dt-bindings: mtd: ingenic: Use standard ecc-engine property
[linux/fpc-iii.git] / drivers / firmware / tegra / ivc.c
blob00de793e6423a03c235a6678ee1d16d88edd8f4a
1 /*
2 * Copyright (c) 2014-2016, NVIDIA CORPORATION. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
14 #include <soc/tegra/ivc.h>
16 #define TEGRA_IVC_ALIGN 64
19 * IVC channel reset protocol.
21 * Each end uses its tx_channel.state to indicate its synchronization state.
23 enum tegra_ivc_state {
25 * This value is zero for backwards compatibility with services that
26 * assume channels to be initially zeroed. Such channels are in an
27 * initially valid state, but cannot be asynchronously reset, and must
28 * maintain a valid state at all times.
30 * The transmitting end can enter the established state from the sync or
31 * ack state when it observes the receiving endpoint in the ack or
32 * established state, indicating that has cleared the counters in our
33 * rx_channel.
35 TEGRA_IVC_STATE_ESTABLISHED = 0,
38 * If an endpoint is observed in the sync state, the remote endpoint is
39 * allowed to clear the counters it owns asynchronously with respect to
40 * the current endpoint. Therefore, the current endpoint is no longer
41 * allowed to communicate.
43 TEGRA_IVC_STATE_SYNC,
46 * When the transmitting end observes the receiving end in the sync
47 * state, it can clear the w_count and r_count and transition to the ack
48 * state. If the remote endpoint observes us in the ack state, it can
49 * return to the established state once it has cleared its counters.
51 TEGRA_IVC_STATE_ACK
55 * This structure is divided into two-cache aligned parts, the first is only
56 * written through the tx.channel pointer, while the second is only written
57 * through the rx.channel pointer. This delineates ownership of the cache
58 * lines, which is critical to performance and necessary in non-cache coherent
59 * implementations.
61 struct tegra_ivc_header {
62 union {
63 struct {
64 /* fields owned by the transmitting end */
65 u32 count;
66 u32 state;
69 u8 pad[TEGRA_IVC_ALIGN];
70 } tx;
72 union {
73 /* fields owned by the receiving end */
74 u32 count;
75 u8 pad[TEGRA_IVC_ALIGN];
76 } rx;
79 static inline void tegra_ivc_invalidate(struct tegra_ivc *ivc, dma_addr_t phys)
81 if (!ivc->peer)
82 return;
84 dma_sync_single_for_cpu(ivc->peer, phys, TEGRA_IVC_ALIGN,
85 DMA_FROM_DEVICE);
88 static inline void tegra_ivc_flush(struct tegra_ivc *ivc, dma_addr_t phys)
90 if (!ivc->peer)
91 return;
93 dma_sync_single_for_device(ivc->peer, phys, TEGRA_IVC_ALIGN,
94 DMA_TO_DEVICE);
97 static inline bool tegra_ivc_empty(struct tegra_ivc *ivc,
98 struct tegra_ivc_header *header)
101 * This function performs multiple checks on the same values with
102 * security implications, so create snapshots with READ_ONCE() to
103 * ensure that these checks use the same values.
105 u32 tx = READ_ONCE(header->tx.count);
106 u32 rx = READ_ONCE(header->rx.count);
109 * Perform an over-full check to prevent denial of service attacks
110 * where a server could be easily fooled into believing that there's
111 * an extremely large number of frames ready, since receivers are not
112 * expected to check for full or over-full conditions.
114 * Although the channel isn't empty, this is an invalid case caused by
115 * a potentially malicious peer, so returning empty is safer, because
116 * it gives the impression that the channel has gone silent.
118 if (tx - rx > ivc->num_frames)
119 return true;
121 return tx == rx;
124 static inline bool tegra_ivc_full(struct tegra_ivc *ivc,
125 struct tegra_ivc_header *header)
127 u32 tx = READ_ONCE(header->tx.count);
128 u32 rx = READ_ONCE(header->rx.count);
131 * Invalid cases where the counters indicate that the queue is over
132 * capacity also appear full.
134 return tx - rx >= ivc->num_frames;
137 static inline u32 tegra_ivc_available(struct tegra_ivc *ivc,
138 struct tegra_ivc_header *header)
140 u32 tx = READ_ONCE(header->tx.count);
141 u32 rx = READ_ONCE(header->rx.count);
144 * This function isn't expected to be used in scenarios where an
145 * over-full situation can lead to denial of service attacks. See the
146 * comment in tegra_ivc_empty() for an explanation about special
147 * over-full considerations.
149 return tx - rx;
152 static inline void tegra_ivc_advance_tx(struct tegra_ivc *ivc)
154 WRITE_ONCE(ivc->tx.channel->tx.count,
155 READ_ONCE(ivc->tx.channel->tx.count) + 1);
157 if (ivc->tx.position == ivc->num_frames - 1)
158 ivc->tx.position = 0;
159 else
160 ivc->tx.position++;
163 static inline void tegra_ivc_advance_rx(struct tegra_ivc *ivc)
165 WRITE_ONCE(ivc->rx.channel->rx.count,
166 READ_ONCE(ivc->rx.channel->rx.count) + 1);
168 if (ivc->rx.position == ivc->num_frames - 1)
169 ivc->rx.position = 0;
170 else
171 ivc->rx.position++;
174 static inline int tegra_ivc_check_read(struct tegra_ivc *ivc)
176 unsigned int offset = offsetof(struct tegra_ivc_header, tx.count);
179 * tx.channel->state is set locally, so it is not synchronized with
180 * state from the remote peer. The remote peer cannot reset its
181 * transmit counters until we've acknowledged its synchronization
182 * request, so no additional synchronization is required because an
183 * asynchronous transition of rx.channel->state to
184 * TEGRA_IVC_STATE_ACK is not allowed.
186 if (ivc->tx.channel->tx.state != TEGRA_IVC_STATE_ESTABLISHED)
187 return -ECONNRESET;
190 * Avoid unnecessary invalidations when performing repeated accesses
191 * to an IVC channel by checking the old queue pointers first.
193 * Synchronization is only necessary when these pointers indicate
194 * empty or full.
196 if (!tegra_ivc_empty(ivc, ivc->rx.channel))
197 return 0;
199 tegra_ivc_invalidate(ivc, ivc->rx.phys + offset);
201 if (tegra_ivc_empty(ivc, ivc->rx.channel))
202 return -ENOSPC;
204 return 0;
207 static inline int tegra_ivc_check_write(struct tegra_ivc *ivc)
209 unsigned int offset = offsetof(struct tegra_ivc_header, rx.count);
211 if (ivc->tx.channel->tx.state != TEGRA_IVC_STATE_ESTABLISHED)
212 return -ECONNRESET;
214 if (!tegra_ivc_full(ivc, ivc->tx.channel))
215 return 0;
217 tegra_ivc_invalidate(ivc, ivc->tx.phys + offset);
219 if (tegra_ivc_full(ivc, ivc->tx.channel))
220 return -ENOSPC;
222 return 0;
225 static void *tegra_ivc_frame_virt(struct tegra_ivc *ivc,
226 struct tegra_ivc_header *header,
227 unsigned int frame)
229 if (WARN_ON(frame >= ivc->num_frames))
230 return ERR_PTR(-EINVAL);
232 return (void *)(header + 1) + ivc->frame_size * frame;
235 static inline dma_addr_t tegra_ivc_frame_phys(struct tegra_ivc *ivc,
236 dma_addr_t phys,
237 unsigned int frame)
239 unsigned long offset;
241 offset = sizeof(struct tegra_ivc_header) + ivc->frame_size * frame;
243 return phys + offset;
246 static inline void tegra_ivc_invalidate_frame(struct tegra_ivc *ivc,
247 dma_addr_t phys,
248 unsigned int frame,
249 unsigned int offset,
250 size_t size)
252 if (!ivc->peer || WARN_ON(frame >= ivc->num_frames))
253 return;
255 phys = tegra_ivc_frame_phys(ivc, phys, frame) + offset;
257 dma_sync_single_for_cpu(ivc->peer, phys, size, DMA_FROM_DEVICE);
260 static inline void tegra_ivc_flush_frame(struct tegra_ivc *ivc,
261 dma_addr_t phys,
262 unsigned int frame,
263 unsigned int offset,
264 size_t size)
266 if (!ivc->peer || WARN_ON(frame >= ivc->num_frames))
267 return;
269 phys = tegra_ivc_frame_phys(ivc, phys, frame) + offset;
271 dma_sync_single_for_device(ivc->peer, phys, size, DMA_TO_DEVICE);
274 /* directly peek at the next frame rx'ed */
275 void *tegra_ivc_read_get_next_frame(struct tegra_ivc *ivc)
277 int err;
279 if (WARN_ON(ivc == NULL))
280 return ERR_PTR(-EINVAL);
282 err = tegra_ivc_check_read(ivc);
283 if (err < 0)
284 return ERR_PTR(err);
287 * Order observation of ivc->rx.position potentially indicating new
288 * data before data read.
290 smp_rmb();
292 tegra_ivc_invalidate_frame(ivc, ivc->rx.phys, ivc->rx.position, 0,
293 ivc->frame_size);
295 return tegra_ivc_frame_virt(ivc, ivc->rx.channel, ivc->rx.position);
297 EXPORT_SYMBOL(tegra_ivc_read_get_next_frame);
299 int tegra_ivc_read_advance(struct tegra_ivc *ivc)
301 unsigned int rx = offsetof(struct tegra_ivc_header, rx.count);
302 unsigned int tx = offsetof(struct tegra_ivc_header, tx.count);
303 int err;
306 * No read barriers or synchronization here: the caller is expected to
307 * have already observed the channel non-empty. This check is just to
308 * catch programming errors.
310 err = tegra_ivc_check_read(ivc);
311 if (err < 0)
312 return err;
314 tegra_ivc_advance_rx(ivc);
316 tegra_ivc_flush(ivc, ivc->rx.phys + rx);
319 * Ensure our write to ivc->rx.position occurs before our read from
320 * ivc->tx.position.
322 smp_mb();
325 * Notify only upon transition from full to non-full. The available
326 * count can only asynchronously increase, so the worst possible
327 * side-effect will be a spurious notification.
329 tegra_ivc_invalidate(ivc, ivc->rx.phys + tx);
331 if (tegra_ivc_available(ivc, ivc->rx.channel) == ivc->num_frames - 1)
332 ivc->notify(ivc, ivc->notify_data);
334 return 0;
336 EXPORT_SYMBOL(tegra_ivc_read_advance);
338 /* directly poke at the next frame to be tx'ed */
339 void *tegra_ivc_write_get_next_frame(struct tegra_ivc *ivc)
341 int err;
343 err = tegra_ivc_check_write(ivc);
344 if (err < 0)
345 return ERR_PTR(err);
347 return tegra_ivc_frame_virt(ivc, ivc->tx.channel, ivc->tx.position);
349 EXPORT_SYMBOL(tegra_ivc_write_get_next_frame);
351 /* advance the tx buffer */
352 int tegra_ivc_write_advance(struct tegra_ivc *ivc)
354 unsigned int tx = offsetof(struct tegra_ivc_header, tx.count);
355 unsigned int rx = offsetof(struct tegra_ivc_header, rx.count);
356 int err;
358 err = tegra_ivc_check_write(ivc);
359 if (err < 0)
360 return err;
362 tegra_ivc_flush_frame(ivc, ivc->tx.phys, ivc->tx.position, 0,
363 ivc->frame_size);
366 * Order any possible stores to the frame before update of
367 * ivc->tx.position.
369 smp_wmb();
371 tegra_ivc_advance_tx(ivc);
372 tegra_ivc_flush(ivc, ivc->tx.phys + tx);
375 * Ensure our write to ivc->tx.position occurs before our read from
376 * ivc->rx.position.
378 smp_mb();
381 * Notify only upon transition from empty to non-empty. The available
382 * count can only asynchronously decrease, so the worst possible
383 * side-effect will be a spurious notification.
385 tegra_ivc_invalidate(ivc, ivc->tx.phys + rx);
387 if (tegra_ivc_available(ivc, ivc->tx.channel) == 1)
388 ivc->notify(ivc, ivc->notify_data);
390 return 0;
392 EXPORT_SYMBOL(tegra_ivc_write_advance);
394 void tegra_ivc_reset(struct tegra_ivc *ivc)
396 unsigned int offset = offsetof(struct tegra_ivc_header, tx.count);
398 ivc->tx.channel->tx.state = TEGRA_IVC_STATE_SYNC;
399 tegra_ivc_flush(ivc, ivc->tx.phys + offset);
400 ivc->notify(ivc, ivc->notify_data);
402 EXPORT_SYMBOL(tegra_ivc_reset);
405 * =======================================================
406 * IVC State Transition Table - see tegra_ivc_notified()
407 * =======================================================
409 * local remote action
410 * ----- ------ -----------------------------------
411 * SYNC EST <none>
412 * SYNC ACK reset counters; move to EST; notify
413 * SYNC SYNC reset counters; move to ACK; notify
414 * ACK EST move to EST; notify
415 * ACK ACK move to EST; notify
416 * ACK SYNC reset counters; move to ACK; notify
417 * EST EST <none>
418 * EST ACK <none>
419 * EST SYNC reset counters; move to ACK; notify
421 * ===============================================================
424 int tegra_ivc_notified(struct tegra_ivc *ivc)
426 unsigned int offset = offsetof(struct tegra_ivc_header, tx.count);
427 enum tegra_ivc_state state;
429 /* Copy the receiver's state out of shared memory. */
430 tegra_ivc_invalidate(ivc, ivc->rx.phys + offset);
431 state = READ_ONCE(ivc->rx.channel->tx.state);
433 if (state == TEGRA_IVC_STATE_SYNC) {
434 offset = offsetof(struct tegra_ivc_header, tx.count);
437 * Order observation of TEGRA_IVC_STATE_SYNC before stores
438 * clearing tx.channel.
440 smp_rmb();
443 * Reset tx.channel counters. The remote end is in the SYNC
444 * state and won't make progress until we change our state,
445 * so the counters are not in use at this time.
447 ivc->tx.channel->tx.count = 0;
448 ivc->rx.channel->rx.count = 0;
450 ivc->tx.position = 0;
451 ivc->rx.position = 0;
454 * Ensure that counters appear cleared before new state can be
455 * observed.
457 smp_wmb();
460 * Move to ACK state. We have just cleared our counters, so it
461 * is now safe for the remote end to start using these values.
463 ivc->tx.channel->tx.state = TEGRA_IVC_STATE_ACK;
464 tegra_ivc_flush(ivc, ivc->tx.phys + offset);
467 * Notify remote end to observe state transition.
469 ivc->notify(ivc, ivc->notify_data);
471 } else if (ivc->tx.channel->tx.state == TEGRA_IVC_STATE_SYNC &&
472 state == TEGRA_IVC_STATE_ACK) {
473 offset = offsetof(struct tegra_ivc_header, tx.count);
476 * Order observation of ivc_state_sync before stores clearing
477 * tx_channel.
479 smp_rmb();
482 * Reset tx.channel counters. The remote end is in the ACK
483 * state and won't make progress until we change our state,
484 * so the counters are not in use at this time.
486 ivc->tx.channel->tx.count = 0;
487 ivc->rx.channel->rx.count = 0;
489 ivc->tx.position = 0;
490 ivc->rx.position = 0;
493 * Ensure that counters appear cleared before new state can be
494 * observed.
496 smp_wmb();
499 * Move to ESTABLISHED state. We know that the remote end has
500 * already cleared its counters, so it is safe to start
501 * writing/reading on this channel.
503 ivc->tx.channel->tx.state = TEGRA_IVC_STATE_ESTABLISHED;
504 tegra_ivc_flush(ivc, ivc->tx.phys + offset);
507 * Notify remote end to observe state transition.
509 ivc->notify(ivc, ivc->notify_data);
511 } else if (ivc->tx.channel->tx.state == TEGRA_IVC_STATE_ACK) {
512 offset = offsetof(struct tegra_ivc_header, tx.count);
515 * At this point, we have observed the peer to be in either
516 * the ACK or ESTABLISHED state. Next, order observation of
517 * peer state before storing to tx.channel.
519 smp_rmb();
522 * Move to ESTABLISHED state. We know that we have previously
523 * cleared our counters, and we know that the remote end has
524 * cleared its counters, so it is safe to start writing/reading
525 * on this channel.
527 ivc->tx.channel->tx.state = TEGRA_IVC_STATE_ESTABLISHED;
528 tegra_ivc_flush(ivc, ivc->tx.phys + offset);
531 * Notify remote end to observe state transition.
533 ivc->notify(ivc, ivc->notify_data);
535 } else {
537 * There is no need to handle any further action. Either the
538 * channel is already fully established, or we are waiting for
539 * the remote end to catch up with our current state. Refer
540 * to the diagram in "IVC State Transition Table" above.
544 if (ivc->tx.channel->tx.state != TEGRA_IVC_STATE_ESTABLISHED)
545 return -EAGAIN;
547 return 0;
549 EXPORT_SYMBOL(tegra_ivc_notified);
551 size_t tegra_ivc_align(size_t size)
553 return ALIGN(size, TEGRA_IVC_ALIGN);
555 EXPORT_SYMBOL(tegra_ivc_align);
557 unsigned tegra_ivc_total_queue_size(unsigned queue_size)
559 if (!IS_ALIGNED(queue_size, TEGRA_IVC_ALIGN)) {
560 pr_err("%s: queue_size (%u) must be %u-byte aligned\n",
561 __func__, queue_size, TEGRA_IVC_ALIGN);
562 return 0;
565 return queue_size + sizeof(struct tegra_ivc_header);
567 EXPORT_SYMBOL(tegra_ivc_total_queue_size);
569 static int tegra_ivc_check_params(unsigned long rx, unsigned long tx,
570 unsigned int num_frames, size_t frame_size)
572 BUILD_BUG_ON(!IS_ALIGNED(offsetof(struct tegra_ivc_header, tx.count),
573 TEGRA_IVC_ALIGN));
574 BUILD_BUG_ON(!IS_ALIGNED(offsetof(struct tegra_ivc_header, rx.count),
575 TEGRA_IVC_ALIGN));
576 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct tegra_ivc_header),
577 TEGRA_IVC_ALIGN));
579 if ((uint64_t)num_frames * (uint64_t)frame_size >= 0x100000000UL) {
580 pr_err("num_frames * frame_size overflows\n");
581 return -EINVAL;
584 if (!IS_ALIGNED(frame_size, TEGRA_IVC_ALIGN)) {
585 pr_err("frame size not adequately aligned: %zu\n", frame_size);
586 return -EINVAL;
590 * The headers must at least be aligned enough for counters
591 * to be accessed atomically.
593 if (!IS_ALIGNED(rx, TEGRA_IVC_ALIGN)) {
594 pr_err("IVC channel start not aligned: %#lx\n", rx);
595 return -EINVAL;
598 if (!IS_ALIGNED(tx, TEGRA_IVC_ALIGN)) {
599 pr_err("IVC channel start not aligned: %#lx\n", tx);
600 return -EINVAL;
603 if (rx < tx) {
604 if (rx + frame_size * num_frames > tx) {
605 pr_err("queue regions overlap: %#lx + %zx > %#lx\n",
606 rx, frame_size * num_frames, tx);
607 return -EINVAL;
609 } else {
610 if (tx + frame_size * num_frames > rx) {
611 pr_err("queue regions overlap: %#lx + %zx > %#lx\n",
612 tx, frame_size * num_frames, rx);
613 return -EINVAL;
617 return 0;
620 int tegra_ivc_init(struct tegra_ivc *ivc, struct device *peer, void *rx,
621 dma_addr_t rx_phys, void *tx, dma_addr_t tx_phys,
622 unsigned int num_frames, size_t frame_size,
623 void (*notify)(struct tegra_ivc *ivc, void *data),
624 void *data)
626 size_t queue_size;
627 int err;
629 if (WARN_ON(!ivc || !notify))
630 return -EINVAL;
633 * All sizes that can be returned by communication functions should
634 * fit in an int.
636 if (frame_size > INT_MAX)
637 return -E2BIG;
639 err = tegra_ivc_check_params((unsigned long)rx, (unsigned long)tx,
640 num_frames, frame_size);
641 if (err < 0)
642 return err;
644 queue_size = tegra_ivc_total_queue_size(num_frames * frame_size);
646 if (peer) {
647 ivc->rx.phys = dma_map_single(peer, rx, queue_size,
648 DMA_BIDIRECTIONAL);
649 if (dma_mapping_error(peer, ivc->rx.phys))
650 return -ENOMEM;
652 ivc->tx.phys = dma_map_single(peer, tx, queue_size,
653 DMA_BIDIRECTIONAL);
654 if (dma_mapping_error(peer, ivc->tx.phys)) {
655 dma_unmap_single(peer, ivc->rx.phys, queue_size,
656 DMA_BIDIRECTIONAL);
657 return -ENOMEM;
659 } else {
660 ivc->rx.phys = rx_phys;
661 ivc->tx.phys = tx_phys;
664 ivc->rx.channel = rx;
665 ivc->tx.channel = tx;
666 ivc->peer = peer;
667 ivc->notify = notify;
668 ivc->notify_data = data;
669 ivc->frame_size = frame_size;
670 ivc->num_frames = num_frames;
673 * These values aren't necessarily correct until the channel has been
674 * reset.
676 ivc->tx.position = 0;
677 ivc->rx.position = 0;
679 return 0;
681 EXPORT_SYMBOL(tegra_ivc_init);
683 void tegra_ivc_cleanup(struct tegra_ivc *ivc)
685 if (ivc->peer) {
686 size_t size = tegra_ivc_total_queue_size(ivc->num_frames *
687 ivc->frame_size);
689 dma_unmap_single(ivc->peer, ivc->rx.phys, size,
690 DMA_BIDIRECTIONAL);
691 dma_unmap_single(ivc->peer, ivc->tx.phys, size,
692 DMA_BIDIRECTIONAL);
695 EXPORT_SYMBOL(tegra_ivc_cleanup);