1 // SPDX-License-Identifier: GPL-2.0
3 * FDT related Helper functions used by the EFI stub on multiple
4 * architectures. This should be #included by the EFI stub
5 * implementation files.
7 * Copyright 2013 Linaro Limited; author Roy Franz
10 #include <linux/efi.h>
11 #include <linux/libfdt.h>
16 #define EFI_DT_ADDR_CELLS_DEFAULT 2
17 #define EFI_DT_SIZE_CELLS_DEFAULT 2
19 static void fdt_update_cell_size(efi_system_table_t
*sys_table
, void *fdt
)
23 offset
= fdt_path_offset(fdt
, "/");
24 /* Set the #address-cells and #size-cells values for an empty tree */
26 fdt_setprop_u32(fdt
, offset
, "#address-cells", EFI_DT_ADDR_CELLS_DEFAULT
);
27 fdt_setprop_u32(fdt
, offset
, "#size-cells", EFI_DT_SIZE_CELLS_DEFAULT
);
30 static efi_status_t
update_fdt(efi_system_table_t
*sys_table
, void *orig_fdt
,
31 unsigned long orig_fdt_size
,
32 void *fdt
, int new_fdt_size
, char *cmdline_ptr
,
33 u64 initrd_addr
, u64 initrd_size
)
40 /* Do some checks on provided FDT, if it exists: */
42 if (fdt_check_header(orig_fdt
)) {
43 pr_efi_err(sys_table
, "Device Tree header not valid!\n");
44 return EFI_LOAD_ERROR
;
47 * We don't get the size of the FDT if we get if from a
48 * configuration table:
50 if (orig_fdt_size
&& fdt_totalsize(orig_fdt
) > orig_fdt_size
) {
51 pr_efi_err(sys_table
, "Truncated device tree! foo!\n");
52 return EFI_LOAD_ERROR
;
57 status
= fdt_open_into(orig_fdt
, fdt
, new_fdt_size
);
59 status
= fdt_create_empty_tree(fdt
, new_fdt_size
);
62 * Any failure from the following function is
65 fdt_update_cell_size(sys_table
, fdt
);
73 * Delete all memory reserve map entries. When booting via UEFI,
74 * kernel will use the UEFI memory map to find reserved regions.
76 num_rsv
= fdt_num_mem_rsv(fdt
);
78 fdt_del_mem_rsv(fdt
, num_rsv
);
80 node
= fdt_subnode_offset(fdt
, 0, "chosen");
82 node
= fdt_add_subnode(fdt
, 0, "chosen");
84 /* 'node' is an error code when negative: */
90 if (cmdline_ptr
!= NULL
&& strlen(cmdline_ptr
) > 0) {
91 status
= fdt_setprop(fdt
, node
, "bootargs", cmdline_ptr
,
92 strlen(cmdline_ptr
) + 1);
97 /* Set initrd address/end in device tree, if present */
98 if (initrd_size
!= 0) {
100 u64 initrd_image_start
= cpu_to_fdt64(initrd_addr
);
102 status
= fdt_setprop_var(fdt
, node
, "linux,initrd-start", initrd_image_start
);
106 initrd_image_end
= cpu_to_fdt64(initrd_addr
+ initrd_size
);
107 status
= fdt_setprop_var(fdt
, node
, "linux,initrd-end", initrd_image_end
);
112 /* Add FDT entries for EFI runtime services in chosen node. */
113 node
= fdt_subnode_offset(fdt
, 0, "chosen");
114 fdt_val64
= cpu_to_fdt64((u64
)(unsigned long)sys_table
);
116 status
= fdt_setprop_var(fdt
, node
, "linux,uefi-system-table", fdt_val64
);
120 fdt_val64
= U64_MAX
; /* placeholder */
122 status
= fdt_setprop_var(fdt
, node
, "linux,uefi-mmap-start", fdt_val64
);
126 fdt_val32
= U32_MAX
; /* placeholder */
128 status
= fdt_setprop_var(fdt
, node
, "linux,uefi-mmap-size", fdt_val32
);
132 status
= fdt_setprop_var(fdt
, node
, "linux,uefi-mmap-desc-size", fdt_val32
);
136 status
= fdt_setprop_var(fdt
, node
, "linux,uefi-mmap-desc-ver", fdt_val32
);
140 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE
)) {
141 efi_status_t efi_status
;
143 efi_status
= efi_get_random_bytes(sys_table
, sizeof(fdt_val64
),
145 if (efi_status
== EFI_SUCCESS
) {
146 status
= fdt_setprop_var(fdt
, node
, "kaslr-seed", fdt_val64
);
149 } else if (efi_status
!= EFI_NOT_FOUND
) {
154 /* Shrink the FDT back to its minimum size: */
160 if (status
== -FDT_ERR_NOSPACE
)
161 return EFI_BUFFER_TOO_SMALL
;
163 return EFI_LOAD_ERROR
;
166 static efi_status_t
update_fdt_memmap(void *fdt
, struct efi_boot_memmap
*map
)
168 int node
= fdt_path_offset(fdt
, "/chosen");
174 return EFI_LOAD_ERROR
;
176 fdt_val64
= cpu_to_fdt64((unsigned long)*map
->map
);
178 err
= fdt_setprop_inplace_var(fdt
, node
, "linux,uefi-mmap-start", fdt_val64
);
180 return EFI_LOAD_ERROR
;
182 fdt_val32
= cpu_to_fdt32(*map
->map_size
);
184 err
= fdt_setprop_inplace_var(fdt
, node
, "linux,uefi-mmap-size", fdt_val32
);
186 return EFI_LOAD_ERROR
;
188 fdt_val32
= cpu_to_fdt32(*map
->desc_size
);
190 err
= fdt_setprop_inplace_var(fdt
, node
, "linux,uefi-mmap-desc-size", fdt_val32
);
192 return EFI_LOAD_ERROR
;
194 fdt_val32
= cpu_to_fdt32(*map
->desc_ver
);
196 err
= fdt_setprop_inplace_var(fdt
, node
, "linux,uefi-mmap-desc-ver", fdt_val32
);
198 return EFI_LOAD_ERROR
;
203 #ifndef EFI_FDT_ALIGN
204 # define EFI_FDT_ALIGN EFI_PAGE_SIZE
207 struct exit_boot_struct
{
208 efi_memory_desc_t
*runtime_map
;
209 int *runtime_entry_count
;
213 static efi_status_t
exit_boot_func(efi_system_table_t
*sys_table_arg
,
214 struct efi_boot_memmap
*map
,
217 struct exit_boot_struct
*p
= priv
;
219 * Update the memory map with virtual addresses. The function will also
220 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
221 * entries so that we can pass it straight to SetVirtualAddressMap()
223 efi_get_virtmap(*map
->map
, *map
->map_size
, *map
->desc_size
,
224 p
->runtime_map
, p
->runtime_entry_count
);
226 return update_fdt_memmap(p
->new_fdt_addr
, map
);
230 # define MAX_FDT_SIZE SZ_2M
234 * Allocate memory for a new FDT, then add EFI, commandline, and
235 * initrd related fields to the FDT. This routine increases the
236 * FDT allocation size until the allocated memory is large
237 * enough. EFI allocations are in EFI_PAGE_SIZE granules,
238 * which are fixed at 4K bytes, so in most cases the first
239 * allocation should succeed.
240 * EFI boot services are exited at the end of this function.
241 * There must be no allocations between the get_memory_map()
242 * call and the exit_boot_services() call, so the exiting of
243 * boot services is very tightly tied to the creation of the FDT
244 * with the final memory map in it.
247 efi_status_t
allocate_new_fdt_and_exit_boot(efi_system_table_t
*sys_table
,
249 unsigned long *new_fdt_addr
,
250 unsigned long max_addr
,
251 u64 initrd_addr
, u64 initrd_size
,
253 unsigned long fdt_addr
,
254 unsigned long fdt_size
)
256 unsigned long map_size
, desc_size
, buff_size
;
258 unsigned long mmap_key
;
259 efi_memory_desc_t
*memory_map
, *runtime_map
;
261 int runtime_entry_count
;
262 struct efi_boot_memmap map
;
263 struct exit_boot_struct priv
;
265 map
.map
= &runtime_map
;
266 map
.map_size
= &map_size
;
267 map
.desc_size
= &desc_size
;
268 map
.desc_ver
= &desc_ver
;
269 map
.key_ptr
= &mmap_key
;
270 map
.buff_size
= &buff_size
;
273 * Get a copy of the current memory map that we will use to prepare
274 * the input for SetVirtualAddressMap(). We don't have to worry about
275 * subsequent allocations adding entries, since they could not affect
276 * the number of EFI_MEMORY_RUNTIME regions.
278 status
= efi_get_memory_map(sys_table
, &map
);
279 if (status
!= EFI_SUCCESS
) {
280 pr_efi_err(sys_table
, "Unable to retrieve UEFI memory map.\n");
284 pr_efi(sys_table
, "Exiting boot services and installing virtual address map...\n");
286 map
.map
= &memory_map
;
287 status
= efi_high_alloc(sys_table
, MAX_FDT_SIZE
, EFI_FDT_ALIGN
,
288 new_fdt_addr
, max_addr
);
289 if (status
!= EFI_SUCCESS
) {
290 pr_efi_err(sys_table
, "Unable to allocate memory for new device tree.\n");
295 * Now that we have done our final memory allocation (and free)
296 * we can get the memory map key needed for exit_boot_services().
298 status
= efi_get_memory_map(sys_table
, &map
);
299 if (status
!= EFI_SUCCESS
)
300 goto fail_free_new_fdt
;
302 status
= update_fdt(sys_table
, (void *)fdt_addr
, fdt_size
,
303 (void *)*new_fdt_addr
, MAX_FDT_SIZE
, cmdline_ptr
,
304 initrd_addr
, initrd_size
);
306 if (status
!= EFI_SUCCESS
) {
307 pr_efi_err(sys_table
, "Unable to construct new device tree.\n");
308 goto fail_free_new_fdt
;
311 runtime_entry_count
= 0;
312 priv
.runtime_map
= runtime_map
;
313 priv
.runtime_entry_count
= &runtime_entry_count
;
314 priv
.new_fdt_addr
= (void *)*new_fdt_addr
;
316 status
= efi_exit_boot_services(sys_table
, handle
, &map
, &priv
, exit_boot_func
);
318 if (status
== EFI_SUCCESS
) {
319 efi_set_virtual_address_map_t
*svam
;
324 /* Install the new virtual address map */
325 svam
= sys_table
->runtime
->set_virtual_address_map
;
326 status
= svam(runtime_entry_count
* desc_size
, desc_size
,
327 desc_ver
, runtime_map
);
330 * We are beyond the point of no return here, so if the call to
331 * SetVirtualAddressMap() failed, we need to signal that to the
332 * incoming kernel but proceed normally otherwise.
334 if (status
!= EFI_SUCCESS
) {
338 * Set the virtual address field of all
339 * EFI_MEMORY_RUNTIME entries to 0. This will signal
340 * the incoming kernel that no virtual translation has
343 for (l
= 0; l
< map_size
; l
+= desc_size
) {
344 efi_memory_desc_t
*p
= (void *)memory_map
+ l
;
346 if (p
->attribute
& EFI_MEMORY_RUNTIME
)
353 pr_efi_err(sys_table
, "Exit boot services failed.\n");
356 efi_free(sys_table
, MAX_FDT_SIZE
, *new_fdt_addr
);
359 sys_table
->boottime
->free_pool(runtime_map
);
361 return EFI_LOAD_ERROR
;
364 void *get_fdt(efi_system_table_t
*sys_table
, unsigned long *fdt_size
)
366 efi_guid_t fdt_guid
= DEVICE_TREE_GUID
;
367 efi_config_table_t
*tables
;
370 tables
= (efi_config_table_t
*)sys_table
->tables
;
372 for (i
= 0; i
< sys_table
->nr_tables
; i
++) {
375 if (efi_guidcmp(tables
[i
].guid
, fdt_guid
) != 0)
378 fdt
= (void *)tables
[i
].table
;
379 if (fdt_check_header(fdt
) != 0) {
380 pr_efi_err(sys_table
, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
383 *fdt_size
= fdt_totalsize(fdt
);