2 * Copyright 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31 #include "amdgpu_amdkfd.h"
33 #define MQD_SIZE_ALIGNED 768
36 * kfd_locked is used to lock the kfd driver during suspend or reset
37 * once locked, kfd driver will stop any further GPU execution.
38 * create process (open) will return -EAGAIN.
40 static atomic_t kfd_locked
= ATOMIC_INIT(0);
42 #ifdef KFD_SUPPORT_IOMMU_V2
43 static const struct kfd_device_info kaveri_device_info
= {
44 .asic_family
= CHIP_KAVERI
,
46 /* max num of queues for KV.TODO should be a dynamic value */
49 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
50 .event_interrupt_class
= &event_interrupt_class_cik
,
51 .num_of_watch_points
= 4,
52 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
53 .supports_cwsr
= false,
54 .needs_iommu_device
= true,
55 .needs_pci_atomics
= false,
56 .num_sdma_engines
= 2,
57 .num_sdma_queues_per_engine
= 2,
60 static const struct kfd_device_info carrizo_device_info
= {
61 .asic_family
= CHIP_CARRIZO
,
63 /* max num of queues for CZ.TODO should be a dynamic value */
66 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
67 .event_interrupt_class
= &event_interrupt_class_cik
,
68 .num_of_watch_points
= 4,
69 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
70 .supports_cwsr
= true,
71 .needs_iommu_device
= true,
72 .needs_pci_atomics
= false,
73 .num_sdma_engines
= 2,
74 .num_sdma_queues_per_engine
= 2,
77 static const struct kfd_device_info raven_device_info
= {
78 .asic_family
= CHIP_RAVEN
,
82 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
83 .event_interrupt_class
= &event_interrupt_class_v9
,
84 .num_of_watch_points
= 4,
85 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
86 .supports_cwsr
= true,
87 .needs_iommu_device
= true,
88 .needs_pci_atomics
= true,
89 .num_sdma_engines
= 1,
90 .num_sdma_queues_per_engine
= 2,
94 static const struct kfd_device_info hawaii_device_info
= {
95 .asic_family
= CHIP_HAWAII
,
97 /* max num of queues for KV.TODO should be a dynamic value */
100 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
101 .event_interrupt_class
= &event_interrupt_class_cik
,
102 .num_of_watch_points
= 4,
103 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
104 .supports_cwsr
= false,
105 .needs_iommu_device
= false,
106 .needs_pci_atomics
= false,
107 .num_sdma_engines
= 2,
108 .num_sdma_queues_per_engine
= 2,
111 static const struct kfd_device_info tonga_device_info
= {
112 .asic_family
= CHIP_TONGA
,
113 .max_pasid_bits
= 16,
116 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
117 .event_interrupt_class
= &event_interrupt_class_cik
,
118 .num_of_watch_points
= 4,
119 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
120 .supports_cwsr
= false,
121 .needs_iommu_device
= false,
122 .needs_pci_atomics
= true,
123 .num_sdma_engines
= 2,
124 .num_sdma_queues_per_engine
= 2,
127 static const struct kfd_device_info fiji_device_info
= {
128 .asic_family
= CHIP_FIJI
,
129 .max_pasid_bits
= 16,
132 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
133 .event_interrupt_class
= &event_interrupt_class_cik
,
134 .num_of_watch_points
= 4,
135 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
136 .supports_cwsr
= true,
137 .needs_iommu_device
= false,
138 .needs_pci_atomics
= true,
139 .num_sdma_engines
= 2,
140 .num_sdma_queues_per_engine
= 2,
143 static const struct kfd_device_info fiji_vf_device_info
= {
144 .asic_family
= CHIP_FIJI
,
145 .max_pasid_bits
= 16,
148 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
149 .event_interrupt_class
= &event_interrupt_class_cik
,
150 .num_of_watch_points
= 4,
151 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
152 .supports_cwsr
= true,
153 .needs_iommu_device
= false,
154 .needs_pci_atomics
= false,
155 .num_sdma_engines
= 2,
156 .num_sdma_queues_per_engine
= 2,
160 static const struct kfd_device_info polaris10_device_info
= {
161 .asic_family
= CHIP_POLARIS10
,
162 .max_pasid_bits
= 16,
165 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
166 .event_interrupt_class
= &event_interrupt_class_cik
,
167 .num_of_watch_points
= 4,
168 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
169 .supports_cwsr
= true,
170 .needs_iommu_device
= false,
171 .needs_pci_atomics
= true,
172 .num_sdma_engines
= 2,
173 .num_sdma_queues_per_engine
= 2,
176 static const struct kfd_device_info polaris10_vf_device_info
= {
177 .asic_family
= CHIP_POLARIS10
,
178 .max_pasid_bits
= 16,
181 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
182 .event_interrupt_class
= &event_interrupt_class_cik
,
183 .num_of_watch_points
= 4,
184 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
185 .supports_cwsr
= true,
186 .needs_iommu_device
= false,
187 .needs_pci_atomics
= false,
188 .num_sdma_engines
= 2,
189 .num_sdma_queues_per_engine
= 2,
192 static const struct kfd_device_info polaris11_device_info
= {
193 .asic_family
= CHIP_POLARIS11
,
194 .max_pasid_bits
= 16,
197 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
198 .event_interrupt_class
= &event_interrupt_class_cik
,
199 .num_of_watch_points
= 4,
200 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
201 .supports_cwsr
= true,
202 .needs_iommu_device
= false,
203 .needs_pci_atomics
= true,
204 .num_sdma_engines
= 2,
205 .num_sdma_queues_per_engine
= 2,
208 static const struct kfd_device_info polaris12_device_info
= {
209 .asic_family
= CHIP_POLARIS12
,
210 .max_pasid_bits
= 16,
213 .ih_ring_entry_size
= 4 * sizeof(uint32_t),
214 .event_interrupt_class
= &event_interrupt_class_cik
,
215 .num_of_watch_points
= 4,
216 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
217 .supports_cwsr
= true,
218 .needs_iommu_device
= false,
219 .needs_pci_atomics
= true,
220 .num_sdma_engines
= 2,
221 .num_sdma_queues_per_engine
= 2,
224 static const struct kfd_device_info vega10_device_info
= {
225 .asic_family
= CHIP_VEGA10
,
226 .max_pasid_bits
= 16,
229 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
230 .event_interrupt_class
= &event_interrupt_class_v9
,
231 .num_of_watch_points
= 4,
232 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
233 .supports_cwsr
= true,
234 .needs_iommu_device
= false,
235 .needs_pci_atomics
= false,
236 .num_sdma_engines
= 2,
237 .num_sdma_queues_per_engine
= 2,
240 static const struct kfd_device_info vega10_vf_device_info
= {
241 .asic_family
= CHIP_VEGA10
,
242 .max_pasid_bits
= 16,
245 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
246 .event_interrupt_class
= &event_interrupt_class_v9
,
247 .num_of_watch_points
= 4,
248 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
249 .supports_cwsr
= true,
250 .needs_iommu_device
= false,
251 .needs_pci_atomics
= false,
252 .num_sdma_engines
= 2,
253 .num_sdma_queues_per_engine
= 2,
256 static const struct kfd_device_info vega12_device_info
= {
257 .asic_family
= CHIP_VEGA12
,
258 .max_pasid_bits
= 16,
261 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
262 .event_interrupt_class
= &event_interrupt_class_v9
,
263 .num_of_watch_points
= 4,
264 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
265 .supports_cwsr
= true,
266 .needs_iommu_device
= false,
267 .needs_pci_atomics
= false,
268 .num_sdma_engines
= 2,
269 .num_sdma_queues_per_engine
= 2,
272 static const struct kfd_device_info vega20_device_info
= {
273 .asic_family
= CHIP_VEGA20
,
274 .max_pasid_bits
= 16,
277 .ih_ring_entry_size
= 8 * sizeof(uint32_t),
278 .event_interrupt_class
= &event_interrupt_class_v9
,
279 .num_of_watch_points
= 4,
280 .mqd_size_aligned
= MQD_SIZE_ALIGNED
,
281 .supports_cwsr
= true,
282 .needs_iommu_device
= false,
283 .needs_pci_atomics
= false,
284 .num_sdma_engines
= 2,
285 .num_sdma_queues_per_engine
= 8,
288 struct kfd_deviceid
{
290 const struct kfd_device_info
*device_info
;
293 static const struct kfd_deviceid supported_devices
[] = {
294 #ifdef KFD_SUPPORT_IOMMU_V2
295 { 0x1304, &kaveri_device_info
}, /* Kaveri */
296 { 0x1305, &kaveri_device_info
}, /* Kaveri */
297 { 0x1306, &kaveri_device_info
}, /* Kaveri */
298 { 0x1307, &kaveri_device_info
}, /* Kaveri */
299 { 0x1309, &kaveri_device_info
}, /* Kaveri */
300 { 0x130A, &kaveri_device_info
}, /* Kaveri */
301 { 0x130B, &kaveri_device_info
}, /* Kaveri */
302 { 0x130C, &kaveri_device_info
}, /* Kaveri */
303 { 0x130D, &kaveri_device_info
}, /* Kaveri */
304 { 0x130E, &kaveri_device_info
}, /* Kaveri */
305 { 0x130F, &kaveri_device_info
}, /* Kaveri */
306 { 0x1310, &kaveri_device_info
}, /* Kaveri */
307 { 0x1311, &kaveri_device_info
}, /* Kaveri */
308 { 0x1312, &kaveri_device_info
}, /* Kaveri */
309 { 0x1313, &kaveri_device_info
}, /* Kaveri */
310 { 0x1315, &kaveri_device_info
}, /* Kaveri */
311 { 0x1316, &kaveri_device_info
}, /* Kaveri */
312 { 0x1317, &kaveri_device_info
}, /* Kaveri */
313 { 0x1318, &kaveri_device_info
}, /* Kaveri */
314 { 0x131B, &kaveri_device_info
}, /* Kaveri */
315 { 0x131C, &kaveri_device_info
}, /* Kaveri */
316 { 0x131D, &kaveri_device_info
}, /* Kaveri */
317 { 0x9870, &carrizo_device_info
}, /* Carrizo */
318 { 0x9874, &carrizo_device_info
}, /* Carrizo */
319 { 0x9875, &carrizo_device_info
}, /* Carrizo */
320 { 0x9876, &carrizo_device_info
}, /* Carrizo */
321 { 0x9877, &carrizo_device_info
}, /* Carrizo */
322 { 0x15DD, &raven_device_info
}, /* Raven */
324 { 0x67A0, &hawaii_device_info
}, /* Hawaii */
325 { 0x67A1, &hawaii_device_info
}, /* Hawaii */
326 { 0x67A2, &hawaii_device_info
}, /* Hawaii */
327 { 0x67A8, &hawaii_device_info
}, /* Hawaii */
328 { 0x67A9, &hawaii_device_info
}, /* Hawaii */
329 { 0x67AA, &hawaii_device_info
}, /* Hawaii */
330 { 0x67B0, &hawaii_device_info
}, /* Hawaii */
331 { 0x67B1, &hawaii_device_info
}, /* Hawaii */
332 { 0x67B8, &hawaii_device_info
}, /* Hawaii */
333 { 0x67B9, &hawaii_device_info
}, /* Hawaii */
334 { 0x67BA, &hawaii_device_info
}, /* Hawaii */
335 { 0x67BE, &hawaii_device_info
}, /* Hawaii */
336 { 0x6920, &tonga_device_info
}, /* Tonga */
337 { 0x6921, &tonga_device_info
}, /* Tonga */
338 { 0x6928, &tonga_device_info
}, /* Tonga */
339 { 0x6929, &tonga_device_info
}, /* Tonga */
340 { 0x692B, &tonga_device_info
}, /* Tonga */
341 { 0x6938, &tonga_device_info
}, /* Tonga */
342 { 0x6939, &tonga_device_info
}, /* Tonga */
343 { 0x7300, &fiji_device_info
}, /* Fiji */
344 { 0x730F, &fiji_vf_device_info
}, /* Fiji vf*/
345 { 0x67C0, &polaris10_device_info
}, /* Polaris10 */
346 { 0x67C1, &polaris10_device_info
}, /* Polaris10 */
347 { 0x67C2, &polaris10_device_info
}, /* Polaris10 */
348 { 0x67C4, &polaris10_device_info
}, /* Polaris10 */
349 { 0x67C7, &polaris10_device_info
}, /* Polaris10 */
350 { 0x67C8, &polaris10_device_info
}, /* Polaris10 */
351 { 0x67C9, &polaris10_device_info
}, /* Polaris10 */
352 { 0x67CA, &polaris10_device_info
}, /* Polaris10 */
353 { 0x67CC, &polaris10_device_info
}, /* Polaris10 */
354 { 0x67CF, &polaris10_device_info
}, /* Polaris10 */
355 { 0x67D0, &polaris10_vf_device_info
}, /* Polaris10 vf*/
356 { 0x67DF, &polaris10_device_info
}, /* Polaris10 */
357 { 0x67E0, &polaris11_device_info
}, /* Polaris11 */
358 { 0x67E1, &polaris11_device_info
}, /* Polaris11 */
359 { 0x67E3, &polaris11_device_info
}, /* Polaris11 */
360 { 0x67E7, &polaris11_device_info
}, /* Polaris11 */
361 { 0x67E8, &polaris11_device_info
}, /* Polaris11 */
362 { 0x67E9, &polaris11_device_info
}, /* Polaris11 */
363 { 0x67EB, &polaris11_device_info
}, /* Polaris11 */
364 { 0x67EF, &polaris11_device_info
}, /* Polaris11 */
365 { 0x67FF, &polaris11_device_info
}, /* Polaris11 */
366 { 0x6980, &polaris12_device_info
}, /* Polaris12 */
367 { 0x6981, &polaris12_device_info
}, /* Polaris12 */
368 { 0x6985, &polaris12_device_info
}, /* Polaris12 */
369 { 0x6986, &polaris12_device_info
}, /* Polaris12 */
370 { 0x6987, &polaris12_device_info
}, /* Polaris12 */
371 { 0x6995, &polaris12_device_info
}, /* Polaris12 */
372 { 0x6997, &polaris12_device_info
}, /* Polaris12 */
373 { 0x699F, &polaris12_device_info
}, /* Polaris12 */
374 { 0x6860, &vega10_device_info
}, /* Vega10 */
375 { 0x6861, &vega10_device_info
}, /* Vega10 */
376 { 0x6862, &vega10_device_info
}, /* Vega10 */
377 { 0x6863, &vega10_device_info
}, /* Vega10 */
378 { 0x6864, &vega10_device_info
}, /* Vega10 */
379 { 0x6867, &vega10_device_info
}, /* Vega10 */
380 { 0x6868, &vega10_device_info
}, /* Vega10 */
381 { 0x6869, &vega10_device_info
}, /* Vega10 */
382 { 0x686A, &vega10_device_info
}, /* Vega10 */
383 { 0x686B, &vega10_device_info
}, /* Vega10 */
384 { 0x686C, &vega10_vf_device_info
}, /* Vega10 vf*/
385 { 0x686D, &vega10_device_info
}, /* Vega10 */
386 { 0x686E, &vega10_device_info
}, /* Vega10 */
387 { 0x686F, &vega10_device_info
}, /* Vega10 */
388 { 0x687F, &vega10_device_info
}, /* Vega10 */
389 { 0x69A0, &vega12_device_info
}, /* Vega12 */
390 { 0x69A1, &vega12_device_info
}, /* Vega12 */
391 { 0x69A2, &vega12_device_info
}, /* Vega12 */
392 { 0x69A3, &vega12_device_info
}, /* Vega12 */
393 { 0x69AF, &vega12_device_info
}, /* Vega12 */
394 { 0x66a0, &vega20_device_info
}, /* Vega20 */
395 { 0x66a1, &vega20_device_info
}, /* Vega20 */
396 { 0x66a2, &vega20_device_info
}, /* Vega20 */
397 { 0x66a3, &vega20_device_info
}, /* Vega20 */
398 { 0x66a4, &vega20_device_info
}, /* Vega20 */
399 { 0x66a7, &vega20_device_info
}, /* Vega20 */
400 { 0x66af, &vega20_device_info
} /* Vega20 */
403 static int kfd_gtt_sa_init(struct kfd_dev
*kfd
, unsigned int buf_size
,
404 unsigned int chunk_size
);
405 static void kfd_gtt_sa_fini(struct kfd_dev
*kfd
);
407 static int kfd_resume(struct kfd_dev
*kfd
);
409 static const struct kfd_device_info
*lookup_device_info(unsigned short did
)
413 for (i
= 0; i
< ARRAY_SIZE(supported_devices
); i
++) {
414 if (supported_devices
[i
].did
== did
) {
415 WARN_ON(!supported_devices
[i
].device_info
);
416 return supported_devices
[i
].device_info
;
420 dev_warn(kfd_device
, "DID %04x is missing in supported_devices\n",
426 struct kfd_dev
*kgd2kfd_probe(struct kgd_dev
*kgd
,
427 struct pci_dev
*pdev
, const struct kfd2kgd_calls
*f2g
)
431 const struct kfd_device_info
*device_info
=
432 lookup_device_info(pdev
->device
);
435 dev_err(kfd_device
, "kgd2kfd_probe failed\n");
439 kfd
= kzalloc(sizeof(*kfd
), GFP_KERNEL
);
443 /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
444 * 32 and 64-bit requests are possible and must be
447 ret
= pci_enable_atomic_ops_to_root(pdev
,
448 PCI_EXP_DEVCAP2_ATOMIC_COMP32
|
449 PCI_EXP_DEVCAP2_ATOMIC_COMP64
);
450 if (device_info
->needs_pci_atomics
&& ret
< 0) {
452 "skipped device %x:%x, PCI rejects atomics\n",
453 pdev
->vendor
, pdev
->device
);
457 kfd
->pci_atomic_requested
= true;
460 kfd
->device_info
= device_info
;
462 kfd
->init_complete
= false;
465 mutex_init(&kfd
->doorbell_mutex
);
466 memset(&kfd
->doorbell_available_index
, 0,
467 sizeof(kfd
->doorbell_available_index
));
472 static void kfd_cwsr_init(struct kfd_dev
*kfd
)
474 if (cwsr_enable
&& kfd
->device_info
->supports_cwsr
) {
475 if (kfd
->device_info
->asic_family
< CHIP_VEGA10
) {
476 BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex
) > PAGE_SIZE
);
477 kfd
->cwsr_isa
= cwsr_trap_gfx8_hex
;
478 kfd
->cwsr_isa_size
= sizeof(cwsr_trap_gfx8_hex
);
480 BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex
) > PAGE_SIZE
);
481 kfd
->cwsr_isa
= cwsr_trap_gfx9_hex
;
482 kfd
->cwsr_isa_size
= sizeof(cwsr_trap_gfx9_hex
);
485 kfd
->cwsr_enabled
= true;
489 bool kgd2kfd_device_init(struct kfd_dev
*kfd
,
490 const struct kgd2kfd_shared_resources
*gpu_resources
)
494 kfd
->mec_fw_version
= kfd
->kfd2kgd
->get_fw_version(kfd
->kgd
,
496 kfd
->sdma_fw_version
= kfd
->kfd2kgd
->get_fw_version(kfd
->kgd
,
498 kfd
->shared_resources
= *gpu_resources
;
500 kfd
->vm_info
.first_vmid_kfd
= ffs(gpu_resources
->compute_vmid_bitmap
)-1;
501 kfd
->vm_info
.last_vmid_kfd
= fls(gpu_resources
->compute_vmid_bitmap
)-1;
502 kfd
->vm_info
.vmid_num_kfd
= kfd
->vm_info
.last_vmid_kfd
503 - kfd
->vm_info
.first_vmid_kfd
+ 1;
505 /* Verify module parameters regarding mapped process number*/
506 if ((hws_max_conc_proc
< 0)
507 || (hws_max_conc_proc
> kfd
->vm_info
.vmid_num_kfd
)) {
509 "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
510 hws_max_conc_proc
, kfd
->vm_info
.vmid_num_kfd
,
511 kfd
->vm_info
.vmid_num_kfd
);
512 kfd
->max_proc_per_quantum
= kfd
->vm_info
.vmid_num_kfd
;
514 kfd
->max_proc_per_quantum
= hws_max_conc_proc
;
516 /* calculate max size of mqds needed for queues */
517 size
= max_num_of_queues_per_device
*
518 kfd
->device_info
->mqd_size_aligned
;
521 * calculate max size of runlist packet.
522 * There can be only 2 packets at once
524 size
+= (KFD_MAX_NUM_OF_PROCESSES
* sizeof(struct pm4_mes_map_process
) +
525 max_num_of_queues_per_device
* sizeof(struct pm4_mes_map_queues
)
526 + sizeof(struct pm4_mes_runlist
)) * 2;
528 /* Add size of HIQ & DIQ */
529 size
+= KFD_KERNEL_QUEUE_SIZE
* 2;
531 /* add another 512KB for all other allocations on gart (HPD, fences) */
534 if (amdgpu_amdkfd_alloc_gtt_mem(
535 kfd
->kgd
, size
, &kfd
->gtt_mem
,
536 &kfd
->gtt_start_gpu_addr
, &kfd
->gtt_start_cpu_ptr
,
538 dev_err(kfd_device
, "Could not allocate %d bytes\n", size
);
542 dev_info(kfd_device
, "Allocated %d bytes on gart\n", size
);
544 /* Initialize GTT sa with 512 byte chunk size */
545 if (kfd_gtt_sa_init(kfd
, size
, 512) != 0) {
546 dev_err(kfd_device
, "Error initializing gtt sub-allocator\n");
547 goto kfd_gtt_sa_init_error
;
550 if (kfd_doorbell_init(kfd
)) {
552 "Error initializing doorbell aperture\n");
553 goto kfd_doorbell_error
;
556 if (kfd
->kfd2kgd
->get_hive_id
)
557 kfd
->hive_id
= kfd
->kfd2kgd
->get_hive_id(kfd
->kgd
);
559 if (kfd_topology_add_device(kfd
)) {
560 dev_err(kfd_device
, "Error adding device to topology\n");
561 goto kfd_topology_add_device_error
;
564 if (kfd_interrupt_init(kfd
)) {
565 dev_err(kfd_device
, "Error initializing interrupts\n");
566 goto kfd_interrupt_error
;
569 kfd
->dqm
= device_queue_manager_init(kfd
);
571 dev_err(kfd_device
, "Error initializing queue manager\n");
572 goto device_queue_manager_error
;
575 if (kfd_iommu_device_init(kfd
)) {
576 dev_err(kfd_device
, "Error initializing iommuv2\n");
577 goto device_iommu_error
;
583 goto kfd_resume_error
;
587 kfd
->init_complete
= true;
588 dev_info(kfd_device
, "added device %x:%x\n", kfd
->pdev
->vendor
,
591 pr_debug("Starting kfd with the following scheduling policy %d\n",
592 kfd
->dqm
->sched_policy
);
598 device_queue_manager_uninit(kfd
->dqm
);
599 device_queue_manager_error
:
600 kfd_interrupt_exit(kfd
);
602 kfd_topology_remove_device(kfd
);
603 kfd_topology_add_device_error
:
604 kfd_doorbell_fini(kfd
);
606 kfd_gtt_sa_fini(kfd
);
607 kfd_gtt_sa_init_error
:
608 amdgpu_amdkfd_free_gtt_mem(kfd
->kgd
, kfd
->gtt_mem
);
610 "device %x:%x NOT added due to errors\n",
611 kfd
->pdev
->vendor
, kfd
->pdev
->device
);
613 return kfd
->init_complete
;
616 void kgd2kfd_device_exit(struct kfd_dev
*kfd
)
618 if (kfd
->init_complete
) {
619 kgd2kfd_suspend(kfd
);
620 device_queue_manager_uninit(kfd
->dqm
);
621 kfd_interrupt_exit(kfd
);
622 kfd_topology_remove_device(kfd
);
623 kfd_doorbell_fini(kfd
);
624 kfd_gtt_sa_fini(kfd
);
625 amdgpu_amdkfd_free_gtt_mem(kfd
->kgd
, kfd
->gtt_mem
);
631 int kgd2kfd_pre_reset(struct kfd_dev
*kfd
)
633 if (!kfd
->init_complete
)
635 kgd2kfd_suspend(kfd
);
637 /* hold dqm->lock to prevent further execution*/
640 kfd_signal_reset_event(kfd
);
645 * Fix me. KFD won't be able to resume existing process for now.
646 * We will keep all existing process in a evicted state and
647 * wait the process to be terminated.
650 int kgd2kfd_post_reset(struct kfd_dev
*kfd
)
654 if (!kfd
->init_complete
)
657 dqm_unlock(kfd
->dqm
);
659 ret
= kfd_resume(kfd
);
662 count
= atomic_dec_return(&kfd_locked
);
663 WARN_ONCE(count
!= 0, "KFD reset ref. error");
667 bool kfd_is_locked(void)
669 return (atomic_read(&kfd_locked
) > 0);
672 void kgd2kfd_suspend(struct kfd_dev
*kfd
)
674 if (!kfd
->init_complete
)
677 /* For first KFD device suspend all the KFD processes */
678 if (atomic_inc_return(&kfd_locked
) == 1)
679 kfd_suspend_all_processes();
681 kfd
->dqm
->ops
.stop(kfd
->dqm
);
683 kfd_iommu_suspend(kfd
);
686 int kgd2kfd_resume(struct kfd_dev
*kfd
)
690 if (!kfd
->init_complete
)
693 ret
= kfd_resume(kfd
);
697 count
= atomic_dec_return(&kfd_locked
);
698 WARN_ONCE(count
< 0, "KFD suspend / resume ref. error");
700 ret
= kfd_resume_all_processes();
705 static int kfd_resume(struct kfd_dev
*kfd
)
709 err
= kfd_iommu_resume(kfd
);
712 "Failed to resume IOMMU for device %x:%x\n",
713 kfd
->pdev
->vendor
, kfd
->pdev
->device
);
717 err
= kfd
->dqm
->ops
.start(kfd
->dqm
);
720 "Error starting queue manager for device %x:%x\n",
721 kfd
->pdev
->vendor
, kfd
->pdev
->device
);
722 goto dqm_start_error
;
728 kfd_iommu_suspend(kfd
);
732 /* This is called directly from KGD at ISR. */
733 void kgd2kfd_interrupt(struct kfd_dev
*kfd
, const void *ih_ring_entry
)
735 uint32_t patched_ihre
[KFD_MAX_RING_ENTRY_SIZE
];
736 bool is_patched
= false;
739 if (!kfd
->init_complete
)
742 if (kfd
->device_info
->ih_ring_entry_size
> sizeof(patched_ihre
)) {
743 dev_err_once(kfd_device
, "Ring entry too small\n");
747 spin_lock_irqsave(&kfd
->interrupt_lock
, flags
);
749 if (kfd
->interrupts_active
750 && interrupt_is_wanted(kfd
, ih_ring_entry
,
751 patched_ihre
, &is_patched
)
752 && enqueue_ih_ring_entry(kfd
,
753 is_patched
? patched_ihre
: ih_ring_entry
))
754 queue_work(kfd
->ih_wq
, &kfd
->interrupt_work
);
756 spin_unlock_irqrestore(&kfd
->interrupt_lock
, flags
);
759 int kgd2kfd_quiesce_mm(struct mm_struct
*mm
)
761 struct kfd_process
*p
;
764 /* Because we are called from arbitrary context (workqueue) as opposed
765 * to process context, kfd_process could attempt to exit while we are
766 * running so the lookup function increments the process ref count.
768 p
= kfd_lookup_process_by_mm(mm
);
772 r
= kfd_process_evict_queues(p
);
774 kfd_unref_process(p
);
778 int kgd2kfd_resume_mm(struct mm_struct
*mm
)
780 struct kfd_process
*p
;
783 /* Because we are called from arbitrary context (workqueue) as opposed
784 * to process context, kfd_process could attempt to exit while we are
785 * running so the lookup function increments the process ref count.
787 p
= kfd_lookup_process_by_mm(mm
);
791 r
= kfd_process_restore_queues(p
);
793 kfd_unref_process(p
);
797 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
798 * prepare for safe eviction of KFD BOs that belong to the specified
801 * @mm: mm_struct that identifies the specified KFD process
802 * @fence: eviction fence attached to KFD process BOs
805 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct
*mm
,
806 struct dma_fence
*fence
)
808 struct kfd_process
*p
;
809 unsigned long active_time
;
810 unsigned long delay_jiffies
= msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS
);
815 if (dma_fence_is_signaled(fence
))
818 p
= kfd_lookup_process_by_mm(mm
);
822 if (fence
->seqno
== p
->last_eviction_seqno
)
825 p
->last_eviction_seqno
= fence
->seqno
;
827 /* Avoid KFD process starvation. Wait for at least
828 * PROCESS_ACTIVE_TIME_MS before evicting the process again
830 active_time
= get_jiffies_64() - p
->last_restore_timestamp
;
831 if (delay_jiffies
> active_time
)
832 delay_jiffies
-= active_time
;
836 /* During process initialization eviction_work.dwork is initialized
837 * to kfd_evict_bo_worker
839 schedule_delayed_work(&p
->eviction_work
, delay_jiffies
);
841 kfd_unref_process(p
);
845 static int kfd_gtt_sa_init(struct kfd_dev
*kfd
, unsigned int buf_size
,
846 unsigned int chunk_size
)
848 unsigned int num_of_longs
;
850 if (WARN_ON(buf_size
< chunk_size
))
852 if (WARN_ON(buf_size
== 0))
854 if (WARN_ON(chunk_size
== 0))
857 kfd
->gtt_sa_chunk_size
= chunk_size
;
858 kfd
->gtt_sa_num_of_chunks
= buf_size
/ chunk_size
;
860 num_of_longs
= (kfd
->gtt_sa_num_of_chunks
+ BITS_PER_LONG
- 1) /
863 kfd
->gtt_sa_bitmap
= kcalloc(num_of_longs
, sizeof(long), GFP_KERNEL
);
865 if (!kfd
->gtt_sa_bitmap
)
868 pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
869 kfd
->gtt_sa_num_of_chunks
, kfd
->gtt_sa_bitmap
);
871 mutex_init(&kfd
->gtt_sa_lock
);
877 static void kfd_gtt_sa_fini(struct kfd_dev
*kfd
)
879 mutex_destroy(&kfd
->gtt_sa_lock
);
880 kfree(kfd
->gtt_sa_bitmap
);
883 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr
,
884 unsigned int bit_num
,
885 unsigned int chunk_size
)
887 return start_addr
+ bit_num
* chunk_size
;
890 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr
,
891 unsigned int bit_num
,
892 unsigned int chunk_size
)
894 return (uint32_t *) ((uint64_t) start_addr
+ bit_num
* chunk_size
);
897 int kfd_gtt_sa_allocate(struct kfd_dev
*kfd
, unsigned int size
,
898 struct kfd_mem_obj
**mem_obj
)
900 unsigned int found
, start_search
, cur_size
;
905 if (size
> kfd
->gtt_sa_num_of_chunks
* kfd
->gtt_sa_chunk_size
)
908 *mem_obj
= kzalloc(sizeof(struct kfd_mem_obj
), GFP_KERNEL
);
912 pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj
, size
);
916 mutex_lock(&kfd
->gtt_sa_lock
);
918 kfd_gtt_restart_search
:
919 /* Find the first chunk that is free */
920 found
= find_next_zero_bit(kfd
->gtt_sa_bitmap
,
921 kfd
->gtt_sa_num_of_chunks
,
924 pr_debug("Found = %d\n", found
);
926 /* If there wasn't any free chunk, bail out */
927 if (found
== kfd
->gtt_sa_num_of_chunks
)
928 goto kfd_gtt_no_free_chunk
;
930 /* Update fields of mem_obj */
931 (*mem_obj
)->range_start
= found
;
932 (*mem_obj
)->range_end
= found
;
933 (*mem_obj
)->gpu_addr
= kfd_gtt_sa_calc_gpu_addr(
934 kfd
->gtt_start_gpu_addr
,
936 kfd
->gtt_sa_chunk_size
);
937 (*mem_obj
)->cpu_ptr
= kfd_gtt_sa_calc_cpu_addr(
938 kfd
->gtt_start_cpu_ptr
,
940 kfd
->gtt_sa_chunk_size
);
942 pr_debug("gpu_addr = %p, cpu_addr = %p\n",
943 (uint64_t *) (*mem_obj
)->gpu_addr
, (*mem_obj
)->cpu_ptr
);
945 /* If we need only one chunk, mark it as allocated and get out */
946 if (size
<= kfd
->gtt_sa_chunk_size
) {
947 pr_debug("Single bit\n");
948 set_bit(found
, kfd
->gtt_sa_bitmap
);
952 /* Otherwise, try to see if we have enough contiguous chunks */
953 cur_size
= size
- kfd
->gtt_sa_chunk_size
;
955 (*mem_obj
)->range_end
=
956 find_next_zero_bit(kfd
->gtt_sa_bitmap
,
957 kfd
->gtt_sa_num_of_chunks
, ++found
);
959 * If next free chunk is not contiguous than we need to
960 * restart our search from the last free chunk we found (which
961 * wasn't contiguous to the previous ones
963 if ((*mem_obj
)->range_end
!= found
) {
964 start_search
= found
;
965 goto kfd_gtt_restart_search
;
969 * If we reached end of buffer, bail out with error
971 if (found
== kfd
->gtt_sa_num_of_chunks
)
972 goto kfd_gtt_no_free_chunk
;
974 /* Check if we don't need another chunk */
975 if (cur_size
<= kfd
->gtt_sa_chunk_size
)
978 cur_size
-= kfd
->gtt_sa_chunk_size
;
980 } while (cur_size
> 0);
982 pr_debug("range_start = %d, range_end = %d\n",
983 (*mem_obj
)->range_start
, (*mem_obj
)->range_end
);
985 /* Mark the chunks as allocated */
986 for (found
= (*mem_obj
)->range_start
;
987 found
<= (*mem_obj
)->range_end
;
989 set_bit(found
, kfd
->gtt_sa_bitmap
);
992 mutex_unlock(&kfd
->gtt_sa_lock
);
995 kfd_gtt_no_free_chunk
:
996 pr_debug("Allocation failed with mem_obj = %p\n", mem_obj
);
997 mutex_unlock(&kfd
->gtt_sa_lock
);
1002 int kfd_gtt_sa_free(struct kfd_dev
*kfd
, struct kfd_mem_obj
*mem_obj
)
1006 /* Act like kfree when trying to free a NULL object */
1010 pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1011 mem_obj
, mem_obj
->range_start
, mem_obj
->range_end
);
1013 mutex_lock(&kfd
->gtt_sa_lock
);
1015 /* Mark the chunks as free */
1016 for (bit
= mem_obj
->range_start
;
1017 bit
<= mem_obj
->range_end
;
1019 clear_bit(bit
, kfd
->gtt_sa_bitmap
);
1021 mutex_unlock(&kfd
->gtt_sa_lock
);
1027 #if defined(CONFIG_DEBUG_FS)
1029 /* This function will send a package to HIQ to hang the HWS
1030 * which will trigger a GPU reset and bring the HWS back to normal state
1032 int kfd_debugfs_hang_hws(struct kfd_dev
*dev
)
1036 if (dev
->dqm
->sched_policy
!= KFD_SCHED_POLICY_HWS
) {
1037 pr_err("HWS is not enabled");
1041 r
= pm_debugfs_hang_hws(&dev
->dqm
->packets
);
1043 r
= dqm_debugfs_execute_queues(dev
->dqm
);