2 * Copyright 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
23 #include <linux/mm_types.h>
24 #include <linux/slab.h>
25 #include <linux/types.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/mm.h>
28 #include <linux/uaccess.h>
29 #include <linux/mman.h>
30 #include <linux/memory.h>
32 #include "kfd_events.h"
33 #include "kfd_iommu.h"
34 #include <linux/device.h>
37 * Wrapper around wait_queue_entry_t
39 struct kfd_event_waiter
{
40 wait_queue_entry_t wait
;
41 struct kfd_event
*event
; /* Event to wait for */
42 bool activated
; /* Becomes true when event is signaled */
46 * Each signal event needs a 64-bit signal slot where the signaler will write
47 * a 1 before sending an interrupt. (This is needed because some interrupts
48 * do not contain enough spare data bits to identify an event.)
49 * We get whole pages and map them to the process VA.
50 * Individual signal events use their event_id as slot index.
52 struct kfd_signal_page
{
53 uint64_t *kernel_address
;
54 uint64_t __user
*user_address
;
55 bool need_to_free_pages
;
59 static uint64_t *page_slots(struct kfd_signal_page
*page
)
61 return page
->kernel_address
;
64 static struct kfd_signal_page
*allocate_signal_page(struct kfd_process
*p
)
67 struct kfd_signal_page
*page
;
69 page
= kzalloc(sizeof(*page
), GFP_KERNEL
);
73 backing_store
= (void *) __get_free_pages(GFP_KERNEL
,
74 get_order(KFD_SIGNAL_EVENT_LIMIT
* 8));
76 goto fail_alloc_signal_store
;
78 /* Initialize all events to unsignaled */
79 memset(backing_store
, (uint8_t) UNSIGNALED_EVENT_SLOT
,
80 KFD_SIGNAL_EVENT_LIMIT
* 8);
82 page
->kernel_address
= backing_store
;
83 page
->need_to_free_pages
= true;
84 pr_debug("Allocated new event signal page at %p, for process %p\n",
89 fail_alloc_signal_store
:
94 static int allocate_event_notification_slot(struct kfd_process
*p
,
99 if (!p
->signal_page
) {
100 p
->signal_page
= allocate_signal_page(p
);
103 /* Oldest user mode expects 256 event slots */
104 p
->signal_mapped_size
= 256*8;
108 * Compatibility with old user mode: Only use signal slots
109 * user mode has mapped, may be less than
110 * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase
111 * of the event limit without breaking user mode.
113 id
= idr_alloc(&p
->event_idr
, ev
, 0, p
->signal_mapped_size
/ 8,
119 page_slots(p
->signal_page
)[id
] = UNSIGNALED_EVENT_SLOT
;
125 * Assumes that p->event_mutex is held and of course that p is not going
126 * away (current or locked).
128 static struct kfd_event
*lookup_event_by_id(struct kfd_process
*p
, uint32_t id
)
130 return idr_find(&p
->event_idr
, id
);
134 * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID
135 * @p: Pointer to struct kfd_process
137 * @bits: Number of valid bits in @id
139 * Finds the first signaled event with a matching partial ID. If no
140 * matching signaled event is found, returns NULL. In that case the
141 * caller should assume that the partial ID is invalid and do an
142 * exhaustive search of all siglaned events.
144 * If multiple events with the same partial ID signal at the same
145 * time, they will be found one interrupt at a time, not necessarily
146 * in the same order the interrupts occurred. As long as the number of
147 * interrupts is correct, all signaled events will be seen by the
150 static struct kfd_event
*lookup_signaled_event_by_partial_id(
151 struct kfd_process
*p
, uint32_t id
, uint32_t bits
)
153 struct kfd_event
*ev
;
155 if (!p
->signal_page
|| id
>= KFD_SIGNAL_EVENT_LIMIT
)
158 /* Fast path for the common case that @id is not a partial ID
159 * and we only need a single lookup.
161 if (bits
> 31 || (1U << bits
) >= KFD_SIGNAL_EVENT_LIMIT
) {
162 if (page_slots(p
->signal_page
)[id
] == UNSIGNALED_EVENT_SLOT
)
165 return idr_find(&p
->event_idr
, id
);
168 /* General case for partial IDs: Iterate over all matching IDs
169 * and find the first one that has signaled.
171 for (ev
= NULL
; id
< KFD_SIGNAL_EVENT_LIMIT
&& !ev
; id
+= 1U << bits
) {
172 if (page_slots(p
->signal_page
)[id
] == UNSIGNALED_EVENT_SLOT
)
175 ev
= idr_find(&p
->event_idr
, id
);
181 static int create_signal_event(struct file
*devkfd
,
182 struct kfd_process
*p
,
183 struct kfd_event
*ev
)
187 if (p
->signal_mapped_size
&&
188 p
->signal_event_count
== p
->signal_mapped_size
/ 8) {
189 if (!p
->signal_event_limit_reached
) {
190 pr_warn("Signal event wasn't created because limit was reached\n");
191 p
->signal_event_limit_reached
= true;
196 ret
= allocate_event_notification_slot(p
, ev
);
198 pr_warn("Signal event wasn't created because out of kernel memory\n");
202 p
->signal_event_count
++;
204 ev
->user_signal_address
= &p
->signal_page
->user_address
[ev
->event_id
];
205 pr_debug("Signal event number %zu created with id %d, address %p\n",
206 p
->signal_event_count
, ev
->event_id
,
207 ev
->user_signal_address
);
212 static int create_other_event(struct kfd_process
*p
, struct kfd_event
*ev
)
214 /* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an
215 * intentional integer overflow to -1 without a compiler
216 * warning. idr_alloc treats a negative value as "maximum
219 int id
= idr_alloc(&p
->event_idr
, ev
, KFD_FIRST_NONSIGNAL_EVENT_ID
,
220 (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID
+ 1,
230 void kfd_event_init_process(struct kfd_process
*p
)
232 mutex_init(&p
->event_mutex
);
233 idr_init(&p
->event_idr
);
234 p
->signal_page
= NULL
;
235 p
->signal_event_count
= 0;
238 static void destroy_event(struct kfd_process
*p
, struct kfd_event
*ev
)
240 struct kfd_event_waiter
*waiter
;
242 /* Wake up pending waiters. They will return failure */
243 list_for_each_entry(waiter
, &ev
->wq
.head
, wait
.entry
)
244 waiter
->event
= NULL
;
245 wake_up_all(&ev
->wq
);
247 if (ev
->type
== KFD_EVENT_TYPE_SIGNAL
||
248 ev
->type
== KFD_EVENT_TYPE_DEBUG
)
249 p
->signal_event_count
--;
251 idr_remove(&p
->event_idr
, ev
->event_id
);
255 static void destroy_events(struct kfd_process
*p
)
257 struct kfd_event
*ev
;
260 idr_for_each_entry(&p
->event_idr
, ev
, id
)
261 destroy_event(p
, ev
);
262 idr_destroy(&p
->event_idr
);
266 * We assume that the process is being destroyed and there is no need to
267 * unmap the pages or keep bookkeeping data in order.
269 static void shutdown_signal_page(struct kfd_process
*p
)
271 struct kfd_signal_page
*page
= p
->signal_page
;
274 if (page
->need_to_free_pages
)
275 free_pages((unsigned long)page
->kernel_address
,
276 get_order(KFD_SIGNAL_EVENT_LIMIT
* 8));
281 void kfd_event_free_process(struct kfd_process
*p
)
284 shutdown_signal_page(p
);
287 static bool event_can_be_gpu_signaled(const struct kfd_event
*ev
)
289 return ev
->type
== KFD_EVENT_TYPE_SIGNAL
||
290 ev
->type
== KFD_EVENT_TYPE_DEBUG
;
293 static bool event_can_be_cpu_signaled(const struct kfd_event
*ev
)
295 return ev
->type
== KFD_EVENT_TYPE_SIGNAL
;
298 int kfd_event_page_set(struct kfd_process
*p
, void *kernel_address
,
301 struct kfd_signal_page
*page
;
306 page
= kzalloc(sizeof(*page
), GFP_KERNEL
);
310 /* Initialize all events to unsignaled */
311 memset(kernel_address
, (uint8_t) UNSIGNALED_EVENT_SLOT
,
312 KFD_SIGNAL_EVENT_LIMIT
* 8);
314 page
->kernel_address
= kernel_address
;
316 p
->signal_page
= page
;
317 p
->signal_mapped_size
= size
;
322 int kfd_event_create(struct file
*devkfd
, struct kfd_process
*p
,
323 uint32_t event_type
, bool auto_reset
, uint32_t node_id
,
324 uint32_t *event_id
, uint32_t *event_trigger_data
,
325 uint64_t *event_page_offset
, uint32_t *event_slot_index
)
328 struct kfd_event
*ev
= kzalloc(sizeof(*ev
), GFP_KERNEL
);
333 ev
->type
= event_type
;
334 ev
->auto_reset
= auto_reset
;
335 ev
->signaled
= false;
337 init_waitqueue_head(&ev
->wq
);
339 *event_page_offset
= 0;
341 mutex_lock(&p
->event_mutex
);
343 switch (event_type
) {
344 case KFD_EVENT_TYPE_SIGNAL
:
345 case KFD_EVENT_TYPE_DEBUG
:
346 ret
= create_signal_event(devkfd
, p
, ev
);
348 *event_page_offset
= KFD_MMAP_TYPE_EVENTS
;
349 *event_page_offset
<<= PAGE_SHIFT
;
350 *event_slot_index
= ev
->event_id
;
354 ret
= create_other_event(p
, ev
);
359 *event_id
= ev
->event_id
;
360 *event_trigger_data
= ev
->event_id
;
365 mutex_unlock(&p
->event_mutex
);
370 /* Assumes that p is current. */
371 int kfd_event_destroy(struct kfd_process
*p
, uint32_t event_id
)
373 struct kfd_event
*ev
;
376 mutex_lock(&p
->event_mutex
);
378 ev
= lookup_event_by_id(p
, event_id
);
381 destroy_event(p
, ev
);
385 mutex_unlock(&p
->event_mutex
);
389 static void set_event(struct kfd_event
*ev
)
391 struct kfd_event_waiter
*waiter
;
393 /* Auto reset if the list is non-empty and we're waking
394 * someone. waitqueue_active is safe here because we're
395 * protected by the p->event_mutex, which is also held when
396 * updating the wait queues in kfd_wait_on_events.
398 ev
->signaled
= !ev
->auto_reset
|| !waitqueue_active(&ev
->wq
);
400 list_for_each_entry(waiter
, &ev
->wq
.head
, wait
.entry
)
401 waiter
->activated
= true;
403 wake_up_all(&ev
->wq
);
406 /* Assumes that p is current. */
407 int kfd_set_event(struct kfd_process
*p
, uint32_t event_id
)
410 struct kfd_event
*ev
;
412 mutex_lock(&p
->event_mutex
);
414 ev
= lookup_event_by_id(p
, event_id
);
416 if (ev
&& event_can_be_cpu_signaled(ev
))
421 mutex_unlock(&p
->event_mutex
);
425 static void reset_event(struct kfd_event
*ev
)
427 ev
->signaled
= false;
430 /* Assumes that p is current. */
431 int kfd_reset_event(struct kfd_process
*p
, uint32_t event_id
)
434 struct kfd_event
*ev
;
436 mutex_lock(&p
->event_mutex
);
438 ev
= lookup_event_by_id(p
, event_id
);
440 if (ev
&& event_can_be_cpu_signaled(ev
))
445 mutex_unlock(&p
->event_mutex
);
450 static void acknowledge_signal(struct kfd_process
*p
, struct kfd_event
*ev
)
452 page_slots(p
->signal_page
)[ev
->event_id
] = UNSIGNALED_EVENT_SLOT
;
455 static void set_event_from_interrupt(struct kfd_process
*p
,
456 struct kfd_event
*ev
)
458 if (ev
&& event_can_be_gpu_signaled(ev
)) {
459 acknowledge_signal(p
, ev
);
464 void kfd_signal_event_interrupt(unsigned int pasid
, uint32_t partial_id
,
465 uint32_t valid_id_bits
)
467 struct kfd_event
*ev
= NULL
;
470 * Because we are called from arbitrary context (workqueue) as opposed
471 * to process context, kfd_process could attempt to exit while we are
472 * running so the lookup function increments the process ref count.
474 struct kfd_process
*p
= kfd_lookup_process_by_pasid(pasid
);
477 return; /* Presumably process exited. */
479 mutex_lock(&p
->event_mutex
);
482 ev
= lookup_signaled_event_by_partial_id(p
, partial_id
,
485 set_event_from_interrupt(p
, ev
);
486 } else if (p
->signal_page
) {
488 * Partial ID lookup failed. Assume that the event ID
489 * in the interrupt payload was invalid and do an
490 * exhaustive search of signaled events.
492 uint64_t *slots
= page_slots(p
->signal_page
);
496 pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n",
497 partial_id
, valid_id_bits
);
499 if (p
->signal_event_count
< KFD_SIGNAL_EVENT_LIMIT
/ 64) {
500 /* With relatively few events, it's faster to
501 * iterate over the event IDR
503 idr_for_each_entry(&p
->event_idr
, ev
, id
) {
504 if (id
>= KFD_SIGNAL_EVENT_LIMIT
)
507 if (slots
[id
] != UNSIGNALED_EVENT_SLOT
)
508 set_event_from_interrupt(p
, ev
);
511 /* With relatively many events, it's faster to
512 * iterate over the signal slots and lookup
513 * only signaled events from the IDR.
515 for (id
= 0; id
< KFD_SIGNAL_EVENT_LIMIT
; id
++)
516 if (slots
[id
] != UNSIGNALED_EVENT_SLOT
) {
517 ev
= lookup_event_by_id(p
, id
);
518 set_event_from_interrupt(p
, ev
);
523 mutex_unlock(&p
->event_mutex
);
524 kfd_unref_process(p
);
527 static struct kfd_event_waiter
*alloc_event_waiters(uint32_t num_events
)
529 struct kfd_event_waiter
*event_waiters
;
532 event_waiters
= kmalloc_array(num_events
,
533 sizeof(struct kfd_event_waiter
),
536 for (i
= 0; (event_waiters
) && (i
< num_events
) ; i
++) {
537 init_wait(&event_waiters
[i
].wait
);
538 event_waiters
[i
].activated
= false;
541 return event_waiters
;
544 static int init_event_waiter_get_status(struct kfd_process
*p
,
545 struct kfd_event_waiter
*waiter
,
548 struct kfd_event
*ev
= lookup_event_by_id(p
, event_id
);
554 waiter
->activated
= ev
->signaled
;
555 ev
->signaled
= ev
->signaled
&& !ev
->auto_reset
;
560 static void init_event_waiter_add_to_waitlist(struct kfd_event_waiter
*waiter
)
562 struct kfd_event
*ev
= waiter
->event
;
564 /* Only add to the wait list if we actually need to
565 * wait on this event.
567 if (!waiter
->activated
)
568 add_wait_queue(&ev
->wq
, &waiter
->wait
);
571 /* test_event_condition - Test condition of events being waited for
572 * @all: Return completion only if all events have signaled
573 * @num_events: Number of events to wait for
574 * @event_waiters: Array of event waiters, one per event
576 * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have
577 * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all)
578 * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of
579 * the events have been destroyed.
581 static uint32_t test_event_condition(bool all
, uint32_t num_events
,
582 struct kfd_event_waiter
*event_waiters
)
585 uint32_t activated_count
= 0;
587 for (i
= 0; i
< num_events
; i
++) {
588 if (!event_waiters
[i
].event
)
589 return KFD_IOC_WAIT_RESULT_FAIL
;
591 if (event_waiters
[i
].activated
) {
593 return KFD_IOC_WAIT_RESULT_COMPLETE
;
599 return activated_count
== num_events
?
600 KFD_IOC_WAIT_RESULT_COMPLETE
: KFD_IOC_WAIT_RESULT_TIMEOUT
;
604 * Copy event specific data, if defined.
605 * Currently only memory exception events have additional data to copy to user
607 static int copy_signaled_event_data(uint32_t num_events
,
608 struct kfd_event_waiter
*event_waiters
,
609 struct kfd_event_data __user
*data
)
611 struct kfd_hsa_memory_exception_data
*src
;
612 struct kfd_hsa_memory_exception_data __user
*dst
;
613 struct kfd_event_waiter
*waiter
;
614 struct kfd_event
*event
;
617 for (i
= 0; i
< num_events
; i
++) {
618 waiter
= &event_waiters
[i
];
619 event
= waiter
->event
;
620 if (waiter
->activated
&& event
->type
== KFD_EVENT_TYPE_MEMORY
) {
621 dst
= &data
[i
].memory_exception_data
;
622 src
= &event
->memory_exception_data
;
623 if (copy_to_user(dst
, src
,
624 sizeof(struct kfd_hsa_memory_exception_data
)))
635 static long user_timeout_to_jiffies(uint32_t user_timeout_ms
)
637 if (user_timeout_ms
== KFD_EVENT_TIMEOUT_IMMEDIATE
)
640 if (user_timeout_ms
== KFD_EVENT_TIMEOUT_INFINITE
)
641 return MAX_SCHEDULE_TIMEOUT
;
644 * msecs_to_jiffies interprets all values above 2^31-1 as infinite,
645 * but we consider them finite.
646 * This hack is wrong, but nobody is likely to notice.
648 user_timeout_ms
= min_t(uint32_t, user_timeout_ms
, 0x7FFFFFFF);
650 return msecs_to_jiffies(user_timeout_ms
) + 1;
653 static void free_waiters(uint32_t num_events
, struct kfd_event_waiter
*waiters
)
657 for (i
= 0; i
< num_events
; i
++)
658 if (waiters
[i
].event
)
659 remove_wait_queue(&waiters
[i
].event
->wq
,
665 int kfd_wait_on_events(struct kfd_process
*p
,
666 uint32_t num_events
, void __user
*data
,
667 bool all
, uint32_t user_timeout_ms
,
668 uint32_t *wait_result
)
670 struct kfd_event_data __user
*events
=
671 (struct kfd_event_data __user
*) data
;
675 struct kfd_event_waiter
*event_waiters
= NULL
;
676 long timeout
= user_timeout_to_jiffies(user_timeout_ms
);
678 event_waiters
= alloc_event_waiters(num_events
);
679 if (!event_waiters
) {
684 mutex_lock(&p
->event_mutex
);
686 for (i
= 0; i
< num_events
; i
++) {
687 struct kfd_event_data event_data
;
689 if (copy_from_user(&event_data
, &events
[i
],
690 sizeof(struct kfd_event_data
))) {
695 ret
= init_event_waiter_get_status(p
, &event_waiters
[i
],
696 event_data
.event_id
);
701 /* Check condition once. */
702 *wait_result
= test_event_condition(all
, num_events
, event_waiters
);
703 if (*wait_result
== KFD_IOC_WAIT_RESULT_COMPLETE
) {
704 ret
= copy_signaled_event_data(num_events
,
705 event_waiters
, events
);
707 } else if (WARN_ON(*wait_result
== KFD_IOC_WAIT_RESULT_FAIL
)) {
708 /* This should not happen. Events shouldn't be
709 * destroyed while we're holding the event_mutex
714 /* Add to wait lists if we need to wait. */
715 for (i
= 0; i
< num_events
; i
++)
716 init_event_waiter_add_to_waitlist(&event_waiters
[i
]);
718 mutex_unlock(&p
->event_mutex
);
721 if (fatal_signal_pending(current
)) {
726 if (signal_pending(current
)) {
728 * This is wrong when a nonzero, non-infinite timeout
729 * is specified. We need to use
730 * ERESTARTSYS_RESTARTBLOCK, but struct restart_block
731 * contains a union with data for each user and it's
732 * in generic kernel code that I don't want to
739 /* Set task state to interruptible sleep before
740 * checking wake-up conditions. A concurrent wake-up
741 * will put the task back into runnable state. In that
742 * case schedule_timeout will not put the task to
743 * sleep and we'll get a chance to re-check the
744 * updated conditions almost immediately. Otherwise,
745 * this race condition would lead to a soft hang or a
748 set_current_state(TASK_INTERRUPTIBLE
);
750 *wait_result
= test_event_condition(all
, num_events
,
752 if (*wait_result
!= KFD_IOC_WAIT_RESULT_TIMEOUT
)
758 timeout
= schedule_timeout(timeout
);
760 __set_current_state(TASK_RUNNING
);
762 /* copy_signaled_event_data may sleep. So this has to happen
763 * after the task state is set back to RUNNING.
765 if (!ret
&& *wait_result
== KFD_IOC_WAIT_RESULT_COMPLETE
)
766 ret
= copy_signaled_event_data(num_events
,
767 event_waiters
, events
);
769 mutex_lock(&p
->event_mutex
);
771 free_waiters(num_events
, event_waiters
);
772 mutex_unlock(&p
->event_mutex
);
775 *wait_result
= KFD_IOC_WAIT_RESULT_FAIL
;
776 else if (*wait_result
== KFD_IOC_WAIT_RESULT_FAIL
)
782 int kfd_event_mmap(struct kfd_process
*p
, struct vm_area_struct
*vma
)
785 struct kfd_signal_page
*page
;
788 /* check required size doesn't exceed the allocated size */
789 if (get_order(KFD_SIGNAL_EVENT_LIMIT
* 8) <
790 get_order(vma
->vm_end
- vma
->vm_start
)) {
791 pr_err("Event page mmap requested illegal size\n");
795 page
= p
->signal_page
;
797 /* Probably KFD bug, but mmap is user-accessible. */
798 pr_debug("Signal page could not be found\n");
802 pfn
= __pa(page
->kernel_address
);
805 vma
->vm_flags
|= VM_IO
| VM_DONTCOPY
| VM_DONTEXPAND
| VM_NORESERVE
806 | VM_DONTDUMP
| VM_PFNMAP
;
808 pr_debug("Mapping signal page\n");
809 pr_debug(" start user address == 0x%08lx\n", vma
->vm_start
);
810 pr_debug(" end user address == 0x%08lx\n", vma
->vm_end
);
811 pr_debug(" pfn == 0x%016lX\n", pfn
);
812 pr_debug(" vm_flags == 0x%08lX\n", vma
->vm_flags
);
813 pr_debug(" size == 0x%08lX\n",
814 vma
->vm_end
- vma
->vm_start
);
816 page
->user_address
= (uint64_t __user
*)vma
->vm_start
;
818 /* mapping the page to user process */
819 ret
= remap_pfn_range(vma
, vma
->vm_start
, pfn
,
820 vma
->vm_end
- vma
->vm_start
, vma
->vm_page_prot
);
822 p
->signal_mapped_size
= vma
->vm_end
- vma
->vm_start
;
828 * Assumes that p->event_mutex is held and of course
829 * that p is not going away (current or locked).
831 static void lookup_events_by_type_and_signal(struct kfd_process
*p
,
832 int type
, void *event_data
)
834 struct kfd_hsa_memory_exception_data
*ev_data
;
835 struct kfd_event
*ev
;
837 bool send_signal
= true;
839 ev_data
= (struct kfd_hsa_memory_exception_data
*) event_data
;
841 id
= KFD_FIRST_NONSIGNAL_EVENT_ID
;
842 idr_for_each_entry_continue(&p
->event_idr
, ev
, id
)
843 if (ev
->type
== type
) {
846 "Event found: id %X type %d",
847 ev
->event_id
, ev
->type
);
849 if (ev
->type
== KFD_EVENT_TYPE_MEMORY
&& ev_data
)
850 ev
->memory_exception_data
= *ev_data
;
853 if (type
== KFD_EVENT_TYPE_MEMORY
) {
855 "Sending SIGSEGV to HSA Process with PID %d ",
856 p
->lead_thread
->pid
);
857 send_sig(SIGSEGV
, p
->lead_thread
, 0);
860 /* Send SIGTERM no event of type "type" has been found*/
864 "Sending SIGTERM to HSA Process with PID %d ",
865 p
->lead_thread
->pid
);
866 send_sig(SIGTERM
, p
->lead_thread
, 0);
869 "HSA Process (PID %d) got unhandled exception",
870 p
->lead_thread
->pid
);
875 #ifdef KFD_SUPPORT_IOMMU_V2
876 void kfd_signal_iommu_event(struct kfd_dev
*dev
, unsigned int pasid
,
877 unsigned long address
, bool is_write_requested
,
878 bool is_execute_requested
)
880 struct kfd_hsa_memory_exception_data memory_exception_data
;
881 struct vm_area_struct
*vma
;
884 * Because we are called from arbitrary context (workqueue) as opposed
885 * to process context, kfd_process could attempt to exit while we are
886 * running so the lookup function increments the process ref count.
888 struct kfd_process
*p
= kfd_lookup_process_by_pasid(pasid
);
889 struct mm_struct
*mm
;
892 return; /* Presumably process exited. */
894 /* Take a safe reference to the mm_struct, which may otherwise
895 * disappear even while the kfd_process is still referenced.
897 mm
= get_task_mm(p
->lead_thread
);
899 kfd_unref_process(p
);
900 return; /* Process is exiting */
903 memset(&memory_exception_data
, 0, sizeof(memory_exception_data
));
905 down_read(&mm
->mmap_sem
);
906 vma
= find_vma(mm
, address
);
908 memory_exception_data
.gpu_id
= dev
->id
;
909 memory_exception_data
.va
= address
;
910 /* Set failure reason */
911 memory_exception_data
.failure
.NotPresent
= 1;
912 memory_exception_data
.failure
.NoExecute
= 0;
913 memory_exception_data
.failure
.ReadOnly
= 0;
914 if (vma
&& address
>= vma
->vm_start
) {
915 memory_exception_data
.failure
.NotPresent
= 0;
917 if (is_write_requested
&& !(vma
->vm_flags
& VM_WRITE
))
918 memory_exception_data
.failure
.ReadOnly
= 1;
920 memory_exception_data
.failure
.ReadOnly
= 0;
922 if (is_execute_requested
&& !(vma
->vm_flags
& VM_EXEC
))
923 memory_exception_data
.failure
.NoExecute
= 1;
925 memory_exception_data
.failure
.NoExecute
= 0;
928 up_read(&mm
->mmap_sem
);
931 pr_debug("notpresent %d, noexecute %d, readonly %d\n",
932 memory_exception_data
.failure
.NotPresent
,
933 memory_exception_data
.failure
.NoExecute
,
934 memory_exception_data
.failure
.ReadOnly
);
936 /* Workaround on Raven to not kill the process when memory is freed
937 * before IOMMU is able to finish processing all the excessive PPRs
939 if (dev
->device_info
->asic_family
!= CHIP_RAVEN
) {
940 mutex_lock(&p
->event_mutex
);
942 /* Lookup events by type and signal them */
943 lookup_events_by_type_and_signal(p
, KFD_EVENT_TYPE_MEMORY
,
944 &memory_exception_data
);
946 mutex_unlock(&p
->event_mutex
);
949 kfd_unref_process(p
);
951 #endif /* KFD_SUPPORT_IOMMU_V2 */
953 void kfd_signal_hw_exception_event(unsigned int pasid
)
956 * Because we are called from arbitrary context (workqueue) as opposed
957 * to process context, kfd_process could attempt to exit while we are
958 * running so the lookup function increments the process ref count.
960 struct kfd_process
*p
= kfd_lookup_process_by_pasid(pasid
);
963 return; /* Presumably process exited. */
965 mutex_lock(&p
->event_mutex
);
967 /* Lookup events by type and signal them */
968 lookup_events_by_type_and_signal(p
, KFD_EVENT_TYPE_HW_EXCEPTION
, NULL
);
970 mutex_unlock(&p
->event_mutex
);
971 kfd_unref_process(p
);
974 void kfd_signal_vm_fault_event(struct kfd_dev
*dev
, unsigned int pasid
,
975 struct kfd_vm_fault_info
*info
)
977 struct kfd_event
*ev
;
979 struct kfd_process
*p
= kfd_lookup_process_by_pasid(pasid
);
980 struct kfd_hsa_memory_exception_data memory_exception_data
;
983 return; /* Presumably process exited. */
984 memset(&memory_exception_data
, 0, sizeof(memory_exception_data
));
985 memory_exception_data
.gpu_id
= dev
->id
;
986 memory_exception_data
.failure
.imprecise
= 1;
987 /* Set failure reason */
989 memory_exception_data
.va
= (info
->page_addr
) << PAGE_SHIFT
;
990 memory_exception_data
.failure
.NotPresent
=
991 info
->prot_valid
? 1 : 0;
992 memory_exception_data
.failure
.NoExecute
=
993 info
->prot_exec
? 1 : 0;
994 memory_exception_data
.failure
.ReadOnly
=
995 info
->prot_write
? 1 : 0;
996 memory_exception_data
.failure
.imprecise
= 0;
998 mutex_lock(&p
->event_mutex
);
1000 id
= KFD_FIRST_NONSIGNAL_EVENT_ID
;
1001 idr_for_each_entry_continue(&p
->event_idr
, ev
, id
)
1002 if (ev
->type
== KFD_EVENT_TYPE_MEMORY
) {
1003 ev
->memory_exception_data
= memory_exception_data
;
1007 mutex_unlock(&p
->event_mutex
);
1008 kfd_unref_process(p
);
1011 void kfd_signal_reset_event(struct kfd_dev
*dev
)
1013 struct kfd_hsa_hw_exception_data hw_exception_data
;
1014 struct kfd_process
*p
;
1015 struct kfd_event
*ev
;
1019 /* Whole gpu reset caused by GPU hang and memory is lost */
1020 memset(&hw_exception_data
, 0, sizeof(hw_exception_data
));
1021 hw_exception_data
.gpu_id
= dev
->id
;
1022 hw_exception_data
.memory_lost
= 1;
1024 idx
= srcu_read_lock(&kfd_processes_srcu
);
1025 hash_for_each_rcu(kfd_processes_table
, temp
, p
, kfd_processes
) {
1026 mutex_lock(&p
->event_mutex
);
1027 id
= KFD_FIRST_NONSIGNAL_EVENT_ID
;
1028 idr_for_each_entry_continue(&p
->event_idr
, ev
, id
)
1029 if (ev
->type
== KFD_EVENT_TYPE_HW_EXCEPTION
) {
1030 ev
->hw_exception_data
= hw_exception_data
;
1033 mutex_unlock(&p
->event_mutex
);
1035 srcu_read_unlock(&kfd_processes_srcu
, idx
);