dt-bindings: mtd: ingenic: Use standard ecc-engine property
[linux/fpc-iii.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_amdkfd_gfx_v7.c
blobff7fac7df34b5be7b7e46cabc1f743e3775a8761
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
23 #include <linux/fdtable.h>
24 #include <linux/uaccess.h>
25 #include <linux/firmware.h>
26 #include <linux/mmu_context.h>
27 #include <drm/drmP.h>
28 #include "amdgpu.h"
29 #include "amdgpu_amdkfd.h"
30 #include "cikd.h"
31 #include "cik_sdma.h"
32 #include "amdgpu_ucode.h"
33 #include "gfx_v7_0.h"
34 #include "gca/gfx_7_2_d.h"
35 #include "gca/gfx_7_2_enum.h"
36 #include "gca/gfx_7_2_sh_mask.h"
37 #include "oss/oss_2_0_d.h"
38 #include "oss/oss_2_0_sh_mask.h"
39 #include "gmc/gmc_7_1_d.h"
40 #include "gmc/gmc_7_1_sh_mask.h"
41 #include "cik_structs.h"
43 enum hqd_dequeue_request_type {
44 NO_ACTION = 0,
45 DRAIN_PIPE,
46 RESET_WAVES
49 enum {
50 MAX_TRAPID = 8, /* 3 bits in the bitfield. */
51 MAX_WATCH_ADDRESSES = 4
54 enum {
55 ADDRESS_WATCH_REG_ADDR_HI = 0,
56 ADDRESS_WATCH_REG_ADDR_LO,
57 ADDRESS_WATCH_REG_CNTL,
58 ADDRESS_WATCH_REG_MAX
61 /* not defined in the CI/KV reg file */
62 enum {
63 ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
64 ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
65 ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
66 /* extend the mask to 26 bits to match the low address field */
67 ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
68 ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
71 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
72 mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
73 mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
74 mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
75 mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
78 union TCP_WATCH_CNTL_BITS {
79 struct {
80 uint32_t mask:24;
81 uint32_t vmid:4;
82 uint32_t atc:1;
83 uint32_t mode:2;
84 uint32_t valid:1;
85 } bitfields, bits;
86 uint32_t u32All;
87 signed int i32All;
88 float f32All;
92 * Register access functions
95 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
96 uint32_t sh_mem_config, uint32_t sh_mem_ape1_base,
97 uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
99 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
100 unsigned int vmid);
102 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
103 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
104 uint32_t queue_id, uint32_t __user *wptr,
105 uint32_t wptr_shift, uint32_t wptr_mask,
106 struct mm_struct *mm);
107 static int kgd_hqd_dump(struct kgd_dev *kgd,
108 uint32_t pipe_id, uint32_t queue_id,
109 uint32_t (**dump)[2], uint32_t *n_regs);
110 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
111 uint32_t __user *wptr, struct mm_struct *mm);
112 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
113 uint32_t engine_id, uint32_t queue_id,
114 uint32_t (**dump)[2], uint32_t *n_regs);
115 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
116 uint32_t pipe_id, uint32_t queue_id);
118 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
119 enum kfd_preempt_type reset_type,
120 unsigned int utimeout, uint32_t pipe_id,
121 uint32_t queue_id);
122 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
123 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
124 unsigned int utimeout);
125 static int kgd_address_watch_disable(struct kgd_dev *kgd);
126 static int kgd_address_watch_execute(struct kgd_dev *kgd,
127 unsigned int watch_point_id,
128 uint32_t cntl_val,
129 uint32_t addr_hi,
130 uint32_t addr_lo);
131 static int kgd_wave_control_execute(struct kgd_dev *kgd,
132 uint32_t gfx_index_val,
133 uint32_t sq_cmd);
134 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
135 unsigned int watch_point_id,
136 unsigned int reg_offset);
138 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
139 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
140 uint8_t vmid);
142 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
143 static void set_scratch_backing_va(struct kgd_dev *kgd,
144 uint64_t va, uint32_t vmid);
145 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
146 uint64_t page_table_base);
147 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
148 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
149 static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd);
151 /* Because of REG_GET_FIELD() being used, we put this function in the
152 * asic specific file.
154 static int get_tile_config(struct kgd_dev *kgd,
155 struct tile_config *config)
157 struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
159 config->gb_addr_config = adev->gfx.config.gb_addr_config;
160 config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
161 MC_ARB_RAMCFG, NOOFBANK);
162 config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
163 MC_ARB_RAMCFG, NOOFRANKS);
165 config->tile_config_ptr = adev->gfx.config.tile_mode_array;
166 config->num_tile_configs =
167 ARRAY_SIZE(adev->gfx.config.tile_mode_array);
168 config->macro_tile_config_ptr =
169 adev->gfx.config.macrotile_mode_array;
170 config->num_macro_tile_configs =
171 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
173 return 0;
176 static const struct kfd2kgd_calls kfd2kgd = {
177 .program_sh_mem_settings = kgd_program_sh_mem_settings,
178 .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
179 .init_interrupts = kgd_init_interrupts,
180 .hqd_load = kgd_hqd_load,
181 .hqd_sdma_load = kgd_hqd_sdma_load,
182 .hqd_dump = kgd_hqd_dump,
183 .hqd_sdma_dump = kgd_hqd_sdma_dump,
184 .hqd_is_occupied = kgd_hqd_is_occupied,
185 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
186 .hqd_destroy = kgd_hqd_destroy,
187 .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
188 .address_watch_disable = kgd_address_watch_disable,
189 .address_watch_execute = kgd_address_watch_execute,
190 .wave_control_execute = kgd_wave_control_execute,
191 .address_watch_get_offset = kgd_address_watch_get_offset,
192 .get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
193 .get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
194 .get_fw_version = get_fw_version,
195 .set_scratch_backing_va = set_scratch_backing_va,
196 .get_tile_config = get_tile_config,
197 .set_vm_context_page_table_base = set_vm_context_page_table_base,
198 .invalidate_tlbs = invalidate_tlbs,
199 .invalidate_tlbs_vmid = invalidate_tlbs_vmid,
200 .read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg,
203 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
205 return (struct kfd2kgd_calls *)&kfd2kgd;
208 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
210 return (struct amdgpu_device *)kgd;
213 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
214 uint32_t queue, uint32_t vmid)
216 struct amdgpu_device *adev = get_amdgpu_device(kgd);
217 uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
219 mutex_lock(&adev->srbm_mutex);
220 WREG32(mmSRBM_GFX_CNTL, value);
223 static void unlock_srbm(struct kgd_dev *kgd)
225 struct amdgpu_device *adev = get_amdgpu_device(kgd);
227 WREG32(mmSRBM_GFX_CNTL, 0);
228 mutex_unlock(&adev->srbm_mutex);
231 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
232 uint32_t queue_id)
234 struct amdgpu_device *adev = get_amdgpu_device(kgd);
236 uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
237 uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
239 lock_srbm(kgd, mec, pipe, queue_id, 0);
242 static void release_queue(struct kgd_dev *kgd)
244 unlock_srbm(kgd);
247 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
248 uint32_t sh_mem_config,
249 uint32_t sh_mem_ape1_base,
250 uint32_t sh_mem_ape1_limit,
251 uint32_t sh_mem_bases)
253 struct amdgpu_device *adev = get_amdgpu_device(kgd);
255 lock_srbm(kgd, 0, 0, 0, vmid);
257 WREG32(mmSH_MEM_CONFIG, sh_mem_config);
258 WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
259 WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
260 WREG32(mmSH_MEM_BASES, sh_mem_bases);
262 unlock_srbm(kgd);
265 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
266 unsigned int vmid)
268 struct amdgpu_device *adev = get_amdgpu_device(kgd);
271 * We have to assume that there is no outstanding mapping.
272 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
273 * a mapping is in progress or because a mapping finished and the
274 * SW cleared it. So the protocol is to always wait & clear.
276 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
277 ATC_VMID0_PASID_MAPPING__VALID_MASK;
279 WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
281 while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
282 cpu_relax();
283 WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
285 /* Mapping vmid to pasid also for IH block */
286 WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
288 return 0;
291 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
293 struct amdgpu_device *adev = get_amdgpu_device(kgd);
294 uint32_t mec;
295 uint32_t pipe;
297 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
298 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
300 lock_srbm(kgd, mec, pipe, 0, 0);
302 WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
303 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
305 unlock_srbm(kgd);
307 return 0;
310 static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
312 uint32_t retval;
314 retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
315 m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
317 pr_debug("kfd: sdma base address: 0x%x\n", retval);
319 return retval;
322 static inline struct cik_mqd *get_mqd(void *mqd)
324 return (struct cik_mqd *)mqd;
327 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
329 return (struct cik_sdma_rlc_registers *)mqd;
332 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
333 uint32_t queue_id, uint32_t __user *wptr,
334 uint32_t wptr_shift, uint32_t wptr_mask,
335 struct mm_struct *mm)
337 struct amdgpu_device *adev = get_amdgpu_device(kgd);
338 struct cik_mqd *m;
339 uint32_t *mqd_hqd;
340 uint32_t reg, wptr_val, data;
341 bool valid_wptr = false;
343 m = get_mqd(mqd);
345 acquire_queue(kgd, pipe_id, queue_id);
347 /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
348 mqd_hqd = &m->cp_mqd_base_addr_lo;
350 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
351 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
353 /* Copy userspace write pointer value to register.
354 * Activate doorbell logic to monitor subsequent changes.
356 data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
357 CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
358 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
360 /* read_user_ptr may take the mm->mmap_sem.
361 * release srbm_mutex to avoid circular dependency between
362 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
364 release_queue(kgd);
365 valid_wptr = read_user_wptr(mm, wptr, wptr_val);
366 acquire_queue(kgd, pipe_id, queue_id);
367 if (valid_wptr)
368 WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
370 data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
371 WREG32(mmCP_HQD_ACTIVE, data);
373 release_queue(kgd);
375 return 0;
378 static int kgd_hqd_dump(struct kgd_dev *kgd,
379 uint32_t pipe_id, uint32_t queue_id,
380 uint32_t (**dump)[2], uint32_t *n_regs)
382 struct amdgpu_device *adev = get_amdgpu_device(kgd);
383 uint32_t i = 0, reg;
384 #define HQD_N_REGS (35+4)
385 #define DUMP_REG(addr) do { \
386 if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
387 break; \
388 (*dump)[i][0] = (addr) << 2; \
389 (*dump)[i++][1] = RREG32(addr); \
390 } while (0)
392 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
393 if (*dump == NULL)
394 return -ENOMEM;
396 acquire_queue(kgd, pipe_id, queue_id);
398 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
399 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
400 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
401 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
403 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
404 DUMP_REG(reg);
406 release_queue(kgd);
408 WARN_ON_ONCE(i != HQD_N_REGS);
409 *n_regs = i;
411 return 0;
414 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
415 uint32_t __user *wptr, struct mm_struct *mm)
417 struct amdgpu_device *adev = get_amdgpu_device(kgd);
418 struct cik_sdma_rlc_registers *m;
419 unsigned long end_jiffies;
420 uint32_t sdma_base_addr;
421 uint32_t data;
423 m = get_sdma_mqd(mqd);
424 sdma_base_addr = get_sdma_base_addr(m);
426 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
427 m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
429 end_jiffies = msecs_to_jiffies(2000) + jiffies;
430 while (true) {
431 data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
432 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
433 break;
434 if (time_after(jiffies, end_jiffies))
435 return -ETIME;
436 usleep_range(500, 1000);
438 if (m->sdma_engine_id) {
439 data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
440 data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
441 RESUME_CTX, 0);
442 WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
443 } else {
444 data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
445 data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
446 RESUME_CTX, 0);
447 WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
450 data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
451 ENABLE, 1);
452 WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
453 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdma_rlc_rb_rptr);
455 if (read_user_wptr(mm, wptr, data))
456 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
457 else
458 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
459 m->sdma_rlc_rb_rptr);
461 WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
462 m->sdma_rlc_virtual_addr);
463 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
464 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
465 m->sdma_rlc_rb_base_hi);
466 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
467 m->sdma_rlc_rb_rptr_addr_lo);
468 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
469 m->sdma_rlc_rb_rptr_addr_hi);
471 data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
472 RB_ENABLE, 1);
473 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
475 return 0;
478 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
479 uint32_t engine_id, uint32_t queue_id,
480 uint32_t (**dump)[2], uint32_t *n_regs)
482 struct amdgpu_device *adev = get_amdgpu_device(kgd);
483 uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
484 queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
485 uint32_t i = 0, reg;
486 #undef HQD_N_REGS
487 #define HQD_N_REGS (19+4)
489 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
490 if (*dump == NULL)
491 return -ENOMEM;
493 for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
494 DUMP_REG(sdma_offset + reg);
495 for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
496 reg++)
497 DUMP_REG(sdma_offset + reg);
499 WARN_ON_ONCE(i != HQD_N_REGS);
500 *n_regs = i;
502 return 0;
505 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
506 uint32_t pipe_id, uint32_t queue_id)
508 struct amdgpu_device *adev = get_amdgpu_device(kgd);
509 uint32_t act;
510 bool retval = false;
511 uint32_t low, high;
513 acquire_queue(kgd, pipe_id, queue_id);
514 act = RREG32(mmCP_HQD_ACTIVE);
515 if (act) {
516 low = lower_32_bits(queue_address >> 8);
517 high = upper_32_bits(queue_address >> 8);
519 if (low == RREG32(mmCP_HQD_PQ_BASE) &&
520 high == RREG32(mmCP_HQD_PQ_BASE_HI))
521 retval = true;
523 release_queue(kgd);
524 return retval;
527 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
529 struct amdgpu_device *adev = get_amdgpu_device(kgd);
530 struct cik_sdma_rlc_registers *m;
531 uint32_t sdma_base_addr;
532 uint32_t sdma_rlc_rb_cntl;
534 m = get_sdma_mqd(mqd);
535 sdma_base_addr = get_sdma_base_addr(m);
537 sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
539 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
540 return true;
542 return false;
545 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
546 enum kfd_preempt_type reset_type,
547 unsigned int utimeout, uint32_t pipe_id,
548 uint32_t queue_id)
550 struct amdgpu_device *adev = get_amdgpu_device(kgd);
551 uint32_t temp;
552 enum hqd_dequeue_request_type type;
553 unsigned long flags, end_jiffies;
554 int retry;
556 if (adev->in_gpu_reset)
557 return -EIO;
559 acquire_queue(kgd, pipe_id, queue_id);
560 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
562 switch (reset_type) {
563 case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
564 type = DRAIN_PIPE;
565 break;
566 case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
567 type = RESET_WAVES;
568 break;
569 default:
570 type = DRAIN_PIPE;
571 break;
574 /* Workaround: If IQ timer is active and the wait time is close to or
575 * equal to 0, dequeueing is not safe. Wait until either the wait time
576 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
577 * cleared before continuing. Also, ensure wait times are set to at
578 * least 0x3.
580 local_irq_save(flags);
581 preempt_disable();
582 retry = 5000; /* wait for 500 usecs at maximum */
583 while (true) {
584 temp = RREG32(mmCP_HQD_IQ_TIMER);
585 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
586 pr_debug("HW is processing IQ\n");
587 goto loop;
589 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
590 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
591 == 3) /* SEM-rearm is safe */
592 break;
593 /* Wait time 3 is safe for CP, but our MMIO read/write
594 * time is close to 1 microsecond, so check for 10 to
595 * leave more buffer room
597 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
598 >= 10)
599 break;
600 pr_debug("IQ timer is active\n");
601 } else
602 break;
603 loop:
604 if (!retry) {
605 pr_err("CP HQD IQ timer status time out\n");
606 break;
608 ndelay(100);
609 --retry;
611 retry = 1000;
612 while (true) {
613 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
614 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
615 break;
616 pr_debug("Dequeue request is pending\n");
618 if (!retry) {
619 pr_err("CP HQD dequeue request time out\n");
620 break;
622 ndelay(100);
623 --retry;
625 local_irq_restore(flags);
626 preempt_enable();
628 WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
630 end_jiffies = (utimeout * HZ / 1000) + jiffies;
631 while (true) {
632 temp = RREG32(mmCP_HQD_ACTIVE);
633 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
634 break;
635 if (time_after(jiffies, end_jiffies)) {
636 pr_err("cp queue preemption time out\n");
637 release_queue(kgd);
638 return -ETIME;
640 usleep_range(500, 1000);
643 release_queue(kgd);
644 return 0;
647 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
648 unsigned int utimeout)
650 struct amdgpu_device *adev = get_amdgpu_device(kgd);
651 struct cik_sdma_rlc_registers *m;
652 uint32_t sdma_base_addr;
653 uint32_t temp;
654 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
656 m = get_sdma_mqd(mqd);
657 sdma_base_addr = get_sdma_base_addr(m);
659 temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
660 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
661 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
663 while (true) {
664 temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
665 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
666 break;
667 if (time_after(jiffies, end_jiffies))
668 return -ETIME;
669 usleep_range(500, 1000);
672 WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
673 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
674 RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
675 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
677 m->sdma_rlc_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
679 return 0;
682 static int kgd_address_watch_disable(struct kgd_dev *kgd)
684 struct amdgpu_device *adev = get_amdgpu_device(kgd);
685 union TCP_WATCH_CNTL_BITS cntl;
686 unsigned int i;
688 cntl.u32All = 0;
690 cntl.bitfields.valid = 0;
691 cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
692 cntl.bitfields.atc = 1;
694 /* Turning off this address until we set all the registers */
695 for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
696 WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
697 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
699 return 0;
702 static int kgd_address_watch_execute(struct kgd_dev *kgd,
703 unsigned int watch_point_id,
704 uint32_t cntl_val,
705 uint32_t addr_hi,
706 uint32_t addr_lo)
708 struct amdgpu_device *adev = get_amdgpu_device(kgd);
709 union TCP_WATCH_CNTL_BITS cntl;
711 cntl.u32All = cntl_val;
713 /* Turning off this watch point until we set all the registers */
714 cntl.bitfields.valid = 0;
715 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
716 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
718 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
719 ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
721 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
722 ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
724 /* Enable the watch point */
725 cntl.bitfields.valid = 1;
727 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
728 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
730 return 0;
733 static int kgd_wave_control_execute(struct kgd_dev *kgd,
734 uint32_t gfx_index_val,
735 uint32_t sq_cmd)
737 struct amdgpu_device *adev = get_amdgpu_device(kgd);
738 uint32_t data;
740 mutex_lock(&adev->grbm_idx_mutex);
742 WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
743 WREG32(mmSQ_CMD, sq_cmd);
745 /* Restore the GRBM_GFX_INDEX register */
747 data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
748 GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
749 GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
751 WREG32(mmGRBM_GFX_INDEX, data);
753 mutex_unlock(&adev->grbm_idx_mutex);
755 return 0;
758 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
759 unsigned int watch_point_id,
760 unsigned int reg_offset)
762 return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
765 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
766 uint8_t vmid)
768 uint32_t reg;
769 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
771 reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
772 return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
775 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
776 uint8_t vmid)
778 uint32_t reg;
779 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
781 reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
782 return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
785 static void set_scratch_backing_va(struct kgd_dev *kgd,
786 uint64_t va, uint32_t vmid)
788 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
790 lock_srbm(kgd, 0, 0, 0, vmid);
791 WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
792 unlock_srbm(kgd);
795 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
797 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
798 const union amdgpu_firmware_header *hdr;
800 switch (type) {
801 case KGD_ENGINE_PFP:
802 hdr = (const union amdgpu_firmware_header *)
803 adev->gfx.pfp_fw->data;
804 break;
806 case KGD_ENGINE_ME:
807 hdr = (const union amdgpu_firmware_header *)
808 adev->gfx.me_fw->data;
809 break;
811 case KGD_ENGINE_CE:
812 hdr = (const union amdgpu_firmware_header *)
813 adev->gfx.ce_fw->data;
814 break;
816 case KGD_ENGINE_MEC1:
817 hdr = (const union amdgpu_firmware_header *)
818 adev->gfx.mec_fw->data;
819 break;
821 case KGD_ENGINE_MEC2:
822 hdr = (const union amdgpu_firmware_header *)
823 adev->gfx.mec2_fw->data;
824 break;
826 case KGD_ENGINE_RLC:
827 hdr = (const union amdgpu_firmware_header *)
828 adev->gfx.rlc_fw->data;
829 break;
831 case KGD_ENGINE_SDMA1:
832 hdr = (const union amdgpu_firmware_header *)
833 adev->sdma.instance[0].fw->data;
834 break;
836 case KGD_ENGINE_SDMA2:
837 hdr = (const union amdgpu_firmware_header *)
838 adev->sdma.instance[1].fw->data;
839 break;
841 default:
842 return 0;
845 if (hdr == NULL)
846 return 0;
848 /* Only 12 bit in use*/
849 return hdr->common.ucode_version;
852 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
853 uint64_t page_table_base)
855 struct amdgpu_device *adev = get_amdgpu_device(kgd);
857 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
858 pr_err("trying to set page table base for wrong VMID\n");
859 return;
861 WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
862 lower_32_bits(page_table_base));
865 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
867 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
868 int vmid;
869 unsigned int tmp;
871 if (adev->in_gpu_reset)
872 return -EIO;
874 for (vmid = 0; vmid < 16; vmid++) {
875 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
876 continue;
878 tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
879 if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
880 (tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
881 WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
882 RREG32(mmVM_INVALIDATE_RESPONSE);
883 break;
887 return 0;
890 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
892 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
894 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
895 pr_err("non kfd vmid\n");
896 return 0;
899 WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
900 RREG32(mmVM_INVALIDATE_RESPONSE);
901 return 0;
905 * read_vmid_from_vmfault_reg - read vmid from register
907 * adev: amdgpu_device pointer
908 * @vmid: vmid pointer
909 * read vmid from register (CIK).
911 static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd)
913 struct amdgpu_device *adev = get_amdgpu_device(kgd);
915 uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
917 return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);