to have the changes take
2533 * effect. We clean up the old config rom memory and DMA
2534 * mappings in the bus reset tasklet, since the OHCI
2535 * controller could need to access it before the bus reset
2539 fw_schedule_bus_reset(&ohci
->card
, true, true);
2544 static void ohci_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
2546 struct fw_ohci
*ohci
= fw_ohci(card
);
2548 at_context_transmit(&ohci
->at_request_ctx
, packet
);
2551 static void ohci_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
2553 struct fw_ohci
*ohci
= fw_ohci(card
);
2555 at_context_transmit(&ohci
->at_response_ctx
, packet
);
2558 static int ohci_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
2560 struct fw_ohci
*ohci
= fw_ohci(card
);
2561 struct context
*ctx
= &ohci
->at_request_ctx
;
2562 struct driver_data
*driver_data
= packet
->driver_data
;
2565 tasklet_disable(&ctx
->tasklet
);
2567 if (packet
->ack
!= 0)
2570 if (packet
->payload_mapped
)
2571 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
2572 packet
->payload_length
, DMA_TO_DEVICE
);
2574 log_ar_at_event(ohci
, 'T', packet
->speed
, packet
->header
, 0x20);
2575 driver_data
->packet
= NULL
;
2576 packet
->ack
= RCODE_CANCELLED
;
2577 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
2580 tasklet_enable(&ctx
->tasklet
);
2585 static int ohci_enable_phys_dma(struct fw_card
*card
,
2586 int node_id
, int generation
)
2588 struct fw_ohci
*ohci
= fw_ohci(card
);
2589 unsigned long flags
;
2592 if (param_remote_dma
)
2596 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2597 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2600 spin_lock_irqsave(&ohci
->lock
, flags
);
2602 if (ohci
->generation
!= generation
) {
2608 * Note, if the node ID contains a non-local bus ID, physical DMA is
2609 * enabled for _all_ nodes on remote buses.
2612 n
= (node_id
& 0xffc0) == LOCAL_BUS
? node_id
& 0x3f : 63;
2614 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, 1 << n
);
2616 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, 1 << (n
- 32));
2620 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2625 static u32
ohci_read_csr(struct fw_card
*card
, int csr_offset
)
2627 struct fw_ohci
*ohci
= fw_ohci(card
);
2628 unsigned long flags
;
2631 switch (csr_offset
) {
2632 case CSR_STATE_CLEAR
:
2634 if (ohci
->is_root
&&
2635 (reg_read(ohci
, OHCI1394_LinkControlSet
) &
2636 OHCI1394_LinkControl_cycleMaster
))
2637 value
= CSR_STATE_BIT_CMSTR
;
2640 if (ohci
->csr_state_setclear_abdicate
)
2641 value
|= CSR_STATE_BIT_ABDICATE
;
2646 return reg_read(ohci
, OHCI1394_NodeID
) << 16;
2648 case CSR_CYCLE_TIME
:
2649 return get_cycle_time(ohci
);
2653 * We might be called just after the cycle timer has wrapped
2654 * around but just before the cycle64Seconds handler, so we
2655 * better check here, too, if the bus time needs to be updated.
2657 spin_lock_irqsave(&ohci
->lock
, flags
);
2658 value
= update_bus_time(ohci
);
2659 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2662 case CSR_BUSY_TIMEOUT
:
2663 value
= reg_read(ohci
, OHCI1394_ATRetries
);
2664 return (value
>> 4) & 0x0ffff00f;
2666 case CSR_PRIORITY_BUDGET
:
2667 return (reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f) |
2668 (ohci
->pri_req_max
<< 8);
2676 static void ohci_write_csr(struct fw_card
*card
, int csr_offset
, u32 value
)
2678 struct fw_ohci
*ohci
= fw_ohci(card
);
2679 unsigned long flags
;
2681 switch (csr_offset
) {
2682 case CSR_STATE_CLEAR
:
2683 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2684 reg_write(ohci
, OHCI1394_LinkControlClear
,
2685 OHCI1394_LinkControl_cycleMaster
);
2688 if (value
& CSR_STATE_BIT_ABDICATE
)
2689 ohci
->csr_state_setclear_abdicate
= false;
2693 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2694 reg_write(ohci
, OHCI1394_LinkControlSet
,
2695 OHCI1394_LinkControl_cycleMaster
);
2698 if (value
& CSR_STATE_BIT_ABDICATE
)
2699 ohci
->csr_state_setclear_abdicate
= true;
2703 reg_write(ohci
, OHCI1394_NodeID
, value
>> 16);
2707 case CSR_CYCLE_TIME
:
2708 reg_write(ohci
, OHCI1394_IsochronousCycleTimer
, value
);
2709 reg_write(ohci
, OHCI1394_IntEventSet
,
2710 OHCI1394_cycleInconsistent
);
2715 spin_lock_irqsave(&ohci
->lock
, flags
);
2716 ohci
->bus_time
= (update_bus_time(ohci
) & 0x40) |
2718 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2721 case CSR_BUSY_TIMEOUT
:
2722 value
= (value
& 0xf) | ((value
& 0xf) << 4) |
2723 ((value
& 0xf) << 8) | ((value
& 0x0ffff000) << 4);
2724 reg_write(ohci
, OHCI1394_ATRetries
, value
);
2728 case CSR_PRIORITY_BUDGET
:
2729 reg_write(ohci
, OHCI1394_FairnessControl
, value
& 0x3f);
2739 static void flush_iso_completions(struct iso_context
*ctx
)
2741 ctx
->base
.callback
.sc(&ctx
->base
, ctx
->last_timestamp
,
2742 ctx
->header_length
, ctx
->header
,
2743 ctx
->base
.callback_data
);
2744 ctx
->header_length
= 0;
2747 static void copy_iso_headers(struct iso_context
*ctx
, const u32
*dma_hdr
)
2751 if (ctx
->header_length
+ ctx
->base
.header_size
> PAGE_SIZE
) {
2752 if (ctx
->base
.drop_overflow_headers
)
2754 flush_iso_completions(ctx
);
2757 ctx_hdr
= ctx
->header
+ ctx
->header_length
;
2758 ctx
->last_timestamp
= (u16
)le32_to_cpu((__force __le32
)dma_hdr
[0]);
2761 * The two iso header quadlets are byteswapped to little
2762 * endian by the controller, but we want to present them
2763 * as big endian for consistency with the bus endianness.
2765 if (ctx
->base
.header_size
> 0)
2766 ctx_hdr
[0] = swab32(dma_hdr
[1]); /* iso packet header */
2767 if (ctx
->base
.header_size
> 4)
2768 ctx_hdr
[1] = swab32(dma_hdr
[0]); /* timestamp */
2769 if (ctx
->base
.header_size
> 8)
2770 memcpy(&ctx_hdr
[2], &dma_hdr
[2], ctx
->base
.header_size
- 8);
2771 ctx
->header_length
+= ctx
->base
.header_size
;
2774 static int handle_ir_packet_per_buffer(struct context
*context
,
2775 struct descriptor
*d
,
2776 struct descriptor
*last
)
2778 struct iso_context
*ctx
=
2779 container_of(context
, struct iso_context
, context
);
2780 struct descriptor
*pd
;
2783 for (pd
= d
; pd
<= last
; pd
++)
2784 if (pd
->transfer_status
)
2787 /* Descriptor(s) not done yet, stop iteration */
2790 while (!(d
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))) {
2792 buffer_dma
= le32_to_cpu(d
->data_address
);
2793 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2794 buffer_dma
& PAGE_MASK
,
2795 buffer_dma
& ~PAGE_MASK
,
2796 le16_to_cpu(d
->req_count
),
2800 copy_iso_headers(ctx
, (u32
*) (last
+ 1));
2802 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
))
2803 flush_iso_completions(ctx
);
2808 /* d == last because each descriptor block is only a single descriptor. */
2809 static int handle_ir_buffer_fill(struct context
*context
,
2810 struct descriptor
*d
,
2811 struct descriptor
*last
)
2813 struct iso_context
*ctx
=
2814 container_of(context
, struct iso_context
, context
);
2815 unsigned int req_count
, res_count
, completed
;
2818 req_count
= le16_to_cpu(last
->req_count
);
2819 res_count
= le16_to_cpu(READ_ONCE(last
->res_count
));
2820 completed
= req_count
- res_count
;
2821 buffer_dma
= le32_to_cpu(last
->data_address
);
2823 if (completed
> 0) {
2824 ctx
->mc_buffer_bus
= buffer_dma
;
2825 ctx
->mc_completed
= completed
;
2829 /* Descriptor(s) not done yet, stop iteration */
2832 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2833 buffer_dma
& PAGE_MASK
,
2834 buffer_dma
& ~PAGE_MASK
,
2835 completed
, DMA_FROM_DEVICE
);
2837 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
)) {
2838 ctx
->base
.callback
.mc(&ctx
->base
,
2839 buffer_dma
+ completed
,
2840 ctx
->base
.callback_data
);
2841 ctx
->mc_completed
= 0;
2847 static void flush_ir_buffer_fill(struct iso_context
*ctx
)
2849 dma_sync_single_range_for_cpu(ctx
->context
.ohci
->card
.device
,
2850 ctx
->mc_buffer_bus
& PAGE_MASK
,
2851 ctx
->mc_buffer_bus
& ~PAGE_MASK
,
2852 ctx
->mc_completed
, DMA_FROM_DEVICE
);
2854 ctx
->base
.callback
.mc(&ctx
->base
,
2855 ctx
->mc_buffer_bus
+ ctx
->mc_completed
,
2856 ctx
->base
.callback_data
);
2857 ctx
->mc_completed
= 0;
2860 static inline void sync_it_packet_for_cpu(struct context
*context
,
2861 struct descriptor
*pd
)
2866 /* only packets beginning with OUTPUT_MORE* have data buffers */
2867 if (pd
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
2870 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2874 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2875 * data buffer is in the context program's coherent page and must not
2878 if ((le32_to_cpu(pd
->data_address
) & PAGE_MASK
) ==
2879 (context
->current_bus
& PAGE_MASK
)) {
2880 if (pd
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
2886 buffer_dma
= le32_to_cpu(pd
->data_address
);
2887 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2888 buffer_dma
& PAGE_MASK
,
2889 buffer_dma
& ~PAGE_MASK
,
2890 le16_to_cpu(pd
->req_count
),
2892 control
= pd
->control
;
2894 } while (!(control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
)));
2897 static int handle_it_packet(struct context
*context
,
2898 struct descriptor
*d
,
2899 struct descriptor
*last
)
2901 struct iso_context
*ctx
=
2902 container_of(context
, struct iso_context
, context
);
2903 struct descriptor
*pd
;
2906 for (pd
= d
; pd
<= last
; pd
++)
2907 if (pd
->transfer_status
)
2910 /* Descriptor(s) not done yet, stop iteration */
2913 sync_it_packet_for_cpu(context
, d
);
2915 if (ctx
->header_length
+ 4 > PAGE_SIZE
) {
2916 if (ctx
->base
.drop_overflow_headers
)
2918 flush_iso_completions(ctx
);
2921 ctx_hdr
= ctx
->header
+ ctx
->header_length
;
2922 ctx
->last_timestamp
= le16_to_cpu(last
->res_count
);
2923 /* Present this value as big-endian to match the receive code */
2924 *ctx_hdr
= cpu_to_be32((le16_to_cpu(pd
->transfer_status
) << 16) |
2925 le16_to_cpu(pd
->res_count
));
2926 ctx
->header_length
+= 4;
2928 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
))
2929 flush_iso_completions(ctx
);
2934 static void set_multichannel_mask(struct fw_ohci
*ohci
, u64 channels
)
2936 u32 hi
= channels
>> 32, lo
= channels
;
2938 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiClear
, ~hi
);
2939 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoClear
, ~lo
);
2940 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiSet
, hi
);
2941 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoSet
, lo
);
2943 ohci
->mc_channels
= channels
;
2946 static struct fw_iso_context
*ohci_allocate_iso_context(struct fw_card
*card
,
2947 int type
, int channel
, size_t header_size
)
2949 struct fw_ohci
*ohci
= fw_ohci(card
);
2950 struct iso_context
*uninitialized_var(ctx
);
2951 descriptor_callback_t
uninitialized_var(callback
);
2952 u64
*uninitialized_var(channels
);
2953 u32
*uninitialized_var(mask
), uninitialized_var(regs
);
2954 int index
, ret
= -EBUSY
;
2956 spin_lock_irq(&ohci
->lock
);
2959 case FW_ISO_CONTEXT_TRANSMIT
:
2960 mask
= &ohci
->it_context_mask
;
2961 callback
= handle_it_packet
;
2962 index
= ffs(*mask
) - 1;
2964 *mask
&= ~(1 << index
);
2965 regs
= OHCI1394_IsoXmitContextBase(index
);
2966 ctx
= &ohci
->it_context_list
[index
];
2970 case FW_ISO_CONTEXT_RECEIVE
:
2971 channels
= &ohci
->ir_context_channels
;
2972 mask
= &ohci
->ir_context_mask
;
2973 callback
= handle_ir_packet_per_buffer
;
2974 index
= *channels
& 1ULL << channel
? ffs(*mask
) - 1 : -1;
2976 *channels
&= ~(1ULL << channel
);
2977 *mask
&= ~(1 << index
);
2978 regs
= OHCI1394_IsoRcvContextBase(index
);
2979 ctx
= &ohci
->ir_context_list
[index
];
2983 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2984 mask
= &ohci
->ir_context_mask
;
2985 callback
= handle_ir_buffer_fill
;
2986 index
= !ohci
->mc_allocated
? ffs(*mask
) - 1 : -1;
2988 ohci
->mc_allocated
= true;
2989 *mask
&= ~(1 << index
);
2990 regs
= OHCI1394_IsoRcvContextBase(index
);
2991 ctx
= &ohci
->ir_context_list
[index
];
3000 spin_unlock_irq(&ohci
->lock
);
3003 return ERR_PTR(ret
);
3005 memset(ctx
, 0, sizeof(*ctx
));
3006 ctx
->header_length
= 0;
3007 ctx
->header
= (void *) __get_free_page(GFP_KERNEL
);
3008 if (ctx
->header
== NULL
) {
3012 ret
= context_init(&ctx
->context
, ohci
, regs
, callback
);
3014 goto out_with_header
;
3016 if (type
== FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
) {
3017 set_multichannel_mask(ohci
, 0);
3018 ctx
->mc_completed
= 0;
3024 free_page((unsigned long)ctx
->header
);
3026 spin_lock_irq(&ohci
->lock
);
3029 case FW_ISO_CONTEXT_RECEIVE
:
3030 *channels
|= 1ULL << channel
;
3033 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3034 ohci
->mc_allocated
= false;
3037 *mask
|= 1 << index
;
3039 spin_unlock_irq(&ohci
->lock
);
3041 return ERR_PTR(ret
);
3044 static int ohci_start_iso(struct fw_iso_context
*base
,
3045 s32 cycle
, u32 sync
, u32 tags
)
3047 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3048 struct fw_ohci
*ohci
= ctx
->context
.ohci
;
3049 u32 control
= IR_CONTEXT_ISOCH_HEADER
, match
;
3052 /* the controller cannot start without any queued packets */
3053 if (ctx
->context
.last
->branch_address
== 0)
3056 switch (ctx
->base
.type
) {
3057 case FW_ISO_CONTEXT_TRANSMIT
:
3058 index
= ctx
- ohci
->it_context_list
;
3061 match
= IT_CONTEXT_CYCLE_MATCH_ENABLE
|
3062 (cycle
& 0x7fff) << 16;
3064 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, 1 << index
);
3065 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, 1 << index
);
3066 context_run(&ctx
->context
, match
);
3069 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3070 control
|= IR_CONTEXT_BUFFER_FILL
|IR_CONTEXT_MULTI_CHANNEL_MODE
;
3072 case FW_ISO_CONTEXT_RECEIVE
:
3073 index
= ctx
- ohci
->ir_context_list
;
3074 match
= (tags
<< 28) | (sync
<< 8) | ctx
->base
.channel
;
3076 match
|= (cycle
& 0x07fff) << 12;
3077 control
|= IR_CONTEXT_CYCLE_MATCH_ENABLE
;
3080 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, 1 << index
);
3081 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, 1 << index
);
3082 reg_write(ohci
, CONTEXT_MATCH(ctx
->context
.regs
), match
);
3083 context_run(&ctx
->context
, control
);
3094 static int ohci_stop_iso(struct fw_iso_context
*base
)
3096 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3097 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3100 switch (ctx
->base
.type
) {
3101 case FW_ISO_CONTEXT_TRANSMIT
:
3102 index
= ctx
- ohci
->it_context_list
;
3103 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, 1 << index
);
3106 case FW_ISO_CONTEXT_RECEIVE
:
3107 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3108 index
= ctx
- ohci
->ir_context_list
;
3109 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, 1 << index
);
3113 context_stop(&ctx
->context
);
3114 tasklet_kill(&ctx
->context
.tasklet
);
3119 static void ohci_free_iso_context(struct fw_iso_context
*base
)
3121 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3122 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3123 unsigned long flags
;
3126 ohci_stop_iso(base
);
3127 context_release(&ctx
->context
);
3128 free_page((unsigned long)ctx
->header
);
3130 spin_lock_irqsave(&ohci
->lock
, flags
);
3132 switch (base
->type
) {
3133 case FW_ISO_CONTEXT_TRANSMIT
:
3134 index
= ctx
- ohci
->it_context_list
;
3135 ohci
->it_context_mask
|= 1 << index
;
3138 case FW_ISO_CONTEXT_RECEIVE
:
3139 index
= ctx
- ohci
->ir_context_list
;
3140 ohci
->ir_context_mask
|= 1 << index
;
3141 ohci
->ir_context_channels
|= 1ULL << base
->channel
;
3144 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3145 index
= ctx
- ohci
->ir_context_list
;
3146 ohci
->ir_context_mask
|= 1 << index
;
3147 ohci
->ir_context_channels
|= ohci
->mc_channels
;
3148 ohci
->mc_channels
= 0;
3149 ohci
->mc_allocated
= false;
3153 spin_unlock_irqrestore(&ohci
->lock
, flags
);
3156 static int ohci_set_iso_channels(struct fw_iso_context
*base
, u64
*channels
)
3158 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3159 unsigned long flags
;
3162 switch (base
->type
) {
3163 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3165 spin_lock_irqsave(&ohci
->lock
, flags
);
3167 /* Don't allow multichannel to grab other contexts' channels. */
3168 if (~ohci
->ir_context_channels
& ~ohci
->mc_channels
& *channels
) {
3169 *channels
= ohci
->ir_context_channels
;
3172 set_multichannel_mask(ohci
, *channels
);
3176 spin_unlock_irqrestore(&ohci
->lock
, flags
);
3187 static void ohci_resume_iso_dma(struct fw_ohci
*ohci
)
3190 struct iso_context
*ctx
;
3192 for (i
= 0 ; i
< ohci
->n_ir
; i
++) {
3193 ctx
= &ohci
->ir_context_list
[i
];
3194 if (ctx
->context
.running
)
3195 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
3198 for (i
= 0 ; i
< ohci
->n_it
; i
++) {
3199 ctx
= &ohci
->it_context_list
[i
];
3200 if (ctx
->context
.running
)
3201 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
3206 static int queue_iso_transmit(struct iso_context
*ctx
,
3207 struct fw_iso_packet
*packet
,
3208 struct fw_iso_buffer
*buffer
,
3209 unsigned long payload
)
3211 struct descriptor
*d
, *last
, *pd
;
3212 struct fw_iso_packet
*p
;
3214 dma_addr_t d_bus
, page_bus
;
3215 u32 z
, header_z
, payload_z
, irq
;
3216 u32 payload_index
, payload_end_index
, next_page_index
;
3217 int page
, end_page
, i
, length
, offset
;
3220 payload_index
= payload
;
3226 if (p
->header_length
> 0)
3229 /* Determine the first page the payload isn't contained in. */
3230 end_page
= PAGE_ALIGN(payload_index
+ p
->payload_length
) >> PAGE_SHIFT
;
3231 if (p
->payload_length
> 0)
3232 payload_z
= end_page
- (payload_index
>> PAGE_SHIFT
);
3238 /* Get header size in number of descriptors. */
3239 header_z
= DIV_ROUND_UP(p
->header_length
, sizeof(*d
));
3241 d
= context_get_descriptors(&ctx
->context
, z
+ header_z
, &d_bus
);
3246 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
3247 d
[0].req_count
= cpu_to_le16(8);
3249 * Link the skip address to this descriptor itself. This causes
3250 * a context to skip a cycle whenever lost cycles or FIFO
3251 * overruns occur, without dropping the data. The application
3252 * should then decide whether this is an error condition or not.
3253 * FIXME: Make the context's cycle-lost behaviour configurable?
3255 d
[0].branch_address
= cpu_to_le32(d_bus
| z
);
3257 header
= (__le32
*) &d
[1];
3258 header
[0] = cpu_to_le32(IT_HEADER_SY(p
->sy
) |
3259 IT_HEADER_TAG(p
->tag
) |
3260 IT_HEADER_TCODE(TCODE_STREAM_DATA
) |
3261 IT_HEADER_CHANNEL(ctx
->base
.channel
) |
3262 IT_HEADER_SPEED(ctx
->base
.speed
));
3264 cpu_to_le32(IT_HEADER_DATA_LENGTH(p
->header_length
+
3265 p
->payload_length
));
3268 if (p
->header_length
> 0) {
3269 d
[2].req_count
= cpu_to_le16(p
->header_length
);
3270 d
[2].data_address
= cpu_to_le32(d_bus
+ z
* sizeof(*d
));
3271 memcpy(&d
[z
], p
->header
, p
->header_length
);
3274 pd
= d
+ z
- payload_z
;
3275 payload_end_index
= payload_index
+ p
->payload_length
;
3276 for (i
= 0; i
< payload_z
; i
++) {
3277 page
= payload_index
>> PAGE_SHIFT
;
3278 offset
= payload_index
& ~PAGE_MASK
;
3279 next_page_index
= (page
+ 1) << PAGE_SHIFT
;
3281 min(next_page_index
, payload_end_index
) - payload_index
;
3282 pd
[i
].req_count
= cpu_to_le16(length
);
3284 page_bus
= page_private(buffer
->pages
[page
]);
3285 pd
[i
].data_address
= cpu_to_le32(page_bus
+ offset
);
3287 dma_sync_single_range_for_device(ctx
->context
.ohci
->card
.device
,
3288 page_bus
, offset
, length
,
3291 payload_index
+= length
;
3295 irq
= DESCRIPTOR_IRQ_ALWAYS
;
3297 irq
= DESCRIPTOR_NO_IRQ
;
3299 last
= z
== 2 ? d
: d
+ z
- 1;
3300 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
3302 DESCRIPTOR_BRANCH_ALWAYS
|
3305 context_append(&ctx
->context
, d
, z
, header_z
);
3310 static int queue_iso_packet_per_buffer(struct iso_context
*ctx
,
3311 struct fw_iso_packet
*packet
,
3312 struct fw_iso_buffer
*buffer
,
3313 unsigned long payload
)
3315 struct device
*device
= ctx
->context
.ohci
->card
.device
;
3316 struct descriptor
*d
, *pd
;
3317 dma_addr_t d_bus
, page_bus
;
3318 u32 z
, header_z
, rest
;
3320 int page
, offset
, packet_count
, header_size
, payload_per_buffer
;
3323 * The OHCI controller puts the isochronous header and trailer in the
3324 * buffer, so we need at least 8 bytes.
3326 packet_count
= packet
->header_length
/ ctx
->base
.header_size
;
3327 header_size
= max(ctx
->base
.header_size
, (size_t)8);
3329 /* Get header size in number of descriptors. */
3330 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
3331 page
= payload
>> PAGE_SHIFT
;
3332 offset
= payload
& ~PAGE_MASK
;
3333 payload_per_buffer
= packet
->payload_length
/ packet_count
;
3335 for (i
= 0; i
< packet_count
; i
++) {
3336 /* d points to the header descriptor */
3337 z
= DIV_ROUND_UP(payload_per_buffer
+ offset
, PAGE_SIZE
) + 1;
3338 d
= context_get_descriptors(&ctx
->context
,
3339 z
+ header_z
, &d_bus
);
3343 d
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3344 DESCRIPTOR_INPUT_MORE
);
3345 if (packet
->skip
&& i
== 0)
3346 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
3347 d
->req_count
= cpu_to_le16(header_size
);
3348 d
->res_count
= d
->req_count
;
3349 d
->transfer_status
= 0;
3350 d
->data_address
= cpu_to_le32(d_bus
+ (z
* sizeof(*d
)));
3352 rest
= payload_per_buffer
;
3354 for (j
= 1; j
< z
; j
++) {
3356 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3357 DESCRIPTOR_INPUT_MORE
);
3359 if (offset
+ rest
< PAGE_SIZE
)
3362 length
= PAGE_SIZE
- offset
;
3363 pd
->req_count
= cpu_to_le16(length
);
3364 pd
->res_count
= pd
->req_count
;
3365 pd
->transfer_status
= 0;
3367 page_bus
= page_private(buffer
->pages
[page
]);
3368 pd
->data_address
= cpu_to_le32(page_bus
+ offset
);
3370 dma_sync_single_range_for_device(device
, page_bus
,
3374 offset
= (offset
+ length
) & ~PAGE_MASK
;
3379 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3380 DESCRIPTOR_INPUT_LAST
|
3381 DESCRIPTOR_BRANCH_ALWAYS
);
3382 if (packet
->interrupt
&& i
== packet_count
- 1)
3383 pd
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3385 context_append(&ctx
->context
, d
, z
, header_z
);
3391 static int queue_iso_buffer_fill(struct iso_context
*ctx
,
3392 struct fw_iso_packet
*packet
,
3393 struct fw_iso_buffer
*buffer
,
3394 unsigned long payload
)
3396 struct descriptor
*d
;
3397 dma_addr_t d_bus
, page_bus
;
3398 int page
, offset
, rest
, z
, i
, length
;
3400 page
= payload
>> PAGE_SHIFT
;
3401 offset
= payload
& ~PAGE_MASK
;
3402 rest
= packet
->payload_length
;
3404 /* We need one descriptor for each page in the buffer. */
3405 z
= DIV_ROUND_UP(offset
+ rest
, PAGE_SIZE
);
3407 if (WARN_ON(offset
& 3 || rest
& 3 || page
+ z
> buffer
->page_count
))
3410 for (i
= 0; i
< z
; i
++) {
3411 d
= context_get_descriptors(&ctx
->context
, 1, &d_bus
);
3415 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
3416 DESCRIPTOR_BRANCH_ALWAYS
);
3417 if (packet
->skip
&& i
== 0)
3418 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
3419 if (packet
->interrupt
&& i
== z
- 1)
3420 d
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3422 if (offset
+ rest
< PAGE_SIZE
)
3425 length
= PAGE_SIZE
- offset
;
3426 d
->req_count
= cpu_to_le16(length
);
3427 d
->res_count
= d
->req_count
;
3428 d
->transfer_status
= 0;
3430 page_bus
= page_private(buffer
->pages
[page
]);
3431 d
->data_address
= cpu_to_le32(page_bus
+ offset
);
3433 dma_sync_single_range_for_device(ctx
->context
.ohci
->card
.device
,
3434 page_bus
, offset
, length
,
3441 context_append(&ctx
->context
, d
, 1, 0);
3447 static int ohci_queue_iso(struct fw_iso_context
*base
,
3448 struct fw_iso_packet
*packet
,
3449 struct fw_iso_buffer
*buffer
,
3450 unsigned long payload
)
3452 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3453 unsigned long flags
;
3456 spin_lock_irqsave(&ctx
->context
.ohci
->lock
, flags
);
3457 switch (base
->type
) {
3458 case FW_ISO_CONTEXT_TRANSMIT
:
3459 ret
= queue_iso_transmit(ctx
, packet
, buffer
, payload
);
3461 case FW_ISO_CONTEXT_RECEIVE
:
3462 ret
= queue_iso_packet_per_buffer(ctx
, packet
, buffer
, payload
);
3464 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3465 ret
= queue_iso_buffer_fill(ctx
, packet
, buffer
, payload
);
3468 spin_unlock_irqrestore(&ctx
->context
.ohci
->lock
, flags
);
3473 static void ohci_flush_queue_iso(struct fw_iso_context
*base
)
3475 struct context
*ctx
=
3476 &container_of(base
, struct iso_context
, base
)->context
;
3478 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
3481 static int ohci_flush_iso_completions(struct fw_iso_context
*base
)
3483 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3486 tasklet_disable(&ctx
->context
.tasklet
);
3488 if (!test_and_set_bit_lock(0, &ctx
->flushing_completions
)) {
3489 context_tasklet((unsigned long)&ctx
->context
);
3491 switch (base
->type
) {
3492 case FW_ISO_CONTEXT_TRANSMIT
:
3493 case FW_ISO_CONTEXT_RECEIVE
:
3494 if (ctx
->header_length
!= 0)
3495 flush_iso_completions(ctx
);
3497 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3498 if (ctx
->mc_completed
!= 0)
3499 flush_ir_buffer_fill(ctx
);
3505 clear_bit_unlock(0, &ctx
->flushing_completions
);
3506 smp_mb__after_atomic();
3509 tasklet_enable(&ctx
->context
.tasklet
);
3514 static const struct fw_card_driver ohci_driver
= {
3515 .enable
= ohci_enable
,
3516 .read_phy_reg
= ohci_read_phy_reg
,
3517 .update_phy_reg
= ohci_update_phy_reg
,
3518 .set_config_rom
= ohci_set_config_rom
,
3519 .send_request
= ohci_send_request
,
3520 .send_response
= ohci_send_response
,
3521 .cancel_packet
= ohci_cancel_packet
,
3522 .enable_phys_dma
= ohci_enable_phys_dma
,
3523 .read_csr
= ohci_read_csr
,
3524 .write_csr
= ohci_write_csr
,
3526 .allocate_iso_context
= ohci_allocate_iso_context
,
3527 .free_iso_context
= ohci_free_iso_context
,
3528 .set_iso_channels
= ohci_set_iso_channels
,
3529 .queue_iso
= ohci_queue_iso
,
3530 .flush_queue_iso
= ohci_flush_queue_iso
,
3531 .flush_iso_completions
= ohci_flush_iso_completions
,
3532 .start_iso
= ohci_start_iso
,
3533 .stop_iso
= ohci_stop_iso
,
3536 #ifdef CONFIG_PPC_PMAC
3537 static void pmac_ohci_on(struct pci_dev
*dev
)
3539 if (machine_is(powermac
)) {
3540 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3543 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 1);
3544 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 1);
3549 static void pmac_ohci_off(struct pci_dev
*dev
)
3551 if (machine_is(powermac
)) {
3552 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3555 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 0);
3556 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 0);
3561 static inline void pmac_ohci_on(struct pci_dev
*dev
) {}
3562 static inline void pmac_ohci_off(struct pci_dev
*dev
) {}
3563 #endif /* CONFIG_PPC_PMAC */
3565 static int pci_probe(struct pci_dev
*dev
,
3566 const struct pci_device_id
*ent
)
3568 struct fw_ohci
*ohci
;
3569 u32 bus_options
, max_receive
, link_speed
, version
;
3574 if (dev
->vendor
== PCI_VENDOR_ID_PINNACLE_SYSTEMS
) {
3575 dev_err(&dev
->dev
, "Pinnacle MovieBoard is not yet supported\n");
3579 ohci
= kzalloc(sizeof(*ohci
), GFP_KERNEL
);
3585 fw_card_initialize(&ohci
->card
, &ohci_driver
, &dev
->dev
);
3589 err
= pci_enable_device(dev
);
3591 dev_err(&dev
->dev
, "failed to enable OHCI hardware\n");
3595 pci_set_master(dev
);
3596 pci_write_config_dword(dev
, OHCI1394_PCI_HCI_Control
, 0);
3597 pci_set_drvdata(dev
, ohci
);
3599 spin_lock_init(&ohci
->lock
);
3600 mutex_init(&ohci
->phy_reg_mutex
);
3602 INIT_WORK(&ohci
->bus_reset_work
, bus_reset_work
);
3604 if (!(pci_resource_flags(dev
, 0) & IORESOURCE_MEM
) ||
3605 pci_resource_len(dev
, 0) < OHCI1394_REGISTER_SIZE
) {
3606 ohci_err(ohci
, "invalid MMIO resource\n");
3611 err
= pci_request_region(dev
, 0, ohci_driver_name
);
3613 ohci_err(ohci
, "MMIO resource unavailable\n");
3617 ohci
->registers
= pci_iomap(dev
, 0, OHCI1394_REGISTER_SIZE
);
3618 if (ohci
->registers
== NULL
) {
3619 ohci_err(ohci
, "failed to remap registers\n");
3624 for (i
= 0; i
< ARRAY_SIZE(ohci_quirks
); i
++)
3625 if ((ohci_quirks
[i
].vendor
== dev
->vendor
) &&
3626 (ohci_quirks
[i
].device
== (unsigned short)PCI_ANY_ID
||
3627 ohci_quirks
[i
].device
== dev
->device
) &&
3628 (ohci_quirks
[i
].revision
== (unsigned short)PCI_ANY_ID
||
3629 ohci_quirks
[i
].revision
>= dev
->revision
)) {
3630 ohci
->quirks
= ohci_quirks
[i
].flags
;
3634 ohci
->quirks
= param_quirks
;
3637 * Because dma_alloc_coherent() allocates at least one page,
3638 * we save space by using a common buffer for the AR request/
3639 * response descriptors and the self IDs buffer.
3641 BUILD_BUG_ON(AR_BUFFERS
* sizeof(struct descriptor
) > PAGE_SIZE
/4);
3642 BUILD_BUG_ON(SELF_ID_BUF_SIZE
> PAGE_SIZE
/2);
3643 ohci
->misc_buffer
= dma_alloc_coherent(ohci
->card
.device
,
3645 &ohci
->misc_buffer_bus
,
3647 if (!ohci
->misc_buffer
) {
3652 err
= ar_context_init(&ohci
->ar_request_ctx
, ohci
, 0,
3653 OHCI1394_AsReqRcvContextControlSet
);
3657 err
= ar_context_init(&ohci
->ar_response_ctx
, ohci
, PAGE_SIZE
/4,
3658 OHCI1394_AsRspRcvContextControlSet
);
3660 goto fail_arreq_ctx
;
3662 err
= context_init(&ohci
->at_request_ctx
, ohci
,
3663 OHCI1394_AsReqTrContextControlSet
, handle_at_packet
);
3665 goto fail_arrsp_ctx
;
3667 err
= context_init(&ohci
->at_response_ctx
, ohci
,
3668 OHCI1394_AsRspTrContextControlSet
, handle_at_packet
);
3670 goto fail_atreq_ctx
;
3672 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, ~0);
3673 ohci
->ir_context_channels
= ~0ULL;
3674 ohci
->ir_context_support
= reg_read(ohci
, OHCI1394_IsoRecvIntMaskSet
);
3675 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, ~0);
3676 ohci
->ir_context_mask
= ohci
->ir_context_support
;
3677 ohci
->n_ir
= hweight32(ohci
->ir_context_mask
);
3678 size
= sizeof(struct iso_context
) * ohci
->n_ir
;
3679 ohci
->ir_context_list
= kzalloc(size
, GFP_KERNEL
);
3681 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, ~0);
3682 ohci
->it_context_support
= reg_read(ohci
, OHCI1394_IsoXmitIntMaskSet
);
3683 /* JMicron JMB38x often shows 0 at first read, just ignore it */
3684 if (!ohci
->it_context_support
) {
3685 ohci_notice(ohci
, "overriding IsoXmitIntMask\n");
3686 ohci
->it_context_support
= 0xf;
3688 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, ~0);
3689 ohci
->it_context_mask
= ohci
->it_context_support
;
3690 ohci
->n_it
= hweight32(ohci
->it_context_mask
);
3691 size
= sizeof(struct iso_context
) * ohci
->n_it
;
3692 ohci
->it_context_list
= kzalloc(size
, GFP_KERNEL
);
3694 if (ohci
->it_context_list
== NULL
|| ohci
->ir_context_list
== NULL
) {
3699 ohci
->self_id
= ohci
->misc_buffer
+ PAGE_SIZE
/2;
3700 ohci
->self_id_bus
= ohci
->misc_buffer_bus
+ PAGE_SIZE
/2;
3702 bus_options
= reg_read(ohci
, OHCI1394_BusOptions
);
3703 max_receive
= (bus_options
>> 12) & 0xf;
3704 link_speed
= bus_options
& 0x7;
3705 guid
= ((u64
) reg_read(ohci
, OHCI1394_GUIDHi
) << 32) |
3706 reg_read(ohci
, OHCI1394_GUIDLo
);
3708 if (!(ohci
->quirks
& QUIRK_NO_MSI
))
3709 pci_enable_msi(dev
);
3710 if (request_irq(dev
->irq
, irq_handler
,
3711 pci_dev_msi_enabled(dev
) ? 0 : IRQF_SHARED
,
3712 ohci_driver_name
, ohci
)) {
3713 ohci_err(ohci
, "failed to allocate interrupt %d\n", dev
->irq
);
3718 err
= fw_card_add(&ohci
->card
, max_receive
, link_speed
, guid
);
3722 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
3724 "added OHCI v%x.%x device as card %d, "
3725 "%d IR + %d IT contexts, quirks 0x%x%s\n",
3726 version
>> 16, version
& 0xff, ohci
->card
.index
,
3727 ohci
->n_ir
, ohci
->n_it
, ohci
->quirks
,
3728 reg_read(ohci
, OHCI1394_PhyUpperBound
) ?
3734 free_irq(dev
->irq
, ohci
);
3736 pci_disable_msi(dev
);
3738 kfree(ohci
->ir_context_list
);
3739 kfree(ohci
->it_context_list
);
3740 context_release(&ohci
->at_response_ctx
);
3742 context_release(&ohci
->at_request_ctx
);
3744 ar_context_release(&ohci
->ar_response_ctx
);
3746 ar_context_release(&ohci
->ar_request_ctx
);
3748 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
3749 ohci
->misc_buffer
, ohci
->misc_buffer_bus
);
3751 pci_iounmap(dev
, ohci
->registers
);
3753 pci_release_region(dev
, 0);
3755 pci_disable_device(dev
);
3763 static void pci_remove(struct pci_dev
*dev
)
3765 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3768 * If the removal is happening from the suspend state, LPS won't be
3769 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3771 if (reg_read(ohci
, OHCI1394_HCControlSet
) & OHCI1394_HCControl_LPS
) {
3772 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
3775 cancel_work_sync(&ohci
->bus_reset_work
);
3776 fw_core_remove_card(&ohci
->card
);
3779 * FIXME: Fail all pending packets here, now that the upper
3780 * layers can't queue any more.
3783 software_reset(ohci
);
3784 free_irq(dev
->irq
, ohci
);
3786 if (ohci
->next_config_rom
&& ohci
->next_config_rom
!= ohci
->config_rom
)
3787 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3788 ohci
->next_config_rom
, ohci
->next_config_rom_bus
);
3789 if (ohci
->config_rom
)
3790 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3791 ohci
->config_rom
, ohci
->config_rom_bus
);
3792 ar_context_release(&ohci
->ar_request_ctx
);
3793 ar_context_release(&ohci
->ar_response_ctx
);
3794 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
3795 ohci
->misc_buffer
, ohci
->misc_buffer_bus
);
3796 context_release(&ohci
->at_request_ctx
);
3797 context_release(&ohci
->at_response_ctx
);
3798 kfree(ohci
->it_context_list
);
3799 kfree(ohci
->ir_context_list
);
3800 pci_disable_msi(dev
);
3801 pci_iounmap(dev
, ohci
->registers
);
3802 pci_release_region(dev
, 0);
3803 pci_disable_device(dev
);
3807 dev_notice(&dev
->dev
, "removed fw-ohci device\n");
3811 static int pci_suspend(struct pci_dev
*dev
, pm_message_t state
)
3813 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3816 software_reset(ohci
);
3817 err
= pci_save_state(dev
);
3819 ohci_err(ohci
, "pci_save_state failed\n");
3822 err
= pci_set_power_state(dev
, pci_choose_state(dev
, state
));
3824 ohci_err(ohci
, "pci_set_power_state failed with %d\n", err
);
3830 static int pci_resume(struct pci_dev
*dev
)
3832 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3836 pci_set_power_state(dev
, PCI_D0
);
3837 pci_restore_state(dev
);
3838 err
= pci_enable_device(dev
);
3840 ohci_err(ohci
, "pci_enable_device failed\n");
3844 /* Some systems don't setup GUID register on resume from ram */
3845 if (!reg_read(ohci
, OHCI1394_GUIDLo
) &&
3846 !reg_read(ohci
, OHCI1394_GUIDHi
)) {
3847 reg_write(ohci
, OHCI1394_GUIDLo
, (u32
)ohci
->card
.guid
);
3848 reg_write(ohci
, OHCI1394_GUIDHi
, (u32
)(ohci
->card
.guid
>> 32));
3851 err
= ohci_enable(&ohci
->card
, NULL
, 0);
3855 ohci_resume_iso_dma(ohci
);
3861 static const struct pci_device_id pci_table
[] = {
3862 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI
, ~0) },
3866 MODULE_DEVICE_TABLE(pci
, pci_table
);
3868 static struct pci_driver fw_ohci_pci_driver
= {
3869 .name
= ohci_driver_name
,
3870 .id_table
= pci_table
,
3872 .remove
= pci_remove
,
3874 .resume
= pci_resume
,
3875 .suspend
= pci_suspend
,
3879 static int __init
fw_ohci_init(void)
3881 selfid_workqueue
= alloc_workqueue(KBUILD_MODNAME
, WQ_MEM_RECLAIM
, 0);
3882 if (!selfid_workqueue
)
3885 return pci_register_driver(&fw_ohci_pci_driver
);
3888 static void __exit
fw_ohci_cleanup(void)
3890 pci_unregister_driver(&fw_ohci_pci_driver
);
3891 destroy_workqueue(selfid_workqueue
);
3894 module_init(fw_ohci_init
);
3895 module_exit(fw_ohci_cleanup
);
3897 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3898 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3899 MODULE_LICENSE("GPL");
3901 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3902 MODULE_ALIAS("ohci1394");