dt-bindings: mtd: ingenic: Use standard ecc-engine property
[linux/fpc-iii.git] / drivers / gpu / drm / nouveau / nouveau_bo.c
blob34a998012bf6d86377baaac7ca76b4e105f8b116
1 /*
2 * Copyright 2007 Dave Airlied
3 * All Rights Reserved.
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
25 * Authors: Dave Airlied <airlied@linux.ie>
26 * Ben Skeggs <darktama@iinet.net.au>
27 * Jeremy Kolb <jkolb@brandeis.edu>
30 #include <linux/dma-mapping.h>
31 #include <linux/swiotlb.h>
33 #include "nouveau_drv.h"
34 #include "nouveau_dma.h"
35 #include "nouveau_fence.h"
37 #include "nouveau_bo.h"
38 #include "nouveau_ttm.h"
39 #include "nouveau_gem.h"
40 #include "nouveau_mem.h"
41 #include "nouveau_vmm.h"
43 #include <nvif/class.h>
44 #include <nvif/if500b.h>
45 #include <nvif/if900b.h>
48 * NV10-NV40 tiling helpers
51 static void
52 nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg,
53 u32 addr, u32 size, u32 pitch, u32 flags)
55 struct nouveau_drm *drm = nouveau_drm(dev);
56 int i = reg - drm->tile.reg;
57 struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
58 struct nvkm_fb_tile *tile = &fb->tile.region[i];
60 nouveau_fence_unref(&reg->fence);
62 if (tile->pitch)
63 nvkm_fb_tile_fini(fb, i, tile);
65 if (pitch)
66 nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile);
68 nvkm_fb_tile_prog(fb, i, tile);
71 static struct nouveau_drm_tile *
72 nv10_bo_get_tile_region(struct drm_device *dev, int i)
74 struct nouveau_drm *drm = nouveau_drm(dev);
75 struct nouveau_drm_tile *tile = &drm->tile.reg[i];
77 spin_lock(&drm->tile.lock);
79 if (!tile->used &&
80 (!tile->fence || nouveau_fence_done(tile->fence)))
81 tile->used = true;
82 else
83 tile = NULL;
85 spin_unlock(&drm->tile.lock);
86 return tile;
89 static void
90 nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile,
91 struct dma_fence *fence)
93 struct nouveau_drm *drm = nouveau_drm(dev);
95 if (tile) {
96 spin_lock(&drm->tile.lock);
97 tile->fence = (struct nouveau_fence *)dma_fence_get(fence);
98 tile->used = false;
99 spin_unlock(&drm->tile.lock);
103 static struct nouveau_drm_tile *
104 nv10_bo_set_tiling(struct drm_device *dev, u32 addr,
105 u32 size, u32 pitch, u32 zeta)
107 struct nouveau_drm *drm = nouveau_drm(dev);
108 struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
109 struct nouveau_drm_tile *tile, *found = NULL;
110 int i;
112 for (i = 0; i < fb->tile.regions; i++) {
113 tile = nv10_bo_get_tile_region(dev, i);
115 if (pitch && !found) {
116 found = tile;
117 continue;
119 } else if (tile && fb->tile.region[i].pitch) {
120 /* Kill an unused tile region. */
121 nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0);
124 nv10_bo_put_tile_region(dev, tile, NULL);
127 if (found)
128 nv10_bo_update_tile_region(dev, found, addr, size, pitch, zeta);
129 return found;
132 static void
133 nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
135 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
136 struct drm_device *dev = drm->dev;
137 struct nouveau_bo *nvbo = nouveau_bo(bo);
139 if (unlikely(nvbo->gem.filp))
140 DRM_ERROR("bo %p still attached to GEM object\n", bo);
141 WARN_ON(nvbo->pin_refcnt > 0);
142 nv10_bo_put_tile_region(dev, nvbo->tile, NULL);
143 kfree(nvbo);
146 static inline u64
147 roundup_64(u64 x, u32 y)
149 x += y - 1;
150 do_div(x, y);
151 return x * y;
154 static void
155 nouveau_bo_fixup_align(struct nouveau_bo *nvbo, u32 flags,
156 int *align, u64 *size)
158 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
159 struct nvif_device *device = &drm->client.device;
161 if (device->info.family < NV_DEVICE_INFO_V0_TESLA) {
162 if (nvbo->mode) {
163 if (device->info.chipset >= 0x40) {
164 *align = 65536;
165 *size = roundup_64(*size, 64 * nvbo->mode);
167 } else if (device->info.chipset >= 0x30) {
168 *align = 32768;
169 *size = roundup_64(*size, 64 * nvbo->mode);
171 } else if (device->info.chipset >= 0x20) {
172 *align = 16384;
173 *size = roundup_64(*size, 64 * nvbo->mode);
175 } else if (device->info.chipset >= 0x10) {
176 *align = 16384;
177 *size = roundup_64(*size, 32 * nvbo->mode);
180 } else {
181 *size = roundup_64(*size, (1 << nvbo->page));
182 *align = max((1 << nvbo->page), *align);
185 *size = roundup_64(*size, PAGE_SIZE);
189 nouveau_bo_new(struct nouveau_cli *cli, u64 size, int align,
190 uint32_t flags, uint32_t tile_mode, uint32_t tile_flags,
191 struct sg_table *sg, struct reservation_object *robj,
192 struct nouveau_bo **pnvbo)
194 struct nouveau_drm *drm = cli->drm;
195 struct nouveau_bo *nvbo;
196 struct nvif_mmu *mmu = &cli->mmu;
197 struct nvif_vmm *vmm = cli->svm.cli ? &cli->svm.vmm : &cli->vmm.vmm;
198 size_t acc_size;
199 int type = ttm_bo_type_device;
200 int ret, i, pi = -1;
202 if (!size) {
203 NV_WARN(drm, "skipped size %016llx\n", size);
204 return -EINVAL;
207 if (sg)
208 type = ttm_bo_type_sg;
210 nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
211 if (!nvbo)
212 return -ENOMEM;
213 INIT_LIST_HEAD(&nvbo->head);
214 INIT_LIST_HEAD(&nvbo->entry);
215 INIT_LIST_HEAD(&nvbo->vma_list);
216 nvbo->bo.bdev = &drm->ttm.bdev;
218 /* This is confusing, and doesn't actually mean we want an uncached
219 * mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated
220 * into in nouveau_gem_new().
222 if (flags & TTM_PL_FLAG_UNCACHED) {
223 /* Determine if we can get a cache-coherent map, forcing
224 * uncached mapping if we can't.
226 if (!nouveau_drm_use_coherent_gpu_mapping(drm))
227 nvbo->force_coherent = true;
230 if (cli->device.info.family >= NV_DEVICE_INFO_V0_FERMI) {
231 nvbo->kind = (tile_flags & 0x0000ff00) >> 8;
232 if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
233 kfree(nvbo);
234 return -EINVAL;
237 nvbo->comp = mmu->kind[nvbo->kind] != nvbo->kind;
238 } else
239 if (cli->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
240 nvbo->kind = (tile_flags & 0x00007f00) >> 8;
241 nvbo->comp = (tile_flags & 0x00030000) >> 16;
242 if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
243 kfree(nvbo);
244 return -EINVAL;
246 } else {
247 nvbo->zeta = (tile_flags & 0x00000007);
249 nvbo->mode = tile_mode;
250 nvbo->contig = !(tile_flags & NOUVEAU_GEM_TILE_NONCONTIG);
252 /* Determine the desirable target GPU page size for the buffer. */
253 for (i = 0; i < vmm->page_nr; i++) {
254 /* Because we cannot currently allow VMM maps to fail
255 * during buffer migration, we need to determine page
256 * size for the buffer up-front, and pre-allocate its
257 * page tables.
259 * Skip page sizes that can't support needed domains.
261 if (cli->device.info.family > NV_DEVICE_INFO_V0_CURIE &&
262 (flags & TTM_PL_FLAG_VRAM) && !vmm->page[i].vram)
263 continue;
264 if ((flags & TTM_PL_FLAG_TT) &&
265 (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT))
266 continue;
268 /* Select this page size if it's the first that supports
269 * the potential memory domains, or when it's compatible
270 * with the requested compression settings.
272 if (pi < 0 || !nvbo->comp || vmm->page[i].comp)
273 pi = i;
275 /* Stop once the buffer is larger than the current page size. */
276 if (size >= 1ULL << vmm->page[i].shift)
277 break;
280 if (WARN_ON(pi < 0))
281 return -EINVAL;
283 /* Disable compression if suitable settings couldn't be found. */
284 if (nvbo->comp && !vmm->page[pi].comp) {
285 if (mmu->object.oclass >= NVIF_CLASS_MMU_GF100)
286 nvbo->kind = mmu->kind[nvbo->kind];
287 nvbo->comp = 0;
289 nvbo->page = vmm->page[pi].shift;
291 nouveau_bo_fixup_align(nvbo, flags, &align, &size);
292 nvbo->bo.mem.num_pages = size >> PAGE_SHIFT;
293 nouveau_bo_placement_set(nvbo, flags, 0);
295 acc_size = ttm_bo_dma_acc_size(&drm->ttm.bdev, size,
296 sizeof(struct nouveau_bo));
298 ret = ttm_bo_init(&drm->ttm.bdev, &nvbo->bo, size,
299 type, &nvbo->placement,
300 align >> PAGE_SHIFT, false, acc_size, sg,
301 robj, nouveau_bo_del_ttm);
302 if (ret) {
303 /* ttm will call nouveau_bo_del_ttm if it fails.. */
304 return ret;
307 *pnvbo = nvbo;
308 return 0;
311 static void
312 set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t type, uint32_t flags)
314 *n = 0;
316 if (type & TTM_PL_FLAG_VRAM)
317 pl[(*n)++].flags = TTM_PL_FLAG_VRAM | flags;
318 if (type & TTM_PL_FLAG_TT)
319 pl[(*n)++].flags = TTM_PL_FLAG_TT | flags;
320 if (type & TTM_PL_FLAG_SYSTEM)
321 pl[(*n)++].flags = TTM_PL_FLAG_SYSTEM | flags;
324 static void
325 set_placement_range(struct nouveau_bo *nvbo, uint32_t type)
327 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
328 u32 vram_pages = drm->client.device.info.ram_size >> PAGE_SHIFT;
329 unsigned i, fpfn, lpfn;
331 if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
332 nvbo->mode && (type & TTM_PL_FLAG_VRAM) &&
333 nvbo->bo.mem.num_pages < vram_pages / 4) {
335 * Make sure that the color and depth buffers are handled
336 * by independent memory controller units. Up to a 9x
337 * speed up when alpha-blending and depth-test are enabled
338 * at the same time.
340 if (nvbo->zeta) {
341 fpfn = vram_pages / 2;
342 lpfn = ~0;
343 } else {
344 fpfn = 0;
345 lpfn = vram_pages / 2;
347 for (i = 0; i < nvbo->placement.num_placement; ++i) {
348 nvbo->placements[i].fpfn = fpfn;
349 nvbo->placements[i].lpfn = lpfn;
351 for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
352 nvbo->busy_placements[i].fpfn = fpfn;
353 nvbo->busy_placements[i].lpfn = lpfn;
358 void
359 nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t type, uint32_t busy)
361 struct ttm_placement *pl = &nvbo->placement;
362 uint32_t flags = (nvbo->force_coherent ? TTM_PL_FLAG_UNCACHED :
363 TTM_PL_MASK_CACHING) |
364 (nvbo->pin_refcnt ? TTM_PL_FLAG_NO_EVICT : 0);
366 pl->placement = nvbo->placements;
367 set_placement_list(nvbo->placements, &pl->num_placement,
368 type, flags);
370 pl->busy_placement = nvbo->busy_placements;
371 set_placement_list(nvbo->busy_placements, &pl->num_busy_placement,
372 type | busy, flags);
374 set_placement_range(nvbo, type);
378 nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t memtype, bool contig)
380 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
381 struct ttm_buffer_object *bo = &nvbo->bo;
382 bool force = false, evict = false;
383 int ret;
385 ret = ttm_bo_reserve(bo, false, false, NULL);
386 if (ret)
387 return ret;
389 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
390 memtype == TTM_PL_FLAG_VRAM && contig) {
391 if (!nvbo->contig) {
392 nvbo->contig = true;
393 force = true;
394 evict = true;
398 if (nvbo->pin_refcnt) {
399 if (!(memtype & (1 << bo->mem.mem_type)) || evict) {
400 NV_ERROR(drm, "bo %p pinned elsewhere: "
401 "0x%08x vs 0x%08x\n", bo,
402 1 << bo->mem.mem_type, memtype);
403 ret = -EBUSY;
405 nvbo->pin_refcnt++;
406 goto out;
409 if (evict) {
410 nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT, 0);
411 ret = nouveau_bo_validate(nvbo, false, false);
412 if (ret)
413 goto out;
416 nvbo->pin_refcnt++;
417 nouveau_bo_placement_set(nvbo, memtype, 0);
419 /* drop pin_refcnt temporarily, so we don't trip the assertion
420 * in nouveau_bo_move() that makes sure we're not trying to
421 * move a pinned buffer
423 nvbo->pin_refcnt--;
424 ret = nouveau_bo_validate(nvbo, false, false);
425 if (ret)
426 goto out;
427 nvbo->pin_refcnt++;
429 switch (bo->mem.mem_type) {
430 case TTM_PL_VRAM:
431 drm->gem.vram_available -= bo->mem.size;
432 break;
433 case TTM_PL_TT:
434 drm->gem.gart_available -= bo->mem.size;
435 break;
436 default:
437 break;
440 out:
441 if (force && ret)
442 nvbo->contig = false;
443 ttm_bo_unreserve(bo);
444 return ret;
448 nouveau_bo_unpin(struct nouveau_bo *nvbo)
450 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
451 struct ttm_buffer_object *bo = &nvbo->bo;
452 int ret, ref;
454 ret = ttm_bo_reserve(bo, false, false, NULL);
455 if (ret)
456 return ret;
458 ref = --nvbo->pin_refcnt;
459 WARN_ON_ONCE(ref < 0);
460 if (ref)
461 goto out;
463 nouveau_bo_placement_set(nvbo, bo->mem.placement, 0);
465 ret = nouveau_bo_validate(nvbo, false, false);
466 if (ret == 0) {
467 switch (bo->mem.mem_type) {
468 case TTM_PL_VRAM:
469 drm->gem.vram_available += bo->mem.size;
470 break;
471 case TTM_PL_TT:
472 drm->gem.gart_available += bo->mem.size;
473 break;
474 default:
475 break;
479 out:
480 ttm_bo_unreserve(bo);
481 return ret;
485 nouveau_bo_map(struct nouveau_bo *nvbo)
487 int ret;
489 ret = ttm_bo_reserve(&nvbo->bo, false, false, NULL);
490 if (ret)
491 return ret;
493 ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.mem.num_pages, &nvbo->kmap);
495 ttm_bo_unreserve(&nvbo->bo);
496 return ret;
499 void
500 nouveau_bo_unmap(struct nouveau_bo *nvbo)
502 if (!nvbo)
503 return;
505 ttm_bo_kunmap(&nvbo->kmap);
508 void
509 nouveau_bo_sync_for_device(struct nouveau_bo *nvbo)
511 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
512 struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
513 int i;
515 if (!ttm_dma)
516 return;
518 /* Don't waste time looping if the object is coherent */
519 if (nvbo->force_coherent)
520 return;
522 for (i = 0; i < ttm_dma->ttm.num_pages; i++)
523 dma_sync_single_for_device(drm->dev->dev,
524 ttm_dma->dma_address[i],
525 PAGE_SIZE, DMA_TO_DEVICE);
528 void
529 nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo)
531 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
532 struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
533 int i;
535 if (!ttm_dma)
536 return;
538 /* Don't waste time looping if the object is coherent */
539 if (nvbo->force_coherent)
540 return;
542 for (i = 0; i < ttm_dma->ttm.num_pages; i++)
543 dma_sync_single_for_cpu(drm->dev->dev, ttm_dma->dma_address[i],
544 PAGE_SIZE, DMA_FROM_DEVICE);
548 nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
549 bool no_wait_gpu)
551 struct ttm_operation_ctx ctx = { interruptible, no_wait_gpu };
552 int ret;
554 ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement, &ctx);
555 if (ret)
556 return ret;
558 nouveau_bo_sync_for_device(nvbo);
560 return 0;
563 void
564 nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
566 bool is_iomem;
567 u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
569 mem += index;
571 if (is_iomem)
572 iowrite16_native(val, (void __force __iomem *)mem);
573 else
574 *mem = val;
578 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
580 bool is_iomem;
581 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
583 mem += index;
585 if (is_iomem)
586 return ioread32_native((void __force __iomem *)mem);
587 else
588 return *mem;
591 void
592 nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
594 bool is_iomem;
595 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
597 mem += index;
599 if (is_iomem)
600 iowrite32_native(val, (void __force __iomem *)mem);
601 else
602 *mem = val;
605 static struct ttm_tt *
606 nouveau_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags)
608 #if IS_ENABLED(CONFIG_AGP)
609 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
611 if (drm->agp.bridge) {
612 return ttm_agp_tt_create(bo, drm->agp.bridge, page_flags);
614 #endif
616 return nouveau_sgdma_create_ttm(bo, page_flags);
619 static int
620 nouveau_bo_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
622 /* We'll do this from user space. */
623 return 0;
626 static int
627 nouveau_bo_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
628 struct ttm_mem_type_manager *man)
630 struct nouveau_drm *drm = nouveau_bdev(bdev);
631 struct nvif_mmu *mmu = &drm->client.mmu;
633 switch (type) {
634 case TTM_PL_SYSTEM:
635 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
636 man->available_caching = TTM_PL_MASK_CACHING;
637 man->default_caching = TTM_PL_FLAG_CACHED;
638 break;
639 case TTM_PL_VRAM:
640 man->flags = TTM_MEMTYPE_FLAG_FIXED |
641 TTM_MEMTYPE_FLAG_MAPPABLE;
642 man->available_caching = TTM_PL_FLAG_UNCACHED |
643 TTM_PL_FLAG_WC;
644 man->default_caching = TTM_PL_FLAG_WC;
646 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
647 /* Some BARs do not support being ioremapped WC */
648 const u8 type = mmu->type[drm->ttm.type_vram].type;
649 if (type & NVIF_MEM_UNCACHED) {
650 man->available_caching = TTM_PL_FLAG_UNCACHED;
651 man->default_caching = TTM_PL_FLAG_UNCACHED;
654 man->func = &nouveau_vram_manager;
655 man->io_reserve_fastpath = false;
656 man->use_io_reserve_lru = true;
657 } else {
658 man->func = &ttm_bo_manager_func;
660 break;
661 case TTM_PL_TT:
662 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA)
663 man->func = &nouveau_gart_manager;
664 else
665 if (!drm->agp.bridge)
666 man->func = &nv04_gart_manager;
667 else
668 man->func = &ttm_bo_manager_func;
670 if (drm->agp.bridge) {
671 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
672 man->available_caching = TTM_PL_FLAG_UNCACHED |
673 TTM_PL_FLAG_WC;
674 man->default_caching = TTM_PL_FLAG_WC;
675 } else {
676 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE |
677 TTM_MEMTYPE_FLAG_CMA;
678 man->available_caching = TTM_PL_MASK_CACHING;
679 man->default_caching = TTM_PL_FLAG_CACHED;
682 break;
683 default:
684 return -EINVAL;
686 return 0;
689 static void
690 nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
692 struct nouveau_bo *nvbo = nouveau_bo(bo);
694 switch (bo->mem.mem_type) {
695 case TTM_PL_VRAM:
696 nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT,
697 TTM_PL_FLAG_SYSTEM);
698 break;
699 default:
700 nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_SYSTEM, 0);
701 break;
704 *pl = nvbo->placement;
708 static int
709 nve0_bo_move_init(struct nouveau_channel *chan, u32 handle)
711 int ret = RING_SPACE(chan, 2);
712 if (ret == 0) {
713 BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
714 OUT_RING (chan, handle & 0x0000ffff);
715 FIRE_RING (chan);
717 return ret;
720 static int
721 nve0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
722 struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
724 struct nouveau_mem *mem = nouveau_mem(old_reg);
725 int ret = RING_SPACE(chan, 10);
726 if (ret == 0) {
727 BEGIN_NVC0(chan, NvSubCopy, 0x0400, 8);
728 OUT_RING (chan, upper_32_bits(mem->vma[0].addr));
729 OUT_RING (chan, lower_32_bits(mem->vma[0].addr));
730 OUT_RING (chan, upper_32_bits(mem->vma[1].addr));
731 OUT_RING (chan, lower_32_bits(mem->vma[1].addr));
732 OUT_RING (chan, PAGE_SIZE);
733 OUT_RING (chan, PAGE_SIZE);
734 OUT_RING (chan, PAGE_SIZE);
735 OUT_RING (chan, new_reg->num_pages);
736 BEGIN_IMC0(chan, NvSubCopy, 0x0300, 0x0386);
738 return ret;
741 static int
742 nvc0_bo_move_init(struct nouveau_channel *chan, u32 handle)
744 int ret = RING_SPACE(chan, 2);
745 if (ret == 0) {
746 BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
747 OUT_RING (chan, handle);
749 return ret;
752 static int
753 nvc0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
754 struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
756 struct nouveau_mem *mem = nouveau_mem(old_reg);
757 u64 src_offset = mem->vma[0].addr;
758 u64 dst_offset = mem->vma[1].addr;
759 u32 page_count = new_reg->num_pages;
760 int ret;
762 page_count = new_reg->num_pages;
763 while (page_count) {
764 int line_count = (page_count > 8191) ? 8191 : page_count;
766 ret = RING_SPACE(chan, 11);
767 if (ret)
768 return ret;
770 BEGIN_NVC0(chan, NvSubCopy, 0x030c, 8);
771 OUT_RING (chan, upper_32_bits(src_offset));
772 OUT_RING (chan, lower_32_bits(src_offset));
773 OUT_RING (chan, upper_32_bits(dst_offset));
774 OUT_RING (chan, lower_32_bits(dst_offset));
775 OUT_RING (chan, PAGE_SIZE);
776 OUT_RING (chan, PAGE_SIZE);
777 OUT_RING (chan, PAGE_SIZE);
778 OUT_RING (chan, line_count);
779 BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
780 OUT_RING (chan, 0x00000110);
782 page_count -= line_count;
783 src_offset += (PAGE_SIZE * line_count);
784 dst_offset += (PAGE_SIZE * line_count);
787 return 0;
790 static int
791 nvc0_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
792 struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
794 struct nouveau_mem *mem = nouveau_mem(old_reg);
795 u64 src_offset = mem->vma[0].addr;
796 u64 dst_offset = mem->vma[1].addr;
797 u32 page_count = new_reg->num_pages;
798 int ret;
800 page_count = new_reg->num_pages;
801 while (page_count) {
802 int line_count = (page_count > 2047) ? 2047 : page_count;
804 ret = RING_SPACE(chan, 12);
805 if (ret)
806 return ret;
808 BEGIN_NVC0(chan, NvSubCopy, 0x0238, 2);
809 OUT_RING (chan, upper_32_bits(dst_offset));
810 OUT_RING (chan, lower_32_bits(dst_offset));
811 BEGIN_NVC0(chan, NvSubCopy, 0x030c, 6);
812 OUT_RING (chan, upper_32_bits(src_offset));
813 OUT_RING (chan, lower_32_bits(src_offset));
814 OUT_RING (chan, PAGE_SIZE); /* src_pitch */
815 OUT_RING (chan, PAGE_SIZE); /* dst_pitch */
816 OUT_RING (chan, PAGE_SIZE); /* line_length */
817 OUT_RING (chan, line_count);
818 BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
819 OUT_RING (chan, 0x00100110);
821 page_count -= line_count;
822 src_offset += (PAGE_SIZE * line_count);
823 dst_offset += (PAGE_SIZE * line_count);
826 return 0;
829 static int
830 nva3_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
831 struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
833 struct nouveau_mem *mem = nouveau_mem(old_reg);
834 u64 src_offset = mem->vma[0].addr;
835 u64 dst_offset = mem->vma[1].addr;
836 u32 page_count = new_reg->num_pages;
837 int ret;
839 page_count = new_reg->num_pages;
840 while (page_count) {
841 int line_count = (page_count > 8191) ? 8191 : page_count;
843 ret = RING_SPACE(chan, 11);
844 if (ret)
845 return ret;
847 BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
848 OUT_RING (chan, upper_32_bits(src_offset));
849 OUT_RING (chan, lower_32_bits(src_offset));
850 OUT_RING (chan, upper_32_bits(dst_offset));
851 OUT_RING (chan, lower_32_bits(dst_offset));
852 OUT_RING (chan, PAGE_SIZE);
853 OUT_RING (chan, PAGE_SIZE);
854 OUT_RING (chan, PAGE_SIZE);
855 OUT_RING (chan, line_count);
856 BEGIN_NV04(chan, NvSubCopy, 0x0300, 1);
857 OUT_RING (chan, 0x00000110);
859 page_count -= line_count;
860 src_offset += (PAGE_SIZE * line_count);
861 dst_offset += (PAGE_SIZE * line_count);
864 return 0;
867 static int
868 nv98_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
869 struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
871 struct nouveau_mem *mem = nouveau_mem(old_reg);
872 int ret = RING_SPACE(chan, 7);
873 if (ret == 0) {
874 BEGIN_NV04(chan, NvSubCopy, 0x0320, 6);
875 OUT_RING (chan, upper_32_bits(mem->vma[0].addr));
876 OUT_RING (chan, lower_32_bits(mem->vma[0].addr));
877 OUT_RING (chan, upper_32_bits(mem->vma[1].addr));
878 OUT_RING (chan, lower_32_bits(mem->vma[1].addr));
879 OUT_RING (chan, 0x00000000 /* COPY */);
880 OUT_RING (chan, new_reg->num_pages << PAGE_SHIFT);
882 return ret;
885 static int
886 nv84_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
887 struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
889 struct nouveau_mem *mem = nouveau_mem(old_reg);
890 int ret = RING_SPACE(chan, 7);
891 if (ret == 0) {
892 BEGIN_NV04(chan, NvSubCopy, 0x0304, 6);
893 OUT_RING (chan, new_reg->num_pages << PAGE_SHIFT);
894 OUT_RING (chan, upper_32_bits(mem->vma[0].addr));
895 OUT_RING (chan, lower_32_bits(mem->vma[0].addr));
896 OUT_RING (chan, upper_32_bits(mem->vma[1].addr));
897 OUT_RING (chan, lower_32_bits(mem->vma[1].addr));
898 OUT_RING (chan, 0x00000000 /* MODE_COPY, QUERY_NONE */);
900 return ret;
903 static int
904 nv50_bo_move_init(struct nouveau_channel *chan, u32 handle)
906 int ret = RING_SPACE(chan, 6);
907 if (ret == 0) {
908 BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
909 OUT_RING (chan, handle);
910 BEGIN_NV04(chan, NvSubCopy, 0x0180, 3);
911 OUT_RING (chan, chan->drm->ntfy.handle);
912 OUT_RING (chan, chan->vram.handle);
913 OUT_RING (chan, chan->vram.handle);
916 return ret;
919 static int
920 nv50_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
921 struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
923 struct nouveau_mem *mem = nouveau_mem(old_reg);
924 u64 length = (new_reg->num_pages << PAGE_SHIFT);
925 u64 src_offset = mem->vma[0].addr;
926 u64 dst_offset = mem->vma[1].addr;
927 int src_tiled = !!mem->kind;
928 int dst_tiled = !!nouveau_mem(new_reg)->kind;
929 int ret;
931 while (length) {
932 u32 amount, stride, height;
934 ret = RING_SPACE(chan, 18 + 6 * (src_tiled + dst_tiled));
935 if (ret)
936 return ret;
938 amount = min(length, (u64)(4 * 1024 * 1024));
939 stride = 16 * 4;
940 height = amount / stride;
942 if (src_tiled) {
943 BEGIN_NV04(chan, NvSubCopy, 0x0200, 7);
944 OUT_RING (chan, 0);
945 OUT_RING (chan, 0);
946 OUT_RING (chan, stride);
947 OUT_RING (chan, height);
948 OUT_RING (chan, 1);
949 OUT_RING (chan, 0);
950 OUT_RING (chan, 0);
951 } else {
952 BEGIN_NV04(chan, NvSubCopy, 0x0200, 1);
953 OUT_RING (chan, 1);
955 if (dst_tiled) {
956 BEGIN_NV04(chan, NvSubCopy, 0x021c, 7);
957 OUT_RING (chan, 0);
958 OUT_RING (chan, 0);
959 OUT_RING (chan, stride);
960 OUT_RING (chan, height);
961 OUT_RING (chan, 1);
962 OUT_RING (chan, 0);
963 OUT_RING (chan, 0);
964 } else {
965 BEGIN_NV04(chan, NvSubCopy, 0x021c, 1);
966 OUT_RING (chan, 1);
969 BEGIN_NV04(chan, NvSubCopy, 0x0238, 2);
970 OUT_RING (chan, upper_32_bits(src_offset));
971 OUT_RING (chan, upper_32_bits(dst_offset));
972 BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
973 OUT_RING (chan, lower_32_bits(src_offset));
974 OUT_RING (chan, lower_32_bits(dst_offset));
975 OUT_RING (chan, stride);
976 OUT_RING (chan, stride);
977 OUT_RING (chan, stride);
978 OUT_RING (chan, height);
979 OUT_RING (chan, 0x00000101);
980 OUT_RING (chan, 0x00000000);
981 BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
982 OUT_RING (chan, 0);
984 length -= amount;
985 src_offset += amount;
986 dst_offset += amount;
989 return 0;
992 static int
993 nv04_bo_move_init(struct nouveau_channel *chan, u32 handle)
995 int ret = RING_SPACE(chan, 4);
996 if (ret == 0) {
997 BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
998 OUT_RING (chan, handle);
999 BEGIN_NV04(chan, NvSubCopy, 0x0180, 1);
1000 OUT_RING (chan, chan->drm->ntfy.handle);
1003 return ret;
1006 static inline uint32_t
1007 nouveau_bo_mem_ctxdma(struct ttm_buffer_object *bo,
1008 struct nouveau_channel *chan, struct ttm_mem_reg *reg)
1010 if (reg->mem_type == TTM_PL_TT)
1011 return NvDmaTT;
1012 return chan->vram.handle;
1015 static int
1016 nv04_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
1017 struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
1019 u32 src_offset = old_reg->start << PAGE_SHIFT;
1020 u32 dst_offset = new_reg->start << PAGE_SHIFT;
1021 u32 page_count = new_reg->num_pages;
1022 int ret;
1024 ret = RING_SPACE(chan, 3);
1025 if (ret)
1026 return ret;
1028 BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_DMA_SOURCE, 2);
1029 OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, old_reg));
1030 OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, new_reg));
1032 page_count = new_reg->num_pages;
1033 while (page_count) {
1034 int line_count = (page_count > 2047) ? 2047 : page_count;
1036 ret = RING_SPACE(chan, 11);
1037 if (ret)
1038 return ret;
1040 BEGIN_NV04(chan, NvSubCopy,
1041 NV_MEMORY_TO_MEMORY_FORMAT_OFFSET_IN, 8);
1042 OUT_RING (chan, src_offset);
1043 OUT_RING (chan, dst_offset);
1044 OUT_RING (chan, PAGE_SIZE); /* src_pitch */
1045 OUT_RING (chan, PAGE_SIZE); /* dst_pitch */
1046 OUT_RING (chan, PAGE_SIZE); /* line_length */
1047 OUT_RING (chan, line_count);
1048 OUT_RING (chan, 0x00000101);
1049 OUT_RING (chan, 0x00000000);
1050 BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
1051 OUT_RING (chan, 0);
1053 page_count -= line_count;
1054 src_offset += (PAGE_SIZE * line_count);
1055 dst_offset += (PAGE_SIZE * line_count);
1058 return 0;
1061 static int
1062 nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo,
1063 struct ttm_mem_reg *reg)
1065 struct nouveau_mem *old_mem = nouveau_mem(&bo->mem);
1066 struct nouveau_mem *new_mem = nouveau_mem(reg);
1067 struct nvif_vmm *vmm = &drm->client.vmm.vmm;
1068 int ret;
1070 ret = nvif_vmm_get(vmm, LAZY, false, old_mem->mem.page, 0,
1071 old_mem->mem.size, &old_mem->vma[0]);
1072 if (ret)
1073 return ret;
1075 ret = nvif_vmm_get(vmm, LAZY, false, new_mem->mem.page, 0,
1076 new_mem->mem.size, &old_mem->vma[1]);
1077 if (ret)
1078 goto done;
1080 ret = nouveau_mem_map(old_mem, vmm, &old_mem->vma[0]);
1081 if (ret)
1082 goto done;
1084 ret = nouveau_mem_map(new_mem, vmm, &old_mem->vma[1]);
1085 done:
1086 if (ret) {
1087 nvif_vmm_put(vmm, &old_mem->vma[1]);
1088 nvif_vmm_put(vmm, &old_mem->vma[0]);
1090 return 0;
1093 static int
1094 nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict, bool intr,
1095 bool no_wait_gpu, struct ttm_mem_reg *new_reg)
1097 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1098 struct nouveau_channel *chan = drm->ttm.chan;
1099 struct nouveau_cli *cli = (void *)chan->user.client;
1100 struct nouveau_fence *fence;
1101 int ret;
1103 /* create temporary vmas for the transfer and attach them to the
1104 * old nvkm_mem node, these will get cleaned up after ttm has
1105 * destroyed the ttm_mem_reg
1107 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
1108 ret = nouveau_bo_move_prep(drm, bo, new_reg);
1109 if (ret)
1110 return ret;
1113 mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING);
1114 ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, intr);
1115 if (ret == 0) {
1116 ret = drm->ttm.move(chan, bo, &bo->mem, new_reg);
1117 if (ret == 0) {
1118 ret = nouveau_fence_new(chan, false, &fence);
1119 if (ret == 0) {
1120 ret = ttm_bo_move_accel_cleanup(bo,
1121 &fence->base,
1122 evict,
1123 new_reg);
1124 nouveau_fence_unref(&fence);
1128 mutex_unlock(&cli->mutex);
1129 return ret;
1132 void
1133 nouveau_bo_move_init(struct nouveau_drm *drm)
1135 static const struct {
1136 const char *name;
1137 int engine;
1138 s32 oclass;
1139 int (*exec)(struct nouveau_channel *,
1140 struct ttm_buffer_object *,
1141 struct ttm_mem_reg *, struct ttm_mem_reg *);
1142 int (*init)(struct nouveau_channel *, u32 handle);
1143 } _methods[] = {
1144 { "COPY", 4, 0xc5b5, nve0_bo_move_copy, nve0_bo_move_init },
1145 { "GRCE", 0, 0xc5b5, nve0_bo_move_copy, nvc0_bo_move_init },
1146 { "COPY", 4, 0xc3b5, nve0_bo_move_copy, nve0_bo_move_init },
1147 { "GRCE", 0, 0xc3b5, nve0_bo_move_copy, nvc0_bo_move_init },
1148 { "COPY", 4, 0xc1b5, nve0_bo_move_copy, nve0_bo_move_init },
1149 { "GRCE", 0, 0xc1b5, nve0_bo_move_copy, nvc0_bo_move_init },
1150 { "COPY", 4, 0xc0b5, nve0_bo_move_copy, nve0_bo_move_init },
1151 { "GRCE", 0, 0xc0b5, nve0_bo_move_copy, nvc0_bo_move_init },
1152 { "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init },
1153 { "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init },
1154 { "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init },
1155 { "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init },
1156 { "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init },
1157 { "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init },
1158 { "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init },
1159 { "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init },
1160 { "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init },
1161 { "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init },
1162 { "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init },
1164 { "CRYPT", 0, 0x88b4, nv98_bo_move_exec, nv50_bo_move_init },
1165 }, *mthd = _methods;
1166 const char *name = "CPU";
1167 int ret;
1169 do {
1170 struct nouveau_channel *chan;
1172 if (mthd->engine)
1173 chan = drm->cechan;
1174 else
1175 chan = drm->channel;
1176 if (chan == NULL)
1177 continue;
1179 ret = nvif_object_init(&chan->user,
1180 mthd->oclass | (mthd->engine << 16),
1181 mthd->oclass, NULL, 0,
1182 &drm->ttm.copy);
1183 if (ret == 0) {
1184 ret = mthd->init(chan, drm->ttm.copy.handle);
1185 if (ret) {
1186 nvif_object_fini(&drm->ttm.copy);
1187 continue;
1190 drm->ttm.move = mthd->exec;
1191 drm->ttm.chan = chan;
1192 name = mthd->name;
1193 break;
1195 } while ((++mthd)->exec);
1197 NV_INFO(drm, "MM: using %s for buffer copies\n", name);
1200 static int
1201 nouveau_bo_move_flipd(struct ttm_buffer_object *bo, bool evict, bool intr,
1202 bool no_wait_gpu, struct ttm_mem_reg *new_reg)
1204 struct ttm_operation_ctx ctx = { intr, no_wait_gpu };
1205 struct ttm_place placement_memtype = {
1206 .fpfn = 0,
1207 .lpfn = 0,
1208 .flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
1210 struct ttm_placement placement;
1211 struct ttm_mem_reg tmp_reg;
1212 int ret;
1214 placement.num_placement = placement.num_busy_placement = 1;
1215 placement.placement = placement.busy_placement = &placement_memtype;
1217 tmp_reg = *new_reg;
1218 tmp_reg.mm_node = NULL;
1219 ret = ttm_bo_mem_space(bo, &placement, &tmp_reg, &ctx);
1220 if (ret)
1221 return ret;
1223 ret = ttm_tt_bind(bo->ttm, &tmp_reg, &ctx);
1224 if (ret)
1225 goto out;
1227 ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, &tmp_reg);
1228 if (ret)
1229 goto out;
1231 ret = ttm_bo_move_ttm(bo, &ctx, new_reg);
1232 out:
1233 ttm_bo_mem_put(bo, &tmp_reg);
1234 return ret;
1237 static int
1238 nouveau_bo_move_flips(struct ttm_buffer_object *bo, bool evict, bool intr,
1239 bool no_wait_gpu, struct ttm_mem_reg *new_reg)
1241 struct ttm_operation_ctx ctx = { intr, no_wait_gpu };
1242 struct ttm_place placement_memtype = {
1243 .fpfn = 0,
1244 .lpfn = 0,
1245 .flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
1247 struct ttm_placement placement;
1248 struct ttm_mem_reg tmp_reg;
1249 int ret;
1251 placement.num_placement = placement.num_busy_placement = 1;
1252 placement.placement = placement.busy_placement = &placement_memtype;
1254 tmp_reg = *new_reg;
1255 tmp_reg.mm_node = NULL;
1256 ret = ttm_bo_mem_space(bo, &placement, &tmp_reg, &ctx);
1257 if (ret)
1258 return ret;
1260 ret = ttm_bo_move_ttm(bo, &ctx, &tmp_reg);
1261 if (ret)
1262 goto out;
1264 ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, new_reg);
1265 if (ret)
1266 goto out;
1268 out:
1269 ttm_bo_mem_put(bo, &tmp_reg);
1270 return ret;
1273 static void
1274 nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, bool evict,
1275 struct ttm_mem_reg *new_reg)
1277 struct nouveau_mem *mem = new_reg ? nouveau_mem(new_reg) : NULL;
1278 struct nouveau_bo *nvbo = nouveau_bo(bo);
1279 struct nouveau_vma *vma;
1281 /* ttm can now (stupidly) pass the driver bos it didn't create... */
1282 if (bo->destroy != nouveau_bo_del_ttm)
1283 return;
1285 if (mem && new_reg->mem_type != TTM_PL_SYSTEM &&
1286 mem->mem.page == nvbo->page) {
1287 list_for_each_entry(vma, &nvbo->vma_list, head) {
1288 nouveau_vma_map(vma, mem);
1290 } else {
1291 list_for_each_entry(vma, &nvbo->vma_list, head) {
1292 WARN_ON(ttm_bo_wait(bo, false, false));
1293 nouveau_vma_unmap(vma);
1298 static int
1299 nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_reg,
1300 struct nouveau_drm_tile **new_tile)
1302 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1303 struct drm_device *dev = drm->dev;
1304 struct nouveau_bo *nvbo = nouveau_bo(bo);
1305 u64 offset = new_reg->start << PAGE_SHIFT;
1307 *new_tile = NULL;
1308 if (new_reg->mem_type != TTM_PL_VRAM)
1309 return 0;
1311 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
1312 *new_tile = nv10_bo_set_tiling(dev, offset, new_reg->size,
1313 nvbo->mode, nvbo->zeta);
1316 return 0;
1319 static void
1320 nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
1321 struct nouveau_drm_tile *new_tile,
1322 struct nouveau_drm_tile **old_tile)
1324 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1325 struct drm_device *dev = drm->dev;
1326 struct dma_fence *fence = reservation_object_get_excl(bo->resv);
1328 nv10_bo_put_tile_region(dev, *old_tile, fence);
1329 *old_tile = new_tile;
1332 static int
1333 nouveau_bo_move(struct ttm_buffer_object *bo, bool evict,
1334 struct ttm_operation_ctx *ctx,
1335 struct ttm_mem_reg *new_reg)
1337 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1338 struct nouveau_bo *nvbo = nouveau_bo(bo);
1339 struct ttm_mem_reg *old_reg = &bo->mem;
1340 struct nouveau_drm_tile *new_tile = NULL;
1341 int ret = 0;
1343 ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
1344 if (ret)
1345 return ret;
1347 if (nvbo->pin_refcnt)
1348 NV_WARN(drm, "Moving pinned object %p!\n", nvbo);
1350 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1351 ret = nouveau_bo_vm_bind(bo, new_reg, &new_tile);
1352 if (ret)
1353 return ret;
1356 /* Fake bo copy. */
1357 if (old_reg->mem_type == TTM_PL_SYSTEM && !bo->ttm) {
1358 BUG_ON(bo->mem.mm_node != NULL);
1359 bo->mem = *new_reg;
1360 new_reg->mm_node = NULL;
1361 goto out;
1364 /* Hardware assisted copy. */
1365 if (drm->ttm.move) {
1366 if (new_reg->mem_type == TTM_PL_SYSTEM)
1367 ret = nouveau_bo_move_flipd(bo, evict,
1368 ctx->interruptible,
1369 ctx->no_wait_gpu, new_reg);
1370 else if (old_reg->mem_type == TTM_PL_SYSTEM)
1371 ret = nouveau_bo_move_flips(bo, evict,
1372 ctx->interruptible,
1373 ctx->no_wait_gpu, new_reg);
1374 else
1375 ret = nouveau_bo_move_m2mf(bo, evict,
1376 ctx->interruptible,
1377 ctx->no_wait_gpu, new_reg);
1378 if (!ret)
1379 goto out;
1382 /* Fallback to software copy. */
1383 ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
1384 if (ret == 0)
1385 ret = ttm_bo_move_memcpy(bo, ctx, new_reg);
1387 out:
1388 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1389 if (ret)
1390 nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
1391 else
1392 nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
1395 return ret;
1398 static int
1399 nouveau_bo_verify_access(struct ttm_buffer_object *bo, struct file *filp)
1401 struct nouveau_bo *nvbo = nouveau_bo(bo);
1403 return drm_vma_node_verify_access(&nvbo->gem.vma_node,
1404 filp->private_data);
1407 static int
1408 nouveau_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *reg)
1410 struct ttm_mem_type_manager *man = &bdev->man[reg->mem_type];
1411 struct nouveau_drm *drm = nouveau_bdev(bdev);
1412 struct nvkm_device *device = nvxx_device(&drm->client.device);
1413 struct nouveau_mem *mem = nouveau_mem(reg);
1415 reg->bus.addr = NULL;
1416 reg->bus.offset = 0;
1417 reg->bus.size = reg->num_pages << PAGE_SHIFT;
1418 reg->bus.base = 0;
1419 reg->bus.is_iomem = false;
1420 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
1421 return -EINVAL;
1422 switch (reg->mem_type) {
1423 case TTM_PL_SYSTEM:
1424 /* System memory */
1425 return 0;
1426 case TTM_PL_TT:
1427 #if IS_ENABLED(CONFIG_AGP)
1428 if (drm->agp.bridge) {
1429 reg->bus.offset = reg->start << PAGE_SHIFT;
1430 reg->bus.base = drm->agp.base;
1431 reg->bus.is_iomem = !drm->agp.cma;
1433 #endif
1434 if (drm->client.mem->oclass < NVIF_CLASS_MEM_NV50 || !mem->kind)
1435 /* untiled */
1436 break;
1437 /* fall through - tiled memory */
1438 case TTM_PL_VRAM:
1439 reg->bus.offset = reg->start << PAGE_SHIFT;
1440 reg->bus.base = device->func->resource_addr(device, 1);
1441 reg->bus.is_iomem = true;
1442 if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1443 union {
1444 struct nv50_mem_map_v0 nv50;
1445 struct gf100_mem_map_v0 gf100;
1446 } args;
1447 u64 handle, length;
1448 u32 argc = 0;
1449 int ret;
1451 switch (mem->mem.object.oclass) {
1452 case NVIF_CLASS_MEM_NV50:
1453 args.nv50.version = 0;
1454 args.nv50.ro = 0;
1455 args.nv50.kind = mem->kind;
1456 args.nv50.comp = mem->comp;
1457 argc = sizeof(args.nv50);
1458 break;
1459 case NVIF_CLASS_MEM_GF100:
1460 args.gf100.version = 0;
1461 args.gf100.ro = 0;
1462 args.gf100.kind = mem->kind;
1463 argc = sizeof(args.gf100);
1464 break;
1465 default:
1466 WARN_ON(1);
1467 break;
1470 ret = nvif_object_map_handle(&mem->mem.object,
1471 &args, argc,
1472 &handle, &length);
1473 if (ret != 1)
1474 return ret ? ret : -EINVAL;
1476 reg->bus.base = 0;
1477 reg->bus.offset = handle;
1479 break;
1480 default:
1481 return -EINVAL;
1483 return 0;
1486 static void
1487 nouveau_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *reg)
1489 struct nouveau_drm *drm = nouveau_bdev(bdev);
1490 struct nouveau_mem *mem = nouveau_mem(reg);
1492 if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1493 switch (reg->mem_type) {
1494 case TTM_PL_TT:
1495 if (mem->kind)
1496 nvif_object_unmap_handle(&mem->mem.object);
1497 break;
1498 case TTM_PL_VRAM:
1499 nvif_object_unmap_handle(&mem->mem.object);
1500 break;
1501 default:
1502 break;
1507 static int
1508 nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
1510 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1511 struct nouveau_bo *nvbo = nouveau_bo(bo);
1512 struct nvkm_device *device = nvxx_device(&drm->client.device);
1513 u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT;
1514 int i, ret;
1516 /* as long as the bo isn't in vram, and isn't tiled, we've got
1517 * nothing to do here.
1519 if (bo->mem.mem_type != TTM_PL_VRAM) {
1520 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA ||
1521 !nvbo->kind)
1522 return 0;
1524 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
1525 nouveau_bo_placement_set(nvbo, TTM_PL_TT, 0);
1527 ret = nouveau_bo_validate(nvbo, false, false);
1528 if (ret)
1529 return ret;
1531 return 0;
1534 /* make sure bo is in mappable vram */
1535 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA ||
1536 bo->mem.start + bo->mem.num_pages < mappable)
1537 return 0;
1539 for (i = 0; i < nvbo->placement.num_placement; ++i) {
1540 nvbo->placements[i].fpfn = 0;
1541 nvbo->placements[i].lpfn = mappable;
1544 for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
1545 nvbo->busy_placements[i].fpfn = 0;
1546 nvbo->busy_placements[i].lpfn = mappable;
1549 nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_VRAM, 0);
1550 return nouveau_bo_validate(nvbo, false, false);
1553 static int
1554 nouveau_ttm_tt_populate(struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
1556 struct ttm_dma_tt *ttm_dma = (void *)ttm;
1557 struct nouveau_drm *drm;
1558 struct device *dev;
1559 unsigned i;
1560 int r;
1561 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1563 if (ttm->state != tt_unpopulated)
1564 return 0;
1566 if (slave && ttm->sg) {
1567 /* make userspace faulting work */
1568 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1569 ttm_dma->dma_address, ttm->num_pages);
1570 ttm->state = tt_unbound;
1571 return 0;
1574 drm = nouveau_bdev(ttm->bdev);
1575 dev = drm->dev->dev;
1577 #if IS_ENABLED(CONFIG_AGP)
1578 if (drm->agp.bridge) {
1579 return ttm_agp_tt_populate(ttm, ctx);
1581 #endif
1583 #if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
1584 if (swiotlb_nr_tbl()) {
1585 return ttm_dma_populate((void *)ttm, dev, ctx);
1587 #endif
1589 r = ttm_pool_populate(ttm, ctx);
1590 if (r) {
1591 return r;
1594 for (i = 0; i < ttm->num_pages; i++) {
1595 dma_addr_t addr;
1597 addr = dma_map_page(dev, ttm->pages[i], 0, PAGE_SIZE,
1598 DMA_BIDIRECTIONAL);
1600 if (dma_mapping_error(dev, addr)) {
1601 while (i--) {
1602 dma_unmap_page(dev, ttm_dma->dma_address[i],
1603 PAGE_SIZE, DMA_BIDIRECTIONAL);
1604 ttm_dma->dma_address[i] = 0;
1606 ttm_pool_unpopulate(ttm);
1607 return -EFAULT;
1610 ttm_dma->dma_address[i] = addr;
1612 return 0;
1615 static void
1616 nouveau_ttm_tt_unpopulate(struct ttm_tt *ttm)
1618 struct ttm_dma_tt *ttm_dma = (void *)ttm;
1619 struct nouveau_drm *drm;
1620 struct device *dev;
1621 unsigned i;
1622 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1624 if (slave)
1625 return;
1627 drm = nouveau_bdev(ttm->bdev);
1628 dev = drm->dev->dev;
1630 #if IS_ENABLED(CONFIG_AGP)
1631 if (drm->agp.bridge) {
1632 ttm_agp_tt_unpopulate(ttm);
1633 return;
1635 #endif
1637 #if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
1638 if (swiotlb_nr_tbl()) {
1639 ttm_dma_unpopulate((void *)ttm, dev);
1640 return;
1642 #endif
1644 for (i = 0; i < ttm->num_pages; i++) {
1645 if (ttm_dma->dma_address[i]) {
1646 dma_unmap_page(dev, ttm_dma->dma_address[i], PAGE_SIZE,
1647 DMA_BIDIRECTIONAL);
1651 ttm_pool_unpopulate(ttm);
1654 void
1655 nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive)
1657 struct reservation_object *resv = nvbo->bo.resv;
1659 if (exclusive)
1660 reservation_object_add_excl_fence(resv, &fence->base);
1661 else if (fence)
1662 reservation_object_add_shared_fence(resv, &fence->base);
1665 struct ttm_bo_driver nouveau_bo_driver = {
1666 .ttm_tt_create = &nouveau_ttm_tt_create,
1667 .ttm_tt_populate = &nouveau_ttm_tt_populate,
1668 .ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
1669 .invalidate_caches = nouveau_bo_invalidate_caches,
1670 .init_mem_type = nouveau_bo_init_mem_type,
1671 .eviction_valuable = ttm_bo_eviction_valuable,
1672 .evict_flags = nouveau_bo_evict_flags,
1673 .move_notify = nouveau_bo_move_ntfy,
1674 .move = nouveau_bo_move,
1675 .verify_access = nouveau_bo_verify_access,
1676 .fault_reserve_notify = &nouveau_ttm_fault_reserve_notify,
1677 .io_mem_reserve = &nouveau_ttm_io_mem_reserve,
1678 .io_mem_free = &nouveau_ttm_io_mem_free,