dt-bindings: mtd: ingenic: Use standard ecc-engine property
[linux/fpc-iii.git] / drivers / gpu / drm / ttm / ttm_page_alloc_dma.c
blobd594f7520b7b0c8f8609ffefbd374009995d3b2a
1 /*
2 * Copyright 2011 (c) Oracle Corp.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
13 * of the Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
27 * A simple DMA pool losely based on dmapool.c. It has certain advantages
28 * over the DMA pools:
29 * - Pool collects resently freed pages for reuse (and hooks up to
30 * the shrinker).
31 * - Tracks currently in use pages
32 * - Tracks whether the page is UC, WB or cached (and reverts to WB
33 * when freed).
36 #if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
37 #define pr_fmt(fmt) "[TTM] " fmt
39 #include <linux/dma-mapping.h>
40 #include <linux/list.h>
41 #include <linux/seq_file.h> /* for seq_printf */
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/highmem.h>
45 #include <linux/mm_types.h>
46 #include <linux/module.h>
47 #include <linux/mm.h>
48 #include <linux/atomic.h>
49 #include <linux/device.h>
50 #include <linux/kthread.h>
51 #include <drm/ttm/ttm_bo_driver.h>
52 #include <drm/ttm/ttm_page_alloc.h>
53 #include <drm/ttm/ttm_set_memory.h>
55 #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
56 #define SMALL_ALLOCATION 4
57 #define FREE_ALL_PAGES (~0U)
58 #define VADDR_FLAG_HUGE_POOL 1UL
59 #define VADDR_FLAG_UPDATED_COUNT 2UL
61 enum pool_type {
62 IS_UNDEFINED = 0,
63 IS_WC = 1 << 1,
64 IS_UC = 1 << 2,
65 IS_CACHED = 1 << 3,
66 IS_DMA32 = 1 << 4,
67 IS_HUGE = 1 << 5
71 * The pool structure. There are up to nine pools:
72 * - generic (not restricted to DMA32):
73 * - write combined, uncached, cached.
74 * - dma32 (up to 2^32 - so up 4GB):
75 * - write combined, uncached, cached.
76 * - huge (not restricted to DMA32):
77 * - write combined, uncached, cached.
78 * for each 'struct device'. The 'cached' is for pages that are actively used.
79 * The other ones can be shrunk by the shrinker API if neccessary.
80 * @pools: The 'struct device->dma_pools' link.
81 * @type: Type of the pool
82 * @lock: Protects the free_list from concurrnet access. Must be
83 * used with irqsave/irqrestore variants because pool allocator maybe called
84 * from delayed work.
85 * @free_list: Pool of pages that are free to be used. No order requirements.
86 * @dev: The device that is associated with these pools.
87 * @size: Size used during DMA allocation.
88 * @npages_free: Count of available pages for re-use.
89 * @npages_in_use: Count of pages that are in use.
90 * @nfrees: Stats when pool is shrinking.
91 * @nrefills: Stats when the pool is grown.
92 * @gfp_flags: Flags to pass for alloc_page.
93 * @name: Name of the pool.
94 * @dev_name: Name derieved from dev - similar to how dev_info works.
95 * Used during shutdown as the dev_info during release is unavailable.
97 struct dma_pool {
98 struct list_head pools; /* The 'struct device->dma_pools link */
99 enum pool_type type;
100 spinlock_t lock;
101 struct list_head free_list;
102 struct device *dev;
103 unsigned size;
104 unsigned npages_free;
105 unsigned npages_in_use;
106 unsigned long nfrees; /* Stats when shrunk. */
107 unsigned long nrefills; /* Stats when grown. */
108 gfp_t gfp_flags;
109 char name[13]; /* "cached dma32" */
110 char dev_name[64]; /* Constructed from dev */
114 * The accounting page keeping track of the allocated page along with
115 * the DMA address.
116 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
117 * @vaddr: The virtual address of the page and a flag if the page belongs to a
118 * huge pool
119 * @dma: The bus address of the page. If the page is not allocated
120 * via the DMA API, it will be -1.
122 struct dma_page {
123 struct list_head page_list;
124 unsigned long vaddr;
125 struct page *p;
126 dma_addr_t dma;
130 * Limits for the pool. They are handled without locks because only place where
131 * they may change is in sysfs store. They won't have immediate effect anyway
132 * so forcing serialization to access them is pointless.
135 struct ttm_pool_opts {
136 unsigned alloc_size;
137 unsigned max_size;
138 unsigned small;
142 * Contains the list of all of the 'struct device' and their corresponding
143 * DMA pools. Guarded by _mutex->lock.
144 * @pools: The link to 'struct ttm_pool_manager->pools'
145 * @dev: The 'struct device' associated with the 'pool'
146 * @pool: The 'struct dma_pool' associated with the 'dev'
148 struct device_pools {
149 struct list_head pools;
150 struct device *dev;
151 struct dma_pool *pool;
155 * struct ttm_pool_manager - Holds memory pools for fast allocation
157 * @lock: Lock used when adding/removing from pools
158 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
159 * @options: Limits for the pool.
160 * @npools: Total amount of pools in existence.
161 * @shrinker: The structure used by [un|]register_shrinker
163 struct ttm_pool_manager {
164 struct mutex lock;
165 struct list_head pools;
166 struct ttm_pool_opts options;
167 unsigned npools;
168 struct shrinker mm_shrink;
169 struct kobject kobj;
172 static struct ttm_pool_manager *_manager;
174 static struct attribute ttm_page_pool_max = {
175 .name = "pool_max_size",
176 .mode = S_IRUGO | S_IWUSR
178 static struct attribute ttm_page_pool_small = {
179 .name = "pool_small_allocation",
180 .mode = S_IRUGO | S_IWUSR
182 static struct attribute ttm_page_pool_alloc_size = {
183 .name = "pool_allocation_size",
184 .mode = S_IRUGO | S_IWUSR
187 static struct attribute *ttm_pool_attrs[] = {
188 &ttm_page_pool_max,
189 &ttm_page_pool_small,
190 &ttm_page_pool_alloc_size,
191 NULL
194 static void ttm_pool_kobj_release(struct kobject *kobj)
196 struct ttm_pool_manager *m =
197 container_of(kobj, struct ttm_pool_manager, kobj);
198 kfree(m);
201 static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
202 const char *buffer, size_t size)
204 struct ttm_pool_manager *m =
205 container_of(kobj, struct ttm_pool_manager, kobj);
206 int chars;
207 unsigned val;
209 chars = sscanf(buffer, "%u", &val);
210 if (chars == 0)
211 return size;
213 /* Convert kb to number of pages */
214 val = val / (PAGE_SIZE >> 10);
216 if (attr == &ttm_page_pool_max) {
217 m->options.max_size = val;
218 } else if (attr == &ttm_page_pool_small) {
219 m->options.small = val;
220 } else if (attr == &ttm_page_pool_alloc_size) {
221 if (val > NUM_PAGES_TO_ALLOC*8) {
222 pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
223 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
224 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
225 return size;
226 } else if (val > NUM_PAGES_TO_ALLOC) {
227 pr_warn("Setting allocation size to larger than %lu is not recommended\n",
228 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
230 m->options.alloc_size = val;
233 return size;
236 static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
237 char *buffer)
239 struct ttm_pool_manager *m =
240 container_of(kobj, struct ttm_pool_manager, kobj);
241 unsigned val = 0;
243 if (attr == &ttm_page_pool_max)
244 val = m->options.max_size;
245 else if (attr == &ttm_page_pool_small)
246 val = m->options.small;
247 else if (attr == &ttm_page_pool_alloc_size)
248 val = m->options.alloc_size;
250 val = val * (PAGE_SIZE >> 10);
252 return snprintf(buffer, PAGE_SIZE, "%u\n", val);
255 static const struct sysfs_ops ttm_pool_sysfs_ops = {
256 .show = &ttm_pool_show,
257 .store = &ttm_pool_store,
260 static struct kobj_type ttm_pool_kobj_type = {
261 .release = &ttm_pool_kobj_release,
262 .sysfs_ops = &ttm_pool_sysfs_ops,
263 .default_attrs = ttm_pool_attrs,
266 static int ttm_set_pages_caching(struct dma_pool *pool,
267 struct page **pages, unsigned cpages)
269 int r = 0;
270 /* Set page caching */
271 if (pool->type & IS_UC) {
272 r = ttm_set_pages_array_uc(pages, cpages);
273 if (r)
274 pr_err("%s: Failed to set %d pages to uc!\n",
275 pool->dev_name, cpages);
277 if (pool->type & IS_WC) {
278 r = ttm_set_pages_array_wc(pages, cpages);
279 if (r)
280 pr_err("%s: Failed to set %d pages to wc!\n",
281 pool->dev_name, cpages);
283 return r;
286 static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
288 dma_addr_t dma = d_page->dma;
289 d_page->vaddr &= ~VADDR_FLAG_HUGE_POOL;
290 dma_free_coherent(pool->dev, pool->size, (void *)d_page->vaddr, dma);
292 kfree(d_page);
293 d_page = NULL;
295 static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
297 struct dma_page *d_page;
298 unsigned long attrs = 0;
299 void *vaddr;
301 d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
302 if (!d_page)
303 return NULL;
305 if (pool->type & IS_HUGE)
306 attrs = DMA_ATTR_NO_WARN;
308 vaddr = dma_alloc_attrs(pool->dev, pool->size, &d_page->dma,
309 pool->gfp_flags, attrs);
310 if (vaddr) {
311 if (is_vmalloc_addr(vaddr))
312 d_page->p = vmalloc_to_page(vaddr);
313 else
314 d_page->p = virt_to_page(vaddr);
315 d_page->vaddr = (unsigned long)vaddr;
316 if (pool->type & IS_HUGE)
317 d_page->vaddr |= VADDR_FLAG_HUGE_POOL;
318 } else {
319 kfree(d_page);
320 d_page = NULL;
322 return d_page;
324 static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
326 enum pool_type type = IS_UNDEFINED;
328 if (flags & TTM_PAGE_FLAG_DMA32)
329 type |= IS_DMA32;
330 if (cstate == tt_cached)
331 type |= IS_CACHED;
332 else if (cstate == tt_uncached)
333 type |= IS_UC;
334 else
335 type |= IS_WC;
337 return type;
340 static void ttm_pool_update_free_locked(struct dma_pool *pool,
341 unsigned freed_pages)
343 pool->npages_free -= freed_pages;
344 pool->nfrees += freed_pages;
348 /* set memory back to wb and free the pages. */
349 static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
351 struct page *page = d_page->p;
352 unsigned num_pages;
354 /* Don't set WB on WB page pool. */
355 if (!(pool->type & IS_CACHED)) {
356 num_pages = pool->size / PAGE_SIZE;
357 if (ttm_set_pages_wb(page, num_pages))
358 pr_err("%s: Failed to set %d pages to wb!\n",
359 pool->dev_name, num_pages);
362 list_del(&d_page->page_list);
363 __ttm_dma_free_page(pool, d_page);
366 static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
367 struct page *pages[], unsigned npages)
369 struct dma_page *d_page, *tmp;
371 if (pool->type & IS_HUGE) {
372 list_for_each_entry_safe(d_page, tmp, d_pages, page_list)
373 ttm_dma_page_put(pool, d_page);
375 return;
378 /* Don't set WB on WB page pool. */
379 if (npages && !(pool->type & IS_CACHED) &&
380 ttm_set_pages_array_wb(pages, npages))
381 pr_err("%s: Failed to set %d pages to wb!\n",
382 pool->dev_name, npages);
384 list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
385 list_del(&d_page->page_list);
386 __ttm_dma_free_page(pool, d_page);
391 * Free pages from pool.
393 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
394 * number of pages in one go.
396 * @pool: to free the pages from
397 * @nr_free: If set to true will free all pages in pool
398 * @use_static: Safe to use static buffer
400 static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free,
401 bool use_static)
403 static struct page *static_buf[NUM_PAGES_TO_ALLOC];
404 unsigned long irq_flags;
405 struct dma_page *dma_p, *tmp;
406 struct page **pages_to_free;
407 struct list_head d_pages;
408 unsigned freed_pages = 0,
409 npages_to_free = nr_free;
411 if (NUM_PAGES_TO_ALLOC < nr_free)
412 npages_to_free = NUM_PAGES_TO_ALLOC;
414 if (use_static)
415 pages_to_free = static_buf;
416 else
417 pages_to_free = kmalloc_array(npages_to_free,
418 sizeof(struct page *),
419 GFP_KERNEL);
421 if (!pages_to_free) {
422 pr_debug("%s: Failed to allocate memory for pool free operation\n",
423 pool->dev_name);
424 return 0;
426 INIT_LIST_HEAD(&d_pages);
427 restart:
428 spin_lock_irqsave(&pool->lock, irq_flags);
430 /* We picking the oldest ones off the list */
431 list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
432 page_list) {
433 if (freed_pages >= npages_to_free)
434 break;
436 /* Move the dma_page from one list to another. */
437 list_move(&dma_p->page_list, &d_pages);
439 pages_to_free[freed_pages++] = dma_p->p;
440 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
441 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
443 ttm_pool_update_free_locked(pool, freed_pages);
445 * Because changing page caching is costly
446 * we unlock the pool to prevent stalling.
448 spin_unlock_irqrestore(&pool->lock, irq_flags);
450 ttm_dma_pages_put(pool, &d_pages, pages_to_free,
451 freed_pages);
453 INIT_LIST_HEAD(&d_pages);
455 if (likely(nr_free != FREE_ALL_PAGES))
456 nr_free -= freed_pages;
458 if (NUM_PAGES_TO_ALLOC >= nr_free)
459 npages_to_free = nr_free;
460 else
461 npages_to_free = NUM_PAGES_TO_ALLOC;
463 freed_pages = 0;
465 /* free all so restart the processing */
466 if (nr_free)
467 goto restart;
469 /* Not allowed to fall through or break because
470 * following context is inside spinlock while we are
471 * outside here.
473 goto out;
478 /* remove range of pages from the pool */
479 if (freed_pages) {
480 ttm_pool_update_free_locked(pool, freed_pages);
481 nr_free -= freed_pages;
484 spin_unlock_irqrestore(&pool->lock, irq_flags);
486 if (freed_pages)
487 ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
488 out:
489 if (pages_to_free != static_buf)
490 kfree(pages_to_free);
491 return nr_free;
494 static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
496 struct device_pools *p;
497 struct dma_pool *pool;
499 if (!dev)
500 return;
502 mutex_lock(&_manager->lock);
503 list_for_each_entry_reverse(p, &_manager->pools, pools) {
504 if (p->dev != dev)
505 continue;
506 pool = p->pool;
507 if (pool->type != type)
508 continue;
510 list_del(&p->pools);
511 kfree(p);
512 _manager->npools--;
513 break;
515 list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
516 if (pool->type != type)
517 continue;
518 /* Takes a spinlock.. */
519 /* OK to use static buffer since global mutex is held. */
520 ttm_dma_page_pool_free(pool, FREE_ALL_PAGES, true);
521 WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
522 /* This code path is called after _all_ references to the
523 * struct device has been dropped - so nobody should be
524 * touching it. In case somebody is trying to _add_ we are
525 * guarded by the mutex. */
526 list_del(&pool->pools);
527 kfree(pool);
528 break;
530 mutex_unlock(&_manager->lock);
534 * On free-ing of the 'struct device' this deconstructor is run.
535 * Albeit the pool might have already been freed earlier.
537 static void ttm_dma_pool_release(struct device *dev, void *res)
539 struct dma_pool *pool = *(struct dma_pool **)res;
541 if (pool)
542 ttm_dma_free_pool(dev, pool->type);
545 static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
547 return *(struct dma_pool **)res == match_data;
550 static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
551 enum pool_type type)
553 const char *n[] = {"wc", "uc", "cached", " dma32", "huge"};
554 enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_HUGE};
555 struct device_pools *sec_pool = NULL;
556 struct dma_pool *pool = NULL, **ptr;
557 unsigned i;
558 int ret = -ENODEV;
559 char *p;
561 if (!dev)
562 return NULL;
564 ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
565 if (!ptr)
566 return NULL;
568 ret = -ENOMEM;
570 pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
571 dev_to_node(dev));
572 if (!pool)
573 goto err_mem;
575 sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
576 dev_to_node(dev));
577 if (!sec_pool)
578 goto err_mem;
580 INIT_LIST_HEAD(&sec_pool->pools);
581 sec_pool->dev = dev;
582 sec_pool->pool = pool;
584 INIT_LIST_HEAD(&pool->free_list);
585 INIT_LIST_HEAD(&pool->pools);
586 spin_lock_init(&pool->lock);
587 pool->dev = dev;
588 pool->npages_free = pool->npages_in_use = 0;
589 pool->nfrees = 0;
590 pool->gfp_flags = flags;
591 if (type & IS_HUGE)
592 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
593 pool->size = HPAGE_PMD_SIZE;
594 #else
595 BUG();
596 #endif
597 else
598 pool->size = PAGE_SIZE;
599 pool->type = type;
600 pool->nrefills = 0;
601 p = pool->name;
602 for (i = 0; i < ARRAY_SIZE(t); i++) {
603 if (type & t[i]) {
604 p += snprintf(p, sizeof(pool->name) - (p - pool->name),
605 "%s", n[i]);
608 *p = 0;
609 /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
610 * - the kobj->name has already been deallocated.*/
611 snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
612 dev_driver_string(dev), dev_name(dev));
613 mutex_lock(&_manager->lock);
614 /* You can get the dma_pool from either the global: */
615 list_add(&sec_pool->pools, &_manager->pools);
616 _manager->npools++;
617 /* or from 'struct device': */
618 list_add(&pool->pools, &dev->dma_pools);
619 mutex_unlock(&_manager->lock);
621 *ptr = pool;
622 devres_add(dev, ptr);
624 return pool;
625 err_mem:
626 devres_free(ptr);
627 kfree(sec_pool);
628 kfree(pool);
629 return ERR_PTR(ret);
632 static struct dma_pool *ttm_dma_find_pool(struct device *dev,
633 enum pool_type type)
635 struct dma_pool *pool, *tmp;
637 if (type == IS_UNDEFINED)
638 return NULL;
640 /* NB: We iterate on the 'struct dev' which has no spinlock, but
641 * it does have a kref which we have taken. The kref is taken during
642 * graphic driver loading - in the drm_pci_init it calls either
643 * pci_dev_get or pci_register_driver which both end up taking a kref
644 * on 'struct device'.
646 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
647 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
648 * thing is at that point of time there are no pages associated with the
649 * driver so this function will not be called.
651 list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools)
652 if (pool->type == type)
653 return pool;
654 return NULL;
658 * Free pages the pages that failed to change the caching state. If there
659 * are pages that have changed their caching state already put them to the
660 * pool.
662 static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
663 struct list_head *d_pages,
664 struct page **failed_pages,
665 unsigned cpages)
667 struct dma_page *d_page, *tmp;
668 struct page *p;
669 unsigned i = 0;
671 p = failed_pages[0];
672 if (!p)
673 return;
674 /* Find the failed page. */
675 list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
676 if (d_page->p != p)
677 continue;
678 /* .. and then progress over the full list. */
679 list_del(&d_page->page_list);
680 __ttm_dma_free_page(pool, d_page);
681 if (++i < cpages)
682 p = failed_pages[i];
683 else
684 break;
690 * Allocate 'count' pages, and put 'need' number of them on the
691 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
692 * The full list of pages should also be on 'd_pages'.
693 * We return zero for success, and negative numbers as errors.
695 static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
696 struct list_head *d_pages,
697 unsigned count)
699 struct page **caching_array;
700 struct dma_page *dma_p;
701 struct page *p;
702 int r = 0;
703 unsigned i, j, npages, cpages;
704 unsigned max_cpages = min(count,
705 (unsigned)(PAGE_SIZE/sizeof(struct page *)));
707 /* allocate array for page caching change */
708 caching_array = kmalloc_array(max_cpages, sizeof(struct page *),
709 GFP_KERNEL);
711 if (!caching_array) {
712 pr_debug("%s: Unable to allocate table for new pages\n",
713 pool->dev_name);
714 return -ENOMEM;
717 if (count > 1)
718 pr_debug("%s: (%s:%d) Getting %d pages\n",
719 pool->dev_name, pool->name, current->pid, count);
721 for (i = 0, cpages = 0; i < count; ++i) {
722 dma_p = __ttm_dma_alloc_page(pool);
723 if (!dma_p) {
724 pr_debug("%s: Unable to get page %u\n",
725 pool->dev_name, i);
727 /* store already allocated pages in the pool after
728 * setting the caching state */
729 if (cpages) {
730 r = ttm_set_pages_caching(pool, caching_array,
731 cpages);
732 if (r)
733 ttm_dma_handle_caching_state_failure(
734 pool, d_pages, caching_array,
735 cpages);
737 r = -ENOMEM;
738 goto out;
740 p = dma_p->p;
741 list_add(&dma_p->page_list, d_pages);
743 #ifdef CONFIG_HIGHMEM
744 /* gfp flags of highmem page should never be dma32 so we
745 * we should be fine in such case
747 if (PageHighMem(p))
748 continue;
749 #endif
751 npages = pool->size / PAGE_SIZE;
752 for (j = 0; j < npages; ++j) {
753 caching_array[cpages++] = p + j;
754 if (cpages == max_cpages) {
755 /* Note: Cannot hold the spinlock */
756 r = ttm_set_pages_caching(pool, caching_array,
757 cpages);
758 if (r) {
759 ttm_dma_handle_caching_state_failure(
760 pool, d_pages, caching_array,
761 cpages);
762 goto out;
764 cpages = 0;
769 if (cpages) {
770 r = ttm_set_pages_caching(pool, caching_array, cpages);
771 if (r)
772 ttm_dma_handle_caching_state_failure(pool, d_pages,
773 caching_array, cpages);
775 out:
776 kfree(caching_array);
777 return r;
781 * @return count of pages still required to fulfill the request.
783 static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
784 unsigned long *irq_flags)
786 unsigned count = _manager->options.small;
787 int r = pool->npages_free;
789 if (count > pool->npages_free) {
790 struct list_head d_pages;
792 INIT_LIST_HEAD(&d_pages);
794 spin_unlock_irqrestore(&pool->lock, *irq_flags);
796 /* Returns how many more are neccessary to fulfill the
797 * request. */
798 r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
800 spin_lock_irqsave(&pool->lock, *irq_flags);
801 if (!r) {
802 /* Add the fresh to the end.. */
803 list_splice(&d_pages, &pool->free_list);
804 ++pool->nrefills;
805 pool->npages_free += count;
806 r = count;
807 } else {
808 struct dma_page *d_page;
809 unsigned cpages = 0;
811 pr_debug("%s: Failed to fill %s pool (r:%d)!\n",
812 pool->dev_name, pool->name, r);
814 list_for_each_entry(d_page, &d_pages, page_list) {
815 cpages++;
817 list_splice_tail(&d_pages, &pool->free_list);
818 pool->npages_free += cpages;
819 r = cpages;
822 return r;
826 * The populate list is actually a stack (not that is matters as TTM
827 * allocates one page at a time.
828 * return dma_page pointer if success, otherwise NULL.
830 static struct dma_page *ttm_dma_pool_get_pages(struct dma_pool *pool,
831 struct ttm_dma_tt *ttm_dma,
832 unsigned index)
834 struct dma_page *d_page = NULL;
835 struct ttm_tt *ttm = &ttm_dma->ttm;
836 unsigned long irq_flags;
837 int count;
839 spin_lock_irqsave(&pool->lock, irq_flags);
840 count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
841 if (count) {
842 d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
843 ttm->pages[index] = d_page->p;
844 ttm_dma->dma_address[index] = d_page->dma;
845 list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
846 pool->npages_in_use += 1;
847 pool->npages_free -= 1;
849 spin_unlock_irqrestore(&pool->lock, irq_flags);
850 return d_page;
853 static gfp_t ttm_dma_pool_gfp_flags(struct ttm_dma_tt *ttm_dma, bool huge)
855 struct ttm_tt *ttm = &ttm_dma->ttm;
856 gfp_t gfp_flags;
858 if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
859 gfp_flags = GFP_USER | GFP_DMA32;
860 else
861 gfp_flags = GFP_HIGHUSER;
862 if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
863 gfp_flags |= __GFP_ZERO;
865 if (huge) {
866 gfp_flags |= GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
867 __GFP_KSWAPD_RECLAIM;
868 gfp_flags &= ~__GFP_MOVABLE;
869 gfp_flags &= ~__GFP_COMP;
872 if (ttm->page_flags & TTM_PAGE_FLAG_NO_RETRY)
873 gfp_flags |= __GFP_RETRY_MAYFAIL;
875 return gfp_flags;
879 * On success pages list will hold count number of correctly
880 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
882 int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev,
883 struct ttm_operation_ctx *ctx)
885 struct ttm_tt *ttm = &ttm_dma->ttm;
886 struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
887 unsigned long num_pages = ttm->num_pages;
888 struct dma_pool *pool;
889 struct dma_page *d_page;
890 enum pool_type type;
891 unsigned i;
892 int ret;
894 if (ttm->state != tt_unpopulated)
895 return 0;
897 if (ttm_check_under_lowerlimit(mem_glob, num_pages, ctx))
898 return -ENOMEM;
900 INIT_LIST_HEAD(&ttm_dma->pages_list);
901 i = 0;
903 type = ttm_to_type(ttm->page_flags, ttm->caching_state);
905 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
906 if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
907 goto skip_huge;
909 pool = ttm_dma_find_pool(dev, type | IS_HUGE);
910 if (!pool) {
911 gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, true);
913 pool = ttm_dma_pool_init(dev, gfp_flags, type | IS_HUGE);
914 if (IS_ERR_OR_NULL(pool))
915 goto skip_huge;
918 while (num_pages >= HPAGE_PMD_NR) {
919 unsigned j;
921 d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
922 if (!d_page)
923 break;
925 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
926 pool->size, ctx);
927 if (unlikely(ret != 0)) {
928 ttm_dma_unpopulate(ttm_dma, dev);
929 return -ENOMEM;
932 d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
933 for (j = i + 1; j < (i + HPAGE_PMD_NR); ++j) {
934 ttm->pages[j] = ttm->pages[j - 1] + 1;
935 ttm_dma->dma_address[j] = ttm_dma->dma_address[j - 1] +
936 PAGE_SIZE;
939 i += HPAGE_PMD_NR;
940 num_pages -= HPAGE_PMD_NR;
943 skip_huge:
944 #endif
946 pool = ttm_dma_find_pool(dev, type);
947 if (!pool) {
948 gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, false);
950 pool = ttm_dma_pool_init(dev, gfp_flags, type);
951 if (IS_ERR_OR_NULL(pool))
952 return -ENOMEM;
955 while (num_pages) {
956 d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
957 if (!d_page) {
958 ttm_dma_unpopulate(ttm_dma, dev);
959 return -ENOMEM;
962 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
963 pool->size, ctx);
964 if (unlikely(ret != 0)) {
965 ttm_dma_unpopulate(ttm_dma, dev);
966 return -ENOMEM;
969 d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
970 ++i;
971 --num_pages;
974 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
975 ret = ttm_tt_swapin(ttm);
976 if (unlikely(ret != 0)) {
977 ttm_dma_unpopulate(ttm_dma, dev);
978 return ret;
982 ttm->state = tt_unbound;
983 return 0;
985 EXPORT_SYMBOL_GPL(ttm_dma_populate);
987 /* Put all pages in pages list to correct pool to wait for reuse */
988 void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
990 struct ttm_tt *ttm = &ttm_dma->ttm;
991 struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
992 struct dma_pool *pool;
993 struct dma_page *d_page, *next;
994 enum pool_type type;
995 bool is_cached = false;
996 unsigned count, i, npages = 0;
997 unsigned long irq_flags;
999 type = ttm_to_type(ttm->page_flags, ttm->caching_state);
1001 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1002 pool = ttm_dma_find_pool(dev, type | IS_HUGE);
1003 if (pool) {
1004 count = 0;
1005 list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1006 page_list) {
1007 if (!(d_page->vaddr & VADDR_FLAG_HUGE_POOL))
1008 continue;
1010 count++;
1011 if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
1012 ttm_mem_global_free_page(mem_glob, d_page->p,
1013 pool->size);
1014 d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1016 ttm_dma_page_put(pool, d_page);
1019 spin_lock_irqsave(&pool->lock, irq_flags);
1020 pool->npages_in_use -= count;
1021 pool->nfrees += count;
1022 spin_unlock_irqrestore(&pool->lock, irq_flags);
1024 #endif
1026 pool = ttm_dma_find_pool(dev, type);
1027 if (!pool)
1028 return;
1030 is_cached = (ttm_dma_find_pool(pool->dev,
1031 ttm_to_type(ttm->page_flags, tt_cached)) == pool);
1033 /* make sure pages array match list and count number of pages */
1034 count = 0;
1035 list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1036 page_list) {
1037 ttm->pages[count] = d_page->p;
1038 count++;
1040 if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
1041 ttm_mem_global_free_page(mem_glob, d_page->p,
1042 pool->size);
1043 d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1046 if (is_cached)
1047 ttm_dma_page_put(pool, d_page);
1050 spin_lock_irqsave(&pool->lock, irq_flags);
1051 pool->npages_in_use -= count;
1052 if (is_cached) {
1053 pool->nfrees += count;
1054 } else {
1055 pool->npages_free += count;
1056 list_splice(&ttm_dma->pages_list, &pool->free_list);
1058 * Wait to have at at least NUM_PAGES_TO_ALLOC number of pages
1059 * to free in order to minimize calls to set_memory_wb().
1061 if (pool->npages_free >= (_manager->options.max_size +
1062 NUM_PAGES_TO_ALLOC))
1063 npages = pool->npages_free - _manager->options.max_size;
1065 spin_unlock_irqrestore(&pool->lock, irq_flags);
1067 INIT_LIST_HEAD(&ttm_dma->pages_list);
1068 for (i = 0; i < ttm->num_pages; i++) {
1069 ttm->pages[i] = NULL;
1070 ttm_dma->dma_address[i] = 0;
1073 /* shrink pool if necessary (only on !is_cached pools)*/
1074 if (npages)
1075 ttm_dma_page_pool_free(pool, npages, false);
1076 ttm->state = tt_unpopulated;
1078 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1081 * Callback for mm to request pool to reduce number of page held.
1083 * XXX: (dchinner) Deadlock warning!
1085 * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1086 * shrinkers
1088 static unsigned long
1089 ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1091 static unsigned start_pool;
1092 unsigned idx = 0;
1093 unsigned pool_offset;
1094 unsigned shrink_pages = sc->nr_to_scan;
1095 struct device_pools *p;
1096 unsigned long freed = 0;
1098 if (list_empty(&_manager->pools))
1099 return SHRINK_STOP;
1101 if (!mutex_trylock(&_manager->lock))
1102 return SHRINK_STOP;
1103 if (!_manager->npools)
1104 goto out;
1105 pool_offset = ++start_pool % _manager->npools;
1106 list_for_each_entry(p, &_manager->pools, pools) {
1107 unsigned nr_free;
1109 if (!p->dev)
1110 continue;
1111 if (shrink_pages == 0)
1112 break;
1113 /* Do it in round-robin fashion. */
1114 if (++idx < pool_offset)
1115 continue;
1116 nr_free = shrink_pages;
1117 /* OK to use static buffer since global mutex is held. */
1118 shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free, true);
1119 freed += nr_free - shrink_pages;
1121 pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1122 p->pool->dev_name, p->pool->name, current->pid,
1123 nr_free, shrink_pages);
1125 out:
1126 mutex_unlock(&_manager->lock);
1127 return freed;
1130 static unsigned long
1131 ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1133 struct device_pools *p;
1134 unsigned long count = 0;
1136 if (!mutex_trylock(&_manager->lock))
1137 return 0;
1138 list_for_each_entry(p, &_manager->pools, pools)
1139 count += p->pool->npages_free;
1140 mutex_unlock(&_manager->lock);
1141 return count;
1144 static int ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1146 manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
1147 manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
1148 manager->mm_shrink.seeks = 1;
1149 return register_shrinker(&manager->mm_shrink);
1152 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1154 unregister_shrinker(&manager->mm_shrink);
1157 int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1159 int ret;
1161 WARN_ON(_manager);
1163 pr_info("Initializing DMA pool allocator\n");
1165 _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1166 if (!_manager)
1167 return -ENOMEM;
1169 mutex_init(&_manager->lock);
1170 INIT_LIST_HEAD(&_manager->pools);
1172 _manager->options.max_size = max_pages;
1173 _manager->options.small = SMALL_ALLOCATION;
1174 _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1176 /* This takes care of auto-freeing the _manager */
1177 ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1178 &glob->kobj, "dma_pool");
1179 if (unlikely(ret != 0))
1180 goto error;
1182 ret = ttm_dma_pool_mm_shrink_init(_manager);
1183 if (unlikely(ret != 0))
1184 goto error;
1185 return 0;
1187 error:
1188 kobject_put(&_manager->kobj);
1189 _manager = NULL;
1190 return ret;
1193 void ttm_dma_page_alloc_fini(void)
1195 struct device_pools *p, *t;
1197 pr_info("Finalizing DMA pool allocator\n");
1198 ttm_dma_pool_mm_shrink_fini(_manager);
1200 list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1201 dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1202 current->pid);
1203 WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1204 ttm_dma_pool_match, p->pool));
1205 ttm_dma_free_pool(p->dev, p->pool->type);
1207 kobject_put(&_manager->kobj);
1208 _manager = NULL;
1211 int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1213 struct device_pools *p;
1214 struct dma_pool *pool = NULL;
1216 if (!_manager) {
1217 seq_printf(m, "No pool allocator running.\n");
1218 return 0;
1220 seq_printf(m, " pool refills pages freed inuse available name\n");
1221 mutex_lock(&_manager->lock);
1222 list_for_each_entry(p, &_manager->pools, pools) {
1223 struct device *dev = p->dev;
1224 if (!dev)
1225 continue;
1226 pool = p->pool;
1227 seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1228 pool->name, pool->nrefills,
1229 pool->nfrees, pool->npages_in_use,
1230 pool->npages_free,
1231 pool->dev_name);
1233 mutex_unlock(&_manager->lock);
1234 return 0;
1236 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1238 #endif